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Abstract

In this paper, we introduce spatiotemporal joint filter decomposition to decouple
spatial and temporal learning, while preserving spatiotemporal dependency in a
video. A 3D convolutional filter is now jointly decomposed over a set of spatial and
temporal filter atoms respectively. In this way, a 3D convolutional layer becomes
three: a temporal atom layer, a spatial atom layer, and a joint coefficient layer, all
three remaining convolutional. One obvious arithmetic manipulation allowed in our
joint decomposition is to swap spatial or temporal atoms with a set of atoms that
have the same number but different sizes, while keeping the remaining unchanged.
For example, as shown later, we can now achieve tempo-invariance by simply
dilating temporal atoms only. To illustrate this useful atom-swapping property,
we further demonstrate how such a decomposition permits the direct learning of
3D CNNs with full-size videos through iterations of two consecutive sub-stages
of learning: In the temporal stage, full-temporal downsampled-spatial data are
used to learn temporal atoms and joint coefficients while fixing spatial atoms.
In the spatial stage, full-spatial downsampled-temporal data are used for spatial
atoms and joint coefficients while fixing temporal atoms. We show empirically on
multiple action recognition datasets that, the decoupled spatiotemporal learning
significantly reduces the model memory footprints, and allows deep 3D CNNs to
model high-spatial long-temporal dependency with limited computational resources
while delivering comparable performance.

1 Introduction

Convolutional Neural Networks (CNNs) have been used intensively in the field of video understanding.
Particularly, networks with 3D convolutional layers capture spatiotemporal correlation and achieve
great success in applications like action recognition [1, 30]. However, joint spatiotemporal modeling
of videos usually requires significant training time, computation, and memory, which becomes one of
the main obstacles in video understanding. In practice, we almost always need to first downsample
video data spatially or temporally or both to meet real-world constraints of computational resources
and training time. For instance, a 64-frame video with the spatial resolution 224×224 is downsampled
2 times temporally for training Non-Local Networks [30], and 8 times temporally for the R(2+1)D
models [26]. As in most cases, for spatiotemporal modeling of high-resolution videos, 3D CNNs
cannot be fit into most modern GPUs due to the huge model memory footprints. However, it has been
observed that the full spatial and temporal resolution are essential to achieve superior performance in
many video understanding tasks [24, 27, 30].

In this paper, we propose spatiotemporal joint filter decomposition to decouple spatial and temporal
learning while preserving spatiotemporal dependency in a video. As shown in Figure 1, a 3D convolu-
tional filter is jointly decomposed over a group of spatial atoms and temporal atoms. The two groups
of atoms can reconstruct the 3D filter together with the joint coefficients through tensor multiplication.
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Figure 1: Spatiotemporal jointly decomposed convo-
lutional filters (STDCF) over spatial atoms {ψi}Mi=1,
temporal atoms {φj}Nj=1, and joint coefficients α, with
M = 3, N = 2. It divides one spatiotemporal convo-
lutional layer into three convolutional layers: a spatial-
atom layer, a temporal-atom layer, and a joint coeffi-
cient layer which mixes information from spatial-atom
and temporal-atom convolutional to capture joint depen-
dency.

A single 3D convolutional layer is now divided
into three convolutional layers: a temporal-atom
layer to focus on time, a spatial-atom layer for
space, and a joint coefficient layer to model the
spatiotemporal dependency. Thus, spatial and
temporal atoms can now be optimized separately.
Different from methods that decorrelate the spa-
tial and temporal modeling, the proposed decom-
position can still capture spatiotemporal corre-
lations in the joint coefficients. Moreover, our
approach can also significantly reduce model
parameters and computation complexity by lim-
iting the number of atoms.

One obvious arithmetic property of our joint
decomposition is to allow spatial or temporal
atoms to be swapped with a set of atoms with the
same number but different sizes while keeping
the remaining unchanged. For example, we can now achieve tempo-invariance by simply dilating
temporal atoms only. To exploit this useful atom-swapping property, we further show how the
proposed spatiotemporal jointly decomposed convolutional filter (STDCF) permits the direct learning
of 3D CNNs with full-size videos.

We start with a pedagogical learning decoupling to train a 3D CNN iteratively with full-temporal
downsampled-spatial data first, and then with full-spatial downsampled-temporal data. Note that,
such simple-minded decoupled learning is less capable of modeling spatiotemporal dependency. A
regular 3D CNN model trained from the two-stage strategy above may capture rich temporal features
in the first stage, however, such features will be severely degraded by the downsampled-temporal
data in the second stage.

Exploiting the atom-swapping property of the proposed spatiotemporal joint decomposition, we
can instead decouple spatial and temporal learning into iterations of two consecutive sub-stages
of learning: temporal-focus stage (stage-t) and spatial-focus stage (stage-s). In stage-t, temporal
atoms and joint coefficients are learned from full-temporal downsampled-spatial videos by keeping
spatial atoms fixed, while in stage-s, spatial atoms and coefficients are updated from full-spatial
downsampled-temporal data by keeping temporal atoms fixed. Note that, in stage-s, spatial atoms are
learned from full spatial-resolution, while temporal atoms are frozen to prevent degradation from
temporal down-sampling, similar for atoms update in stage-t. The proposed two-stage 3D CNN
training strategy can model a full temporal and spatial resolution video only from downsampled data
while preserving spatiotemporal dependency. Empirically, we show on multiple action recognition
datasets, e.g., KTH [19], Kinetics-400 [1] and Something-Somethingv1 [10], that, the STDCF model
trained with the proposed strategy significantly reduces memory usage, while producing comparable
results with the state-of-the-art models trained with full-size videos.

2 Method

In this section, we start by introducing the proposed spatiotemporal jointly decomposed convolutional
filter, STDCF, along with its two properties of capturing spatiotemporal dependency and enabling
atom swapping. Then, we decouple spatiotemporal learning into iterative two sub-stage learning.
Next, we introduce a simple but effective design, enabled by the atom swapping property, to allow
the model to learn from videos with different spatial and temporal resolutions in different sub-stages.

2.1 Spatiotemporal Joint Filter Decomposition

A regular spatiotemporal convolutional filter in deep video models consists of a group of 3D tensors
with shape t × k × k for capturing local joint dependency on space and time, where t and k are
temporal and spatial filter sizes. The 3D structure not only leads to a dramatic increase in parameters
compared to 2D CNNs, but also couples the spatial and temporal learning as each tensor attends to
both dimensions simultaneously. To decouple spatial and temporal learning, as well as to reduce
model parameters, we propose to jointly decompose a 3D filter over spatial and temporal atoms, as
shown in Figure 1. Our idea originates from spatial filter decomposition as proposed in [17], and we
extend it to 3D filters by taking the time dimension into consideration.
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Figure 2: Translate-Rotate-MNIST reconstruction results.

As proposed in [17], a 2D spatial filter W ∈ RCout×Cin×k×k (Cout, Cin are input, output channels,
and k is spatial kernel size), can be decomposed as a linear combination of M spatial atoms
{ψi}Mi=1, ψi ∈ Rk×k, with coefficients α ∈ RM×Cout×Cin . The spatial convolution then becomes
two: A spatial-atom convolution with ψi, a 1 × 1 convolution with joint coefficients α. This
decomposition not only reduces the parameters and computation cost but also imposes low-rank filter
structures.

Then, for a 3D spatiotemporal filter W ∈ RCout×Cin×t×k×k (t is the temporal kernel size), as shown
in Figure 1, we decompose it over spatial atoms Ψ = {ψi}Mi=1 and temporal atoms Φ = {φj}Nj=1,
φj ∈ Rt, with joint coefficients α ∈ RCout×Cin×M×N as W =

∑M
i=1

∑N
j=1 α

i,jψiφj .

In this way, the 3D convolution becomes three,

Spatial-atom convolution: Zi(λ
′, t) =

∑
u′

I(λ′, t, u+ u′)ψi(u
′),

Temporal-atom convolution: Yij(λ
′) =

∑
t′

φj(t
′)Zi(λ

′, t+ t′),

1× 1 joint coefficient convolution: J(λ, t, u) =
∑
λ′

∑
i,j

αi,j(λ′,λ)Yij(λ
′),

(1)

where I, J denotes the input and output, u ∈ R2, t ∈ R, λ, λ′ are spatial and temporal indices, λ, λ′
are output, input channel indices, and Zi, Yij are intermediate outputs of spatial-atom layer and
temporal-atom layer.

2.1.1 Spatiotemporal Dependency

Note that a popular alternative way of 3D filter decomposition is to apply rank-1 decomposition to
obtain a 2D spatial filter and a 1D temporal filter, as proposed in [18, 26, 37]. Specifically, a 3D filter
W ∈ RCin×Cout×t×k×k is decomposed intoWs ∈ RCin×Cout×1×k×k andWt ∈ RCout×Cout×t×1×1

as W = Ws ×Wk. In this way, 3D convolution becomes two: spatial sub-convolution with Ws, and
temporal sub-convolution with Wt.

However, such a rank-1 decomposition neglects joint spatiotemporal dependency. The spatial sub-
convolution only focuses on spatial modeling, while the temporal sub-convolution merely attends
to temporal modeling. The spatial and temporal features are extracted independently by omitting
spatiotemporal correlation. Instead, in our STDCF, joint coefficients α encode spatiotemporal
dependency while keeping learning in both dimensions independent. We derive below that STDCF
has more capacity than rank-1 decomposition. Recall our joint decomposition of 3D filter W ,

W(λ,λ′) =
∑
i,j

αi,j(λ,λ′)ψi(u)φj(t), αi,j(λ,λ′) ∈ R, (2)

λ ∈ [C], λ′ ∈ [C ′], i ∈ [M ], j ∈ [N ], and αi,j(λ,λ′) are freely trainable. For each fixed pair of (λ, λ′),

{αi,j(λ,λ′)}i,j is a M -by-N matrix, and generally is full rank.

In the rank-1 decomposition, spatial filters are Ws = W (λ′′,λ′)(u), temporal filters are Wt =

W (λ,λ′′)(t), λ′′ ∈ [C ′′]. We can write W (λ′′,λ′)
s and W (λ,λ′′)

t as combination of atoms ψi and φj
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Figure 3: Tempo discrepancy experiments on KTH.

respectively,
W (λ′′,λ′)
s =

∑
i

µi(λ′′,λ′)ψi, W
(λ,λ′′)
t =

∑
j

νj(λ,λ′′)φj .

Tracking the degree of freedom reveals that rank-1 decomposition is more restrictive than our STDCF.
Let C = C ′ = C ′′, α in STDCF has MNC2 many variables if all free. In comparison, µ has MC2

many variables, and ν has NC2 many, thus the rank-1 decomposed convolution formulation has only
(M +N)C2 many free variables in total. This quantifies the loss of expressiveness from STDCF to
rank-1 decomposition. A more comprehensive analysis is provided in Appendix A.

To empirically illustrate STDCF is more expressive than rank-1 decomposition, we design a toy
example on the translate-rotate-MNIST (TR-MNIST) dataset. It consists of short clips of moving
digits, which contain complex spatiotemporal correlations. Adopting a 3-layer 3D CNN, we conduct
video reconstruction experiments and compare the qualitative and quantitative results between STDCF
and rank-1 decomposition. Details of experimental settings are provided in Appendix B. As shown
in Figure 2, given a sequence of moving-rotating digits, STDCF reconstructs in better quality than
rank-1. As for qualitative results, we measure mean PSNR on the test set. STDCF achieves a mean
PSNR of 24.60, whereas the result of rank-1 decomposition is 21.50, indicating STDCF possesses
more capacity to capture spatiotemporal correlations.

2.1.2 Atom Swapping Property

The proposed joint decomposition further enables us to manipulate the atoms by changing their spatial
or temporal sizes, while keeping their numbers and the rest of components fixed. In this way, we can
handle variances in a specific domain by adapting only the corresponding atoms, while keeping the
knowledge about spatiotemporal correlation and another domain intact. Rather, we would have to
modify the whole 3D filters unwieldy. We call this kind of atom manipulations Atom Swapping. We
illustrate next its potential usage with a toy tempo-invariance example.

In the temporal domain of videos, a common variance is tempo changes τ , which characterizes
the moving speed of objects in a video. We create a toy example based on KTH [19] to illustrate
this in Figure 3(a), where the tempo discrepancy happens between training clips (τtrain = 1) and
test clips (τtest = 2). This leads to test clips proceeding faster than training clips. Without atom
swapping, the representation of the model can suffer from severe distortions on the testing set,
as shown in Figure 3(b). To tackle this, we can swap temporal atoms with the ones having the
corresponding dilation. As shown in Figure 3(b), the model with swapped temporal atoms almost
restores the representation compared to the baseline. We provide quantitative results for dilated atoms
in Section 3.1.

2.2 Decoupled Spatiotemporal Learning

By exploiting the atom swapping property above, we will illustrate next how the proposed STDCF
enables direct learning of 3D CNNs with full-size videos. Training deep video models usually utilizes
large-scale video datasets with samples in the size of T ×H×W . When T orH,W are large enough,
model training will require a significantly large amount of memory. The proposed STDCF jointly
decomposes 3D filters as well as 3D convolution, and thus decouples spatial and temporal learning,
while preserving dependency across both dimensions. As shown in Figure 4, decoupled learning is
performed as iterations of two consecutive sub-stages of learning to model full-size videos but from
down-sampled data only, to significantly reduce the memory usage in training.

Temporal-Focus Learning (stage-t). In this stage, we focus on modeling the temporal dimension
using full-temporal downsampled-spatial videos by a factor β. The original temporal sampling rate
is adopted here to update temporal atoms {φj}Nj=1to best encode the temporal knowledge. The
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Figure 4: Iterative two-stage spatiotemporal learning. By decomposing 3D filter W , we convert spatiotemporal
learning from full spatial and temporal resolution videos, which is usually infeasible due to memory issues,
to iterations of temporal-focus learning from full-temporal downsampled-spatial videos, and spatial-focus
learning from full-spatial downsampled-temporal videos that dramatically reduces the memory footprints. The
superscripts of atoms and coefficients denote the current iteration (e) and the sub-stage of learning (t for stage-t,
and s for stage-s). Note that our joint decomposition allows us to swap atoms with different dilation to handle
resolution changes, e.g. {ψe,tj } has dilation 2 to deal with full-temporal data, whereas {ψe,sj } has dilation 1 for
2x downsampled-temporal data.

joint coefficients α are also updated to capture the spatiotemporal dependency. As we downsample
training video spatially by a factor β to meet the memory limit, we freeze spatial atoms {ψi}Mi=1to
preserve knowledge learned on full spatial-resolution videos in the spatial-focus learning stage next.

Spatial-Focus Learning (stage-s). Similarly, in this stage, we focus on modeling the spatial dimen-
sion using full-spatial downsampled-temporal videos by a factor of γ. The full spatial resolution is
used to update spatial atoms {ψi}Mi=1to best encode the spatial knowledge, while temporal atoms
{φj}Nj=1are frozen to preserve knowledge learned on full frame-rate videos in stage-t above. The
joint coefficient α is updated about the spatiotemporal dependency.

Iterative Two-Stage Learning. The above two stages are iterated to model full temporal and spatial
resolution videos from down-sampled ones, with far fewer memory footprints, as elaborated in
Algorithm 1. Intuitively, more temporal knowledge gained in stage-t will further help spatial learning
in the subsequent stage-s and refine spatiotemporal dependency in joint coefficients. Such iterative
two-stage learning (ITSL) is empirically validated in Section 3.1.

We provide an interpretation of our iterative two-stage learning from the view of alternating opti-
mization. After being jointly decomposed over spatial and temporal atoms, a 3D filter W becomes
W = ΨαΦT , where we use matrix notation here for simplicity, spatial atoms Ψ ∈ Rk2×M , and
temporal atoms Φ ∈ Rt×N , and the columns of Ψ (Φ) consist of the M (N ) spatial (temporal) atoms.
The atoms Ψ and Φ, and the joint coefficients α are all trainable, and in our proposed algorithm,
we train the triplet in an alternative fashion. In the stage-s, we fix temporal atoms Φ, and optimize
Ψ and α jointly, which is equivalent to training in a spatial CNN; In the stage-t, we fix the spatial
atoms Ψ, and optimize Φ and α jointly, and this is equivalent to training in a temporal CNN. As a
result, the optimization in stage-s prepares an improved model for the stage-t, and vice versa, and the
alternative optimization converges suppose each step can make progress. Combined with our dilated
atoms discussed next, in each step we adjust the sampling rate of the data accordingly so as to most
efficiently use the memory. The alternative stages store the model refinement in the shared α, which
is passed to the next stage, and α is independent of geometrical dilation or filter decomposition in
space or time.

2.3 Dilated Atoms

In ITSL, a severe problem lies in the resolution variation in different sub-stages. Considering the
spatial dimension as an example, videos with downsampled spatial resolution, e.g. H2 ×

W
2 are used

in stage-t, whereas in stage-s and final testing, full spatial size H ×W videos are used; similar for
different temporal resolution across sub-stages. We observe this resolution discrepancy in learning
and testing will lead to significant performance degradation, which poses a great challenge to our
proposed learning strategy. For instance, a model learned on stage-t will perform poorly on data in
stage-s due to the mismatched resolutions, e.g. T v.s. T2 .
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Algorithm 1 Iterative Two-Stage Learning
Require:

Full-size video training dataset D = {(xi, yi)}Ni=1, xi of size T ×H ×W
Initialize the STDCF modelM with spatial atoms {ψi}Mi=1, temporal atoms {φj}Nj=1, joint coefficient α
Classification loss function L. Iterations E.

ψ0,s
i , φ0,s

j ,α0,s ←− ψi, φj ,α
for e = 1, 2, ..., E do

stage-t Training:
Acquire full-temporal downsampled-spatial data: Ds = {(x′

i, yi)}Ni=1, x′
i of size T × H

β
× W

β

φe,tj ,αe,t ←−∇ML(M(Ds|ψe−1,s
i , φe−1,s

j ,αe−1,s), ψe,ti ←− ψ
e−1,s
i

stage-s Training:
Acquire full-spatial downsampled-temporal data: Dt = {(x′′

i , yi)}Ni=1, x′′
i of size T

γ
×H ×W

ψe,si ,αe,si ←− ∇ML(M(Dt|ψe,ti , φe,tj ,αe,t), φe,sj ←− φ
e,t
j

end for
ReturnM(ψE,si , φE,sj ,αE,s)

As discussed in Section 2.1.2, we can handle this problem using dilated atoms. To be specific, model
learned in stage-t from videos of size T × H

β ×
W
β , has its spatial atoms {ψi}Mi=1 dilated by factor

β when learned in stage-s and tested on full spatial-resolution videos. Similarly, temporal atoms
{φj}Nj=1 will be dilated by γ when the model is trained in stage-t and tested, and dilated by 1 in
stage-s.

2.4 Parameter and Computation Reduction

Regular 3D filters have a significant increase in parameters and computation flops compared to 2D
filters, which contributes to the huge demand on memory and computation power. The proposed
STDCF reduces the parameters and computation complexity of 3D filters significantly.

To be specific, a regular 2D filter is of size Cin × Cout × k × k has CinCoutk2 parameters, while
regular 3D filter has CinCouttk2 parameters with the additional time dimension. In STDCF, the joint
coefficient α has CinCoutMN parameters, and spatial and temporal atoms {ψi}Mi=1, {φj}Nj=1 has
Mk2, Nt parameters, respectively. Thus, the reduction rate in number of parameters compared to the
original 3D filter is Nt+Mk2+CinCoutMN

CinCouttk2
. In practice, CinCoutMN is much larger than Nt+Mk2,

which gives the approximate reduction of parameters rate of Nt ·
M
k2 than regular 3D filters, and MN

k2

compared to regular 2D filters. If t = k = 3, and we can choose M = 3, N = 2, giving a reduction
rate of 2

9 compared to non-decomposed 3D filters, and 2
3 compared to non-decomposed 2D filters.

As for the computation cost, regular 2D convolution with input with shape of Cin × W × W
needs CoutCinW 2(1 + 2k2) ≈ 2CoutCinW

2k2 FLOPs, and regular spatiotemporal convolution
with inputs in size of Cin × T ×W ×W costs CoutCinW 2T (1 + 2k2t) ≈ 2CoutCinW

2Tk2t
FLOPs. In STDCF, the computation is split into three sub-layers: (1) spatial-atom layer with ψi
costs 2Mk2CinTW

2 FLOPs, (2) temporalatom layer with φj requires 2NtMCinTW
2 FLOPs, (3)

coefficient layer with α on every spatiotemporal location costs 2CoutCinMNW 2T FLOPs totally.
Together, the computation cost is 2CinMTW 2(k2 +Nt+NCout) FLOPs. Since NCout is usually

Table 1: Dilated atoms experiment. Dte
s , D

tr
t in-

dicate the dilation of spatial/temporal atoms in the
testing/learning phase.

Train size 16x30x40 16x60x80
Test size 16x60x80 8x60x80

Dilation Dte
s = 1 Dte

s = 2 Dtr
t = 1 Dtr

t = 2

Acc. 53.08 75.34 66.49 77.11

Table 2: Accuracies and GPU memory footprints of
different 3D layers on KTH dataset under regular full-
size videos learning and the proposed iterative two-stage
learning.

full-size learning ITSL (E = 3)

Layer type Memory Acc. Memory Acc.

Reg. 3D 459.7M 81.26 229.5M (50.07% ↓) 76.94 (4.32 ↓)
Rank-1 3D 582.5M 82.55 290.5M (50.13% ↓) 79.10 (3.45 ↓)

STDCF 459.4M 85.61 228.9M (50.17% ↓) 84.93 (0.68 ↓)
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much larger than k2 +Nt, the cost is around 2CinCoutTW
2MN FLOPs, showing that the reduction

rate in computation FLOPs is again N
t ·

M
k2 compared to regular 3D convolution.

3 Experiments

In this section, we validate the proposed approach on multiple action recognition datasets, KTH [19],
Kinetics-400 [1], and Something-Somethingv1 [10].

3.1 Illustrative Experiments

We illustrate the basic idea of the proposed decomposed learning process on the KTH action recog-
nition dataset [19]. The KTH dataset consists of 600 videos at 25 fps of 6 action classes from 25
people. The videos are further sampled as short clips of size 16 × 80 × 60, which are used in the
full-size learning setting. The training set contains 4667 clips, and the validation set has 4551 clips.
Models are learned on the training set and report accuracy on the validation set.

We adopt a simple three-layer 3D CNN model with regular 3D convolution (Reg. 3D) as the baseline,
and further replace each convolutional layer with STDCF and Rank-1 3D decomposed convolutional
layer (Rank-1 3D) in Section 2.1.1, as shown in Table B. For training models with full-size data, we
set batch-size as 16, learning rate as 0.001, and train all models for 40 epochs, with learning rate
reduced to 0.0001 at the 20th epoch. For ITSL, we set total iterations E = 3, β = γ = 2, i.e. we
downsample clips spatially to the size of 16× 30× 40 in stage-t, and temporally to 8× 60× 80 in
stage-s. To counter the discrepancy in resolution, we dilate temporal atoms by 2 in stage-t, spatial
atoms by 2 in stage-s, and both atoms by 2 for testing on full-size clips. We also evaluate the Reg. 3D
and Rank-1 3D model under ITSL data setting. For Reg. 3D, we train its 3D filters in both stage-t and
stage-s with downsampled data, and for Rank-1 3D, we train its Wt with full-temporal downsampled-
spatial videos, Ws with full-spatial downsampled-temporal videos. Dilated convolutions are applied
to these two models with the same dilation setting as STDCF. The training setting aforementioned is
adopted to each stage-t and stage-s, and all models trained with ITSL are tested with full-size clips.

We illustrate the effectiveness of the proposed dilated atoms in Table 1. A STDCF model is learned and
tested on data with resolution discrepancy. The poor performance caused by the spatial discrepancy
can be improved by dilating spatial atoms during testing. Same for the temporal dimension, dilating
temporal atoms can counter the degradation caused by variation in temporal resolution.

Iter1_stage-t Iter1_stage-s Iter2 Iter3
Two-Stage Learning Iteration

74

76

78

80

82

84

86

Ac
c.

74.85
75.07(+0.22)

76.24(+1.39)
76.94(+2.09)

73.85

78.17(+4.32)
78.91(+5.06) 79.1(+5.25)

75.34

81.21(+5.87)

83.08(+7.74)

84.93(+9.59)Reg. 3D
Rank-1 3D
STDCF

Figure 5: Accuracies of different models after every
iteration of two-stage spatiotemporal learning. The num-
ber in the parenthesis is the relative performance gain
w.r.t. the model trained after stage-t in the first iteration.

Then, as shown in Table 2, we report accura-
cies on validation clips and the maximum train-
ing GPU memory usage with the above settings.
Specifically, in ITSL experiments, we report the
max memory usage in one iteration, which oc-
curs in stage-s. Under the full-size learning set-
ting, STDCF gives better performance over the
Reg. 3D and the Rank-1 3D, showing its effec-
tiveness in capturing spatiotemporal dependency.
In the ITSL setting, the GPU memory used is sig-
nificantly reduced for all models (around 50%).
However, the performance of Reg. 3D model
drops by a large margin because of the down-
sampled training clips as well as the coupled
spatial and temporal learning. The Rank-1 3D
model decouples spatial and temporal learning
but still shows a large accuracy drop as it can
not fully leverage the iterative learning. On the
other hand, STDCF with ITSL gives the closest accuracy to the one obtained in full-size learning by
a small difference of 0.68%, validating that it not only decouples spatial and temporal learning but
also refines spatiotemporal modeling iteratively.

We further plot accuracies of different models at each learning iteration, as shown in Figure 5. Simi-
larly, due to coupled spatial and temporal learning, Reg. 3D model only gains 0.22 in performance
in stage-s compared to stage-t in the first learning iteration, and its performance does not increase
significantly (by 1.17, 0.7) in the two learning iterations afterward. As for the Rank-1 3D model,
though it shows a large increase from Iter_stage-t to Iter_stage-s in Iter1, it does not produce a
substantial gain in accuracy in Iter2, Iter3. In comparison, the proposed STDCF encodes spatial and
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Table 3: Results on Kinetics-400. We only compare with methods with the same setting as ours.

Model #Params Memory Top-1 Top-5 GFLOPs

R(2+1)D [26] 63.7M 5.0G 73.1 89.8 53.2
SlowFast [8] 34.6M 9.1G 75.6 92.3 65.7

TSM [15] 24.3M 7.1G 74.1 90.8 33.0
TIN [21] 24.3M 6.2G 70.9 89.8 34.0

STDCF-R50-t-3
18.5M

1.9G 73.6 90.3
52.2STDCF-R50-s-3 3.8G 74.0 90.6

STDCF-R50 7.9G 74.5 91.2

temporal knowledge to the corresponding atoms in stage-t and stage-s separately, and thus shows
a significant leap in accuracy from Iter_stage-t to Iter_stage-s. Besides, as the joint coefficient α
captures richer spatiotemporal dependency with the model trained iteratively, the STDCF model
shows a consistent and substantial performance gain in the next two learning iterations (by 1.87, 1.85),
and an accuracy comparable to full-size learning in the end.

3.2 Experiments on Kinetics-400

3.2.1 Experimental Setup

Kinetics-400 [1] consists of around 240k training videos, 19k validation videos for total 400 action
classes. All experiments are conducted with RGB modality and evaluated on validation sets. Follow-
ing the settings in [8], input frames are sampled temporally from 64 consecutive frames at an interval
of 8, which is the full-temporal size. Spatially, each frame is randomly rescaled so that its short side
is in [256, 320], and then randomly flipped, cropped into 224× 224, which is the full-spatial size in
our ITSL setting. As for ITSL setting, we set E = 3, β = γ = 2, so STDCF-R50 is learned with
videos of the size 8× 112× 112 in stage-t, and with videos of the size 4× 224× 224 in stage-s.

We adopt 3D ResNet-50 (3D-R50) as the backbone, which inflates 3× 3 kernels in 2D ResNet-50
[11] to 3× 3× 3. We further substitutes all those spatiotemporal filters with our STDCF, where we
set M = 6, N = 2, and obtain STDCF-R50. The architecture of STDCF-R50 is shown in Table C.
STDCF-R50 is learned from scratch for 256 epochs in stage-t of the first iteration (e = 1) with the
SGD optimizer (momentum of 0.9) of learning rate of 0.03, and weight decay of 0.0001. In stage-s
and stage-t of e = 2, 3, STDCF-R50 is learned with the same hyper-parameters as in stage-t of the
first iteration except for learning rate reduced to 0.0005, and updated for 50 epochs. For inference,
we adopt the 30-crop setting as in [8] to conduct the inference with full-size videos. Specifically, we
uniformly sample 10 clips from a video along its temporal dimension. Then, we downsample each
frame spatially so that its short side size is 256, and take three crops of 256× 256 covering all spatial
information. We dilate both temporal atoms and spatial atoms by 2 in inference for STDCF-R50-t
and STDCF-R50-s.

3.2.2 Results

We firstly compare STDCF-R50 learned in stage-t, STDCF-R50-t-3, with the one in stage-s that
has updated spatial atoms, STDCF-R50-s-3 of the final iteration (E = 3). As shown in Table 3, the
performance gain in STDCF-R50-s-3 w.r.t. STDCF-R50-t-3 indicates the temporal knowledge and
spatial knowledge are learned separately without mutual interference, validating the effectiveness
of the proposed ITSL. We further compare STDCF-R50-s-3 with the model learned from full-size
data, STDCF-R50. The only 0.5% performance gap shows the proposed model learned with iterative
learning strategy can achieve nearly the same performance of the full-size learned model with a half
GPU memory usage reduction. The accuracies of models in all iterations are provided in Table D.
Then, we compare our models with other state-of-the-art models. Note that for a fair comparison,
we only compare with methods using networks of the same depth, and the same data setting as ours.
STDCF-R50 learned with ITSL shows comparable results with other methods, with significantly
fewer GPU memory footprints in the learning phase. Moreover, we evaluate the number of parameters
and computation FLOPs per clip in the inference phase. Compared to other methods, STDCF models
show a significant reduction in the number of parameters and comparable FLOPs.
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Table 4: Results on Something-Somethingv1

Method Memory Pretrain # frames Val Top-1 Val Top-5

2D-R50 5.9G ImageNet 8 22.3 48.2
TSN [29] - ImageNet 16 19.7 46.6
TRN [40] - ImageNet 8 34.4 -
I3D [1] - Kinetics 32 41.6 72.2

I3D+GCN [31] - Kinetics 32 43.3 75.1
TIN [21] 7.5G Kinetics 8 45.8 75.1
TSM [15] 7.1G ImageNet 8 45.6 74.2

STDCF-R50-t-2 1.9G Kinetics 8 44.8 74.3
STDCF-R50-s-2 3.8G - 4 45.1 74.7

STDCF-R50 7.8G Kinetics 8 45.9 75.2

3.3 Experiments on Something-Somethingv1

Something-Somethingv1 [10] is a more challenging dataset, as the activity can only be inferred by
modeling spatiotemporal joint dependency. It contains 86k training videos and 12k validation videos
for 174 classes. We apply the same model STDCF-R50 with pretrained on Kinetics-400. The model
learned directly from full-size videos is finetuned for 50 epochs with batchsize of 64, learning rate of
0.001 which drops by 0.1 at the 30th epoch. For the ITSL setting, we set E = 2, β = γ = 2. Models
learned with ITSL are all finetuned for 20 epochs with learning rate of 0.0002 which drops by 0.1 at
the 15th epoch.

As shown in Table 4, our full-size learned model, STDCF-R50, achieves competitive results with other
methods. Moreover, our model learned with ITSL can nearly recover the full model’s performance,
while reducing the GPU memory usage by half. The results of two iterations of ITSL are illustrated
in Table E.

3.4 Visualization

KTH visualization. To better understand the proposed decoupled spatiotemporal learning, we
visualize the feature maps of the last convolutional layer in KTH experiment, as shown in Figure
6. Note that we sum all feature maps along the channel index, and adds it back to original frames.
We compare the model from the first iteration stage-t (Iter-1 stage-t) and the one from the second
iteration stage-s (Iter-2 stage-s). In both Figure 6a and Figure 6b, the Iter-1 stage-t model fail to
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Figure 6: Feature maps added back to original video
frames to show where the network attends to. In (a),
Iter-1 stage-t model does not focus on the right arm
region while Iter-2 stage-s model does. In (b), Iter-1
stage-t model does not focus on right and left arms
regions while Iter-2 stage-s model does.
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Figure 7: Activation maps of stage-t and stage-s mod-
els that highlights region contributing to the prediction.
In (a), both stage-t and stage-s predict right, but the
model fine-tuned in stage-s focuses more on the finger
with cream. In (b), stage-s model corrects the wrong
prediction in stage-t from applauding to barbecuing
by attending to meats and sausages.
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attend to the discriminative part of frames, i.e., right arm in Figure 6a, two arms in Figure 6b, whereas
the Iter-2 stage-s does by learning finer spatial knowledge.

Kinetics visualization. We further use Grad-CAM [20] to visualize the activation maps of STDCF-
R50-t and STDCF-R50-s on Kinetics that highlight region contribution to the prediction, as shown
in Figure 7. The top row of frames in Figure 7a illustrates the activation maps of STDCF-R50-t,
and the bottom row of frames are for STDCF-R50-s. The frames belong to class ’applying the
cream’. It shows that while the stage-t model captures moving regions and gets the correct prediction,
the learning in stage-s refines the activations on space to the most discriminative areas. In Figure
7b, activations for stage-t model on the top row attends to wrong regions and makes the wrong
prediction. By fine-tuning in stage-s, the model focuses on the correct area and corrects its prediction
to ’barbecuing’.

4 Related Works

3D CNN Models. In [13], 2D CNN models are directly extended to videos by temporal pooling all
frames’ spatial features extracted by 2D CNN per video. However, this method ignores the temporal
relations, so [6, 39] replace the temporal pooling with the LSTM to capture high-level spatiotemporal
dependency. To model low-level spatiotemporal dependency, 3D CNNs [1, 12, 23, 25, 28] have
been proposed and improved the performance on action recognition significantly by capturing richer
spatiotemporal correlation. Nevertheless, 3D CNNs achieve this with a dramatic increase in training
time, computation, and memory. [18, 26, 37] propose to decompose the 3D filter into a 2D filter
to capture spatial dependency, and a 1D filter for temporal dependency, so as to reduce the cost of
regular 3D kernels. This decomposition have been applied to recent methods such as Non-local [30],
SlowFast [8], and TPN [38]. However, this decomposition loses the ability to jointly model space
and time as regular 3D filters, as it performs spatial and temporal modeling sequentially. STDCF, on
the other hand, reduces the parameter number and computation cost, while capturing spatiotemporal
dependency.

Efficient Video Models Learning. Improvements in the efficiency of deep models learning can
originate from refined optimization algorithms [7, 14, 16, 22], pre-training [5], and softwares for
acceleration [4]. For deep video model’s learning, pre-training schemes [1, 9] have been widely
adopted. Recently proposed Multigrid [36] has further reduced the amount of training time of deep
video models. The above methods mainly focus on learning efficiency in terms of time. We propose
a complementary method that attends to the reduction of memory footprints, by avoiding the usage of
full-size samples.

Decomposed Convolutional Filters. Decomposed filters is proposed in [17] for parameter and
computation efficiency with provably representation stability. It is further extended to domain
adaptation [34], generative modeling [32], graph neural network [2], equivariant networks [3, 41], and
flexible convolution [33, 35]. In this paper, we extend [17] to 3D filter which is jointly decomposed
over spatial and temporal atoms for decoupling spatiotemporal learning.

5 Conclusion

In this paper, we proposed to decouple spatiotemporal learning to significantly reduce the model size,
computation, and memory usage in modeling videos. We adopted an iterative two-stage learning
to model full-resolution videos with only downsampled data to significantly reduce the memory
footprints in the learning phase by around 50%, while producing comparable results with full-size data
learning. The decoupled learning paves the way for more accessible and scalable video understanding.
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