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Abstract

Recent advances in large language models001
(LLMs) have demonstrated impressive rea-002
soning capabilities, often achieved through003
prolonged and computationally intensive004
inference-time deliberation. However, these ex-005
tended reasoning sequences can lead to redun-006
dancy and inefficiency, a phenomenon known007
as overthinking. This paper introduces a008
lightweight reward mechanism to a recent re-009
inforcement learning framework to promote010
efficient reasoning in LLMs by balancing ac-011
curacy with brevity. Our approach combines a012
length-aware reward mechanism with dynami-013
cally scheduled accuracy thresholds to mitigate014
verbosity without sacrificing correctness. Em-015
pirical results across six math reasoning bench-016
marks show that the method significantly re-017
duces output length (over 50%) while preserv-018
ing or even improving accuracy and seman-019
tic quality. Comprehensive reasoning behavior020
analyses further reveal that the method reduces021
redundant reasoning strategies. Moreover, our022
method can refine the structure of LLM infer-023
ence texts, promoting concise and high-quality024
reasoning processes.025

1 Introduction026

Recent advances in large language models (LLMs),027

such as OpenAI o1 (OpenAI, 2024) and DeepSeek-028

R1 (Guo et al., 2025), have significantly improved029

performance on complex reasoning tasks by scal-030

ing computational effort at inference time. This031

enables models to produce exploratory reasoning032

chains resembling internal deliberation, facilitat-033

ing self-assessment and correction (OpenAI, 2024;034

Guo et al., 2025; Team, 2024).035

Reinforcement learning (RL) has played a cen-036

tral role in enabling such capabilities. During RL037

training, models exhibit distinct reasoning phases038

characterized by longer, more intricate outputs and039

emergent strategies such as self-verification and040

decomposition (Gandhi et al., 2025). Empirical041

findings suggest a strong correlation between rea- 042

soning depth and accuracy gains (Zeng et al., 2025; 043

Guo et al., 2025). 044

Despite their benefits, extended reasoning se- 045

quences often introduce inefficiencies due to unnec- 046

essary repetition and elaboration—a phenomenon 047

known as overthinking(Chen et al., 2024). This 048

results in increased latency and computational cost 049

with only marginal gains in accuracy. We further 050

analyze this redundancy in AppendixB, comparing 051

several mainstream models—including ChatGPT- 052

4o, Qwen3-235B-A22B, DeepSeek, DeepSeek-R1, 053

and Gemini-2.0-Flash—on 50 representative prob- 054

lems from the Math Dataset. 055

To mitigate this, recent works explore reward 056

design strategies that balance correctness and 057

brevity (Arora and Zanette, 2025; Aggarwal and 058

Welleck, 2025; Shen et al., 2025; Luo et al., 2025; 059

Yeo et al., 2025), but optimal formulations remain 060

elusive. 061

This work presents two main contributions. We 062

first introduce a lightweight reward mechanism 063

that can be incorporated in a recent reinforcement 064

learning framework, the Group Relative Policy 065

Optimization (GRPO) (Shao et al., 2024), with 066

a length-aware reward function that significantly 067

shortens model reasoning without degrading accu- 068

racy. Secondly, we provide an extensive evaluation 069

across standard benchmarks to assess the trade- 070

offs between response length and reasoning quality, 071

demonstrating the effectiveness and generality of 072

our approach. Our findings reveal: 073

1. our method can significantly reduce inference 074

length while maintaining accuracy and seman- 075

tic quality; 076

2. There is a balanced point in response length 077

where accuracy remains or even increases be- 078

fore it and drops sharply afterward. 079

3. We find that “subgoal setting” and “verifica- 080

tion” behavior contribute primarily to the re- 081
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sponse verbosity; And our method mitigates082

overthinking by decreasing four reasoning be-083

haviors (see Section 5.2 for details).084

4. Fine-tuned models originating from the same085

base tend to converge toward similarly concise086

reasoning lengths, suggesting that our method087

effectively guides models toward minimal yet088

robust reasoning paths (see Section 5.3 for089

details)090

2 Related Work091

2.1 Scaling Up Inference-Time Compute092

Recent advancements in large language models093

(LLMs), notably represented by OpenAI’s o1 (Ope-094

nAI, 2024), highlight the significant benefits of095

allocating additional computational resources dur-096

ing inference to enhance model reasoning capa-097

bilities (Snell et al., 2024). This strategy comple-098

ments traditional approaches focused on training-099

time scaling, which emphasize expanding datasets,100

increasing model parameters, and employing sub-101

stantial training resources.102

Inference-time methods typically broaden the103

exploration space for candidate solutions, thereby104

improving the quality of generated outputs. Tech-105

niques in this category include structured search106

methods such as Tree-of-Thoughts (ToT)(Yao et al.,107

2023), Monte Carlo Tree Search (MCTS)(Tian108

et al., 2024), and Stream-of-Thought (SoT)(Gandhi109

et al., 2024); iterative refinement processes like110

self-refine mechanisms(Madaan et al., 2023; Fer-111

raz et al., 2024); and sampling-based aggregation112

strategies (Wang et al., 2022; Brown et al., 2024;113

Team et al., 2025). Additionally, some methods114

integrate external verification modules to evaluate115

and rank candidate outputs, further improving fi-116

nal decision quality (Cobbe et al., 2021; Lightman117

et al., 2023; Li et al., 2024).118

2.2 Efficient Reasoning119

Although increasing inference-time computational120

resources can improve the reasoning performance121

of LLMs, it often leads to overly verbose reasoning122

chains, resulting in higher computational costs and123

longer inference times (Sui et al., 2025). This “over-124

thinking” phenomenon has motivated research into125

methods that encourage more concise and efficient126

reasoning.127

To address this, several strategies have been pro-128

posed. Model-based approaches, such as reinforce-129

ment learning with length-aware rewards, train130

models to balance correctness with brevity (see 131

Section 2.3). Supervised fine-tuning on variable- 132

length Chain-of-Thought (CoT) data, as used in 133

Cot-valve (Ma et al., 2025) and TokenSkip (Xia 134

et al., 2025), similarly promotes compact reasoning. 135

Prompt-based methods like Token-Budget (Han 136

et al., 2024) and Chain of Drafts (Xu et al., 2025a) 137

guide models to be concise by explicitly constrain- 138

ing response length. Output-oriented techniques, 139

including Coconut (Hao et al., 2024) and Soft- 140

cot (Xu et al., 2025b), reduce token overhead by 141

encoding reasoning steps in latent form. Finally, 142

dynamic reasoning frameworks (Liao et al., 2025; 143

Ding et al., 2025) adapt reasoning depth based on 144

real-time feedback to optimize efficiency. 145

2.3 RL with Length Reward Design 146

Existing works leverage traditional RL optimiza- 147

tion techniques (typically policy optimization 148

(PPO) (Schulman et al., 2017)) combined with ex- 149

plicit length-based reward to control the length of 150

Chain-of-Thought (CoT) reasoning. (Arora and 151

Zanette, 2025) introduced a reward schema that 152

prioritizes shorter correct answers, applying tradi- 153

tional policy gradient methods to encourage con- 154

cise reasoning steps. (Yeo et al., 2025) incorpo- 155

rated a Cosine Reward based on a Dirichlet func- 156

tion and an "exceed length penalty" to manage CoT 157

length growth, thereby enhancing performance sta- 158

bility. Due to the performance impact of CoT 159

length, Kimi k1.5 (Team et al., 2025) integrates a 160

length penalty within its policy optimization frame- 161

work to improve long CoT activations and facili- 162

tate effective model merging. Similarly, (Aggar- 163

wal and Welleck, 2025) introduced Length Con- 164

trolled Policy Optimization (LCPO), a RL method 165

that optimizes for accuracy and adherence to user- 166

specified length constraints, training reasoning lan- 167

guage models to produce outputs satisfying a length 168

constraint given in prompts. (Luo et al., 2025) pro- 169

posed the O1-Pruner, which introduces a Length- 170

Harmonizing Reward combined with a PPO-style 171

loss to optimize reasoning LLMs by effectively 172

shortening CoT length without compromising ac- 173

curacy. Furthermore, (Shen et al., 2025) developed 174

DAST, a method that fine-tunes reasoning LLMs 175

using a constructed length preference dataset based 176

on a self-defined token-length budget measurement. 177

This measurement is defined as a linear combina- 178

tion of the average length of correct responses and 179

the maximum allowed length. 180

2



3 Methods181

Current language models’ outputs include much182

redundant content. However, a lightweight and183

effective length control mechanism is lacking to184

prevent overthinking. Some prior works either hurt185

models’ performance while reducing the inference186

length or do not reduce inference length as much187

as we do (Aggarwal and Welleck, 2025; Shen et al.,188

2025; Arora and Zanette, 2025). In this section, we189

introduce a lightweight, length-controlled reward190

designed to prevent overthinking without compro-191

mising model performance. Unlike most prior192

works, which only use the length of predictions193

and reference texts to control inference length, we194

incorporate validation accuracy directly into the re-195

ward function, effectively preserving performance196

while preventing overthinking during training. We197

integrate the novel reward into the GRPO training,198

and our experiment results demonstrate the effec-199

tiveness of our reward on multiple models.200

3.1 Length Reward201

To maintain model performance, it is crucial to in-202

corporate accuracy into the design of the reward203

function. Specifically, the length reward is acti-204

vated only when the validation accuracy meets a205

particular condition; otherwise, the model is en-206

couraged to focus on improving accuracy before207

optimizing length. The following equations define208

the length reward for a prediction at the iteration i:209

racc =
Aval

Atarget
210

rlen = min(1,
Lpred

Lmax
) ∈ [0, 1]211

Rlen = 1−min(rβacc, rlen) ∈ [0, 1]212

where Aval and Atarget denote the validation accu-213

racy and the dynamically scheduled target accuracy214

at iteration i; Lpred is the length of the model’s pre-215

dicted output, and Lmax is the preset maximum al-216

lowed length; racc and rlen represent the normalized217

accuracy and length, respectively. Rlen is the length218

reward. A value close to 1 implies that the rear is219

inactive (no penalty), either because the output is220

sufficiently short or the model has not yet achieved221

enough accuracy to trigger length constraints. The222

hyperparameter β controls the sensitivity of the223

reward to accuracy. A larger β delays the activa-224

tion of the length penalty until higher accuracy is225

achieved, while a smaller β allows earlier enforce-226

ment of length constraints. Instead of applying a227

hard threshold on accuracy, these formulations use 228

a smooth transition to modulate the length reward, 229

ensuring continuous control that adapts dynami- 230

cally as the model improves. 231

3.2 Dynamic Attention to Accuracy and Final 232

Reward 233

In addition to incorporating the length reward, we 234

adaptively modulate the influence of the raw re- 235

ward, defined as I(ypred, ygold), which prioritizes 236

correctness but overlooks text length. To balance 237

performance and brevity, we introduce Accuracy 238

Attention, a mechanism that dynamically adjusts 239

the weight of the raw reward based on the model’s 240

current accuracy. The accuracy attention Attacc is 241

computed as: 242

Attacc = γ + (1− γ)(1− racc) 243

where γ is the minimum attention to accuracy. As 244

accuracy improves, less emphasis is placed on the 245

raw reward, allowing the length reward to play a 246

greater role. 247

The final reward is the weighted combination of 248

the raw reward Rraw and the length reward Rlen. 249

R = Attacc ·Rraw + α ·Rlen 250

where α controls the impact of the length reward. 251

Notably, the reward function serves two goals: (1) 252

to guide the model toward accurate predictions 253

when performance is suboptimal, and (2) to pro- 254

mote concise reasoning when accuracy is suffi- 255

ciently high. 256

3.3 Dynamic Schedule 257

The parameter β in the length reward determines 258

when the penalty starts to take effect, but it relies 259

on the target accuracy Atarget. A well-calibrated 260

Atarget is essential to reduce overthinking while pre- 261

serving model performance. A naive approach is 262

to manually set Atarget and apply the length reward 263

only after the model surpasses a fixed accuracy or 264

training step threshold. However, this method is 265

impractical, as neither the optimal accuracy nor 266

the convergence point is known beforehand. To 267

address this, we propose two dynamic scheduling 268

strategies that adaptively set Atarget during training. 269

Exponential Moving Average (EMA). This 270

method updates the target accuracy by smoothing 271
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it toward the best validation accuracy seen so far:272

Amax
val = max

0<i≤t
Aval,i273

Atarget,i = max
(
ϵ ·Atarget,i−1 + (1− ϵ) ·Amax

val ,274

Amax
val

)
275

where t is the current step, not the number of val-276

idation steps, and the ϵ controls the inertia of the277

target. When validation accuracy exceeds the previ-278

ous target, the target is directly updated to prevent279

lag.280

Potential Scheduling (PS). This strategy models281

the target accuracy as the current best validation282

accuracy plus a decaying potential:283

Amax
val = max

0<i≤t
Aval,i284

Pi =

{
1−Aval,0, i = 0

min
(
1−Amax

val , ϵ · Pi−1

)
, i > 0

285

Atarget,i = Amax
val + Pi286

where t is the same as the above method, and ϵ con-287

trols how fast the potential decays, smaller values288

reduce Pi more aggressively over time. The min289

function ensures Atarget,i ≤ 1 even when accuracy290

improves rapidly. This method ensures that Atarget291

always stays above the best validation accuracy292

while gradually reducing the potential gap.293

4 Experiments294

4.1 Settings295

Models and Datasets We conduct our training296

experiments on two commonly used and well-297

known models: Qwen2.5-Math-7B and DeepSeek-298

R1-Distill-Qwen-7B, which have shown excellent299

reasoning ability on various math tasks. Both mod-300

els are trained on the GSM8k (Cobbe et al., 2021)301

and MATH (Hendrycks et al., 2021) datasets. Both302

training set has about 7.5k questions. During our303

training, we split both training sets in 95%:5% ratio304

to create validation sets for the training process. We305

evaluate our models on different reasoning datasets:306

GSM8k, MATH, AIME24, AMC24, CNMO24,307

and GPQA.308

We fine-tune models using the GRPO methods.309

The default parameters during the training process310

are as follows. The values of α and β are 10−6 and311

128, respectively. Both values of γ and ϵ are 0.9.312

We choose the first dynamic scheduling method313

as the default training method. The length limita-314

tion of both prompts and generations is 1k tokens,315

which is long enough for most of our questions and 316

answers in training datasets. Models are fine-tuned 317

for about 300 steps to reach convergence on both 318

inference length and accuracy. All experiments 319

are conducted on the AWS EC2 platform using 8 320

NVIDIA H100 GPUs. 321

Baselines To evaluate the superiority of our 322

method, we compare our results against three base- 323

lines. (1) Original models: are published mod- 324

els without any further fine-tuning. (2) Original 325

models-RS: are fine-tuned original models by raw 326

scores (0/1 scores). If an answer extracted from 327

the inference text is correct, the raw score is 1. 328

Otherwise, it is 0. 329

Metrics We apply accuracy, the length of infer- 330

ence texts, and CCA (Nayab et al., 2024) as our 331

evaluation metrics. We calculate the average results 332

of 3 runs for all metrics. 333

4.2 Results 334

Length Analysis Table 1 shows the performance 335

of various methods on different models. Notably, 336

results demonstrate that our length reward frame- 337

work can dramatically prevent overthinking while 338

improving models’ reasoning ability compared to 339

the original model. On the GSM8k and MATH 340

datasets, our framework only needs less than a quar- 341

ter and a half of the original length to generate cor- 342

rect answers, respectively. Moreover, applying the 343

raw score (0/1 score) during training also causes the 344

model outputs to gradually decrease in most cases. 345

This is mainly because post-training can slightly 346

simplify outputs by removing redundant content. 347

Detailed analysis of the change of inference texts 348

will be discussed in section 5. Furthermore, the 349

training process on the GSM8k dataset is unsta- 350

ble as shown in Figure 2. It is mainly because the 351

dataset is simple, and post-training by raw score as 352

the reward cannot effectively simplify it. 353

Evaluation on Datasets According to recent re- 354

search, longer LLM outputs, in many contexts, al- 355

low the model to explore a broader range of possi- 356

ble solutions and reasoning paths, which is crucial 357

for solving complex problems that require multi- 358

step reasoning (Jiang et al., 2024; Wu et al., 2025). 359

Thus, the harder a question is, the longer it takes 360

LLMs to generate an answer. However, a model 361

with overthinking issues may not be able to evalu- 362

ate the complexity of questions since it will gener- 363

ate redundant reasoning steps for simple questions. 364
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GSM8k MATH

Models Accuracy↑ Tokens↓ CCA↑ Accuracy↑ Tokens↓ CCA↑

Qwen2.5-Math 93.21 439.04 26.4 62.27 577.94 24.3
Qwen2.5-Math-RS 97.17 193.73 35.8 73.01 395.31 28.7
Qwen2.5-Math-LR 97.59 97.01 38.9 73.87 288.24 31.6

DS-Distill-Qwen 94.72 455.61 30.7 70.33 1006.94 16.7
DS-Distill-Qwen-RS 97.06 497.88 28.4 82.87 557.12 25.6
DS-Distill-Qwen-LR 97.72 100.58 40.1 82.77 270.51 33.1

Table 1: Performance of models on GSM8k and MATH datasets. Each model is trained and evaluated on the
same dataset, and then assessed by three metrics. “RS” indicates that the base model is fine-tuned by raw score.
“LR” denotes that length reward is applied to the base model during the training process. “Qwen2.5-Math” and
“DS-Distill-Qwen” are the abbreviations of “Qwen2.5-Math-7B” and “DeepSeek-R1-Distill-Qwen-7B”

AIME24 AMC24 CNMO24 GPQA

Models Accuracy↑ Tokens↓ Accuracy↑ Tokens↓ Accuracy↑ Tokens↓ Accuracy↑ Tokens↓

Qwen2.5-Math-LR 26.7 421.51 23.9 395.1 22.2 546.67 30.8 568.01
DS-Distill-Qwen-LR 53.3 2113.08 52.2 1130.42 66.7 2114.31 46.1 2403.78

Table 2: Evaluate models on out-of-distribution math datasets.

Since our models can reliably prevent overthink-365

ing while maintaining their performance, we can366

use them as evaluators to test the complexity of367

questions in those datasets. Table 2 shows our368

evaluation results. Due to the complexity of out-of-369

domain reasoning datasets, the inference length in-370

creases dramatically. It demonstrates that “GSM8k”371

is the simplest dataset, while “GPQA” contains372

the most complex questions. The “Math” dataset373

is more complicated than “GSM8k” but simpler374

than the other three datasets. AMC24 is a special375

dataset since neither model performs well on it, nor376

generates long inference texts.377

4.3 Ablation Study378

Hyper Parameters α, β γ, and ϵ We run all379

the following experiments following the second380

dynamic schedule method on Qwen2.5-Math-7B381

model training on the MATH dataset. The baseline382

settings are the same as the “Length Penalty” set-383

ting in the main result section, which is α = 1e−6,384

β = 128, γ = 0.9, and ϵ = 0.9.385

For α, we have tried the following values: 10−5,386

5× 10−6, 2× 10−6, 10−6, and 10−7. Results are387

in the Figures 1b and 1e. According to Figures388

1b and 1e, the best value of α is 10−6, which re-389

duces the model overthinking while maintaining390

the high accuracy. A low α value, such as 10−7,391

does not help the model prevent overthinking. A 392

high α value, such as 10−5, can help the model 393

mitigate overthinking but hurt its performance as 394

its accuracy decreases from 73% to 71%, but the 395

length only reduces by around 30 tokens. More- 396

over, looking through the lines of 10−5, it fluctuates 397

more severely than others. At the end of its training 398

process, both the output length and accuracy drop 399

dramatically and then rise back. It demonstrates 400

the auto-adaptability of our framework. When the 401

accuracy drops abnormally, our dynamic sched- 402

ule framework helps the model focus on improving 403

accuracy instead of continuing to prevent overthink- 404

ing. 405

Dynamic Schedule We compare our dynamic 406

scheduling methods under the same hyperparame- 407

ter settings as shown in the above section. Figure 408

1c and 1f show that the two methods are similar in 409

effectiveness. However, the first dynamic schedul- 410

ing method converges faster and more stably at the 411

end of training. 412

Validation Interval Since validation accuracy is 413

an essential part of formulas and controls two parts 414

of the framework, the frequency of obtaining the 415

value may be vital to the training process. We have 416

tried three interval values: 5, 10, and 30. Results 417

are in Figure 1a and 1d Experiments show that 418
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(a) The output length at different val
step.

(b) The output length of different alpha
value.

(c) The output length of different dy-
namic schedule methods.

(d) The output accuracy at different val
step.

(e) The output accuracy of different
alpha value.

(f) The output accuracy of different dy-
namic schedule methods.

Figure 1: Ablation analysis of token usage and accuracy under different training configurations. Top row (a–c):
Impact on output length (token count) when varying validation step interval (a), length reward weight α (b), and
different dynamic schedule strategy (c). Bottom row (d–f): Corresponding effects on validation accuracy for the
same settings.

Figure 2: # of inference tokens of models during training
with raw scores.

there is almost no difference in choosing different419

validation intervals. With a small validation inter-420

val, the reduction of generation length is smoother421

than with others. However, it does not affect the422

final results.423

5 Analysis424

5.1 Semantic Quality Analysis425

In this section, in addition to standard metrics such426

as accuracy and response length, we evaluate the se-427

mantic quality of truncated responses, providing a428

complementary dimension for assessing efficiency 429

in reasoning tasks. Specifically, we present the win 430

rate of our proposed method compared to other 431

baseline in Table 1. This evaluation includes both 432

both manual assessments and automated compar- 433

isons using GPT-4o (Hurst et al., 2024). During 434

these pairwise comparisons, each model response 435

earns 1 point for a win, 0.5 points for a tie, and 436

0 points for a loss. The win rate is thus calcu- 437

lated as the proportion of total points earned by 438

our method relative to the baseline method across 439

all comparisons. Given a problem instance x with 440

corresponding solutions y1 and y2, the evaluation 441

criteria are as follows: 442

• If y1 is correct and y2 incorrect, y1 is declared 443

the winner; 444

• If y2 is correct and y1 incorrect, y2 wins; 445

• If both y1 and y2 are incorrect, neither receives 446

points; 447

• If both solutions are correct, their semantic 448

quality is evaluated by human annotators or 449

GPT-4o to determine the superior response. 450

The evaluation prompt template, detailed in Ap- 451

pendix C, is specifically designed to mitigate length 452
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GSM8K MATH
Our methods Opponent Human GPT-4o Human GPT-4o

Qwen2.5-Math-LR Qwen2.5-Math 64.4% 55.9% 66.8% 57.2%
Qwen2.5-Math-RS 60.5% 53.4% 58.3% 53.6%

DS-Distill-Qwen-LR DS-Distill-Qwen 61.3% 52.8% 67.5% 54.6%
DS-Distill-Qwen-RS 57.8% 52.5% 61.6% 54.1%

Table 3: Win rates of our proposed method against various baselines settings on GSM8k and MATH benchmark.
Evaluations include human annotators and GPT-4o.

bias during semantic quality assessment. To avoid453

positional bias, the order of y1 and y2 is random-454

ized. This evaluation approach is motivated by the455

fact that, in reasoning tasks, only correct solutions456

are semantically meaningful; incorrect solutions457

lack value regardless of their conciseness or per-458

ceived faithfulness.459

The summarized results from this analysis are460

presented in Table 3. Our approach consistently461

achieves a win rate above 50% against all baselines.462

Moreover, we observe that human evaluations yield463

a higher win rate compared to GPT-4o assessments,464

likely due to GPT-4o’s known preference bias to-465

wards lengthier responses (Singhal et al., 2023).466

Despite a slight reduction in raw accuracy scores467

compared to baseline methods shown in Table 1,468

our method demonstrates superior semantic qual-469

ity. These findings validate our method’s ability to470

generate concise yet semantically richer solutions.471

Figure 3: Response length and frequency of reasoning
behaviors identified in Qwen2.5-Math-LR on MATH
benchmark.

5.2 Reasoning Behavior Analysis472

To better understand the changes of model’s rea-473

soning patterns throughout the training process,474

following (Zeng et al., 2025), we adopt the cog-475

nitive behavior framework proposed by (Gandhi476

et al., 2025), leveraging GPT-4o (Hurst et al., 2024)477

to identify distinct reasoning behaviors: “Back-478

tracking”, “Verification”, “Subgoal Setting”, and479

Figure 4: Response length and frequency of reasoning
behaviors identified in DS-Distill-Qwen-LR on MATH
benchmark.

“Enumeration”. This approach provides greater ro- 480

bustness compared to traditional keyword-based 481

methods (Xie et al., 2025; Yeo et al., 2025), effec- 482

tively capturing nuanced reasoning patterns even 483

without explicit textual indicators. Definitions and 484

evaluation prompts for these behaviors are provided 485

in Appendix A. 486

Specifically, following the experiment setting in 487

Table 1, we conduct this reasoning behavior anal- 488

ysis on two models, Qwen2.5-Math-LR and DS- 489

Distill-Qwen-LR on the MATH benchmark. Fig- 490

ures 3 and 4 show the correlation between response 491

length and the frequency of identified reasoning 492

behaviors across different training stages. Our anal- 493

ysis reveals that "Subgoal Setting" and "Verifica- 494

tion" are predominant, significantly contributing 495

to reasoning verbosity. As training progresses, we 496

observe a concurrent reduction in the frequency of 497

all identified reasoning behaviors, aligning closely 498

with decreased output lengths. These observations 499

suggest that our strategy for improving model effi- 500

ciency primarily functions by effectively minimiz- 501

ing redundant reasoning behaviors. 502

5.3 Reasoning Behavior Variations Across 503

Different Models 504

To understand the impact of length penalties on 505

inference behavior, we compare the final original 506
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Dataset / Question Final Original Output (Step 270
Checkpoint)

Final Length-Penalized Output (Step
350 Checkpoint, Dynamic Length
Penalty, α = 1e − 6, 2nd dynamic
schedule method)

Math:
What is the sum of the
first 10 positive even
numbers?

S = 10/2 * (2 + 20) = 5 *
22 = 110
Final answer: 110

First 10 even numbers: 2 to 20. Sum =
10/2 × (2 + 20) = 5 × 22 = 110.

GSM8K:
Kylar wants to buy 16
glasses. One costs $5,
every second costs 60%.
What’s the total cost?

8 full-price: 8 × $5 =
$40
8 discounted: 8 × $3 =
$24
Total = $64. Final
answer: 64

8 full-price: 8*5 = 40. 8 discount: 8*3
= 24. Total = 64.

Table 4: Comparison between final original model (Step 270 Checkpoint) and length-penalized model (Step 350
Checkpoint, Dynamic Length Penalty, α = 1e−6). The length-penalized outputs remove commentary and structure,
preserving only core computations.

model (Step 270 checkpoint) with a variant trained507

using a dynamic length penalty, a learning rate508

of 1e-6, and a dynamic scheduling strategy (Step509

350 checkpoint). An example is provided in Ta-510

ble 4. While both models yield correct answers, the511

length-penalized model significantly compresses512

explanations and eliminates scaffolding, presenting513

solutions in a more direct and streamlined manner.514

This behavior is consistent across both the515

MATH and GSM8k datasets. In MATH, full deriva-516

tions and formulaic explanations are replaced by517

concise inline calculations. In GSM8k, narrative518

setups are omitted, and responses are reduced to519

compact arithmetic chains. Structural elements520

such as framing phrases, code-style reasoning, and521

boxed outputs are removed entirely.522

These shorter, higher-confidence completions of-523

ten result in improved exact match accuracy. We524

attribute these gains to the model’s preference for525

more direct solution paths under length constraints,526

which suppresses narrative redundancy and pro-527

motes structurally compressed, low-variance rea-528

soning.529

Takeaways Our qualitative analysis of early- vs.530

mid-training stages and base vs. distilled models531

(Appendix E) highlights three key insights. First,532

the effects of length penalties emerge early in train-533

ing (as soon as step 60), reducing narrative scaffold-534

ing while preserving accuracy (Table 5). Second,535

interpretability is the first aspect to degrade under536

compression: models begin by eliminating sym-537

bolic verification and explanatory framing, even538

before modifying core logical steps. Third, distil-539

lation improves reasoning not merely by shorten- 540

ing outputs, but by restructuring them—correcting 541

conceptual errors, removing redundancy, and yield- 542

ing more compact and reliable inference (Table 6). 543

These observations suggest that the benefits of com- 544

pression arise not from truncation alone, but from 545

structural refinement in reasoning behavior. 546

6 Conclusion 547

This work addresses the inefficiency of overthink- 548

ing in LLM reasoning by introducing a lightweight 549

reinforcement learning mechanism centered on a 550

length-aware reward. Our method dynamically bal- 551

ances brevity and accuracy by activating length 552

penalties only when performance is sufficient, lead- 553

ing to significant reductions in inference length 554

without sacrificing correctness. Extensive evalua- 555

tions across multiple math reasoning benchmarks 556

demonstrate that our approach outperforms exist- 557

ing methods in both efficiency and semantic qual- 558

ity. Behavioral analyses reveal that improvements 559

stem not just from response truncation, but from 560

structural refinement—reducing redundant reason- 561

ing behaviors like subgoal setting and verification. 562

Moreover, our method generalizes across models 563

and datasets, suggesting its potential as a practical 564

framework for training more efficient and inter- 565

pretable LLMs. 566

Future work may explore extending this reward 567

design to other domains and tasks, as well as in- 568

tegrating behavior-level feedback for more fine- 569

grained control over reasoning styles. 570
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Limitation Our approach is mainly tested on571

math benchmarks and its generalization to tasks572

needing richer language, such as commonsense573

reasoning or dialog, is unverified. The method’s ef-574

fectiveness is sensitive to hyperparameter choices,575

and does not dynamically adjust reasoning depth576

based on task complexity, which may limit adapt-577

ability. Additionally, evaluation partly depends on578

GPT-4o, which may introduce bias despite mitiga-579

tion efforts. These limitations highlight the need for580

future work on adaptive reward schemes, broader581

domain coverage, and user-controllable verbosity.582
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A Reasoning Behavior Analysis 770

(Gandhi et al., 2024) identify four core cognitive behaviors displayed by language models: 771

(1) Verification: systematically checking intermediate results for correctness; 772

(2) Backtracking: detecting errors mid-generation and explicitly revising prior steps; 773

(3) Subgoal setting: decomposing a complex problem into smaller, tractable sub-tasks; 774

(4) Enumeration: exhaustively considering multiple cases or possibilities when searching for a solution. 775

We substitute “Enumeration” for the original “Backward Chaining,” which is less pertinent to 776

mathematical-reasoning tasks. 777

Prompt Template for Identifying and Analyzing Reasoning Behaviors

Below is a chain-of-reasoning generated by a Language Model when attempting to solve a
math problem. Evaluate this chain-of-reasoning to determine whether it demonstrates benefi-
cial problem-solving behaviors that deviate from typical linear, monotonic reasoning patterns
commonly observed in language models.

<start_of_reasoning>
{input}
<end_of_reasoning>

Specifically, actively identify and emphasize beneficial behaviors such as:

• (1) Backtracking: Explicitly revising approaches upon identifying errors or dead ends (e.g.,
"This approach won’t work because...").

• (2) Verification: Systematically checking intermediate results or reasoning steps (e.g., "Let’s
verify this result by...").

• (3) Subgoal Setting: Breaking down complex problems into smaller, manageable steps (e.g.,
"To solve this, we first need to...").

• (4) Enumeration: Solving problems by exhaustively considering multiple cases or possibili-
ties.

Additionally, remain attentive to and encourage the identification of other beneficial behaviors
not explicitly listed here, such as creative analogies, abstraction to simpler cases, or insightful
generalizations.

Important:
Clearly specify each beneficial behavior you identify.
Provide explicit examples from the reasoning chain.
If no beneficial behaviors are observed, explicitly return an empty list.
Provide your evaluation clearly, formatted as follows:

{
"behavior": "",
"example": ""

}

778
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B Preliminary Analysis on Redundant Contents779

To better understand the sources and roles of redundancy in language model outputs, we analyze the780

reasoning behaviors of five models—ChatGPT-4o, Qwen3-235B-A22B, DeepSeek, DeepSeek-R1, and781

Gemini-2.0-Flash—on 50 representative problems from the Math Dataset. We categorize their reasoning782

strategies using four behavioral types introduced by Gandhi et al. (2024): Subgoal Setting, Verification,783

Backtracking, and Enumeration.784

Subgoal Setting emerges as the most prevalent behavior across models. All models—except Gem-785

ini—systematically break problems into smaller intermediate steps (e.g., calculating individual item costs786

before comparing totals). While this decomposition supports interpretability and correctness, it often787

introduces structural redundancy. Repetitive cues such as “Next, subtract 5 from the result” or “We788

solve for B” restate information already evident from accompanying equations. This pattern is especially789

prominent in ChatGPT-4o and DeepSeek, which tend to be pedagogical. In contrast, Qwen3-235B-A22B790

adopts a more concise presentation, omitting such narrative scaffolding while still producing accurate791

solutions.792

Verification is commonly observed in DeepSeek and DeepSeek-R1, where models re-calculate or793

re-assert intermediate values even after computing the final answer. For example, solving 99 = B−5 after794

already establishing B = 104. Although this may signal confidence or thoroughness, it contributes limited795

functional value and increases output length. ChatGPT-4o occasionally includes such verification steps,796

while Qwen consistently avoids them, preferring direct and economical conclusions. This distinction797

highlights a trade-off between perceived diligence and actual informativeness.798

Backtracking appears only weakly in DeepSeek-R1, which occasionally revisits earlier logic after799

reaching a conclusion. However, no model demonstrates genuine error-driven backtracking with correction,800

suggesting limited adaptive reasoning in these deterministic tasks.801

Enumeration is absent across all outputs, which aligns with the single-solution structure of the802

problems analyzed.803

We distinguish between two types of redundancy:804

• Functionally useful redundancy, such as goal decomposition and verification, which can aid user805

comprehension.806

• Stylistic redundancy, including informal fillers and verbose narration, which inflate output length807

without improving clarity.808

Gemini’s responses contain the most stylistic redundancy, frequently using conversational fillers like809

“Let’s add those up!” that contribute little to reasoning transparency. Qwen, in contrast, is the most810

efficient: it minimizes both types of redundancy while maintaining correctness and completeness.811

Overall, all five models exhibit redundancy through restatements, over-explanation, or narratively812

padded transitions. These findings support the case for selective pruning and reformatting—removing813

unnecessary scaffolding and repetition—to streamline outputs without compromising accuracy or inter-814

pretability.815

An annotated example illustrating these behaviors is provided below.816

B.1 Problem Prompt817

Word Problem

Gloria is shoe shopping when she comes across a pair of boots that fit her shoe budget. However,
she has to choose between the boots and two pairs of high heels that together cost five dollars less
than the boots. If one pair of heels costs $33 and the other costs twice as much, how many dollars
are the boots? Let’s think step by step and output the final answer within \boxed{}.

818
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B.2 Qwen3-235B-A22B Output 819

Qwen Output

We are given:
- Gloria can either buy a pair of boots or two pairs of high heels. - The total cost of the two
pairs of heels is $5 less than the cost of the boots. - One pair of heels costs $33, and the other
costs twice as much.
Step 1: Total cost of heels:

33 + (2× 33) = 33 + 66 = 99

Step 2: Cost of boots:
99 + 5 = 104

820

B.3 ChatGPT-4o Output 821

Qwen Output

We are given:

• Gloria can either buy a pair of boots or two pairs of high heels.

• The total cost of the two pairs of heels is $5 less than the cost of the boots.

• One pair of heels costs $33, and the other costs twice as much.

Step 1: Define variables
Let:

• B = cost of the boots

• The first pair of heels = $33

• The second pair of heels = $2 x 33 = $66

So, total cost of both pairs of heels =

33 + 66 = 99

We’re told this is $5 less than the boots, so:

B = 99 + 5 = 104

Final Answer:
The boots cost $104.

822
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ChatGPT-4o Output823

ChatGPT Output

Let’s solve the problem step by step.

Step 1: Understand the problem
Gloria finds a pair of boots that cost a certain amount.
She also considers buying two pairs of high heels instead.

• The first pair of heels costs $33.

• The second pair of heels costs twice as much:

2× 33 = 66 dollars

• The total cost of the two heels is:

33 + 66 = 99 dollars

• The boots cost $5 more than the two pairs of heels:

Boots = 99 + 5 = 104 dollars

Final Answer:
104

824

Gemini-2.0 Output825

Gemini Output

Let’s break this down step by step:

1. Cost of the more expensive heels: One pair of heels costs $33, and the other costs twice as
much. So, the more expensive heels cost $33 × 2 = 66.

2. Total cost of the two pairs of heels: To find the combined cost of both pairs of heels, we add
their individual prices: $33 + 66 = 99.

3. Cost of the boots: The problem states that the two pairs of high heels together cost five
dollars less than the boots. This means the boots cost $5 more than the combined cost of the
heels. So, the boots cost $99 + 5 = 104.

Therefore, the boots cost 104 dollars.
826
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DeepSeek Output 827

DeepSeek Output

Let’s determine the cost of the boots step by step.

1. Identify the Costs of the High Heels:

• First pair of heels: $33
• Second pair of heels: Twice as much as the first pair.

2× $33 = $66

2. Calculate the Total Cost of Both Pairs of Heels:

$33 (first pair) + $66 (second pair) = $99

3. Determine the Cost of the Boots:

• The problem states that the two pairs of heels together cost $5 less than the boots.
• Let B be the cost of the boots.

$99 = B − $5

B = $99 + $5 = $104

Final Answer:

104
828
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C Win Rate Analysis829

Three criteria helps GPT-4o keep a focus on instruction following and semantic quality while avoiding830

length bias:831

Response Semantic Quality Comparison Template

Given the following instruction and two candidate responses:
Instruction: {}
Response 1: {}
Response 2: {}

Please evaluate which response better follows the instruction based on the following criteria:
1. Adherence to the instruction.
2. Overall semantic quality.
3. Conciseness: the response should avoid redundancy, unnecessary verbosity, or inclusion of

irrelevant information.
Based on your evaluation, respond in the format:

’Response 1 is better than Response 2’, ’Response 2 is better than Response 1’, or ’Response 1 is
equal to Response 2’.

832

D More Ablation Study833

For β, we have tried the following values: 8, 32, and 128. Results are in the figures ?? and ??. The β834

controls when the length reward intervenes in the training process. With a low β value, such as 8, the835

length reward starts being effective early as the validation accuracy reaches around 45% of the target836

accuracy. According to the ??, early engagement in the training process can reduce the generation length837

more, but the model’s performance also decreases from 73% to 71%. With a high β value, such as 128,838

the length reward does not affect the training process until the validation accuracy reaches 95% of the839

target accuracy. The validation accuracy process also shows the model’s performance is even better than840

the “Original” training process. In our framework, our goal is to maintain the model’s performance while841

preventing overthinking. Thus, a high value is preferred in this case.842

E More Qualitative Analysis843

E.1 When Does the Length Penalty Start Working? A Step 30 vs Step 60 Analysis844

To investigate when the length penalty begins to meaningfully affect model behavior, we compare845

inference outputs at step 30 and step 60 under Dynamic Length Penalty settings (1e-6 learning rate,846

dynamic schedule) on both the Math and GSM8K datasets. These checkpoints are chosen to align with847

the transition period of the d-schedule mechanism, which gradually increases the weight of the length848

penalty during post-training. By step 60, we already observe clear signs of compression: outputs are more849

concise, pedagogical scaffolding is reduced, and verbose explanation structures are stripped away. Table 5850

illustrates this behavioral shift with representative examples.851

At step 30, the model still retains a “teacher-like” reasoning style. For example, in response to a math852

problem asking for the sum of the first 10 positive even numbers, the model describes the arithmetic853

sequence, defines variables explicitly, applies the formula S = n
2 (a + l), and concludes with a boxed854

answer. In contrast, the step 60 output removes the setup entirely and provides the final arithmetic chain855

directly: “Sum = 10/2 × (2 + 20) = 110. #### 110”. A similar transition is observed in the GSM8K856

example: at step 30, the model walks through glass pricing logic with Python-like code and a print()857

statement for validation; by step 60, this is reduced to three compact sentences with no code, commentary,858

or explanation.859

These early changes follow a consistent pattern. Narrative framing—phrases like “Let’s solve this by...”860

or “Now compute...” — are dropped first. Embedded symbolic or code-based verification disappears861

16



Dataset / Question Step 30 Checkpoint Output Step 60 Checkpoint Output

Math:
What is the sum of the
first 10 positive even
numbers?

Detailed explanation: defines sequence,
uses formula S = n

2 (a + l), explains
each term, then computes:
S = 10/2 * (2 + 20) = 5 *
22 = 110
Includes full derivation and justification.

Condensed version:
“First 10 even numbers: 2 to 20. Sum =
10/2 × (2 + 20) = 5 × 22 = 110. ####
110”
No sequence explanation or setup.

GSM8K:
Kylar wants to buy 16
glasses. One costs $5, ev-
ery second costs 60%.

Full arithmetic + Python code:
cost_first = 5,
cost_second = 5 * 0.6
total_cost = (cost_first +
cost_second) * 8
print(total_cost) #
Output: 64.0
Explains logic of pairing and validation.

Shortened to only arithmetic steps:
“8 cheaper glasses cost 8 * $3 = $24. 8
full-price glasses cost 8 * $5 = $40. To-
tal = 64. #### 64”
All narrative and code removed.

Table 5: Comparison between early (Step 30) and mid-stage (Step 60) model outputs. Length penalty begins to
affect verbosity and explanation format while preserving core reasoning.

shortly after. While the arithmetic logic is preserved, the accompanying verbal scaffolding is eliminated. 862

This compression begins after the d-schedule’s early burn-in phase (typically around step 20–40), as the 863

model starts receiving stronger training signals to minimize token count while retaining correctness. By 864

step 60, the pressure from the length penalty is sufficiently strong to shape model behavior measurably. 865

In summary, the model begins transitioning to a compressed reasoning style as early as step 60. 866

The resulting outputs are more efficient and better aligned with inference-time brevity goals, but less 867

transparent in their reasoning. This supports the hypothesis that the d-schedule enforces compression 868

gradually, with tangible effects emerging soon after step 30. While answer correctness remains intact, the 869

interpretability of the solution path is the first to be sacrificed. 870

E.2 Shorter Does Better: How Distillation Improves Reasoning Quality 871

Despite a marginal difference of just ∼20 tokens in final output length, the distilled model 872

Deepseek-R1-Distill-Qwen-7B outperforms the base Qwen2.5-Math-7B by 9% in accu- 873

racy (81% vs. 72%). This improvement is not due to additional information but rather better reasoning 874

compression. The distilled model eliminates hedging expressions (e.g., “Let’s try to...”), avoids redun- 875

dant commentary, and reorganizes computation steps into a more structured and compact form. It also 876

prioritizes early calculation of key values and reuses them directly, reducing cognitive redundancy. 877

These qualitative differences—though subtle—lead to more robust and readable inference chains. 878

As shown in Table 6, the distilled model demonstrates clearer mathematical reasoning and corrects 879

conceptual errors present in the base model. This illustrates that performance gains under length-penalty 880

and distillation arise from structural refinement, not mere truncation. 881

17



Dataset / Question Base Model Output (Qwen2.5-
Math-7B)

Distilled Model Output (Deepseek-
R1-Distill-Qwen-7B)

What is the positive differ-
ence between 120% of 30
and 130% of 20?

Incorrect due to misinterpreting per-
centages:

“120% of 30 is 0.12×30 = 3.6. 130%
of 20 is 0.13×20 = 2.6. The positive
difference is 3.6− 2.6 = 1. 1 ”

Correct and concise:
“120% of 30 is 1.2× 30 = 36. 130%
of 20 is 1.3×20 = 26. The difference
is 36− 26 = 10 .”
Accurate numeric logic and no redun-
dant commentary.

Table 6: Comparison of reasoning behavior between the base and distilled models. The base model misinterprets per-
centage values due to incorrect decimal logic and lacks structural clarity. The distilled model applies correct numeric
conversions, removes redundant phrasing, and presents a concise, high-confidence reasoning chain—illustrating
how compression improves both accuracy and readability.
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