LLM-ER: Large Language Model Efficient Reasoning via
Balanced Accuracy-Length Control

Anonymous ACL submission

Abstract

Recent advances in large language models
(LLMs) have demonstrated impressive rea-
soning capabilities, often achieved through
prolonged and computationally intensive
inference-time deliberation. However, these ex-
tended reasoning sequences can lead to redun-
dancy and inefficiency, a phenomenon known
as overthinking. This paper introduces a
lightweight reward mechanism to a recent re-
inforcement learning framework to promote
efficient reasoning in LLMs by balancing ac-
curacy with brevity. Our approach combines a
length-aware reward mechanism with dynami-
cally scheduled accuracy thresholds to mitigate
verbosity without sacrificing correctness. Em-
pirical results across six math reasoning bench-
marks show that the method significantly re-
duces output length (over 50%) while preserv-
ing or even improving accuracy and seman-
tic quality. Comprehensive reasoning behavior
analyses further reveal that the method reduces
redundant reasoning strategies. Moreover, our
method can refine the structure of LLM infer-
ence texts, promoting concise and high-quality
reasoning processes.

1 Introduction

Recent advances in large language models (LLMs),
such as OpenAl ol (OpenAl, 2024) and DeepSeek-
R1 (Guo et al., 2025), have significantly improved
performance on complex reasoning tasks by scal-
ing computational effort at inference time. This
enables models to produce exploratory reasoning
chains resembling internal deliberation, facilitat-
ing self-assessment and correction (OpenAl, 2024;
Guo et al., 2025; Team, 2024).

Reinforcement learning (RL) has played a cen-
tral role in enabling such capabilities. During RL
training, models exhibit distinct reasoning phases
characterized by longer, more intricate outputs and
emergent strategies such as self-verification and
decomposition (Gandhi et al., 2025). Empirical

findings suggest a strong correlation between rea-
soning depth and accuracy gains (Zeng et al., 2025;
Guo et al., 2025).

Despite their benefits, extended reasoning se-
quences often introduce inefficiencies due to unnec-
essary repetition and elaboration—a phenomenon
known as overthinking(Chen et al., 2024). This
results in increased latency and computational cost
with only marginal gains in accuracy. We further
analyze this redundancy in AppendixB, comparing
several mainstream models—including ChatGPT-
40, Qwen3-235B-A22B, DeepSeek, DeepSeek-R1,
and Gemini-2.0-Flash—on 50 representative prob-
lems from the Math Dataset.

To mitigate this, recent works explore reward
design strategies that balance correctness and
brevity (Arora and Zanette, 2025; Aggarwal and
Welleck, 2025; Shen et al., 2025; Luo et al., 2025;
Yeo et al., 2025), but optimal formulations remain
elusive.

This work presents two main contributions. We
first introduce a lightweight reward mechanism
that can be incorporated in a recent reinforcement
learning framework, the Group Relative Policy
Optimization (GRPO) (Shao et al., 2024), with
a length-aware reward function that significantly
shortens model reasoning without degrading accu-
racy. Secondly, we provide an extensive evaluation
across standard benchmarks to assess the trade-
offs between response length and reasoning quality,
demonstrating the effectiveness and generality of
our approach. Our findings reveal:

1. our method can significantly reduce inference
length while maintaining accuracy and seman-
tic quality;

2. There is a balanced point in response length
where accuracy remains or even increases be-
fore it and drops sharply afterward.

3. We find that “subgoal setting” and “verifica-
tion” behavior contribute primarily to the re-

sponse verbosity; And our method mitigates
overthinking by decreasing four reasoning be-
haviors (see Section 5.2 for details).

4. Fine-tuned models originating from the same
base tend to converge toward similarly concise
reasoning lengths, suggesting that our method
effectively guides models toward minimal yet
robust reasoning paths (see Section 5.3 for
details)

2 Related Work
2.1 Scaling Up Inference-Time Compute

Recent advancements in large language models
(LLMs), notably represented by OpenAlI’s ol (Ope-
nAl, 2024), highlight the significant benefits of
allocating additional computational resources dur-
ing inference to enhance model reasoning capa-
bilities (Snell et al., 2024). This strategy comple-
ments traditional approaches focused on training-
time scaling, which emphasize expanding datasets,
increasing model parameters, and employing sub-
stantial training resources.

Inference-time methods typically broaden the
exploration space for candidate solutions, thereby
improving the quality of generated outputs. Tech-
niques in this category include structured search
methods such as Tree-of-Thoughts (ToT)(Yao et al.,
2023), Monte Carlo Tree Search (MCTS)(Tian
et al., 2024), and Stream-of-Thought (SoT)(Gandhi
et al., 2024); iterative refinement processes like
self-refine mechanisms(Madaan et al., 2023; Fer-
raz et al., 2024); and sampling-based aggregation
strategies (Wang et al., 2022; Brown et al., 2024;
Team et al., 2025). Additionally, some methods
integrate external verification modules to evaluate
and rank candidate outputs, further improving fi-
nal decision quality (Cobbe et al., 2021; Lightman
et al., 2023; Li et al., 2024).

2.2 Efficient Reasoning

Although increasing inference-time computational
resources can improve the reasoning performance
of LLMs, it often leads to overly verbose reasoning
chains, resulting in higher computational costs and
longer inference times (Sui et al., 2025). This “over-
thinking” phenomenon has motivated research into
methods that encourage more concise and efficient
reasoning.

To address this, several strategies have been pro-
posed. Model-based approaches, such as reinforce-
ment learning with length-aware rewards, train

models to balance correctness with brevity (see
Section 2.3). Supervised fine-tuning on variable-
length Chain-of-Thought (CoT) data, as used in
Cot-valve (Ma et al., 2025) and TokenSkip (Xia
et al., 2025), similarly promotes compact reasoning.
Prompt-based methods like Token-Budget (Han
et al., 2024) and Chain of Drafts (Xu et al., 2025a)
guide models to be concise by explicitly constrain-
ing response length. Output-oriented techniques,
including Coconut (Hao et al., 2024) and Soft-
cot (Xu et al., 2025b), reduce token overhead by
encoding reasoning steps in latent form. Finally,
dynamic reasoning frameworks (Liao et al., 2025;
Ding et al., 2025) adapt reasoning depth based on
real-time feedback to optimize efficiency.

2.3 RL with Length Reward Design

Existing works leverage traditional RL optimiza-
tion techniques (typically policy optimization
(PPO) (Schulman et al., 2017)) combined with ex-
plicit length-based reward to control the length of
Chain-of-Thought (CoT) reasoning. (Arora and
Zanette, 2025) introduced a reward schema that
prioritizes shorter correct answers, applying tradi-
tional policy gradient methods to encourage con-
cise reasoning steps. (Yeo et al., 2025) incorpo-
rated a Cosine Reward based on a Dirichlet func-
tion and an "exceed length penalty" to manage CoT
length growth, thereby enhancing performance sta-
bility. Due to the performance impact of CoT
length, Kimi k1.5 (Team et al., 2025) integrates a
length penalty within its policy optimization frame-
work to improve long CoT activations and facili-
tate effective model merging. Similarly, (Aggar-
wal and Welleck, 2025) introduced Length Con-
trolled Policy Optimization (LCPO), a RL method
that optimizes for accuracy and adherence to user-
specified length constraints, training reasoning lan-
guage models to produce outputs satisfying a length
constraint given in prompts. (Luo et al., 2025) pro-
posed the O1-Pruner, which introduces a Length-
Harmonizing Reward combined with a PPO-style
loss to optimize reasoning LLMs by effectively
shortening CoT length without compromising ac-
curacy. Furthermore, (Shen et al., 2025) developed
DAST, a method that fine-tunes reasoning LLMs
using a constructed length preference dataset based
on a self-defined token-length budget measurement.
This measurement is defined as a linear combina-
tion of the average length of correct responses and
the maximum allowed length.

3 Methods

Current language models’ outputs include much
redundant content. However, a lightweight and
effective length control mechanism is lacking to
prevent overthinking. Some prior works either hurt
models’ performance while reducing the inference
length or do not reduce inference length as much
as we do (Aggarwal and Welleck, 2025; Shen et al.,
2025; Arora and Zanette, 2025). In this section, we
introduce a lightweight, length-controlled reward
designed to prevent overthinking without compro-
mising model performance. Unlike most prior
works, which only use the length of predictions
and reference texts to control inference length, we
incorporate validation accuracy directly into the re-
ward function, effectively preserving performance
while preventing overthinking during training. We
integrate the novel reward into the GRPO training,
and our experiment results demonstrate the effec-
tiveness of our reward on multiple models.

3.1 Length Reward

To maintain model performance, it is crucial to in-
corporate accuracy into the design of the reward
function. Specifically, the length reward is acti-
vated only when the validation accuracy meets a
particular condition; otherwise, the model is en-
couraged to focus on improving accuracy before
optimizing length. The following equations define
the length reward for a prediction at the iteration %:

Aval
Ata.rget

Tacc =

Tlen = min(1,

Lpred
1

max

Rien=1-— min(rfcc, Tien) € [0, 1]

where Ay, and Agrge denote the validation accu-
racy and the dynamically scheduled target accuracy
at iteration 7; Lpreq 18 the length of the model’s pre-
dicted output, and Ly, is the preset maximum al-
lowed length; 7, and e, represent the normalized
accuracy and length, respectively. Rje, is the length
reward. A value close to 1 implies that the rear is
inactive (no penalty), either because the output is
sufficiently short or the model has not yet achieved
enough accuracy to trigger length constraints. The
hyperparameter 5 controls the sensitivity of the
reward to accuracy. A larger 5 delays the activa-
tion of the length penalty until higher accuracy is
achieved, while a smaller 3 allows earlier enforce-
ment of length constraints. Instead of applying a

hard threshold on accuracy, these formulations use
a smooth transition to modulate the length reward,
ensuring continuous control that adapts dynami-
cally as the model improves.

3.2 Dynamic Attention to Accuracy and Final
Reward

In addition to incorporating the length reward, we
adaptively modulate the influence of the raw re-
ward, defined as I(Ypred, Yeola), Which prioritizes
correctness but overlooks text length. To balance
performance and brevity, we introduce Accuracy
Attention, a mechanism that dynamically adjusts
the weight of the raw reward based on the model’s
current accuracy. The accuracy attention Attye. is
computed as:

Attace =7+ (1 —7)(1 — race)

where 7y is the minimum attention to accuracy. As
accuracy improves, less emphasis is placed on the
raw reward, allowing the length reward to play a
greater role.

The final reward is the weighted combination of
the raw reward R,y and the length reward Rjey.

R = Attaee - Rraw + o - Rien

where « controls the impact of the length reward.
Notably, the reward function serves two goals: (1)
to guide the model toward accurate predictions
when performance is suboptimal, and (2) to pro-
mote concise reasoning when accuracy is suffi-
ciently high.

3.3 Dynamic Schedule

The parameter 5 in the length reward determines
when the penalty starts to take effect, but it relies
on the target accuracy Agreer. A well-calibrated
Aarger 18 essential to reduce overthinking while pre-
serving model performance. A naive approach is
to manually set Agrger and apply the length reward
only after the model surpasses a fixed accuracy or
training step threshold. However, this method is
impractical, as neither the optimal accuracy nor
the convergence point is known beforehand. To
address this, we propose two dynamic scheduling
strategies that adaptively set Agge; during training.

Exponential Moving Average (EMA). This
method updates the target accuracy by smoothing

it toward the best validation accuracy seen so far:

max

= ax A 1.4
val i<t val,?

0

max

Atarget,i = Inax (6 : Atarget,i—l + (1 - 6) CAyal s

V')
where ¢ is the current step, not the number of val-
idation steps, and the € controls the inertia of the
target. When validation accuracy exceeds the previ-
ous target, the target is directly updated to prevent
lag.

Potential Scheduling (PS). This strategy models
the target accuracy as the current best validation
accuracy plus a decaying potential:

max
= max Ava;
val 0<ist val,i
P = 1- Aval,Oa =0
i = . .)
min (1 — AT, € Pz;l) , 1>0

__ pAmax
Atarget,i — Lyal + P’L

where t is the same as the above method, and € con-
trols how fast the potential decays, smaller values
reduce P; more aggressively over time. The min
function ensures Ager,; < 1 €ven when accuracy
improves rapidly. This method ensures that Ayge
always stays above the best validation accuracy
while gradually reducing the potential gap.

4 Experiments

4.1 Settings

Models and Datasets We conduct our training
experiments on two commonly used and well-
known models: Qwen2.5-Math-7B and DeepSeek-
R1-Distill-Qwen-7B, which have shown excellent
reasoning ability on various math tasks. Both mod-
els are trained on the GSM8k (Cobbe et al., 2021)
and MATH (Hendrycks et al., 2021) datasets. Both
training set has about 7.5k questions. During our
training, we split both training sets in 95%:5% ratio
to create validation sets for the training process. We
evaluate our models on different reasoning datasets:
GSM8k, MATH, AIME24, AMC24, CNMO24,
and GPQA.

We fine-tune models using the GRPO methods.
The default parameters during the training process
are as follows. The values of « and 3 are 1075 and
128, respectively. Both values of v and € are 0.9.
We choose the first dynamic scheduling method
as the default training method. The length limita-
tion of both prompts and generations is 1k tokens,

which is long enough for most of our questions and
answers in training datasets. Models are fine-tuned
for about 300 steps to reach convergence on both
inference length and accuracy. All experiments
are conducted on the AWS EC2 platform using 8
NVIDIA H100 GPUs.

Baselines To evaluate the superiority of our
method, we compare our results against three base-
lines. (1) Original models: are published mod-
els without any further fine-tuning. (2) Original
models-RS: are fine-tuned original models by raw
scores (0/1 scores). If an answer extracted from
the inference text is correct, the raw score is 1.
Otherwise, it is 0.

Metrics We apply accuracy, the length of infer-
ence texts, and CCA (Nayab et al., 2024) as our
evaluation metrics. We calculate the average results
of 3 runs for all metrics.

4.2 Results

Length Analysis Table 1 shows the performance
of various methods on different models. Notably,
results demonstrate that our length reward frame-
work can dramatically prevent overthinking while
improving models’ reasoning ability compared to
the original model. On the GSM8k and MATH
datasets, our framework only needs less than a quar-
ter and a half of the original length to generate cor-
rect answers, respectively. Moreover, applying the
raw score (0/1 score) during training also causes the
model outputs to gradually decrease in most cases.
This is mainly because post-training can slightly
simplify outputs by removing redundant content.
Detailed analysis of the change of inference texts
will be discussed in section 5. Furthermore, the
training process on the GSM8k dataset is unsta-
ble as shown in Figure 2. It is mainly because the
dataset is simple, and post-training by raw score as
the reward cannot effectively simplify it.

Evaluation on Datasets According to recent re-
search, longer LLM outputs, in many contexts, al-
low the model to explore a broader range of possi-
ble solutions and reasoning paths, which is crucial
for solving complex problems that require multi-
step reasoning (Jiang et al., 2024; Wu et al., 2025).
Thus, the harder a question is, the longer it takes
LLMs to generate an answer. However, a model
with overthinking issues may not be able to evalu-
ate the complexity of questions since it will gener-
ate redundant reasoning steps for simple questions.

GSMS8k MATH
Models Accuracyl Tokens| CCAt1 Accuracy? Tokens| CCA7T
Qwen2.5-Math 93.21 439.04 26.4 62.27 577.94 24.3
Qwen2.5-Math-RS 97.17 193.73 35.8 73.01 395.31 28.7
Qwen2.5-Math-LR 97.59 97.01 38.9 73.87 288.24 31.6
DS-Distill-Qwen 94.72 455.61 30.7 70.33 1006.94 16.7
DS-Distill-Qwen-RS 97.06 497.88 28.4 82.87 557.12 25.6
DS-Distill-Qwen-LR 97.72 100.58 40.1 82.77 270.51 33.1

Table 1: Performance of models on GSM8k and MATH datasets. Each model is trained and evaluated on the
same dataset, and then assessed by three metrics. “RS” indicates that the base model is fine-tuned by raw score.
“LR” denotes that length reward is applied to the base model during the training process. “Qwen2.5-Math” and
“DS-Distill-Qwen” are the abbreviations of “Qwen2.5-Math-7B” and “DeepSeek-R1-Distill-Qwen-7B”

AIME24 AMC24 CNMO24 GPQA
Models Accuracy! Tokens| Accuracy? Tokens| Accuracy] Tokens| Accuracy? Tokens|
Qwen2.5-Math-LR 26.7 421.51 239 395.1 222 546.67 30.8 568.01
DS-Distill-Qwen-LR 53.3 2113.08 522 1130.42 66.7 211431 46.1 2403.78

Table 2: Evaluate models on out-of-distribution math datasets.

Since our models can reliably prevent overthink-
ing while maintaining their performance, we can
use them as evaluators to test the complexity of
questions in those datasets. Table 2 shows our
evaluation results. Due to the complexity of out-of-
domain reasoning datasets, the inference length in-
creases dramatically. It demonstrates that “GSM8k”
is the simplest dataset, while “GPQA” contains
the most complex questions. The “Math” dataset
is more complicated than “GSMS8k” but simpler
than the other three datasets. AMC24 is a special
dataset since neither model performs well on it, nor
generates long inference texts.

4.3 Ablation Study

Hyper Parameters o, 5 v, and ¢ We run all
the following experiments following the second
dynamic schedule method on Qwen2.5-Math-7B
model training on the MATH dataset. The baseline
settings are the same as the “Length Penalty” set-
ting in the main result section, which is o = 1e 9,
B =128,v=0.9,and ¢ = 0.9.

For «, we have tried the following values: 1072,
5x1076,2 x 1075, 1076, and 10~7. Results are
in the Figures 1b and le. According to Figures
1b and le, the best value of « is 1076, which re-
duces the model overthinking while maintaining
the high accuracy. A low « value, such as 1077,

does not help the model prevent overthinking. A
high « value, such as 107°, can help the model
mitigate overthinking but hurt its performance as
its accuracy decreases from 73% to 71%, but the
length only reduces by around 30 tokens. More-
over, looking through the lines of 107, it fluctuates
more severely than others. At the end of its training
process, both the output length and accuracy drop
dramatically and then rise back. It demonstrates
the auto-adaptability of our framework. When the
accuracy drops abnormally, our dynamic sched-
ule framework helps the model focus on improving
accuracy instead of continuing to prevent overthink-
ing.

Dynamic Schedule We compare our dynamic
scheduling methods under the same hyperparame-
ter settings as shown in the above section. Figure
Ic and 1f show that the two methods are similar in
effectiveness. However, the first dynamic schedul-
ing method converges faster and more stably at the
end of training.

Validation Interval Since validation accuracy is
an essential part of formulas and controls two parts
of the framework, the frequency of obtaining the
value may be vital to the training process. We have
tried three interval values: 5, 10, and 30. Results
are in Figure la and 1d Experiments show that

LP Validation Interval 30
LP Validation Interval 5

—— LP Validation Interval 10
Original

of Tokens
S
&
=)

600

500

of Tokens
N
S
S

300

LR Alpha 2e~-6
LR Alpha 5e~-6
—— LR Alpha 1e”~-5
LR Alpha 1le™-6
—— LR Alpha 1e”-7
Original

R e S TN

of Tokens
P T BT - |
S o o o o
S & & & o

w
o
=)

w
S
S

) ‘ﬂf,\,ﬂm“

ey

ﬁ%,m‘_,,* M

Ty

D-Schedule 2
D-Schedule 1
Original

150
Step

0 50 100 200

(a) The output length at different val

step.

0.74

Accuracy
o o I
o N 3
& S N

4
o
o

200

0 50 100 150 200 250 300

Step

(b) The output length of different alpha
value.

0.74

0.72

Accuracy
o o o
o @ 3
& o o

4
o
R

VR,

0 50 100 150 200 250 300

Step

(c) The output length of different dy-
namic schedule methods.

Accuracy
¢
o
@

°
o
=

! 0.62

0 50 100 150 200 250 300 0 50 100

Step
(d) The output accuracy at different val

step. alpha value.

(e) The output accuracy of different

150 300

Step

150 300 0 50 100 200 250

Step

200 250

(f) The output accuracy of different dy-
namic schedule methods.

Figure 1: Ablation analysis of token usage and accuracy under different training configurations. Top row (a—c):
Impact on output length (token count) when varying validation step interval (a), length reward weight « (b), and
different dynamic schedule strategy (c). Bottom row (d—f): Corresponding effects on validation accuracy for the

same settings.

600
A Deepseek-R1-Distill-Qwen-7b Original
550 i Qwen2.5-Maht-7b Original
s0| | e s
450 fr e s
%) \ LAY
S W, /
2 400
]
“—
© 350
**
300
250
200
0 50 100 150 200 250 300

Step

Figure 2: # of inference tokens of models during training
with raw scores.

there is almost no difference in choosing different
validation intervals. With a small validation inter-
val, the reduction of generation length is smoother
than with others. However, it does not affect the
final results.

5 Analysis

5.1 Semantic Quality Analysis

In this section, in addition to standard metrics such
as accuracy and response length, we evaluate the se-
mantic quality of truncated responses, providing a

complementary dimension for assessing efficiency
in reasoning tasks. Specifically, we present the win
rate of our proposed method compared to other
baseline in Table 1. This evaluation includes both
both manual assessments and automated compar-
isons using GPT-40 (Hurst et al., 2024). During
these pairwise comparisons, each model response
earns 1 point for a win, 0.5 points for a tie, and
0 points for a loss. The win rate is thus calcu-
lated as the proportion of total points earned by
our method relative to the baseline method across
all comparisons. Given a problem instance x with
corresponding solutions y; and y», the evaluation
criteria are as follows:

e If y; is correct and y» incorrect, y; is declared
the winner;

* If y5 is correct and y; incorrect, 3o wins;

* Ifboth y; and y» are incorrect, neither receives
points;

¢ If both solutions are correct, their semantic
quality is evaluated by human annotators or
GPT-40 to determine the superior response.

The evaluation prompt template, detailed in Ap-
pendix C, is specifically designed to mitigate length

GSM8K MATH
Our methods Opponent Human GPT-4o0 Human GPT-4o
Qwen2.5-Math-LR Qwen2.5-Math 64.4% 55.9% 66.8% 57.2%
Qwen2.5-Math-RS 60.5% 53.4% 583% 53.6%
DS-Distill-Qwen-LR DS-Distill-Qwen 61.3% 52.8% 67.5% 54.6%
DS-Distill-Qwen-RS 57.8% 52.5% 61.6% 54.1%

Table 3: Win rates of our proposed method against various baselines settings on GSM8k and MATH benchmark.

Evaluations include human annotators and GPT-4o.

bias during semantic quality assessment. To avoid
positional bias, the order of y; and y is random-
ized. This evaluation approach is motivated by the
fact that, in reasoning tasks, only correct solutions
are semantically meaningful; incorrect solutions
lack value regardless of their conciseness or per-
ceived faithfulness.

The summarized results from this analysis are
presented in Table 3. Our approach consistently
achieves a win rate above 50% against all baselines.
Moreover, we observe that human evaluations yield
a higher win rate compared to GPT-40 assessments,
likely due to GPT-40’s known preference bias to-
wards lengthier responses (Singhal et al., 2023).
Despite a slight reduction in raw accuracy scores
compared to baseline methods shown in Table 1,
our method demonstrates superior semantic qual-
ity. These findings validate our method’s ability to
generate concise yet semantically richer solutions.

Backtracking
Verification
- Subgoal Setting

—%— Response -e-

Response length
»
5
8

Enumeration

o
o

o
B
Frequency

N ow
o8
g 8
7 <
g
‘
\
\

)
¢ §
/

o

S

g TOTTTTET e g O

Figure 3: Response length and frequency of reasoning
behaviors identified in Qwen2.5-Math-LR on MATH
benchmark.

5.2 Reasoning Behavior Analysis

To better understand the changes of model’s rea-
soning patterns throughout the training process,
following (Zeng et al., 2025), we adopt the cog-
nitive behavior framework proposed by (Gandhi
etal., 2025), leveraging GPT-40 (Hurst et al., 2024)
to identify distinct reasoning behaviors: “Back-
tracking”, “Verification”, “Subgoal Setting”, and

1000 - Backtracking 1.2

o Verification
200 .-

Subgoal Setting
o N Enumeration -0
800 e
o
600

\‘c’// \ RN JEaN
SN 0.6
\‘\
500 \ .
- R

400 N0

300

o
o

Response length
=
8
/ —
»
I
Frequency

200

0 50 100 150 200 250 300 350

Step

Figure 4: Response length and frequency of reasoning
behaviors identified in DS-Distill-Qwen-LR on MATH
benchmark.

“Enumeration”. This approach provides greater ro-
bustness compared to traditional keyword-based
methods (Xie et al., 2025; Yeo et al., 2025), effec-
tively capturing nuanced reasoning patterns even
without explicit textual indicators. Definitions and
evaluation prompts for these behaviors are provided
in Appendix A.

Specifically, following the experiment setting in
Table 1, we conduct this reasoning behavior anal-
ysis on two models, Qwen2.5-Math-LR and DS-
Distill-Qwen-LR on the MATH benchmark. Fig-
ures 3 and 4 show the correlation between response
length and the frequency of identified reasoning
behaviors across different training stages. Our anal-
ysis reveals that "Subgoal Setting" and "Verifica-
tion" are predominant, significantly contributing
to reasoning verbosity. As training progresses, we
observe a concurrent reduction in the frequency of
all identified reasoning behaviors, aligning closely
with decreased output lengths. These observations
suggest that our strategy for improving model effi-
ciency primarily functions by effectively minimiz-
ing redundant reasoning behaviors.

5.3 Reasoning Behavior Variations Across
Different Models

To understand the impact of length penalties on
inference behavior, we compare the final original

Dataset / Question Final Original Output (Step 270 | Final Length-Penalized Output (Step
Checkpoint) 350 Checkpoint, Dynamic Length
Penalty, « = le — 6, 2nd dynamic
schedule method)
Math: S =10/2 = (2 + 20) =5 « First 10 even numbers: 2 to 20. Sum =
What is the sum of the | 22 = 110 10/2 x (2 +20)=5%x22=110.
first 10 positive even | Final answer:
numbers?
GSMSK: 8 full-price: 8 x $5 = 8 full-price: 8*5 = 40. 8 discount: 8*3
Kylar wants to buy 16 | $40 = 24. Total = 64.
glasses. One costs $5,| 8 discounted: 8 x $3 =
every second costs 60%. | $24
What’s the total cost? Total = $64. Final
answer:

Table 4: Comparison between final original model (Step 270 Checkpoint) and length-penalized model (Step 350
Checkpoint, Dynamic Length Penalty, « = 1e — 6). The length-penalized outputs remove commentary and structure,

preserving only core computations.

model (Step 270 checkpoint) with a variant trained
using a dynamic length penalty, a learning rate
of le-6, and a dynamic scheduling strategy (Step
350 checkpoint). An example is provided in Ta-
ble 4. While both models yield correct answers, the
length-penalized model significantly compresses
explanations and eliminates scaffolding, presenting
solutions in a more direct and streamlined manner.

This behavior is consistent across both the
MATH and GSMS8k datasets. In MATH, full deriva-
tions and formulaic explanations are replaced by
concise inline calculations. In GSM8Kk, narrative
setups are omitted, and responses are reduced to
compact arithmetic chains. Structural elements
such as framing phrases, code-style reasoning, and
boxed outputs are removed entirely.

These shorter, higher-confidence completions of-
ten result in improved exact match accuracy. We
attribute these gains to the model’s preference for
more direct solution paths under length constraints,
which suppresses narrative redundancy and pro-
motes structurally compressed, low-variance rea-
soning.

Takeaways Our qualitative analysis of early- vs.
mid-training stages and base vs. distilled models
(Appendix E) highlights three key insights. First,
the effects of length penalties emerge early in train-
ing (as soon as step 60), reducing narrative scaffold-
ing while preserving accuracy (Table 5). Second,
interpretability is the first aspect to degrade under
compression: models begin by eliminating sym-
bolic verification and explanatory framing, even
before modifying core logical steps. Third, distil-

lation improves reasoning not merely by shorten-
ing outputs, but by restructuring them—correcting
conceptual errors, removing redundancy, and yield-
ing more compact and reliable inference (Table 6).
These observations suggest that the benefits of com-
pression arise not from truncation alone, but from
structural refinement in reasoning behavior.

6 Conclusion

This work addresses the inefficiency of overthink-
ing in LLM reasoning by introducing a lightweight
reinforcement learning mechanism centered on a
length-aware reward. Our method dynamically bal-
ances brevity and accuracy by activating length
penalties only when performance is sufficient, lead-
ing to significant reductions in inference length
without sacrificing correctness. Extensive evalua-
tions across multiple math reasoning benchmarks
demonstrate that our approach outperforms exist-
ing methods in both efficiency and semantic qual-
ity. Behavioral analyses reveal that improvements
stem not just from response truncation, but from
structural refinement—reducing redundant reason-
ing behaviors like subgoal setting and verification.
Moreover, our method generalizes across models
and datasets, suggesting its potential as a practical
framework for training more efficient and inter-
pretable LLMs.

Future work may explore extending this reward
design to other domains and tasks, as well as in-
tegrating behavior-level feedback for more fine-
grained control over reasoning styles.

Limitation Our approach is mainly tested on
math benchmarks and its generalization to tasks
needing richer language, such as commonsense
reasoning or dialog, is unverified. The method’s ef-
fectiveness is sensitive to hyperparameter choices,
and does not dynamically adjust reasoning depth
based on task complexity, which may limit adapt-
ability. Additionally, evaluation partly depends on
GPT-40, which may introduce bias despite mitiga-
tion efforts. These limitations highlight the need for
future work on adaptive reward schemes, broader
domain coverage, and user-controllable verbosity.

References

Pranjal Aggarwal and Sean Welleck. 2025. L1:
Controlling how long a reasoning model thinks
with reinforcement learning. arXiv preprint
arXiv:2503.04697.

Daman Arora and Andrea Zanette. 2025. Training lan-
guage models to reason efficiently. arXiv preprint
arXiv:2502.04463.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald
Clark, Quoc V Le, Christopher Ré, and Azalia Mirho-
seini. 2024. Large language monkeys: Scaling infer-
ence compute with repeated sampling. arXiv preprint
arXiv:2407.21787.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He,
Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu,
Mengfei Zhou, Zhuosheng Zhang, et al. 2024. Do
not think that much for 2+ 3=? on the overthinking
of ol-like llms. arXiv preprint arXiv:2412.21187.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Yifu Ding, Wentao Jiang, Shunyu Liu, Yongcheng Jing,
Jinyang Guo, Yingjie Wang, Jing Zhang, Zengmao
Wang, Ziwei Liu, Bo Du, et al. 2025. Dynamic
parallel tree search for efficient llm reasoning. arXiv
preprint arXiv:2502.16235.

Thomas Palmeira Ferraz, Kartik Mehta, Yu-Hsiang Lin,
Haw-Shiuan Chang, Shereen Oraby, Sijia Liu, Vivek
Subramanian, Tagyoung Chung, Mohit Bansal, and
Nanyun Peng. 2024. Llm self-correction with de-
crim: Decompose, critique, and refine for enhanced
following of instructions with multiple constraints.
arXiv preprint arXiv:2410.06458.

Kanishk Gandhi, Ayush Chakravarthy, Anikait Singh,
Nathan Lile, and Noah D Goodman. 2025. Cognitive
behaviors that enable self-improving reasoners, or,
four habits of highly effective stars. arXiv preprint
arXiv:2503.01307.

Kanishk Gandhi, Denise Lee, Gabriel Grand, Muxin
Liu, Winson Cheng, Archit Sharma, and Noah D
Goodman. 2024. Stream of search (sos): Learn-

ing to search in language. arXiv preprint
arXiv:2404.03683.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-rl: In-
centivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint arXiv:2501.12948.

Tingxu Han, Zhenting Wang, Chunrong Fang, Shiyu
Zhao, Shiging Ma, and Zhenyu Chen. 2024.
Token-budget-aware 1lm reasoning. arXiv preprint
arXiv:2412.18547.

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li,
Zhiting Hu, Jason Weston, and Yuandong Tian. 2024.
Training large language models to reason in a contin-
uous latent space. arXiv preprint arXiv:2412.06769.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-
cob Steinhardt. 2021. Measuring mathematical prob-
lem solving with the math dataset. arXiv preprint
arXiv:2103.03874.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam
Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford,
et al. 2024. Gpt-4o system card. arXiv preprint
arXiv:2410.21276.

Jinhao Jiang, Zhipeng Chen, Yingqgian Min, Jie Chen,
Xiaoxue Cheng, Jiapeng Wang, Yiru Tang, Haoxiang
Sun, Jia Deng, Wayne Xin Zhao, et al. 2024. Tech-
nical report: Enhancing llm reasoning with reward-
guided tree search. arXiv preprint arXiv:2411.11694.

Ruosen Li, Ziming Luo, and Xinya Du. 2024. Fg-prm:
Fine-grained hallucination detection and mitigation
in language model mathematical reasoning.

Baohao Liao, Yuhui Xu, Hanze Dong, Junnan Li,
Christof Monz, Silvio Savarese, Doyen Sahoo, and
Caiming Xiong. 2025. Reward-guided speculative
decoding for efficient 1lm reasoning. arXiv preprint
arXiv:2501.19324.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harri-
son Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2023. Let’s verify step by step. In The Twelfth Inter-
national Conference on Learning Representations.

Haotian Luo, Li Shen, Haiying He, Yibo Wang, Shi-
wei Liu, Wei Li, Naigiang Tan, Xiaochun Cao,
and Dacheng Tao. 2025. Ol-pruner: Length-
harmonizing fine-tuning for ol-like reasoning prun-
ing. arXiv preprint arXiv:2501.12570.

Xinyin Ma, Guangnian Wan, Runpeng Yu, Gongfan
Fang, and Xinchao Wang. 2025. Cot-valve: Length-
compressible chain-of-thought tuning. arXiv preprint
arXiv:2502.09601.

http://arxiv.org/abs/2410.06304
http://arxiv.org/abs/2410.06304
http://arxiv.org/abs/2410.06304
http://arxiv.org/abs/2410.06304
http://arxiv.org/abs/2410.06304

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
et al. 2023. Self-refine: Iterative refinement with
self-feedback. Advances in Neural Information Pro-
cessing Systems, 36:46534—-46594.

Sania Nayab, Giulio Rossolini, Marco Simoni, Andrea
Saracino, Giorgio Buttazzo, Nicolamaria Manes, and
Fabrizio Giacomelli. 2024. Concise thoughts: Impact
of output length on llm reasoning and cost. arXiv
preprint arXiv:2407.19825.

OpenAl. 2024. Learning to reason with llms. Accessed:
2025-04-30.

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. 2017. Proxi-
mal policy optimization algorithms. arXiv preprint
arXiv:1707.06347.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, YK Li, Y Wu, et al. 2024. Deepseekmath:
Pushing the limits of mathematical reasoning in open
language models. arXiv preprint arXiv:2402.03300.

Yi Shen, Jian Zhang, Jieyun Huang, Shuming Shi, Wen-
jing Zhang, Jiangze Yan, Ning Wang, Kai Wang, and
Shiguo Lian. 2025. Dast: Difficulty-adaptive slow-
thinking for large reasoning models. arXiv preprint
arXiv:2503.04472.

Prasann Singhal, Tanya Goyal, Jiacheng Xu, and
Greg Durrett. 2023. A long way to go: Investi-
gating length correlations in rlhf. arXiv preprint
arXiv:2310.03716.

Charlie Snell, Jachoon Lee, Kelvin Xu, and Aviral Ku-
mar. 2024. Scaling llm test-time compute optimally
can be more effective than scaling model parameters.
arXiv preprint arXiv:2408.03314.

Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu
Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu,
Andrew Wen, Hanjie Chen, Xia Hu, et al. 2025.
Stop overthinking: A survey on efficient reason-
ing for large language models. arXiv preprint
arXiv:2503.16419.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing,
Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. 2025.
Kimi k1.5: Scaling reinforcement learning with 1Ims.
arXiv preprint arXiv:2501.12599.

Qwen Team. 2024. Qwq-32b-preview. Accessed: 2025-
04-30.

Ye Tian, Baolin Peng, Linfeng Song, Lifeng Jin, Dian
Yu, Lei Han, Haitao Mi, and Dong Yu. 2024. Toward
self-improvement of Ilms via imagination, search-
ing, and criticizing. Advances in Neural Information
Processing Systems, 37:52723-52748.

10

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. 2022. Self-consistency improves chain
of thought reasoning in language models. arXiv
preprint arXiv:2203.11171.

Yuhao Wu, Yushi Bai, Zhiqing Hu, Shangqing Tu,
Ming Shan Hee, Juanzi Li, and Roy Ka-Wei Lee.
2025. Shifting long-context llms research from input
to output. arXiv preprint arXiv:2503.04723.

Heming Xia, Yongqi Li, Chak Tou Leong, Wenjie
Wang, and Wenjie Li. 2025. Tokenskip: Control-
lable chain-of-thought compression in llms. arXiv
preprint arXiv:2502.12067.

Tian Xie, Zitian Gao, Qingnan Ren, Haoming Luo,
Yugian Hong, Bryan Dai, Joey Zhou, Kai Qiu, Zhi-
rong Wu, and Chong Luo. 2025. Logic-rl: Un-
leashing 1lm reasoning with rule-based reinforcement
learning. arXiv preprint arXiv:2502.14768.

Silei Xu, Wenhao Xie, Lingxiao Zhao, and Pengcheng
He. 2025a. Chain of draft: Thinking faster by writing
less. arXiv preprint arXiv:2502.18600.

Yige Xu, Xu Guo, Zhiwei Zeng, and Chunyan
Miao. 2025b. Softcot: Soft chain-of-thought
for efficient reasoning with llms. arXiv preprint
arXiv:2502.12134.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2023. Tree of thoughts: Deliberate problem solving
with large language models. Advances in neural
information processing systems, 36:11809-11822.

Edward Yeo, Yuxuan Tong, Morry Niu, Graham Neu-
big, and Xiang Yue. 2025. Demystifying long
chain-of-thought reasoning in llms. arXiv preprint
arXiv:2502.03373.

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Ke-
qing He, Zejun Ma, and Junxian He. 2025. Simplerl-
zoo: Investigating and taming zero reinforcement
learning for open base models in the wild. arXiv
preprint arXiv:2503.18892.

https://openai.com/index/learning-to-reason-with-llms/
https://qwenlm.github.io/blog/qwq-32b-preview/

A Reasoning Behavior Analysis
(Gandhi et al., 2024) identify four core cognitive behaviors displayed by language models:
(1) Verification: systematically checking intermediate results for correctness;
(2) Backtracking: detecting errors mid-generation and explicitly revising prior steps;
(3) Subgoal setting: decomposing a complex problem into smaller, tractable sub-tasks;
(4) Enumeration: exhaustively considering multiple cases or possibilities when searching for a solution.

We substitute “Enumeration” for the original “Backward Chaining,” which is less pertinent to
mathematical-reasoning tasks.

Prompt Template for Identifying and Analyzing Reasoning Behaviors

Below is a chain-of-reasoning generated by a Language Model when attempting to solve a
math problem. Evaluate this chain-of-reasoning to determine whether it demonstrates benefi-
cial problem-solving behaviors that deviate from typical linear, monotonic reasoning patterns
commonly observed in language models.

<start_of_reasoning>
{input}
<end_of_reasoning>

Specifically, actively identify and emphasize beneficial behaviors such as:

* (1) Backtracking: Explicitly revising approaches upon identifying errors or dead ends (e.g.,
"This approach won’t work because...").

* (2) Verification: Systematically checking intermediate results or reasoning steps (e.g., "Let’s
verify this result by...").

* (3) Subgoal Setting: Breaking down complex problems into smaller, manageable steps (e.g.,
"To solve this, we first need to...").

* (4) Enumeration: Solving problems by exhaustively considering multiple cases or possibili-
ties.

Additionally, remain attentive to and encourage the identification of other beneficial behaviors
not explicitly listed here, such as creative analogies, abstraction to simpler cases, or insightful
generalizations.

Important:

Clearly specify each beneficial behavior you identify.

Provide explicit examples from the reasoning chain.

If no beneficial behaviors are observed, explicitly return an empty list.
Provide your evaluation clearly, formatted as follows:

"behavior": ne

"example" : nwnw

11

B Preliminary Analysis on Redundant Contents

To better understand the sources and roles of redundancy in language model outputs, we analyze the
reasoning behaviors of five models—ChatGPT-40, Qwen3-235B-A22B, DeepSeek, DeepSeek-R1, and
Gemini-2.0-Flash—on 50 representative problems from the Math Dataset. We categorize their reasoning
strategies using four behavioral types introduced by Gandhi et al. (2024): Subgoal Setting, Verification,
Backtracking, and Enumeration.

Subgoal Setting emerges as the most prevalent behavior across models. All models—except Gem-
ini—systematically break problems into smaller intermediate steps (e.g., calculating individual item costs
before comparing totals). While this decomposition supports interpretability and correctness, it often
introduces structural redundancy. Repetitive cues such as “Next, subtract 5 from the result” or “We
solve for B” restate information already evident from accompanying equations. This pattern is especially
prominent in ChatGPT-40 and DeepSeek, which tend to be pedagogical. In contrast, Qwen3-235B-A22B
adopts a more concise presentation, omitting such narrative scaffolding while still producing accurate
solutions.

Verification is commonly observed in DeepSeek and DeepSeek-R1, where models re-calculate or
re-assert intermediate values even after computing the final answer. For example, solving 99 = B — 5 after
already establishing B = 104. Although this may signal confidence or thoroughness, it contributes limited
functional value and increases output length. ChatGPT-40 occasionally includes such verification steps,
while Qwen consistently avoids them, preferring direct and economical conclusions. This distinction
highlights a trade-off between perceived diligence and actual informativeness.

Backtracking appears only weakly in DeepSeek-R1, which occasionally revisits earlier logic after
reaching a conclusion. However, no model demonstrates genuine error-driven backtracking with correction,
suggesting limited adaptive reasoning in these deterministic tasks.

Enumeration is absent across all outputs, which aligns with the single-solution structure of the
problems analyzed.

We distinguish between two types of redundancy:

» Functionally useful redundancy, such as goal decomposition and verification, which can aid user
comprehension.

* Stylistic redundancy, including informal fillers and verbose narration, which inflate output length
without improving clarity.

Gemini’s responses contain the most stylistic redundancy, frequently using conversational fillers like
“Let’s add those up!” that contribute little to reasoning transparency. Qwen, in contrast, is the most
efficient: it minimizes both types of redundancy while maintaining correctness and completeness.

Overall, all five models exhibit redundancy through restatements, over-explanation, or narratively
padded transitions. These findings support the case for selective pruning and reformatting—removing
unnecessary scaffolding and repetition—to streamline outputs without compromising accuracy or inter-
pretability.

An annotated example illustrating these behaviors is provided below.

B.1 Problem Prompt
Word Problem

Gloria is shoe shopping when she comes across a pair of boots that fit her shoe budget. However,

she has to choose between the boots and two pairs of high heels that together cost five dollars less
than the boots. If one pair of heels costs $33 and the other costs twice as much, how many dollars
are the boots? Let’s think step by step and output the final answer within \boxed{ }.

12

B.2 Qwen3-235B-A22B Output

Qwen Output

We are given:
- Gloria can either buy a pair of boots or two pairs of high heels. - The total cost of the two
pairs of heels is $5 less than the cost of the boots. - One pair of heels costs $33, and the other
costs twice as much.
Step 1: Total cost of heels:

33+ (2x33)=33+66=99

99 4 5 = [104]

Step 2: Cost of boots:

B.3 ChatGPT-40 Output

We are given:
¢ Gloria can either buy a pair of boots or two pairs of high heels.
* The total cost of the two pairs of heels is $5 less than the cost of the boots.
* One pair of heels costs $33, and the other costs twice as much.

Step 1: Define variables
Let:

* B =cost of the boots
¢ The first pair of heels = $33
e The second pair of heels = $2 x 33 = $66
So, total cost of both pairs of heels =
33466 =99
We’re told this is $5 less than the boots, so:
B=9945=104

Final Answer:
The boots cost $104.

13

ChatGPT-40 Output

ChatGPT Output

Let’s solve the problem step by step.

Step 1: Understand the problem
Gloria finds a pair of boots that cost a certain amount.
She also considers buying two pairs of high heels instead.

¢ The first pair of heels costs $33.

* The second pair of heels costs twice as much:

2 x 33 = 66 dollars

¢ The total cost of the two heels is:

33 + 66 = 99 dollars

* The boots cost $5 more than the two pairs of heels:

Boots = 99 + 5 = 104 dollars

Final Answer:
104

Gemini-2.0 Output

Gemini Output

Let’s break this down step by step:

1. Cost of the more expensive heels: One pair of heels costs $33, and the other costs twice as
much. So, the more expensive heels cost $33 x 2 = 66.

2. Total cost of the two pairs of heels: To find the combined cost of both pairs of heels, we add
their individual prices: $33 + 66 = 99.

3. Cost of the boots: The problem states that the two pairs of high heels together cost five
dollars less than the boots. This means the boots cost $5 more than the combined cost of the
heels. So, the boots cost $99 + 5 = 104.

Therefore, the boots cost dollars.

14

DeepSeek Output

DeepSeek Output

Let’s determine the cost of the boots step by step.

1. Identify the Costs of the High Heels:

* First pair of heels: $33
* Second pair of heels: Twice as much as the first pair.

2 x $33 = $66
2. Calculate the Total Cost of Both Pairs of Heels:
$33 (first pair) 4+ $66 (second pair) = $99

3. Determine the Cost of the Boots:

* The problem states that the two pairs of heels together cost $5 less than the boots.
* Let B be the cost of the boots.

$99 = B — $5
B = $99 + $5 = $104

Final Answer:

104

15

C Win Rate Analysis

Three criteria helps GPT-40 keep a focus on instruction following and semantic quality while avoiding
length bias:

Response Semantic Quality Comparison Template

Given the following instruction and two candidate responses:
Instruction: {}
Response 1: {}
Response 2: {}

Please evaluate which response better follows the instruction based on the following criteria:

1. Adherence to the instruction.

2. Overall semantic quality.

3. Conciseness: the response should avoid redundancy, unnecessary verbosity, or inclusion of
irrelevant information.
Based on your evaluation, respond in the format:
"Response 1 is better than Response 2’°, 'Response 2 is better than Response 1°, or 'Response 1 is
equal to Response 2.

.

D More Ablation Study

For 3, we have tried the following values: 8, 32, and 128. Results are in the figures ?? and ??. The
controls when the length reward intervenes in the training process. With a low S value, such as 8, the
length reward starts being effective early as the validation accuracy reaches around 45% of the target
accuracy. According to the ??, early engagement in the training process can reduce the generation length
more, but the model’s performance also decreases from 73% to 71%. With a high 3 value, such as 128,
the length reward does not affect the training process until the validation accuracy reaches 95% of the
target accuracy. The validation accuracy process also shows the model’s performance is even better than
the “Original” training process. In our framework, our goal is to maintain the model’s performance while
preventing overthinking. Thus, a high value is preferred in this case.

E More Qualitative Analysis
E.1 'When Does the Length Penalty Start Working? A Step 30 vs Step 60 Analysis

To investigate when the length penalty begins to meaningfully affect model behavior, we compare
inference outputs at step 30 and step 60 under Dynamic Length Penalty settings (1e-6 learning rate,
dynamic schedule) on both the Math and GSM8K datasets. These checkpoints are chosen to align with
the transition period of the d-schedule mechanism, which gradually increases the weight of the length
penalty during post-training. By step 60, we already observe clear signs of compression: outputs are more
concise, pedagogical scaffolding is reduced, and verbose explanation structures are stripped away. Table 5
illustrates this behavioral shift with representative examples.

At step 30, the model still retains a “teacher-like” reasoning style. For example, in response to a math
problem asking for the sum of the first 10 positive even numbers, the model describes the arithmetic
sequence, defines variables explicitly, applies the formula S = % (a + 1), and concludes with a boxed
answer. In contrast, the step 60 output removes the setup entirely and provides the final arithmetic chain
directly: “Sum = 10/2 x (2 + 20) = 110. #### 110”. A similar transition is observed in the GSM8K
example: at step 30, the model walks through glass pricing logic with Python-like code and a print ()
statement for validation; by step 60, this is reduced to three compact sentences with no code, commentary,
or explanation.

These early changes follow a consistent pattern. Narrative framing—phrases like “Let’s solve this by...”
or “Now compute...” — are dropped first. Embedded symbolic or code-based verification disappears

16

Dataset / Question

Step 30 Checkpoint Output

Step 60 Checkpoint Output

Math:

What is the sum of the
first 10 positive even
numbers?

Detailed explanation: defines sequence,
uses formula S = % (a + I), explains
each term, then computes:

S =10/2 (2 + 20) = 5

Includes full derivation and justification.

Condensed version:

“First 10 even numbers: 2 to 20. Sum =
1072 x (2 + 20) = 5 x 22 = 110. ####
110”

No sequence explanation or setup.

GSMB8K:
Kylar wants to buy 16

Full arithmetic + Python code:
cost_first = 5,

Shortened to only arithmetic steps:
“8 cheaper glasses cost 8 * $3 = $24. 8

glasses. One costs $5, ev- | cost_second = 5 * 0.6 full-price glasses cost 8 * $5 = $40. To-
ery second costs 60%. total _cost = (cost_first + | tal = 64. #### 64
cost_second) * 8 All narrative and code removed.

print (total_cost) #
Output: 64.0
Explains logic of pairing and validation.

Table 5: Comparison between early (Step 30) and mid-stage (Step 60) model outputs. Length penalty begins to
affect verbosity and explanation format while preserving core reasoning.

shortly after. While the arithmetic logic is preserved, the accompanying verbal scaffolding is eliminated.
This compression begins after the d-schedule’s early burn-in phase (typically around step 20—40), as the
model starts receiving stronger training signals to minimize token count while retaining correctness. By
step 60, the pressure from the length penalty is sufficiently strong to shape model behavior measurably.

In summary, the model begins transitioning to a compressed reasoning style as early as step 60.
The resulting outputs are more efficient and better aligned with inference-time brevity goals, but less
transparent in their reasoning. This supports the hypothesis that the d-schedule enforces compression
gradually, with tangible effects emerging soon after step 30. While answer correctness remains intact, the
interpretability of the solution path is the first to be sacrificed.

E.2 Shorter Does Better: How Distillation Improves Reasoning Quality

Despite a marginal difference of just ~20 tokens in final output length, the distilled model
Deepseek-R1-Distill-Qwen—7B outperforms the base Qwen2.5-Math-7B by 9% in accu-
racy (81% vs. 72%). This improvement is not due to additional information but rather better reasoning
compression. The distilled model eliminates hedging expressions (e.g., “Let’s try to...””), avoids redun-
dant commentary, and reorganizes computation steps into a more structured and compact form. It also
prioritizes early calculation of key values and reuses them directly, reducing cognitive redundancy.

These qualitative differences—though subtle—lead to more robust and readable inference chains.
As shown in Table 6, the distilled model demonstrates clearer mathematical reasoning and corrects
conceptual errors present in the base model. This illustrates that performance gains under length-penalty
and distillation arise from structural refinement, not mere truncation.

17

Dataset / Question

Base Model Output (Qwen2.5-
Math-7B)

Distilled Model Output (Deepseek-
R1-Distill-Qwen-7B)

What is the positive differ-
ence between 120% of 30
and 130% of 20?

Incorrect due to misinterpreting per-
centages:

“120% of 30 is 0.12 x 30 = 3.6. 130%
of 20 is 0.13 x 20 = 2.6. The positive

difference is 3.6 — 2.6 = 1. ”

Correct and concise:

“120% of 30 is 1.2 x 30 = 36. 130%
of 20 is 1.3 x 20 = 26. The difference
is 36 — 26 =[10]”

Accurate numeric logic and no redun-
dant commentary.

Table 6: Comparison of reasoning behavior between the base and distilled models. The base model misinterprets per-
centage values due to incorrect decimal logic and lacks structural clarity. The distilled model applies correct numeric
conversions, removes redundant phrasing, and presents a concise, high-confidence reasoning chain—illustrating
how compression improves both accuracy and readability.

18

