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ABSTRACT

Long-horizon combinatorial optimization problems (COPs), such as the Flexi-
ble Job-Shop Scheduling Problem (FJSP), often involve complex, interdependent
decisions over extended time frames, posing significant challenges for existing
solvers. While Rolling Horizon Optimization (RHO) addresses this by decom-
posing problems into overlapping shorter-horizon subproblems, such overlap of-
ten involves redundant computations. In this paper, we present L-RHO, the first
learning-guided RHO framework for COPs. L-RHO employs a neural network
to intelligently fix variables that in hindsight did not need to be re-optimized, re-
sulting in smaller and thus easier-to-solve subproblems. For FJSP, this means
identifying operations with unchanged machine assignments between consecutive
subproblems. Applied to FJSP, L-RHO accelerates RHO by up to 54% while sig-
nificantly improving solution quality, outperforming other heuristic and learning-
based baselines. We also provide in-depth discussions and verify the desirable
adaptability and generalization of L-RHO across numerous FJSP variates, dis-
tributions, online scenarios and benchmark instances. Moreover, we provide a
theoretical analysis to elucidate the conditions under which learning is beneficial.

1 INTRODUCTION

Enhancing the efficiency and scalability of solving Combinatorial Optimization Problems (COPs)
has been a central focus of both the Operations Research (OR) (Schrijver et al., 2003) and the
emerging Neural Combinatorial Optimization (NCO) communities (Bengio et al., 2021). Numer-
ous methods have been proposed to decompose large-scale problems into smaller, more tractable
subproblems, with the majority focusing on spatial or structural decomposition of decision vari-
ables. Despite their success, these methods often face limitations in addressing the unique temporal
challenges of long-horizon COPs - frequently encountered by industrial practitioners - which in-
volve optimizing complex decisions over extended time horizons. Such unique challenges, coupled
with the inherent NP-hardness and large-scale nature of the problems, call for advanced temporal
decomposition strategies (Du and Pardalos, 1998; Hentenryck and Bent, 2006; Yang et al., 2013).

Building on successes in control for complex dynamical systems (Welikala and Cassandras, 2021;
Franze and Lucia, 2015; Castaman et al., 2021), Rolling Horizon Optimization (RHO) has emerged
as a natural temporal decomposition technique for long-horizon COPs (Glomb et al., 2022). RHO
breaks the problem into overlapping subproblems with shorter planning horizons rolling forward
over time, allowing for much better scalability. The key to RHO is its temporal overlap, which
enhances decision-making at the boundaries of consecutive subproblems, mitigating myopic deci-
sions and facilitating modelling interdependencies across the temporal dimension (Sethi and Sorger,
1991; Mattingley et al., 2011). However, such overlaps often lead to redundant computations that
reduce the efficiency especially when only a small subset of variables needs re-optimization. This
presents an opportunity to accelerate RHO by identifying such redundancies, an approach that, to
our knowledge, has not yet been explored in the combinatorial optimization context.

To this end, this work introduces a novel learning-based RHO framework, termed L-RHO, designed
to accelerate RHO for long-horizon COPs by identifying overlapping decision variables that do
not need to be re-optimized between consecutive iterations. We demonstrate the effectiveness of
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our L-RHO on the long-horizon Flexible Job-Shop Scheduling Problem (FJSP), a proof-of-concept
example with numerous applications in manufacturing (Liu et al., 2017), healthcare (Addis et al.,
2016), transportation (Zhang et al., 2012), and logistics (Xie et al., 2019). Long-horizon FJSPs
represent a complex class of COPs involving interdependent assignment and scheduling decisions
over extended time horizons, significantly increasing the difficulty compared to the basic JSP variant.
The core of L-RHO is to intelligently fix operations assigned to the same machine across successive
RHO iterations. By employing a customized network with tailored contextual embeddings, L-RHO
learns to imitate a look-ahead oracle, effectively reducing the size of subproblems, significantly
improving solve times, and delivering notable improvements in solution quality.

Moreover, to gain deeper insights into the research question - “To what extent can machine learning
accelerate RHO in the context of long-horizon COPs such as FJSP?” - we validate and discuss our
framework, L-RHO, through both computational experiments and theoretical analysis. Empirically,
we show that L-RHO reduces RHO solve times by up to 54% and improves solution quality by up to
21% compared to various heuristic and learning-based baselines (with and without decomposition),
across a range of FJSP settings and distributions. Moreover, we further discuss the unique potential
of our L-RHO in online FJSP settings, where FJSPs operate with limited initial information and
require ongoing but more efficient re-optimization as new orders arrive with dynamic environments.
Theoretically, we formalize analytical criteria under which L-RHO outperforms the heuristic base-
lines; the analysis incorporates factors including the data distribution and the False Positive (FP) and
False Negative (FN) Rates of the learning method, closely aligning with the empirical results.

In summary, our contributions are fourfold: (1) We introduce L-RHO, the first learning-guided
rolling-horizon method for COPs; by learning which overlapping solutions in consecutive RHO
iterations do not require re-optimization, it significantly reduces RHO subproblem sizes, thereby
accelerating solve times. (2) Validated on long-horizon FJSP, L-RHO effectively accelerates RHO
by up to 54% while significantly improving the solution quality. (3) Extensive computational exper-
iments show that L-RHO consistently outperforms various state-of-the-art heuristic and learning-
based baselines (w/ or w/o decomposition), and demonstrates robust effectiveness across diverse
FJSP settings, distributions, and online scenarios. (4) We further provide a principled probabilistic
analysis to identify conditions where L-RHO surpasses heuristic RHO baselines, offering theoretical
justifications that are aligned with the empirical observations.

2 RELATED WORKS

Decomposition for COPs. Despite advances in traditional solvers (Pisinger and Ropke, 2019; Vi-
dal, 2022; Xiong et al., 2022), learning-guided solvers (Labassi et al., 2022; Scavuzzo et al., 2022;
Wang et al., 2023b; Li et al., 2024) and neural solvers (Kool et al., 2018; Ma et al., 2024; Zhang
et al., 2024c; Ye et al., 2024a) for COPs, scalability and adaptability to real-world complexities re-
main challenging. Various decomposition strategies have been explored by OR community, such
as variable partitioning (Helsgaun, 2017), adaptive randomized decomposition (ARD) (Pacino and
Van Hentenryck, 2011), and sub-problem constraint relaxation (Pisinger and Sigurd, 2007). More
recently, machine learning has been exploited to guide the decomposition by selecting subprob-
lems (Li et al., 2021; Zong et al., 2022; Huang et al., 2022) or to auto-regressively solve decomposed
subproblems (Wang et al., 2021; Ye et al., 2024b; Luo et al., 2024), leading to notable improvements.
However, they primarily emphasize spatial or problem-structural decomposition (e.g., for routing
problems), which is not suitable for long-horizon time-structured COPs involving complex, inter-
dependent decision variables and constraints spanning extended time horizons. This highlights the
need for effective temporal decomposition. We note such temporal decomposition can be orthogonal
to other existing ones, and future work could combine them to improve scalability and flexibility.

RHO for Long-horizon COPs. RHO is a temporal decomposition method originating from Model
Predictive Control (MPC) (Garcia et al., 1989). It improves the scalability by dividing the time-
structured problem into overlapping subproblems. While such overlap improves boundary decision-
making, it can introduce redundant computations. Thus, many control and robotics studies leverage
previous decisions to reduce the computations of the current subproblem. This is done, e.g., through
hand-crafted methods, such as recording repeat computations (Hespanhol et al., 2019) or tightening
primal and dual bounds (Marcucci and Tedrake, 2020), and learning-based models that predict active
constraints (Bertsimas and Stellato, 2022) or solutions for discrete variables (Cauligi et al., 2021).
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However, these methods are not tailored for long-horizon COPs. Recently, RHO has been initially
adapted for long-horizon COPs, with wide applications such as scheduling (Bischi et al., 2019),
lot-sizing problems (Glomb et al., 2022), railway platform scheduling (Lu et al., 2022), stochastic
supply chain management (Fattahi and Govindan, 2022), and pickup and delivery with time win-
dows (Kim et al., 2023). However, they often overlook the redundancies, and none of them have
integrated machine learning to address this issue, leaving a gap in accelerating RHO for COPs.

FJSPs. FJSP is a complex class of COPs that involve interdependent assignment and scheduling de-
cisions over extended time horizons, making it more challenging than the basic JSP, which only ad-
dresses scheduling (Dauzère-Pérès et al., 2023). Recently, learning-based solvers have shown power
to outperform traditional methods such as Constraint Programming (Perron and Didier) and genetic
algorithms (Li and Gao, 2016); for example, see Zhang et al. (2020; 2024b;a) for JSP and Wang et al.
(2023c); Song et al. (2022) for FJSP. However, they are typically limited to small-scale instances
(fewer than 200 operations) and struggle to scale to real-world, long-horizon scenarios. Although
decomposition (e.g., the above ARD) has been explored for FJSP, their efficiency remains con-
strained. Moreover, these methods are offline, requiring full problem information, limiting their use
in online setting. While some works have studied dynamic, online FJSP Luo et al. (2021); Lei et al.
(2023), they are still restricted to small-scale experiments. Consequently, large research gaps remain
in developing more scalable and flexible decomposition methods for long-horizon (and online) FJSP.

3 PRELIMINARIES

FJSP Definition. A FJSP instance consists of a set T of jobs, a setM of machines, and a set O
of operations. Each job j ∈ T consists of a set of nj operations {Oj,k}

nj

k=1 ⊆ O required to be
processed in a precedence order Oj,1→Oj,2→ ...→Oj,nj

. Each operation Oj,k can be processed
by any of the compatible machinesMj,k ⊆M; the process duration of operation Oj,k by machine
m̄ ∈ Mj,k is denoted by pm̄j,k. A solution to the FJSP, denoted as Π = (m,π), consists of (i) an
assignment m : O →M that represents the machine assignment of each operation, with m(Oj,k) ∈
Mj,k for all j, k, and (ii) a schedule π : {Oj,k | ∀j, k} → N that represents the process start time
of each operation Oj,k as π(Oj,k); with the process duration as p

m(Oj,k)
j,k , the process end time of

the corresponding operation is πt(Oj,k) := π(Oj,k) + p
m(Oj,k)
j,k . Many FJSP objectives exist in the

literature, and we consider testing our method on a variety of objectives including makespan (Xie
et al., 2019), total start delays (Pham and Klinkert, 2008; Lee and Yih, 2014), and end delays (Zhou
et al., 2009; Andrade-Pineda et al., 2020). Formally, the makespan objective can be expressed as
maxOj,k

πt(Oj,k). For the delay-based objectives, let each operation Oj,k be further associated with
(i) a release time sj,k with a constraint π(Oj,k) ≥ sj,k such that the operation can only be processed
after the release time, and (ii) a target end time tj,k; both respect the operations’ precedence orders
within the same job, that is, ∀ job j and operations k1 < k2, we assume sj,k1

≤ sj,k2
and tj,k1

≤
tj,k2

. The total start delay objective is expressed as
∑

Oj,k
π(Oj,k) − sj,k, and the total end delay

objective as
∑

Oj,k
max(πt(Oj,k)− tj,k, 0). Appendix A.1 provides a detailed list of notations.

RHO for Long-Horizon FJSP. The temporal structure of FJSP enables the use of RHO to decom-
pose a long-horizon FJSP into a sequence of shorter-horizon FJSP subproblems.

Our RHO utilizes a planning window size H but executes only a step size S with S ≤ H . Each sub-
problem is limited to solving for T seconds. Given the long-horizon FJSP instance, we first sort the
operationsO into {O(1), ..., O(|O|)} based on the precedence order within each job or the associated
release time. These operations are then divided into overlapping subproblems. Specifically, the rth

RHO iteration considers a FJSP subproblem Pr given by a subset of operations Oplan,r, consisting
of the next H non-executed operations according to the sorted RHO sequence order; we introduce
additional constraints in Pr to handle boundary conditions – for example, each operation in Oplan,r

should start after all previously executed operations from the same job. After solving Pr under
the time limit T , we obtain the subproblem solution Πr = (mr, πr). We then execute the first S
operations with the earliest process start time πr(O) following the solution Πr, while deferring the
remaining H − S operations for replanning in future iterations. The procedure is then repeated
until we solve the full FJSP P , resulting in |O|/S subproblems. A detailed algorithm can be found
in Appendix A.2. RHO is also well-suited for online settings with limited visibility, solving early
operations while deferring the rest until future batches in the next iteration (see Sec. 5.2).
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Figure 1: One iteration of our L-RHO pipeline. (a) Construct a subproblem Pr with H non-
executed operations in Oplan,r. This includes a set of overlapping operations Ooverlap,r ⊆ Oplan,r,
each associated with a solution from the previous iteration given by the assignment mr−1 and the
schedule πr−1. (b) Identify operations Ofix,r ⊆ Ooverlap,r that in hindsight, their assignments did
not need to be re-optimized; during training, a Look-Ahead Oracle determines Ofix,r by solving
Pr for Q times; During inference, our learned neural network selects it. (c) Create a restricted
subproblem P̂r by fixing the machine assignments for Ofix,r. (d) Feed P̂r to a subsolver, solve
for up to T seconds, and (e) Obtain an updated solution Πr = (mr, πr). (f) Execute a subset of S
operations in Oexec,r ⊆ Oplan,r based on the solution Πr. We then repeat steps (a)-(f).

4 LEARNING-GUIDED ROLLING HORIZON OPTIMIZATION (L-RHO)

We now introduce our learning framework, L-RHO, that accelerates RHO for long-horizon FJSP.
We refer to the original RHO, RHO for training data collection, and RHO for inference as RHO0,
RHOdata, and RHOtest. In the standard RHO0, each consecutive iterations r-1 and r share
overlapping operations Ooverlap,r = Oplan,r ∩ Oplan,r−1. While new operations Onew,r =
Oplan,r \ Oplan,r−1 in subproblem Pr may change the solution of the overlap parts Ooverlap,r,
we find two key observations that, for various FJSP distributions evaluated in Sec. 5:
(1) A significant subset of the overlapping operations retain the same machine assignment between

the consecutive optimizations. Formally, the shared operations are given by O∗
fix,r = {O ∈

Ooverlap,r | mr(O) = mr−1(O)}, where Πr = (mr, πr) and Πr−1 = (mr−1, πr−1) are the
solutions of the unrestricted subproblem Pr and Pr−1 in RHO0.

(2) Let P̂ ∗
r be the restricted subproblem where we leverage the solution of the r−1th RHO iteration

and fix the machine assignments of the shared operations O∗
fix,r. The solve time of P̂ ∗

r is
significantly reduced from that of the unrestricted subproblem Pr.

Assignment-Based Subproblem Restriction. Based on these observations, we propose restricting
the subproblem by fixing machine assignments for a set of operationsOfix,r ⊆ Ooverlap,r, selected
through oracle, learning, or heuristic methods. This results in the restricted subproblem P̂r, with a
formal formulation provided in Appendix A.5.2. Notably, this approach can be easily extended to
other subproblem restriction methods, which we leave for future work.

Our L-RHO Pipeline. We design the L-RHO pipeline (which is shown in Fig. 1) as follows: First,
we collect training data via a Look-Ahead Oracle by solving the unrestricted subproblem Pr and
identifying O∗

fix,r as the set of overlapping operations with the same assignments in mr and mr−1.
A neural network fθ is then trained with such collected labels. During inference, fθ predicts a subset
Ofix,r, from which we form the assignment-based restricted subproblem P̂r. This largly speeds up
the inference time optimization by replacing the expensive Pr with the easier-to-solve P̂r.
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Training Data Collection (RHOdata). At each iteration r, we solve the unrestricted sub-
problem Pr for Q ≥ 1 times under a time limit, resulting in Q possibly different solutions
{Πq

r = (mq
r, π

q
r)}

Q
q=1. We then use the highest overlapping machine assignment as the training

labels. That is, let q∗ = argmaxq∈{1,...,Q}
∑

O′∈Ooverlap,r
yqO′ , with yqO′ = 1mq

r(O′)=mr−1(O′).

We set the training labels as y∗O = yq
∗

O for each operation O ∈ Ooverlap,r. Intuitively, the solve
time of FJSP subproblem reduces when more assignemnts are fixed. Empirically, we find the labels
{y∗O}O∈Ooverlap,r

not only lead to short solve times but also high solution quality. We then obtain the
set O∗

fix,r = {O ∈ Ooverlap,r | y∗O = 1} and construct the assignment-based restricted subproblem
P̂ ∗
r accordingly. Fig. 1 (b) top illustrates the data collection procedure RHOdata. Comparing with

RHO0 that solves one unrestricted Pr at each iteration, RHOdata solves Pr for Q times and the
restricted P̂r one time, where Q trades-off data collection efficiency and the training label quality.

Input Features. The state sr at each RHO iteration r consists of both the current FJSP subproblem
Pr and the previous solution Πr−1 = (mr−1, πr−1). We design a rich set of input features, capturing
FJSP state details for overlapping operations Ooverlap,r, new operations Onew,r, and machines T .
For Ooverlap,r and T , we further design features to capture the previous solution’s information,
including previous assignment, duration and end time (see Appendix A.3 for details).

Figure 2: Our neural architecture fθ to pre-
dict the probability of whether each overlap-
ping operation should fix the assignment.

Neural Architecture. Our neural network fθ pre-
dicts the probability of whether each overlapping
operation O ∈ Ooverlap,r should be fixed at each
state sr. It consists of three parts: (1) Input Em-
bedding: generate embeddings for each operation
Ooverlap,r ∪ Onew,r and each machine M, with
separate MLPs. (2) Machine/Operation Concate-
nation: concatenate the hidden feature of each
overlapping operation O ∈ Ooverlap,r with both the
hidden feature of the previously assigned machine
mr−1(O) ∈ M, and a global feature obtained by a
mean pooling. The concatenated features then pass
through another MLP. (3) Output: each overlap-
ping operation Ooverlap,r is passed through a final MLP layer to output the probability prediction.
Notably, the purpose of (2) is to augment each operation with both local information from the previ-
ously assigned machine, as well as global information from all entities, which include overlapping
operations, new operations, and the machines. The illustration of fθ is depicted in Fig. 2. The cur-
rent simple architecture shows strong performance, and our preliminary comparisons with advanced
architectures, such as Multi-head Attention, show no significant improvement (see Appendix A.6.3);
we leave the exploration of more advanced designs in future work.

Loss Function. We use weighted binary cross-entropy loss where wpos > 0 scales positive labels.

l(fθ(sr;O), yO) = −wpos[yO log fθ(sr;O) + (1− yO) log(1− fθ(sr;O))] (1)

The weight wpos balances False Positive (FPR) and False Negative Rate (FNR). A lower wpos em-
phasizes avoiding predicting False Positives, i.e., cases where the network incorrectly fixes changing
operations, which can improve the objective but may increase solve time (see our analysis in Sec. 6).

Inference (RHOtest). The inference is illustrated in Fig. 1 (b) bottom, where we use the network fθ
to predict Ofix,r: for each operation O ∈ Ooverlap,r, we predict ỹO = 1fθ(sr;O)≥0.5, which results
in the fixed operation set Ofix,r = {O ∈ Ooverlap,r | ỹO = 1} and the associated assignment-
based restricted subproblem P̂r solved at RHO iteration r. By replacing the unrestricted Pr with the
restricted P̂r, the computation time can be greatly reduced in comparison with RHO0.

5 EXPERIMENT

In Sec. 5.1, we evaluate L-RHO in a standard offline setting, comparing it to various baselines for
long-horizon FJSP. Next, in Sec. 5.2, we dive into detailed analysis of L-RHO under different FJSP
variants including online settings. We provide additional experimental results in Appendix A.6,
including a deep dive on the architecture design and evaluation on a real-world dataset. We aim to
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answer: (1) To what extent does L-RHO improve upon competitive offline baseline methods and
RHO variants? (2) Can L-RHO adapt to different FJSP distributions and objectives? Moreover, a
unique benefit of RHO is its adaptability to online settings with limited visibility. As a step toward
realistic online settings, we then study (3) Is L-RHO robust under noisy observation of process
durations? (4) is L-RHO reliable under machine breakdowns?

FJSP Data Distribution and Solver. We generate synthetic large-scale FJSP instances following
common procedure in (Behnke and Geiger, 2012), characterizes by (|M|, |T |, n), where each job
j has |{Oj,k}

nj

k=1| = n operations. The total number of operations |O| ranges from 600 to 2000.
Notably, the problem horizon in this work (e.g., 600-2000) is considerably larger than those in pre-
vious studies (Wang et al., 2023a; Behnke and Geiger, 2012; Dauzère-Pérès and Paulli, 1997; Hurink
et al., 1994; Brandimarte, 1993), which typically consider fewer than 500 operations. Following the
conventions (Zhang et al., 2024a;b), we employ the competitive constraint programming (CP) solver
OR-Tools CP-SAT (Perron and Didier) to solve FJSP, with its detailed CP formulation provided in
Appendix A.5.2. We consider makespan objective in Sec. 5.1, and delay-based objectives in Sec. 5.2
(start and end delay) for comprehensive evaluation. More details are in Appendix A.5.1.

Proposed Method (L-RHO) Setup. We provide descriptions of the training set up in Appendix A.4,
and the details on the choices of RHO parameters in Appendix A.5.4 and A.5.6.

Baselines. We include a range of traditional and learning-based baselines, with and without decom-
position for comprehensive evaluation (see Appendix A.5.3 for more details about baselines):
(1) Traditional solver w/o decomposition - We include the widely used benchmark solver CP-

SAT (Google, 2023) and Genetic Algorithm (GA) (Li and Gao, 2016).
(2) Learning-based solver w/o decomposition - We compare with the state-of-the-art DRL con-

structive method for FJSP (Wang et al., 2023a), which we denote as DRL-20K (using 20,000
training instances as in the original paper). We further compare with two recent learinng meth-
ods: DRL-Echeverria (Echeverria et al., 2023) and DRL-Ho (Ho et al., 2023).

(3) Traditional solver w/ decomposition - We include the time decomposition method ARD-LNS
(Time-based) and machine decomposition method ARD-LNS (Machine-based) in (Pacino and
Van Hentenryck, 2011), which decompose large neighborhood search (LNS) by randomly fixing
temporal intervals or machine subsets as subproblems, respectively.

(4) Learning-guided solver w/ decomposition - While learning-guided decomposition exist, e.g,
for routing problems (Li et al., 2021), they are not adaptable to long-horizon COPs like FJSP.
We thus opt to include an Oralcle-LNS (Time-based) baseline to estimate the upper bound of
enhancing ARD-LNS. It samples K subproblems and selects the best one by looking ahead.

(5) RHO decomposition - We include Default RHO, where each iteration solves an unrestricted
FJSP subproblem Pr without fixing any variables, and Warm-Start RHO, where previous ma-
chine assignments of overlapping operations {mr−1(O) ∀ O ∈ Ooverlap,r} are provided as
hints (not fixed) to CP-SAT as a warm start, akin to (Hespanhol et al., 2019) in control systems.

Evaluation Metric. We compare the objective and solve time in Table 1. Objective improvement
(OI%) and time improvement (TI%) over Default RHO are reported in Table 2. For a solver with
an objective obj and a solve time t, its OI and TI are calculated as (obj0 − obj)/obj0 × 100% and
(t0 − t)/t0 × 100%, respectively, where negative values indicate degradation.

5.1 CANONICAL OFFLINE FJSP UNDER MAKESPAN OBJECTIVE

We consider the canonical offline FJSP with makespan as the objective, with horizons up to 2000
operations (significantly longer than literature), following a similar synthetic data distribution as
in Wang et al. (2023a). The number of jobs and machines are set to 20 and 10, respectively. For
both L-RHO and DRL, we train separate models for 30, 40, and 60 operations per job, testing each
in its respective setting and transferring the 60 operations-per-job model to a large-scale test with
100 operations per job. Results are gathered in Table 1. We highlight the following findings:

Comparison with baseline solvers w/o decomposition. L-RHO outperforms both traditional
solvers (CP-SAT, GA) and the learning-based DRL solver in the standard (offline) FJSP setting.
Specifically, (1) L-RHO achieves the best objective, outperforming DRL and all heuristic baselines
in both in-domain and zero-shot generalization to larger scales; (2) We find the performance of
DRL-Echeverria and DRL-Ho poor; (3) Comparing with DRL-20K (Wang et al., 2023a), we see
that DRL Greedy is the fastest method but has a worse performance than Default RHO. (4) DRL
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Table 1: Offline FJSP under Makespan Objective. Each column corresponds to a different FJSP size
given by the format: total number of operations, followed by a tuple of (number of machines |M|,
jobs |T |, and operations per job n). L-RHO outperforms all types of baselines.

600 (10, 20, 30) 800 (10, 20, 40) 1200 (10, 20, 60) 2000 (10, 20, 100), Transfer
Time (s) ↓ Makespan ↓ Time (s) ↓ Makespan ↓ Time (s) ↓ Makespan ↓ Time (s) ↓ Makespan ↓

CP-SAT (10 hours) 36000 1583 ± 65 36000 2128 ± 75 36000 3206 ± 87 36000 18821 ± 1986
CP-SAT 1800 2274 ± 147 1800 4017 ± 413 1800 10925 ± 1013 1800 39585 ± 2707
GA 1800 3659 ± 87 1800 5150 ± 92 1800 8086 ± 111 1800 10406 ± 640

ARD-LNS (Time-based) 300 2100 ± 269 400 3298 ± 365 600 5115 ± 558 1000 14258 ± 1522
ARD-LNS (Machine-based) 300 3974 ± 633 400 6594 ± 1227 600 12764 ± 4206 1000 52225 ± 1793
Oracle-LNS (Time-based) 300 1789 ± 104 400 2663 ± 120 600 4470 ± 151 1000 7275 ± 785

DRL-Echeverria, Greedy 84 ± 27 2347 ± 189 115 ± 32 3105 ± 161 105 ± 7 4570 ± 218 213 ± 10 7673 ± 356
DRL-Echeverria, Sampling 157 ± 8 2351 ± 139 217 ± 11 3131 ± 165 427 ± 20 4657 ± 192 603 ± 41 7774 ± 271
DRL-Ho, Greedy 4 ± 2 3030 ± 69 6 ± 4 4038 ± 87 11 ± 6 6045 ± 99 22 ± 3 10044 ± 115
DRL-Ho, Sampling 174 ± 1 2907 ± 46 168 ± 14 3907 ± 56 385 ± 12 5870 ± 71 517 ± 10 9848 ± 92
DRL-20K, Greedy 4 ± 0.02 1628 ± 72 6 ± 0.04 2128 ± 80 10 ± 0.1 3141 ± 97 16 ± 0.2 5184 ± 114
DRL-20K, Sample 100 29 ± 0.3 1551 ± 60 47 ± 1 2048 ± 69 110 ± 3 3063 ± 81 302 ± 10 5082 ± 98
DRL-20K, Sample 500 146 ± 5 1537 ± 61 261 ± 8 2031 ± 68 597 ± 16 3045 ± 79 1738 ± 16 5062 ± 98

Default RHO (Long) 599 ± 55 1529 ± 58 728 ± 98 2044 ± 75 1099 ± 108 3002 ± 87 2871 ± 244 4994 ± 114
Default RHO 244 ± 21 1558 ± 73 348 ± 26 2103 ± 78 545 ± 36 3136 ± 91 862 ± 42 5207 ± 114
Warm Start RHO 203 ± 23 1521 ± 67 278 ± 22 2055 ± 75 420 ± 33 3081 ± 96 716 ± 41 5057 ± 106

L-RHO (450) 126 ± 19 1513 ± 70 160 ± 23 2015 ± 86 259 ± 37 3011 ± 106 473 ± 52 4982 ± 132

Sampling improves its performance but significantly increases computational time, with DRL-20K
(500 Samples) taking longer and performing worse than L-RHO. Additionally, the solve time of
DRL heavily rely on batch-decoding and GPU availability, whereas our L-RHO has a competitive
inference time even solely running on CPUs. (5) L-RHO requires significantly fewer training in-
stances than DRL-20K, making it advantageous when obtaining FJSP instances is costly.

Comparison with baseline solvers w/ decomposition. We first observe that, (1) for ARD-
LNS, time-based decomposition outperforms the machine-based variant but still results in a worse
makespan and longer solve time compared to Default RHO. This suggests that effective temporal de-
composition is crucial for time-structured, long-horizon COPs. In contrast, (2) L-RHO significantly
outperforms both LNS methods in terms of solving time and objective. Furthermore, (3) while
Oracle-LNS improves performance by simulating learning-based decomposition, it still underper-
forms compared to Default RHO. This suggests that RHO is better suited for long-horizon FJSP,
partly due to complex temporal dependencies as follows: LNS begins with a complete solution and
refines it iteratively. However, the makespan objective only improves when the last operation on
the critical path is included. This temporal delay in propagating local improvements contrasts with
prior learning-based LNS methods for Mixed Integer Programming (Huang et al., 2023) or Vehicle
Routing (Li et al., 2021), where subproblem improvements directly impact the objective. In contrast,
RHO builds the solution progressively, maintaining a tighter makespan by following the natural tem-
poral order of operations. Lastly, we note that L-RHO’s temporal decomposition is orthogonal to
other strategies and could be combined in future work to enhance scalability and flexibility.

Discussion - RHO for online settings. Unlike offline baselines (CP-SAT, GA, ARD, DRL) that
require complete information, RHO constructs solutions progressively using only near-future infor-
mation, making it suitable for online settings. Next, we explore FJSP variants, including observation
noise and machine breakdowns, to evaluate the applicability of L-RHO to batch-online FJSP.

5.2 DETAILED COMPARISON WITH RHO BASELINES UNDER DIFFERENT FJSP VARIANTS

We now benchmark L-RHO against diverse RHO baselines across FJSP variants. We evaluate ob-
jectives such as makespan, start delay, and end delay, while also testing its adaptability under higher
system congestion, observation noise, and machine breakdowns to simulate real-world dynamics.

We include two more RHO baselines, following the RHOtest procedure but obtaining the fixed op-
erationsOfix,r with the following heuristics: (a) Random σR ∈ [0,1]: Ofix,r is obtained by select-
ing each operation in Ooverlap,r with a probability σR uniformly at random, (b) First σF ∈ [0,1]:
Ofix,r is obtained as the first σF fraction of operations inOoverlap,r with the earliest RHO sequence
order based on the precedence order (for makespan) or release time (for delay-based objectives).

New Objective: Start Delay. In Table 2, under the new start delay objective, our L-RHO consis-
tently outperforms all RHO variants in both solve time and objective across time horizons. Notably,
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Table 2: Detailed Comparison of L-RHO with RHO variants under Start Time Delay Objective. We
present the time and objective improvements (TI%, OI%) of RHO variants relative to Default RHO.
The best TI% and OI% are bolded. L-RHO significantly outperforms all baseline RHO variants.

625 (25, 25, 25) 1225 (35, 35, 35) 1600 (40, 40, 40)

TI %↑ OI %↑ TI %↑ OI %↑ TI %↑ OI %↑

Default RHO 946.9s ± 31.6s
(0.0% ± 0.0%)

1790.5 ± 145.3
(0.0% ± 0.0%)

1119.86s ± 35.5s
(0.0% ± 0.0%)

2960.4 ± 215.7
(0.0% ± 0.0%)

2349.3s ± 111.7s
(0.0% ± 0.0%)

4148.6 ± 356.8
(0.0% ± 0.0%)

Warm Start RHO 38.6% ± 1.0% -7.5% ± 2.8% -12.9% ± 1.6% 11.2% ± 2.7% 5.2% ± 2.4% 6.8% ± 4.8%
First 20% 26.1% ± 1.3% 2.9% ± 2.5% 10.2% ± 1.7% -30.5% ± 10.7% 31.0% ± 2.4% -94.1% ± 24.3%
First 30% 33.6% ± 1.3% -7.0% ± 2.5% 13.2% ± 1.7% -48.9% ± 7.2% 31.7% ± 2.1% -129.4% ± 19.1%
First 40% 34.8% ± 1.3% -32.3% ± 3.7% 14.1% ± 2.1% -100.4% ± 8.7% 34.7% ± 3.0% -274.7% ± 28.1%

Random 10% 23.0% ± 1.3% -11.9% ± 2.5% -15.5% ± 1.7% -12.9% ± 3.4% 10.0% ± 3.0% -55.2% ± 9.6%
Random 20% 23.8% ± 1.7% -27.6% ± 3.4% -2.0% ± 2.6% -86.1% ± 7.9% 10.2% ± 3.5% -115.6% ± 14.5%
L-RHO (Ours) 53.0% ± 1.0% 16.0% ± 1.9% 35.1% ± 1.3% 21.0% ± 2.4% 47.3% ± 2.2% 13.1% ± 4.4%

Figure 3: L-RHO under different FJSP variants. Left: Increased Congestion level with more
jobs |T | ∈ {30, 32, 34}. We circle the baselines for these three settings with green, yellow and red
ellipsoids, using different markers to represent each setting. L-RHO is plotted in pink. Middle:
Multi-objective and Noisy Observation (online). We analyze FJSP (30, 30, 25) with the (i) start
delay objective (ii) start and end delay objective, and (iii) start and end delay objective plus observa-
tion noise. The arrows illustrate the performance changes of each method across (i)-(ii)-(iii). Right:
Machine Breakdown (online). We simulate machine breakdowns during RHO’s process, varying
intensity (low, mid, high) by adjusting event frequency and machine availability.

it achieves a 35% - 53% speed up from Default RHO with a further 13%-21% improvement in the
objective (total start delay), demonstrating the effectiveness of our learning method in accelerating
RHO. Comparing with the baseline methods, we observe that: (1) Warm Start RHO does not sig-
nificantly outperform Default RHO, indicating the inadequacy of simple warm start techniques for
the complex long-horizon FJSP. (2) The assignment-based subproblem restriction heuristics, namely
First and Random, improve the solve time from Default RHO, albeit at the expense of poorer objec-
tive. Moreover, First σF emerges as a more effective heuristic than Random σR, with a better solve
time and objective improvement when Ofix,r is of a comparable size (σF = σR).

Data Distribution: Higher Congestion. We raise the congestion level by increasing the number
of jobs |T | ∈ {30, 32, 34} while keeping the number of machines |M| = 30 and operations per
machine to be 25 under the start delay objective. This results in a higher job-to-machine ratio,
with congestion build-up over time. In Fig. 3 (left), we observe that L-RHO achieves solve time
and objective improvements TI% ∈ {41%, 39%, 28%} and OI% ∈ {14%, 20%, 27%} across the
different settings, demonstrating the robustness of the learning method to system congestion. In
contrast, the baselines (First and Random) have limited solve time improvement and substantial
objective degradation for all settings. This highlights L-RHO’s ability to enhance system throughput
by enabling the system to process more jobs than Default and baseline RHO methods.

Multi-Objective: Start and End Delay. While the total start delay objective emphasizes adhering
to the release time, reducing the total end delay is crucial in many real world scenarios where fol-
lowing each operation’s scheduled due time is important. Here, we use the sum of the start and end
delay as the objective and generate random target end time for each operation (see Appendix A.5.1).
In Fig. 3, middle (ii), we observe that L-RHO maintains solve time and objective improvements
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with a TI% of 39% and OI% of 4% under this combined objective. Interestingly, Random and First
also improve relative to Default RHO (better TI% and OI%, see Random 30%, for example). Em-
pirically, we find more overlapping operations maintain the same assignment under this distribution,
our analysis in Sec. 6 indicates the advantageous for Random and First under such a scenario.

Online FJSP: Observation Noise. In real-world FJSP deployments, practitioners often face in-
complete and noisy operation data. To simulate this, we introduce observation noise into the RHO
process, moving towards a more realistic online FJSP. Specifically, we assume that in each RHO
subproblem, only the durations of operations with earlier release times are accurately observed. For
other operations, we only have access to noisy estimates, and RHO optimizes subproblems based
on this noisy information. Thus, the observed durations in P̂r may differ from the true execution
duration during execution (see Appendix A.5.1 for details). In Fig. 3, middle (iii), the Random
and First strategies degrade significantly under observation noise, with a more pronounced effect on
First. Our analysis in Sec. 6 captures such a behavior for First and Random, as the observation noise
leads to (1) more overlapping operations changing assignments (2) a less informative distribution to
determine which operation in the subproblem will change assignments. In contrast, L-RHO remains
effective under observation noise, with a TI% of 25% and OI% of 4% over Default RHO.

Online FJSP: Machine Breakdown. In real-world FJSP scenarios, unexpected disruptions such
as machine breakdowns can occur (Zhang and Wong, 2017). We simulate breakdowns, and com-
bine the periodic RHO optimization with event-based rescheduling: when a breakdown or recovery
occurs, we re-optimize the RHO subproblem with updated machine availability. This leads to two
major changes in the RHO pipeline (1) RHO subproblems are solved more frequently due to the
breakdown (or recovery) events, and (2) operations with all compatible machines down are deferred
until the breakdown ends, thereby resulting in longer scheduling horizon (see Appendix A.5.1 for
details). In Fig. 3 (Right), we test L-RHO under varying machine breakdown intensities by adjusting
breakdown frequency and the proportion of downed machines, using makespan as the objective with
10 machines, 20 jobs, and 800 operations. Our L-RHO demonstrates significant time improvements
TI% ∈ {47%, 52%, 37%} over Default RHO across all intensity levels, while also achieving a better
makespan. This highlights L-RHO’s reliability under unexpected disruptions. We also observe that,
at high breakdown intensity, First loses its advantageous to Random. This can be similarly explained
in our analysis next, as unexpected disruptions reduce the amount of information First can leverage.

6 THEORETICAL PROBABILISTIC ANALYSIS

In this section, we present a theoretical probabilistic analysis to identify when RHO can benefit
from machine learning. Intuitively speaking, the more irregular the operations to be fixed (O∗

fix),
the more advantageous L-RHO can be, because of the greater potential gain from prediction. Also,
L-RHO must balance both False Positive (FP) and False Negative (FN) errors: fixing something
that should not have been (FP) harms the objective but helps the solve time, while failing to fix
something that should have been (FN) harms the solve time and also indirectly harms the objective
(under a fixed time limit). Thus, an ideal L-RHO method will balance the two errors (see Fig. 4).

Notation. We analyze a generic subproblem P̂r := P̂ at each iteration r, and drop the r subscript for
ease of notation. We consider a fixed set of RHO parameters and denote W = H − S = |Ooverlap|.
GivenO∗

fix andOfix from the Oracle and a method in {Random σR, First σF , L-RHO}, we denote
E[n∗

fix] = E[|O∗
fix|], Ofn = O∗

fix\Ofix, and Ofp = Ofix\O∗
fix,r. We define the FN and FP errors

E[nfn] = E[|Ofn|] and E[nfp] = E[|Ofp|]. The (expected) FP and FN rates of each method are
E[nfp]/E[n∗

fix],E[nfn]/(W − E[n∗
fix]), with L-RHO’s FPR and FNR denoted as (α, β).

We leverage an intuitive linear decay assumption, validated in Appendix A.7.2: in a given FJSP
subproblem, the later an operation appears in the RHO sequence, the less likely its assignment
should be fixed. This assumption allows us to formally relate the FP and FN errors of different
methods (L-RHO versus Random versus First, see Prop. 1 and Fig. 4 (middle)).

Assumption 1 (Linear Decay). Let the probability that each operation O(i) ∈ Ooverlap is included
in O∗

fix be denoted as p∗fix(i) ∈ [0, 1], where the index i ∈ {1, ...,W} follows the RHO sequence
order. We consider linearly decreasing p∗fix(i) = b−m · i

W , where constants 0 ≤ b,m ≤ 1 reflect
average behavior across RHO iterations. We have E[n∗

fix] =
∑

i p
∗
fix(i) = (b− m

2 )W −
m
2 .
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Figure 4: Left: We analyze the FN and FP errors of each RHO method relative to Oracle and
interpret their effects on the objective and solve time. Middle: We show the FN and FP errors for
Random and First with σR, σF ∈ [0, 1] under Assump. 1, fixing b − m

2 = 0.5 while increasing
the slope m. Higher m enhance the performance of First relative to Random (with equal σ) by
reducing both errors. We plot σR, σF ∈ {0, 0.1, ..., 1} using circles and squares, with darker colors
for smaller values. Right: For FJSP (25, 25, 25) with the total start delay objective, we depict
the FN and FP errors of {Random, First, and L-RHO} in the low FP region, using an empirically
validated p∗fix(i) distribution. Due to its ability to simultaneously lower E[nfp] and E[nfn], our
L-RHO empirically outperforms First σF ≤ 60% in solve time and all baselines in objective (pink
region). We can further transform the coordinates (the right and top axes) to provide insights on
what FP and FN rates should L-RHO achieve for learning to be effective.

Proposition 1. Under Assump. 1, the FN and FP errors for each method is given in closed-form as

• Random: E[nRandom
fn ] = (1− σR)E[n∗

fix],E[nRandom
fp ] = σR(W − E[n∗

fix]) ;
• First: E[nFirst

fn ] = (1−σF )(E[n∗
fix]− m

2 σFW ),E[nFirst
fp ] = σF

(
W −E[n∗

fix]− m
2 (1−σF )W

)
;

• L-RHO: E[nL-RHO
fn ] = βE[n∗

fix],E[nL-RHO
fp ] = α(W − E[n∗

fix]).

Furthermore, ignoring the m
2 term in E[n∗

fix] for ease of exposition, the FP and FN Rates of First σF

and Random σR are (αF , βF ) = (
σF (1−b+m

2 σF )

1−b+m
2

, 1− σF (b−m
2 σF )

b−m
2

) and (αR, βR) = (σR, 1− σR).

Interpretation. The p∗fix(i) distribution determines the strength of the Random and First baselines
and thus the potential for improvement by learning methods. (1) When E[n∗

fix] is close to 0 or 1,
Random achieves low FP and FN errors by setting σR close to E[n∗

fix] . (2) Our analysis captures
the empirical observation that First often outperforms Random: with a strong linear decay (a large
slope m), First further reduces the FP and FN errors from Random for each σF = σR. (3) L-RHO
is advantageous when its FP and FN rates (α, β) is lower than those for First and Random, as given
in the Prop. This can provide practitioners a valuable way to assess the effectiveness of the learned
model prior to deployment. We refer to Appendix A.7 for detailed proofs and interpretation.

7 CONCLUSION

We contribute the first learning-guided rolling-horizon method for COPs, which we call L-RHO. By
learning which overlapping solutions in consecutive RHO iterations do not need to be re-optimized,
our method substantially reduces RHO subproblem sizes and thus accelerates their solve time. L-
RHO scales and accelerates RHO by up to 54%, improves solution quality, and outperforms a wide
range of baselines, both with and without decomposition. We also analyze L-RHO’s performance
across various FJSP settings, distributions, and online scenarios, highlighting its flexibility and
adaptability. We further provide a probability analysis to identify conditions where learning-guided
RHO is most beneficial. One limitation is that L-RHO alone may not achieve state-of-the-art perfor-
mance when extended to other long-horizon COPs. Future work could extend L-RHO to - 1) other
long-horizon COPs, e.g., multi-item inventory management and vehicle routing with time windows,
2) training on diverse distributions for better generalization, 3) integration with other decomposition
or subproblem restriction methods, and 4) addressing more complex real-world online scenarios.
Our theoretical analysis may also guide the development of more effective RHO warm-start tech-
niques with applications to control and robotics, e.g., accelerating Hybrid MPCs. We believe L-RHO
offers a valuable tool for long-horizon COPs and will inspire future work in various domains.
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A.1 NOTATIONS

We provide detailed lists of notations for the Flexible Job-shop Scheduling Problem (FJSP) and
Rolling Horizon Optimization (RHO) in Table 3 and Table 4.

Table 3: Notations for the Flexible Job-shop Scheduling Problem (FJSP).

FJSP Related

Problem P

M A set of machines. The machines are indexed by m ∈M.

T A set of job. The jobs are indexed by j ∈ T .

O

A set of operations. The operations are indexed by Oj,k ∈ O.
Each job j ∈ T consists of a set of nj operations {Oj,k}

nj

k=1 ⊆ O.
required to be processed in a predefined precedence order
Oj,1 → Oj,2 → ...→ Oj,nj .
After sorting the operations by their respective release time (see below),
each operation O(i) ∈ O = {O(1), ..., O(|O|)} is indexed by i.

Compatible
MachinesMj,k

Each operation Oj,k can be processed on any machine among
a subsetMj,k ⊆M of compatible machines.

Process Duration pmj,k pmj,k denotes the process duration of operation Oj,k on machine m ∈Mj,k.

Release Time sj,k
(Target Start Time)

Under delay-based objectives, each operation Oj,k has a release time sj,k,
which respects the precedence orders of operations within the same job:
for operations Oj,k1

and Oj,k2
with ∀k1 < k2, we assume sj,k1

≤ sj,k2
.

Each operation can only be processed after its release time.

Target End Time tj,k

Under the total end delay objective, each operation Oj,k is associated
with a target end time tj,k, which represents a target time to finish
the operation and similarly respects the operation precedence orders.

Operations’ Ordering
{O(1), ...,O(|O|)}

Ordering of the operations O = {Oj,k}j,k used to
divide the full operation set O into overlapping RHO subproblems.
• For the makespan objective, the operations are ordered by
their relative position in the jobs based on the precedence order:
For job j with nj operations in precedence order Oj,1 → ...→ Oj,nj ,
we give operation Oj,k a score of k/nj , and choose each RHO
subproblem as the first H non executed operations with the lowest score.
• For delay-based objectives, the operations are ordered by
their release time s(1) ≤ ... ≤ s(|O|).

Solution
Π = (m, π)

Assignment m m : O →M represents the machine assignment of each operation,
with m(Oj,k) ∈Mj,k for all j, k.

Schedule π
(Process Start Time)

π : {Oj,k | ∀j, k} → N, where the process start time
of each operation Oj,k satisfies π(Oj,k) ≥ sj,k.

Process End Time πt

The process end time of operation Oj,k is πt(Oj,k) :=

π(Oj,k) + p
m(Oj,k)
j,k , where p

m(Oj,k)
j,k is the process duration.

Objective Makespan max
Oj,k∈O

πt(Oj,k), see Alg. 7.

Total Start Delay
∑

Oj,k∈O
π(Oj,k)− sj,k, see Alg. 7.

Total Start and End Delay
∑

Oj,k∈O
π(Oj,k)− sj,k +max(πt(Oj,k)− tj,k, 0), see Alg. 7.
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Table 4: Notations for the Rolling Horizon Optimization (RHO).

RHO Related: RHO Iteration r

Parameters

H A planning window size (H operations in the current planning window).

S An execution step size (S ≤ H operations executed at each iteration).

T A solve time limit of T seconds per RHO subproblem.

Tes
We early terminate the solver if the value of the best feasible solution
does not improve within Tes seconds. (see Appendix. A.5.4)

FJSP
Optim.
Subproblem

Unrestricted Pr

FJSP subproblem Pr given by a subset of operations Oplan,r, with
additional constraints to ensure Oplan,r are processed after the
previously executed operations within the same job or the same
machine (see Appendix A.5.2 Alg. 8).

Restricted P̂r

Given a subset Ofix,r, we can construct a simpler, restricted FJSP
subproblem P̂r from Pr by setting the compatible machines
Mj,k = {mr−1(Oj,k)} for Oj,k ∈ Ofix,r.

Relevant
Operations
Subset

Oplan,r

Operations included in the current RHO subproblem Pr or P̂r:
The first H non-executed operations with earliest RHO sequence order.
See Appendix Sec. A.2 Alg. 2.

Ostep,r

Executed operations based on the solution of Pr or P̂r:
The first S operations with the earliest process start time
Earliest S Operations({πr(O)|O ∈ Oplan,r}). See Alg. 3.

Ooverlap,r
Overlapping operations in consecutive RHO iterations (r − 1 and r):
Ooverlap,r = Oplan,r ∩ Oplan,r−1

Onew,r
New operations in iteration r but not in r − 1:
Onew,r = Oplan,r\Oplan,r−1

O∗
fix,r

The (look-ahead Oracle) subset of operations in Ooverlap,r with
the same machine assignment in the consecutive unrestricted
RHO subproblems Pr and Pr−1:
O∗

fix,r = {O ∈ Ooverlap,r | mr(O) = mr−1(O)}
That is, given the solution to the previous subproblem Pr−1,
we lookahead by solving the current subproblem Pr

and identify operations with the same machine assignments.

Ofix,r

The fixed operations subset given by a specific method. Given
Ofix,r ⊆ Ooverlap,r, we can construct P̂r from Pr by setting the
compatible machines Mj,k = {mr−1(Oj,k)} for operations Oj,k ∈ Ofix,r.

Subproblem
Solution
Πr = (mr, πr)

Subproblem
Assignment mr

mr : Oplan,r →M represents the machine assignment of each operation
in the subproblem, with m(Oj,k) ∈Mj,k for all Oj,k ∈ Oplan,r.

Subproblem
Schedule πr

πr : Oplan,r → N, where the (solution) start time of each operation
in the subproblem Oj,k ∈ Oplan,r is π(Oj,k) ≥ sj,k.

Methods

Default (Cold Start) Each RHO iteration solves an
unrestricted FJSP subproblems Pr from scratch (cold start, Ofix,r ∈ ∅).

Random σR

Each RHO iteration solves a restricted FJSP subproblem P̂r associated with
the fixed operation set Ofix,r, constructed by sampling each operation
in Ooverlap,r with a probability σR uniformly at random.

First σF

Each RHO iteration solves a restricted FJSP subproblem P̂r associated with
the fixed operation set Ofix,r obtained as the first σF fraction
of operations in Ooverlap,r with the earliest RHO sequence order
(determined by operation precedence for makespan
or release time for delay-based objectives).

Warm Start

At each RHO iteration, we apply CP-SAT’s internal warm-start
techniques to solve the unrestricted FJSP subproblems Pr. Specifically,
we provide the machine assignments of the overlapping operations in the
previous iteration {mr−1(O) ∀ O ∈ Ooverlap,r} as hints to the solver.
See: “https://developers.google.com/optimization/reference/
python/sat/python/cp model#addhint”.

Oracle
Follow our data collection pipeline (Fig. 1 (b) top, omit the solve time for the
unrestricted Pr), where each RHO iteration solves a restricted FJSP
subproblem P̂r associated with the oracle fixed operation set O∗

fix,r.

L-RHO (Ours)
Follow the inference procedure RHOtest in Fig. 1 (b) bottom, where each
RHO iteration solves a restricted FJSP subproblem P̂r associated with
the fixed operation set Ofix,r predicted by the learning model fθ.
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A.2 ALGORITHM: LEARNING-GUIDED ROLLING HORIZON OPTIMIZATION

The inference procedure for the learning-guided rolling horizon algorithm (Fig. 1) is provided as
follows, where at each RHO iteration, we use the neural network fθ to identify a set of fixed oper-
ation Ofix,r (Line 10), resulting in the machine assignment-based restricted subproblem P̂r (Line
15). We note that the heuristic RHO baselines considered in Sec. 5 and 6 (e.g. First σF and Random
σR), we follow the same algorithm but use the associated heuristics to find the set Ofix,r instead
(Line 10).

Algorithm 1: Learning-Guided Rolling Horizon Optimization for FJSP
Input: FJSP problem instance

P = (M, T ,O = {O(1), ..., O(|O|)} ordered based on the precedence or release time (Table 3),
process duration {pmj,k}Oj,k∈O, m∈Mj,k ,

(optional) release time {sj,k}Oj,k∈O, (optional) target end time {tj,k}Oj,k∈O),

RHO planning window size (H operations), RHO execution step size (S operations),
and a solve time limit of T seconds per subproblem

Output: Solution Π = (m,π) of the FJSP problem instance P
1 Initialize m← {}, π ← {}
2 for Iteration r = 1 : |O|/S do
3 // Obtain the first H non-executed operations in O based on the operation order
4 Oplan,r ← GetPlanOperations(O, H, r,m, π)
5 // See Alg. 8 in Appendix A.5.2 for the FJSP subproblem formulation
6 Pr ← FJSP Subproblem(P , Oplan,r, m, π)
7 if Iteration r ≥ 2 then
8 // Learn to identify operations Ofix,r ∈ Ooverlap,r to fix the machine assignments.
9 Ofix,r ← fθ(Pr,Ooverlap,r, Pr−1,mr−1, πr−1)

10 else
11 Ofix,r ← ∅
12 end if
13 // Obtain the assignment-based restricted FJSP subproblem. See Appendix A.5.2.
14 P̂r ← Restricted FJSP Subproblem(Pr,Ofix,r)
15 (mr, πr)← FJSP Solver(P̂r;T ) // Solve the restricted FJSP subproblem
16 // Execute the first S operations in Oplan,r with the earliest process start times

Ostep,r ← GetStepOperations(Oplan,r, S, r,mr, πs,r)
17 // Fix the final solution for the executed operations
18 for O(i) ∈ Ostep,r do
19 m(O(i))← mr(O

(i));π(O(i))← πr(O
(i))

20 end for
21 end for

Algorithm 2: GetPlanOperations
Input: Operations

O = {O(1), ..., O(|O|)} ordered based on the precedence or release time (Table 3),
RHO planning window size (H operations), RHO current iteration r, executed solutions
(m,π)

Output: Operations in the current RHO planning window Oplan,r

1 Oplan,r ← []; i← 0

2 // select the first H non-executed operations based on the sorted order
3 while |Oplan,r| < H and i < |O| do
4 if O(i) /∈ (m,π) then
5 Oplan,r.append(O

(i))
6 end if
7 i← i+ 1
8 end while
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Algorithm 3: GetStepOperations
Input: Operations in the current window Oplan,r, RHO execution step size (S operations),

RHO current iteration r, solution Πr = (mr, πs,r) of the rth FJSP subproblem
Output: Operations executed after the rth RHO iteration Ostep,r

1 // select the first S non-executed operations with the earliest process start time

2 Õplan,r ← Sort Oplan,r by the process start time {πs,r(O
(i))}O(i)∈Oplan,r

3 Ostep,r ← {Õ(1)
plan,r, ..., Õ

(S)
plan,r}

A.3 INPUT FEATURES.

This section provides a detailed description of all input features, which can be categorized as the
following three main parts:

(1) For each operation in Oplan,r = Ooverlap,r ∪ Onew,r, we design input features to cap-
ture the FJSP instance information such as the earliest process start time of the operation
(considering previously executed operations within the same job), the duration (mean / min
/ max / std) to complete the operation by the compatible machines, and the operation’s
release time (for delay-based objectives);

(2) For each operation inOoverlap,r, we design additional input features to encode the solution
information from the previous RHO iteration, including the duration, machine assignment
of the operation and end time / delay.

(3) For each machine inM, we further design input features that include the earliest process
start time of the machine (considering previously executed operations by the machine), and
the duration (mean / min / max / std) of the overlapping operations Ooverlap,r previously
assigned to the machine.

As we consider the following different FJSP scenarios in our experiments (Sec. 5), we adjust the
input features accordingly as follows

• Makespan objective without observation noise: we use all input features as listed in
Table 5.

• Makespan objective under machine breakdowns: we use all input features as listed in
Table 5, and the additional input features as listed in Table 6 to incorporate the machine
breakdown information.

• Total Start Delay objective without observation noise: we use all input features as listed
in Table 7, where the delay input feature is the start time delay for each operation based on
the previous RHO iteration’s solution, i.e. πr−1(Oj,k)− sj,k.

• Total Start and End Delay objective without observation noise: we use all input fea-
tures as listed in Table 7, where the delay input feature is the start and end time delay for
each operation based on the previous RHO iteration’s solution, i.e. πr−1(Oj,k) − sj,k +

max(πt,r−1(Oj,k) − tj,k, 0) where πr−1(Oj,k) = πr−1(Oj,k) + p
mr−1(Oj,k)
j,k . We further

consider the end time related input features as listed in Table 8.
• Total Start and End Delay objective with observation noise: we use all input features in

Table 7 and 8. Additionally, as described in Appendix A.5, we obtain noisy observations
of each operation’s duration at each RHO iteration (the observation of the same operation
may vary across different RHO iterations). That is, given the same machine assignment and
start time (m̃r−1, π̃r−1) from the previous (r−1th) iteration, the observed duration and end
time for each overlapping operation can differ between the previous (r − 1th) and current
(rth) iteration. As a result, we compute the delay and end time delay in Table 7 and 8
using the noisy observation from the previous RHO iteration, and we further re-evaluate
the delay, duration, and end time for the overlapping operations based on the current RHO
iteration’s noisy observation, as detailed in Table 9.

We normalize all input features with mean and standard deviation computed on the training set
Kdata.
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Table 5: Input Features for the Operations and Machines for the makespan objective.

Type Feature Description

Operations

job start time The earliest start time of the job j associated with the operation Oj,k, given by ...
... the latest process end time of all executed operations for the same job

avg dur Average duration of all compatible machine assignments for the operation
std dur Duration standard deviation of all compatible machine assignments for the operation
min dur Minimum duration of all compatible machine assignments for the operation
max dur Maximum duration of all compatible machine assignments for the operation
job id Job id for the operation (j ∈ {1, ...|T |} before normalization)
ops id Operation id for the operation (k ∈ {1, ...nj} before normalization)
in overlap The operation Oj,k ∈ Ooverlap,r at the current RHO iteration r

prev machine
(-1 if not in overlap)

Machine assignment of the operation in the solution of...
... the previous RHO iteration (m(Oj,k) ∈ {0, ...|M− 1|} before normalization)

prev duration
(-1 if not in overlap) Operation’s process duration given by the previous machine assignment pmr−1(Oj,k)

j,k

prev end time
(-1 if not in overlap)

End time of the operation in the solution of ...
... the previous RHO iteration (πt,r−1(Oj,k))

alt avg dur
(-1 if not in overlap)

Average process duration of all other machines ..
... (not prev machine) to process the operation

alt std dur
(-1 if not in overlap)

Standard deviation of duration of all other machines ...
... (not prev machine) to process the operation

alt min dur
(-1 if not in overlap)

Minimum duration of all other machines ...
... (not prev machine) to process the operation

alt max dur
(-1 if not in overlap)

Maximum duration of all other machines ...
... (not prev machine) to process the operation

Machines

machine start time The earliest start time of the machine m, given by the latest process ...
... end time of all executed operations assigned to machine m

num overlap
Number of overlapping operations assigned to the machine m ...

... in the solution of the previous RHO iteration
∑

O∈Ooverlap,r
1{mr−1(O) = m}

avg end time
(-1 if num overlap is 0)

Average end time of overlapping operations assigned to the machine ...
... in the solution of the previous RHO iteration

std end time
(-1 if num overlap is 0)

Standard deviation of the end time of overlapping operations assigned to ...
... the machine in the solution of the previous RHO iteration

max end time
(-1 if num overlap is 0)

Maximum end time of overlapping operations assigned to the machine ...
... in the solution of the previous RHO iteration

min end time
(-1 if num overlap is 0)

Minimum end time of overlapping operations assigned to the machine ...
... in the solution of the previous RHO iteration

avg duration
(-1 if num overlap is 0)

Average duration of overlapping operations assigned to the machine ...
... in the solution of the previous RHO iteration

std duration
(-1 if num overlap is 0)

Standard deviation of the duration of overlapping operations assigned to ...
... the machine in the solution of the previous RHO iteration

max duration
(-1 if num overlap is 0)

Maximum duration of overlapping operations assigned to the machine ...
... in the solution of the previous RHO iteration

min duration
(-1 if num overlap is 0)

Minimum duration of overlapping operations assigned to the machine ...
... in the solution of the previous RHO iteration

Table 6: Additional Input Features for the Machine Breakdown.

Type Feature Description

Operations

is break down The current RHO subproblem has some machine breakdown

is ops break down The machine assigned to the operation in the previous RHO subproblem ...
... is broken down in the current RHO subproblem

is ops recovered
The operation’s machine assignment choices was restricted ...

... in the previous RHO subproblem due to machine breakdown, ...

... but the breakdown is recovered in the current subproblme

Machines

is break down The current RHO subproblem has some machine breakdown
is machine break down The machine itself is broken down in the current RHO subproblem
prev start
(-1 if not in overlap)

Process start time of the operation in the solution of ...
... the previous RHO iteration πr−1(Oj,k)

prev end
(-1 if not in overlap)

Process end time of the operation in the solution of ...
... the previous RHO iteration πt,r−1(Oj,k) = πr−1(Oj,k) + p

mr−1(Oj,k)
j,k
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Table 7: Input Features for the Operations and Machines for delay-based objectives.

Type Feature Description

Operations

job start time The earliest start time of the job j associated with the operation Oj,k, given by ...
... the latest process end time of all executed operations for the same job

ops release time The release time sj,k of the operation Oj,k

avg dur Average duration of all compatible machine assignments for the operation
std dur Duration standard deviation of all compatible machine assignments for the operation
min dur Minimum duration of all compatible machine assignments for the operation
max dur Maximum duration of all compatible machine assignments for the operation
job id Job id for the operation (j ∈ {1, ...|T |} before normalization)
ops id Operation id for the operation (k ∈ {1, ...nj} before normalization)
in overlap The operation Oj,k ∈ Ooverlap,r at the current RHO iteration r

prev delay
(-1 if not in overlap)

Delay of the operation in the solution of ...
... the previous RHO iteration (πr−1(Oj,k)− sj,k)

prev machine
(-1 if not in overlap)

Machine assignment of the operation in the solution of...
... the previous RHO iteration (m(Oj,k) ∈ {0, ...|M− 1|} before normalization)

prev duration
(-1 if not in overlap) Operation’s process duration given by the previous machine assignment pmr−1(Oj,k)

j,k

alt avg dur
(-1 if not in overlap)

Average duration of all other machines ...
... (not prev machine) to process the operation

alt std dur
(-1 if not in overlap)

Standard deviation of duration of all other machines ...
... (not prev machine) to process the operation

alt min dur
(-1 if not in overlap)

Minimum duration of all other machines ...
... (not prev machine) to process the operation

alt max dur
(-1 if not in overlap)

Maximum duration of all other machines ...
... (not prev machine) to process the operation

Machines

machine start time The earliest start time of the machine m, given by the latest process ...
... end time of all executed operations assigned to machine m

num overlap
Number of overlapping operations assigned to the machine m ...

... in the solution of the previous RHO iteration
∑

O∈Ooverlap,r
1{mr−1(O) = m}

avg delay
(-1 if num overlap is 0)

Average delay of overlapping operations assigned to the machine ...
... in the solution of the previous RHO iteration

std delay
(-1 if num overlap is 0)

Standard deviation of the delay of overlapping operations assigned to ...
... the machine in the solution of the previous RHO iteration

max delay
(-1 if num overlap is 0)

Maximum delay of overlapping operations assigned to the machine ...
... in the solution of the previous RHO iteration

min delay
(-1 if num overlap is 0)

Minimum delay of overlapping operations assigned to the machine ...
... in the solution of the previous RHO iteration

Table 8: Additional Input Features for the Total Start and End Delay Objective.

Type Feature Description

Operations

ops target due time The target due time tj,k of the operation Oj,k

prev start
(-1 if not in overlap)

Process start time of the operation in the solution of ...
... the previous RHO iteration πr−1(Oj,k)

prev end
(-1 if not in overlap)

Process end time of the operation in the solution of ...
... the previous RHO iteration πt,r−1(Oj,k) = πr−1(Oj,k) + p

mr−1(Oj,k)
j,k
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Table 9: Additional Input Features for Observation Noise: given the solution from the previous
RHO iteration, we re-evaluate the delay, duration, end time of the overlapping operation based on
the noisy observation at the current RHO iteration.

Type Feature Description

Operations

prev duration reeval
(-1 if not in overlap)

Currently observed process duration of the operation O ...
... (given the machine assignment from the previous RHO iteration)

prev end reeval
(-1 if not in overlap)

Process end time of the operation (given the machine ...
... assignment from the previous RHO iteration),
... reevaluated based on the current observed process duration

prev delay reeval
(-1 if not in overlap)

Delay of the operation (given the machine ...
... assignment from the previous RHO iteration) ...
... , reevaluated based on the current observed process duration

Machines

avg delay reeval
(-1 if num overlap is 0)

Average delay of overlapping operations assigned to the machine ...
... in the solution of the previous RHO iteration, ...
... , reevaluated based on the current observed process duration

std delay reeval
(-1 if num overlap is 0)

Standard deviation of the delay of overlapping operations assigned to ...
... the machine in the solution of the previous RHO iteration, ...
... , reevaluated based on the current observed process duration

max delay reeval
(-1 if num overlap is 0)

Maximum delay of overlapping operations assigned to the machine ...
... in the solution of the previous RHO iteration, ...
... , reevaluated based on the current observed process duration

min delay reeval
(-1 if num overlap is 0)

Minimum delay of overlapping operations assigned to the machine ...
... in the solution of the previous RHO iteration ...
... , reevaluated based on the current observed process duration

machine end time
(-1 if num overlap is 0)

Maximum process end time of overlapping operations ...
... assigned to the machine in the solution of the previous RHO iteration, ...
... , based on the previous iteration’s observed process duration

machine end time reeval
(-1 if num overlap is 0)

Maximum process end time of overlapping operations ...
... assigned to the machine in the solution of the previous RHO iteration, ...
... , reevaluated based on the current observed process duration
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Table 10: Architecture hyperparameters. The input dimen-
sions (do, dm) = (15, 11), (18, 13), (16, 6), (19, 6), (22, 12) for
the five settings detailed in Table 5, 6, 8 and 9.

Input Dimension MLP Layers 2
Operation |Oplan,r| × do R(H−S)×do

Activation ReLU
Machine |T | × dm R|T |×dm

Embedding
dimension dhidden

64 Output
Dimension R(H−S)×1

Table 11: Training hyperpa-
rameters.

Optimizer Adam
Learning rate 10−3

Batch size 64
Positive Label
Weight wpos

0.5

Num. of
Gradient Steps 5× 105

A.4 ARCHITECTURE, TRAIN AND EVALUATION SETUP.

We use the neural architecture fθ in Fig. 2 to identify the fixed operation subsetOfix,r. The network
takes as input a set of input features associated with each operation and machine, with the aggregated
size R|Oplan,r|×do and R|T |×dm , and outputs the predicted probability fθ(sr) ∈ [0, 1]|Ooverlap,r| of
whether each overlapping operation O ∈ Ooverlap,r should be included in Ofix,r. The architecture
consists of the following four main components:

(1) Input Embedding: We first embed the input vector of the operations Oplan,r = Ooverlap,r ∪
Onew,r and machines T , each with a input dimension of Rdo and Rdm , into hidden representa-
tions, each with a hidden dimension of Rdhidden . We use two separate MLPs for the operations
and machines.

(2) Machine/Operation Concatenation: We then concatenate the hidden feature of each operation
O ∈ Oplan,r with the hidden feature of the previously assigned machine mr−1(O) (the local
feature), and a global feature obtained by a mean pooling on the hidden features from all op-
erations and machines. The concatenation results in a hidden dimension of R3·dhidden for each
operation, and we apply another MLP to project the dimension down to Rdhidden .

(3) Output: Lastly, we pass the hidden feature of each overlapping operation Ooverlap,r through
another MLP, which outputs the predicted probability that each operation O ∈ Ooverlap,r should
be included in Ofix,r.

We train the proposed architecture with Adam optimizer with a learning rate of 1e-3 and a batch
size of 64 for 500 epochs with around 5 × 105 gradient steps. All hyperparameters are selected
on the validation set and frozen before evaluating on the test set. Table 10 and 11 provide a list of
hyperparameters.

Training and Evaluation Setup. For each FJSP setting, we collect a small setKps of 10 instances
for parameter search on all RHO methods (default, baseline and learning), and a large training set
Ktrain of 450 instances for neural network training. By default, we hold out a validation set Kval

of 20 instances and a test set Ktest of 100 instances each. We collect data, train, validate and test
all methods on a distributed compute cluster using nodes equipped with 48 Intel AVX512 CPUs. A
Nvidia Volta V100 GPU is used to train all neural networks. The model training time is within 12
hours for all FJSP settings. The parameter search for all RHO methods (Appendix A.5.4) requires
approximately 48-96 hours for each FJSP setting in the experiment Sec. 5, based on the problem size.
Furthermore, as the FJSP constraint programming solver CP-SAT allows multi-processing, we use
12 CPUs when solving each RHO subproblem (Pr / P̂r) for all RHO methods (Default, Baselines
and Learning) for both training and testing; we also use 12 CPUs to evaluate the Full FJSP baseline.
When collecting training labels, we solve each unrestricted subproblem Pr five times (Q = 5); the
training data collection takes around 24-72 hours for each FJSP setting based on the problem size. In
the experiment section, we report the solve time for different methods on the test set Ktest (Table 1,
Table 2, Fig. 3, and Appendix A.6).
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A.5 EXPERIMENTAL DETAILS

A.5.1 FJSP INSTANCE DISTRIBUTION, MACHINE BREAKDOWN AND OBSERVATION NOISE.

Makespan-based Data Distribution.

We follow the a similar data distribution as in the previous learning literature (Wang et al., 2023a)
but significantly increase the FJSP problem sizes from 200 operations (previously) to up to 2000
operations (this work). Each FJSP instance is generated by sampling the following attributes:

• (nmachines, njobs, noperations per job) = (|M|, |T |, |O/T |): we fix |M| = 10, |T | =
20 and consider a range of noperations per job ∈ {30, 40, 60, 100}. That is, we have
(|M|, |T |, |O/T |) ∈ {(10, 20, 30), (10, 20, 40), (10, 20, 60), (10, 20, 100)}, with the total
number of operations ranging from 600 to 2000.

• Compatible Machines Mj,k: For each operation Oj,k ∈ O, we randomly select a sub-
set of machinesMj,k ⊆ M with size |Mj,k| ∼ Uniform{1, ..., |M|} as the compatible
machines for the operation.

• Process Duration pmj,k: we sample the duration of operation Oj,k ∈ O processed by ma-
chine m ∈M from a uniform distribution U [1, 99].

Machine Breakdown. As a step towards online / dynamics FJSP, ours experiments in Fig. 3 (right)
accounts for machine breakdowns during the RHO solution process. The intensity of machine break-
downs is determined by two factors: 1) the frequency of breakdowns 2) the proportion of unavailable
machines during each breakdown. For each FJSP instance, we simulate a series of machine break-
down events represented by a set of time intervals {tbi}i=1,2,.... For each breakdown event, we
randomly sample a subset of machines Mb

i ⊆ M, which become unavailable during the event.
Specifically, the first breakdown event starts at time tb0 ∼ U [50, 150] and lasts for a duration of dur.
Each subsequent breakdown occurs at time tbi ∼ tbi−1 + dur + U [wlb, wub] and similarly lasts for
a duration of dur. We sample the subset of breakdown machinesMb

i by selecting each machine in
M i.i.d. with a probability pb. In our experiments, we explore three levels of breakdown intensities
: 1) Low: we set dur = 100, wlb = 400, wub = 600, pb = 0.2, 2) Mid: we set dur = 100, wlb =
175, wub = 300, pb = 0.35, and 3) High: we set dur = 50, wlb = 100, wub = 200, pb = 0.5.

Following dynamic FJSP literature (Zhang and Wong, 2017), we combine periodic RHO subproblem
optimization with event-based rescheduling: when a machine breakdown event starts or ends, we
re-optimize the updated RHO subproblem using the updated machine availability. This event-based
rescheduling affects (1) the RHO subproblem step size, which may be reduced due to breakdown-
triggered re-optimizations. Specifically, for each RHO iteration, we execute the set of operations
Oexec,r in order of their scheduled end times. If a breakdown occurs during an operation’s execu-
tion window, we halt that operation and any subsequent ones, and reformulate the RHO subproblem
with the updated set of the first W unexecuted operations, incorporating the updated machine avail-
ability for re-optimization. (2) If all compatible machines for an operation are down, we defer that
operation, along with any subsequent operations in the same job, until the breakdown ends.

Implementation-wise, (1) is formally described in Alg. 5, which replaces Alg. 3 for the RHO op-
eration execution step; (2) is formally described in Alg. 4, which replaces Alg. 2 to construct each
RHO subproblem.

Delay-based Data Distribution. Following common FJSP instance generation procedure in the
literature (Behnke and Geiger, 2012), we generate each FJSP instance by sampling the following
attributes:

• (nmachines, njobs, noperations per job) = (|M|, |T |, |O/T |): we consider a series of large
scale settings {(25, 25, 25), (30, 30, 25), (35, 35, 35), (30, 30, 50), (40, 40, 40), (30, 30, 75)},
with the total number of operations ranging from 625 to 2250. We further set the compati-
ble machinesMj,k =M for all operations O ∈ O.

• Process Duration pmj,k: we sample the duration of operation Oj,k ∈ O processed by ma-
chine m ∈M from a uniform distribution U [llow, lhigh], with llow ∼ Uniform({3, 5, 7, 9})
and lhigh ∼ llow + Uniform({9, 12, 15, 18, 21}), resulting in the duration range pmj,k ∈
[3, 30];
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• Release time: we sample the release time for all operations {Oj,k}
nj

k=1 within each job j as
sj,1 ∼ U([0, 15]) and sj,k = sj,k−1 + U([0, 15]) for all k > 1;

• Target end time: we sample the target end time for each operation Oj,k as tj,k ∼ sj,k +
U([0, 30]); this attribute is used when the objective contains total end delay (Sec. 5.2).

Observation noise. In the observation noise setting (Sec. 5.2), we have noisy observation of
the process duration pmj,k. Specifically, we generate the clean (true) process duration pmj,k for
all operations and machines (which is only partially observed) following the procedure described
above. Then, at each RHO iteration, we perturb process duration as follows: consider the oper-
ations Oplan,r = {O(1), ..., O(H)} (ordered by their release times) in the current iteration’s plan-
ning horizon. We assume perfect observation of the first S ≤ H operations with earlier release
times Oclean,r = {O(1), ..., O(S)}, and we have noisy observation for a randomly selected subset
Operturb,r of the remaining operations with later release times, where we select each operation in
Oplan,r\Oclean,r to be included in Operturb,r uniformly at random with a probability of ϵ = 20%.
We then set the noisy observation of the process duration for each operation Oj,k ∈ Oplan,r by
machine m ∈Mj,k at the current RHO iteration r as:

p̃m,r
j,k =

{
pmj,k if operation Oj,k ∈ Oclean,r

clip(pmj,k + U [−5, 5], 3, 30) if operation Oj,k ∈ Operturb,r.

Notably, we may have different noisy observations for the same overlapping operation in different
RHO iterations. That is, we may have p̃m,r−1

j,k ̸= p̃m,r
j,k for the same operation Oj,k and machine m.

Operation execution under observation noise. After obtaining the solutions (m̃r, π̃r) to the noisy
FJSP subproblem, we execute a subset of S operation and update the final full FJSP solution (m,π)
as follows (replacing Line 17-21 in Alg. 1 with the procedure in Alg. 6): We first determine Ostep,r

as the S operations with the earliest process start time according to the noisy solution π̃r. Then,
for each operation Oj,k ∈ Ostep,r (ordered by the solution start time π̃r(Oj,k)), we assign the
operation to the machine m(Oj,k) := m̃r(Oj,k), which takes a true duration of pm̃r(Oj,k)

j,k process
the operation. Due to discrepancy between observed duration at planning and the actual duration
at execution, the operation may not be able to start at its solution start time π̃r(Oj,k) given by the
solution. We hence further adjust the actual start time π(Oj,k) at execution to maintain solution
feasibility. The detailed execution procedure is provided in Alg. 6.

Algorithm 4: GetPlanOperations Under Machine Breakdown
Input: Operations O =

{O(1), ..., O(|O|)} ordered based on the precedence order or release time (Table 3),
RHO planning window size (H operations), RHO current iteration r, executed solutions
(m,π)

Output: Operations in the current RHO planning window Oplan,r

1 Oplan,r ← []; i← 0

2 Ignored Jobs = Set()
3 // select the first H non-executed operations based on the sorted order
4 while |Oplan,r| < H and i < |O| do
5 if O(i) /∈ (m,π) then
6 if All compatible machines of O(i) are down then
7 Ignored Jobs.add(Job of O(i)))
8 continue
9 end if

10 if Job of O(i) ∈ Ignored Jobs then
11 continue
12 end if
13 Oplan,r.append(O

(i))
14 end if
15 i← i+ 1
16 end while
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Algorithm 5: Execute Operations Under Machine Breakdown
Input: Operations in the current window Oplan,r, RHO execution step size (S operations),

RHO current iteration r, solution Πr = (mr, πs,r) of the rth FJSP subproblem
Output: Operations executed after the rth RHO iteration Ostep,r

1 Õplan,r ← Sort Oplan,r by the process start time {πs,r(O
(i))}O(i)∈Oplan,r

2 Ostep,r ← []
3 for Oj,k ∈ Ostep,r (sorted by the solution process start time) do
4 if machine breakdown starts or ends during the operation’s execution window

[π(Oj,k), πt(Oj,k)] then
5 // End the current RHO subproblem. Do not execute any more operations.
6 break
7 end if
8 else
9 Ostep,r.append(Oj,k)

10 end if
11 end for

Algorithm 6: Execute Operations Under Observation Noise
Input: Operations in the current window Oplan,r; RHO execution step size (S operations);

RHO current iteration r; (partial) solution Π = (m,π) of the full FJSP problem
instance P before the current iteration r; solution Π̃r = (m̃r, π̃r) of the rth FJSP
subproblem under the noisy observation; clean process duration {pmj,k} m∈M

Oj,k∈Ooverlap,r

Output: Updated (partial) solution Π = (m,π) of the FJSP problem instance P after the
current RHO iteration r based on the clean process duration

1 // Find executed operations for the current RHO iteration, using (m̃r, π̃r)

2 Õplan,r ← Sort Oplan,r by the process start time {π̃r(O
(i))}O(i)∈Oplan,r

3 Ostep,r ← {Õ(1)
plan,r, ..., Õ

(S)
plan,r}

4 // Auxiliary variables to track solution feasibility
5 machine end time← {alt: max

Oj,k∈(m,π),
m(Oj,k)=alt

πt(Oj,k) for each machine alt ∈M}

6 job end time← {j: max
Oj,k∈(m,π)

πt(Oj,k) for each job j ∈ T }

7 // Fix the final solution for the executed operations based on the clean process duration
8 for Oj,k ∈ Ostep,r (sorted by the solution process start time) do
9 m(Oj,k)← m̃r(Oj,k)

10 // Update the process start time to the earliest feasible start time
π(Oj,k)← max(π̃r(Oj,k), machine end time[m(Oj,k)], job end time[j])

11 // Re-evaluate the process end time based on the clean process duration
πt ← π(Oj,k) + p

m(Oj,k)
j,k

12 // Update the auxiliary variables to track feasibility
13 machine end time[m(Oj,k)]← max

(
machine end time[m(Oj,k)], πt

)
14 job end time[j]← max

(
job end time[j], πt

)
15 end for
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A.5.2 FJSP FORMULATION

Decision Variables. Given a FJSP problem instance

P = (M, T ,O, process duration {pmj,k} Oj,k∈O
m∈Mj,k

,

(optional) release time {sj,k}Oj,k∈O,

(optional) target end time {tj,k}Oj,k∈O)

(2)

The constraint programming formulation for the FJSP is obtained by introducing additional boolean
variables denoting whether an operation is assigned to a machine1. That is, we define the following
set of decision variables

X =
(
{π(Oj,k)}Oj,k∈O, {dur(Oj,k)}Oj,k∈O, {πt(Oj,k)}Oj,k∈O, // process start time, duration, and end time

{lalt(Oj,k)} Oj,k∈O
alt∈Mj,k

, // boolean variable: whether Oj,k is assigned to machine alt

{πalt(Oj,k)} Oj,k∈O
alt∈Mj,k

, // process start time if Oj,k is assigned to machine alt

{duralt(Oj,k)} Oj,k∈O
alt∈Mj,k

, // process duration if Oj,k is assigned to machine alt

{πt,alt(Oj,k)} Oj,k∈O
alt∈Mj,k

)
// process end time if Oj,k is assigned to machine alt

(3)
where the target end time and the decision variables related to the process end time are only used
when the objective contains total end delay. From the above decision variables, the machine as-
signment of operation Oj,k can be found as m(Oj,k) = alt ∈ Mj,k wher lalt(Oj,k) = 1, and the
process start time of the operation can be found as π(Oj,k).

FJSP Full and Subproblem Formuation. Given the above decision variables, the Constraint Pro-
gramming (CP) formulation for the full FJSP problem P is given in Alg. 7.

• Unrestricted Subproblem Pr: Given the set of operations in the current planning horizon
Oplan,r, we can obtain the the subproblem instance Pr and the set of decision variables Xr

associated with the restricted operation set Oplan,r. Then we use the same CP formulation as in
Alg. 7 on the decision variables Xr; we additionally introduce new constraints in Alg. 8, which
requires operations inOplan,r to be processed after all previously executed operations within the
same job or the same machine.

• Assignment-Based Restricted Subproblem P̂r: Given a set of operations in the current plan-
ning horizon Oplan,r, we follow the same CP formulation in Alg. 7 and 8 as for the unrestricted
subproblem Pr. Given the fixed operations Ofix,r ⊆ Ooverlap,r, we further restrict the compat-
ible machines for each fixed operation as the single machine from the previous RHO iteration’s
solution, i.e. we restrictMj,k = {mr−1(Oj,k)} for all operations Oj,k ∈ Ofix,r.

1Our implementation is based on the CP-SAT’s Official FJSP implementation https://github.com
/google/or-tools/blob/stable/examples/python/flexible_job_shop_sat.py.
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Algorithm 7: FJSP Constraint Programming Formulation
1 Decision Variables: X (see Eq. equation 3)
2 Objective:

Makespan: min
X

max
Oj,k∈O

πt(Oj,k)

Total start delay: min
X

∑
Oj,k∈O

π(Oj,k)− sj,k

Total start and end delay: min
X

∑
Oj,k∈O

π(Oj,k)− sj,k +max(πt(Oj,k)− tj,k, 0)

(4)

3 Constraints:
4 // Machine assignment definition for each operation
5 for each operation Oj,k ∈ O do
6 // Operation end time definition

πt(Oj,k) = π(Oj,k) + dur(Oj,k) (5)

for each possible machine assignment alt ∈Mj,k do
7 // Operation duration definition for the machine assignment alternative alt

duralt(Oj,k) = paltj,k (6)

// Operation end time definition for the machine assignment alternative

πt,alt(Oj,k) = πalt(Oj,k) + duralt(Oj,k) (7)

// Enforce the linking of the solution alternative with the actual solution if alt is
selected

(π(Oj,k) = πalt(Oj,k)).EnforceIf(lalt(Oj,k) = 1) (8)
(dur(Oj,k) = duralt(Oj,k)).EnforceIf(lalt(Oj,k) = 1) (9)
(πt(Oj,k) = πt,alt(Oj,k)).EnforceIf(lalt(Oj,k) = 1) (10)

8 end for
9 // Only one machine assignment alternative can be selected

ExactlyOne({lalt(Oj,k) = 1}alt∈Mj,k
) (11)

10 end for
11 // Operation precedence constraints for each job
12 for each job j ∈ T do
13 for each operation Oj,k with 1 ≤ k ≤ nj do
14

πt(Oj,k) ≤ π(Oj,k+1) (12)

15 end for
16 end for
17 // Non-overlapping Operation constraints on each machine
18 for each machine alt ∈M do
19

NoOverlap
(
{Interval[πalt(Oj,k), πt,alt(Oj,k)]}Oj,k∈O

)
(13)

20 end for
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Algorithm 8: Additional Constraints for FJSP RHO Subproblems Pr

1 Decision Variables: Xr for the operation set Ooverlap,r in the planning horizon (see
Eq. equation 3)

2 Solutions of Previously Executed Operations: (m,π)

3 Additional Constraints:
4 // Compliance with previously executed operations (if exists)
5 if (m,π) is not empty then
6 prev machine end time← {alt: max

Oj,k∈(m,π),
m(Oj,k)=alt

πt(Oj,k) for each machine alt ∈M}

7 prev job end time← {j: max
Oj,k∈(m,π)

πt(Oj,k) for each job j ∈ T }

8 for each operation Oj,k ∈ O do

9 // Each operation should be processed after all executed operations within the same job
10 π(Oj,k) ≥ prev job end time[j]

11 // Each operation should be processed after all executed operations on the same machine
12 for each possible machine assignment alt ∈Mj,k do
13 πalt(Oj,k) ≥ prev machine end time[alt]
14 end for
15 end for
16 end if
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Figure 5: The Large Neighborhood Search (LNS) Pipeline from (Pacino and Van Hentenryck, 2011).
(a) At the rth LNS iteration, we start with a complete solution Π for the full FJSP. The solution at
the first iteration is given by solving the full FSJP for a short duration (30s). (b) We construct a
FJSP subproblem by selecting a subset of FJSP operations to update their solution. Two subproblem
selection methods are considered based on time and machine based decomposition methods. When
constructing the FJSP subproblem, we include additional constraints on the operation’s start time
and each machine’s available time so that the subproblem’s solution is compatible with the solution
of the non-selected FJSP operations. (c) We feed the FJSP subproblem into a subsolver to get a new
solution Πr. The old solution of the subproblem is given to warm start the solve, as it empirically
improves the performance. (d) We update the complete solution Π with the new subproblem’s
solution Πr, and repeat (a)-(d).

A.5.3 BASELINE DETAILS

Traditional solver w/o decomposition The CP-SAT and Genetic Algorithm (GA) results are,
respectively, obtained by applying the competitive constraint programming solver OR-Tools CP-
SAT (Perron and Didier), and the widely used hybrid genetic algorithm with tabu search meta-
heuristics (Li and Gao, 2016), to solve the full FJSPs without decomposition. These comparisons
emphasize the significance of decomposition in solving long-horizon FJSP.

Learning-based solver w/o decomposition. For each setting, we train a DRL model (Wang et al.,
2023c) on the same set of 450 training instances as L-RHO and also on a larger set of 20,000
instances, following the original paper2. At inference time, we decode the DRL model using Greedy
and Sampling strategies (100 and 500 samples).

Traditional solver w/ decomposition. Fig. 5 provides an illustration of the Large Neighborhood
Search (LNS) algorithm that we compare as a baseline in the offline setting. In particular, (Pa-
cino and Van Hentenryck, 2011) introduces Time Decomposition and Machine Decomposition to
select different LNS neighborhoods for large-scale FJSP. The implementation details for each LNS
iteration are as follows:

• The ARD-LNS (Time-based) leverages temporal locality to select a random start and end time
of a contiguous time interval to define the LNS subproblem. It imposes additional machine
availability constraints and operation precedence constraints in defining the subproblem. The
former restricts the start and end time of each machine to be compatible of fixed operations, and
the later restricts the start and end time of each selected operations to be compatible with the
fixed operations within the same job. It further includes (1) adaptive LNS subproblem size: The
contiguous time interval starts at a length of 20% of the horizon. If no improvement is found
within 5 iterations, the size of time window increases by 5%, with the longest time window
length capped at 50%. If improvement is found, the size returns to 20%. (2) New objective
for each LNS subproblem: Instead of makespan, it instead maximizes the distance between

2We use the publicly available implementation from the authors at https://github.com/wrqccc/
FJSP-DRL.
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each operation’s end time and its latest feasible completion time as the surrogate objective when
solving each LNS subproblem.

• The ARD-LNS (Machine-based) in each LNS iteration selects a subset of machines and define
the subproblem as the set of operations on those machines. As we select all operations on each
machine, the subproblem only requires the operation precedence constraint. The subproblem is
solved with Makespan as the objective.

In the original paper by (Pacino and Van Hentenryck, 2011), the LNS procedures are benchmarked
on the dataset from (Hurink et al., 1994), where the largest instance consists of 225 operations (15
machines, 15 jobs, and 15 operations per job). We successfully reproduced their reported results
on these instances; however, when applying their algorithm to the significantly larger-scale setting
considered in Table 1, we observed a dramatic degradation in LNS performance. In contrast, the
RHO-based algorithm maintains competitive performance on these long-horizon FJSP instances.

Learning-guided solver w/ decomposition: Oracle-LNS (Time-based). We use a LookAhead
Oracle similar to the one in previous learning-guided LNS studies (Huang et al., 2022; Li et al.,
2021). In each LNS iteration, we first select K = 10 Time Decomposition LNS subproblems
as candidates. We then look ahead by solving these subproblems and choose the one that gives
the biggest improvement in makespan. We randomly decide whether to evaluate the improvement
based on the local makespan (for the current subproblem) or the global makespan (for the full FJSP
problem), as this approach works better than focusing on just one objective. The local objective
helps LNS prioritize subproblems needing the most fine-tuning, even though updating them doesn’t
immediately impact the final makespan. Meanwhile, the global objective encourages selecting sub-
problems toward the end of the time horizon to optimize the overall makespan. This differs from
prior studies on Vehicle Routing (Li et al., 2021), Multi-Agent Path Finding (Huang et al., 2022) or
Graph-Based Mixed Integer Linear Programming (Huang et al., 2023), where improving the local
subproblem directly enhances the global objective.

RHO decomposition. Detailed descriptions of different RHO baselines (Default, Warm Start,
Random, First) can be found in Table 4. In Table 1, for Default RHO, Warm Start RHO, and L-
RHO, we set the RHO parameters (H,S, T, Tes) = (80, 30, 60, 3). That is, each RHO subproblem
involves H = 80 operations, and each execution steps move forward S = 30 operations. The time
limit of solving each RHO subproblem is T = 60s, and we early terminate the CP-SAT (with a
callback) if the best objective does not change after Tes = 3s. For Default RHO (Long), we use a
more generous early stop time Tes = 10s, where we see the Default RHO’s performance improves
at the expense of substantially longer solve time. In Table 2, the RHO parameters are determined
based on an extensive parameter grid search procedure, as described in Appendix A.5.4.
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Figure 6: The objective and solve time for a variety of methods and RHO parameter settings, average
across a set Kps of FJSP instances with sizes (25, 25, 25) on the left and (30, 30, 25) on the right.
Each dot represents a method and a RHO parameter setting (H,S, T, Tes). We label the selected
best parameter setting for each method with text.

A.5.4 ROLLING HORIZON PARAMETER SEARCH

We perform a grid search to find the best parameter setting for each RHO variant (default, baselines
and our learning method). We consider the following four parameters as a joint parameter setting

{ RHO Planning Window Size H, RHO Execution Step Size S,

Time Limit T of each RHO FJSP Subproblem,

Early Stopping Time Tes for each RHO Subproblem}

In particular, the Early Stopping Time Tes represents the time to early terminate the CP-SAT (with a
callback) if the best objective does not change after Tes seconds. We introduce this parameter due to
the empirical observation that under a (relaxed) time limit, the objective of the best feasible solution
obtained by CP-SAT may stuck at a given value for a long period of time.

We perform a grid search to evaluate the performances on a set Kps of FJSP instances for each FJSP
data distribution in the experiment Sec. 5, on the following parameter settings

H =(Window Size,Step Size)× (Time Limit,Early Stop Time)
={(50, 15), (50, 20), (50, 25), (50, 30),

(80, 20), (80, 25), (80, 30), (80, 35), (80, 40),

(100, 20), (100, 30), (100, 40), (100, 50)}
×{(15s, 2s), (30s, 3s), (60s, 3s)}

(14)

We visualize the objective and solve time for all methods and parameters in Fig. 6, where each
dot represents the objective and solve time (averaged over Kps) of each method evaluated under
a parameter setting. For each method, the dots of all parameters define a Pareto frontier for the
objective and solve time trade-off. As we aim to reduce solve time with minimal impact on the
objective, we use the following procedure to identify the individual best parameter setting of each
method:

• Let obj∗ be the best objective across all methods and all parameter settings. We empirically
find that obj∗ is typically achieved by our Oracle data collection method, which offer an
objective improvement from default RHO.

• For each method M , we perform a line search with a step size rs = 0.1 to find the best
parameter setting: starting with iteration i = 0, let HM

i ⊆ H be the parameters whose
objectives are within the ith bucket [(1 + rs × i) × obj∗, (1 + rs × (i + 1)) × obj∗]. If
HM

i ̸= ∅, we then select the parameter setting HM∗ ∈ Hi with the shortest solve time as
the individual best parameter setting for the method M ; if HM

i = ∅, we then move on to
the next iteration i+1 and repeat the procedure, until we find the individual best parameter
setting.

The line search procedure ensures that if there are two parameter settings with similar objectives,
but one results in a much shorter solve time than the other, we would select the parameter setting
with a shorter solve time as the best parameter setting for the method. In Table 12, We provide a list
of the best parameter setting for each method, identified through the line search procedure.
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In Table 2, we apply the best parameter setting selected for each RHO variant to evaluate the
method’s performance. L-RHO is evaluated using the same parameters as Oracle. Since the best pa-
rameters for Default, Warm Start, and Oracle are consistent across different settings, we use a fixed
set of RHO parameters (H,S, T, Tes) = (80, 30, 60, 3) in Table 1 to avoid additional computation
for parameter search.

Table 12: Best RHO parameter settings (H,S, T, Tes) of various RHO methods for the different
FJSP settings presented in Table 2. Parameter settings highlighted in bold are the same as the
Oracle’s best parameter setting for each FJSP setting.

25, 25, 25 30, 30, 25 35, 35, 35 40, 40, 40

Default (80, 20, 60, 3) (80, 25, 60, 3) (80, 30, 60, 3) (80, 20, 60, 3)
Warm Start (80, 35, 60, 3) (80, 25, 60, 3) (80, 25, 60, 3) (80, 20, 60, 3)
Fix first 20% (80, 20, 60, 3) (100, 30, 60, 3) (100, 40, 60, 3) (100, 40, 60, 3)
Fix first 30% (80, 20, 60, 3) (100, 30, 60, 3) (100, 40, 60, 3) (100, 40, 60, 3)
Fix first 40% (80, 20, 60, 3) (100, 30, 60, 3) (100, 30, 30, 3) (100, 30, 30, 3)
Fix first 50% (80, 30, 30, 3) (100, 20, 30, 3) (100, 40, 30, 3) (100, 40, 30, 3)
Random 10% (80, 25, 60, 3) (80, 25, 60, 3) (80, 25, 60, 3) (80, 25, 60, 3)
Random 20% (80, 20, 30, 3) (80, 25, 60, 3) (80, 25, 30, 3) (80, 25, 60, 3)
Random 30% (80, 20, 30, 3) (80, 30, 60, 3) (100, 30, 30, 3) (80, 25, 30, 3)

Oracle (80, 25, 60, 3) (80, 25, 60, 3) (80, 25, 60, 3) (80, 20, 60, 3)

A.5.5 PERFORMANCE OF RHO METHODS FOR FJSP (30, 30, 25).

In Table 13, we provide the detailed results of all RHO baseline methods’ performance under both
the individual best RHO parameter setting (Individual Best Param.) and a fixed RHO parameter
setting (the Oracle’s best parameter, Same Param.) for FJSP (30, 30, 25) with the total start delay
objective and no observation noise, which is used as the base setting in Fig. 3 middle, (ii), of Sec. 5.2.

Table 13: Time and Objective improvements (TI%, OI%) of different RHO variants for FJSP
(30,30,25) under the start delay objective. We report the mean values (higher the better, nega-
tive indicates degradation) and two standard errors. The best TI% and OI% among the RHO meth-
ods (excluding Oracle) are bold-faced. L-RHO significantly outperforms all baseline methods in
the objective with substantially reduced solve time. Additionally, L-RHO closely aligns with the
performance of the Look-Ahead Oracle, demonstrating its learning effectiveness.

30, 30, 25
Individual Best Param. Same Param.

TI % OI % TI % OI %

Default 853.9s ± 26.9s
(0.0% ± 0.0%)

1736.9 ± 116.8
(0.0% ± 0.0%) 0.0% ± 0.0% 0.0% ± 0.0%

Warm Start All -0.1% ± 1.3% 0.8% ± 2.2% -0.1% ± 1.3% 0.8% ± 2.2%
Fix first 20% 3.6% ± 1.5% -14.3% ± 2.7% 19.4% ± 1.5% -23.1% ± 3.8%
Fix first 30% 12.4% ± 1.6% -21.5% ± 3.8% 20.9% ± 1.7% -57.9% ± 5.1%
Fix first 40% 19.5% ± 1.7% -41.2% ± 4.4% 17.8% ± 2.0% -131.4% ± 7.7%
Fix first 50% 7.9% ± 2.0% -78.1% ± 5.5% 19.0% ± 2.1% -238.5% ± 13.0%
Fix first 60% 33.6% ± 1.7% -225.8% ± 11.8% 26.9% ± 2.3% -416.0% ± 19.9%
Fix first 80% 51.0% ± 1.7% -727.1% ± 35.4% 50.2% ± 1.6% -874.8% ± 46.3%
Random 10% 1.8% ± 1.7% -20.2% ± 3.1% 1.80% ± 1.69% -20.2% ± 3.1%
Random 20% 0.3% ± 2.0% -54.7% ± 4.6% 1.8% ± 1.7% -20.2% ± 3.1%
Random 30% 9.9% ± 2.3% -153.6% ± 8.1% -0.3% ± 2.4% -103.8% ± 7.2%
Random 40% -10.9% ± 3.3% -105.6% ± 7.2% 2.0% ± 2.5% -164.68% ± 9.43%

(Oracle) (49.9% ± 1.1%) (15.3% ± 2.22%) (49.9% ± 1.1%) (15.3% ± 2.2%)

L-RHO (Ours) 41.5% ± 6.4% 14.0% ± 10.2% 41.5% ± 6.4% 14.0% ± 10.2%

A.5.6 PERFORMANCE OF RHO METHODS UNDER THE SAME RHO PARAMETER.

In Table 14, we present the performance of all RHO variants under the same RHO parameter setting
(the Oracle’s best parameter), for all three FJSP settings in Table 2. The TI% and OI% is relative
to Default RHO under Default’s best parameter (same as in Table 2). From Table 13 and 14, we
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observe that although the First σf baseline can substantially reduce the solve time when σf is high,
the associated objective drastically deteriorates at the same time. In contrast, our learning method
L-RHO not only significantly significantly accelerates Default RHO, but it is also the only method
that simultaneously achieves a notable improvement in the objective.

Table 14: Time and Objective improvements (TI%, OI%) of different RHO methods in comparison
with Default RHO (with Default’s best parameter) for three FJSP settings in Table 2; all the methods
are evaluated on the same RHO parameter setting (Oracle’s best RHO parameter). We report the
mean values (higher the better, negative indicates degradation) and two standard errors. The best
TI% and OI% among the RHO methods (excluding Oracle) are bold-faced. L-RHO significantly
outperforms all baseline methods in the objective with substantially reduced solve time.

25, 25, 25 35, 35, 35 40, 40, 40

TI % OI % TI % OI % TI % OI %

Default 17.6% ± 1.3% -6.9% ± 4.3% -16.0% ± 2.1% 5.1% ± 3.8% 0.0% ± 0.0% 0.0% ± 0.0%
Warm Start 20.0% ± 1.3% -1.7% ± 2.5% -12.9% ± 1.6% 11.2% ± 2.7% 5.2% ± 2.4% 6.8% ± 4.8%
Fix first 20% 36.2% ± 1.2% -3.78% ± 2.7% 0.3% ± 1.6% -33.4% ± 4.0% 4.6% ± 3.5% -78.3% ± 9.0%
Fix first 30% 41.6% ± 1.2% -14.6% ± 3.0% -0.9% ± 1.7% -91.5% ± 5.4% 1.5% ± 4.2% -207.7% ± 17.3%
Fix first 40% 42.1% ± 1.3% -46.8% ± 4.2% -5.1% ± 2.6% -222.2% ± 11.1% 7.7% ± 4.7% -423.2% ± 30.6%
Fix first 50% 43.8% ± 1.2% -100.9% ± 6.8% 3.2% ± 3.0% -359.2% ± 16.6% 24.5% ± 3.7% -748.0% ± 46.2%
Fix first 60% 46.9% ± 1.4% -218.4% ± 12.1% 17.2% ± 2.7% -600.4% ± 29.1% 40.7% ± 2.5% -1118.0% ± 80.6%
Fix first 80% 59.5% ± 1.4% -594.5% ± 32.5% 49.6% ± 1.8% -1105.2% ± 55.3% 73.2% ± 1.1% -1892.8% ± 138.9%
Random 10% 23.0% ± 1.3% -11.9% ± 2.5% -15.5% ± 1.7% -12.9% ± 3.4% -0.3% ± 2.7% -16.8% ± 5.8%
Random 20% 24.2% ± 1.5% -32.8% ± 3.6% -18.8% ± 2.0% -58.0% ± 5.7% -1.6% ± 3.1% -61.8% ± 10.0%
Random 30% 23.6% ± 1.7% -75.1% ± 5.9% -17.4% ± 2.3% -104.1% ± 7.3% -0.8% ± 3.3% -131.8% ± 12.8%
Random 40% 27.4% ± 2.0% -153.3% ± 9.1% -14.4% ± 3.1% -204.9% ± 11.4% 1.4% ± 3.6% -202.6% ± 20.9%

(Oracle) (60.3% ± 1.0%) (18.5% ± 1.7%) (40.5% ± 1.0%) (22.4% ± 2.3%) (53.2% ± 1.3%) (12.8% ± 4.4%)

L-RHO (Ours) 53.0% ± 1.0% 16.0% ± 1.9% 35.1% ± 1.3% 21.0% ± 2.4% 47.3% ± 2.2% 13.13% ± 4.4%
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A.6 ADDITIONAL EXPERIMENTAL RESULTS

A.6.1 PERFORMANCE ON REAL WORLD DATASET (DAUZÈRE-PÉRÈS AND PAULLI (1997)

We find most of the traditional benchmarks on small scale (< 500 operations). We benchmark the
performance on Dauzère-Pérès and Paulli (1997), 1997, which is the largest traditional benchmarks
available, containing 16 instances evenly divided to three different sizes (respectively, 196, 293,
and 387 operations). We exclude 4 instances from the dataset, which is simple and take < 2s for
RHO methods to solve. To mimic large scale settings with more operations, We further replicate
all operations for each job k times, with k = 3, 6, 9 to mimic long horizon scale settings with more
operations. We provide the performance comparison in Table 15. For DRL and L-RHO, we both
directly transfer the model learned on 600 operations (10, 20, 30) setting to the real world instances.
The best known solution for the Dauzere original setting has an average makespan of 2120 with
standard deviation 78.

We find that the direct transfer setting, our L-RHO outperforms DRL in the real world dataset,
achieving a close gap with respect to best known solution in the literature for the smallest non-
augmented setting, and the performance advantage further holds for longer-horizon augmented set-
tings. Furthermore, L-RHO significantly speeds up Default RHO in all settings, demonstrating the
benefit of introducing learning to accelerate RHO. We further note there exists slight mismatch in
the training distribution and the real world dataset, and it is an interesting future work is to train the
model on a diverse set of distribution to further improve L-RHO’s transfer learning performance.

Table 15: Performance Comparison on the Dauzère-Pérès and Paulli (1997) dataset. The best known
solution of the original dataset (the first result column) has a makespan of 2120 ± 78. In the last
three result column, we randomly sample (with replacement) ×k operations for each job to mimic
the long horizon settings.

Original Augment 3 Augment 6 Augment 9
Time Makespan Time Makespan Time Makespan Time Makespan

DRL-20K (Wang) - Greedy 2 ± 0.1 2493 ± 44 6 ± 0.5 7279 ± 69 12 ± 1.0 14337 ± 218 22 ± 2.6 21218 ± 250
DRL-20K (Wang) - Sample 100 8 ± 1 2279 ± 19 57 ± 9.6 6946 ± 83 235 ± 42 13935 ± 164 534 ± 95.2 20784 ± 226
DRL-20K (Wang) - Sample 500 35 ± 6 2253 ± 21 321 ± 58 6887 ± 79 1341 ± 231 13884 ± 162 3014 ± 516 20722 ± 216
DRL-20K (Wang) - Sample 1000 72 ± 13 2247 ± 20 670 ± 116 6858 ± 83 2679 ± 458 13859 ± 156 6068 ± 1038 20706 ± 217

Default RHO 83 ± 33 2174 ± 68 290 ± 84 6505 ± 232 509 ± 150 13085 ± 428 794 ± 241 19689 ± 592
Warm Start RHO 75 ± 25 2167 ± 68 241 ± 67 6490 ± 237 450 ± 141 13034 ± 432 684 ± 210 19589 ± 609
L-RHO Transfer 65 ± 23 2185 ± 66 199 ± 70 6499 ± 254 345 ± 134 13015 ± 504 492 ± 200 19593 ± 725

A.6.2 ACCURACY, TPR, TNR, PRECISION, AND RECALL OF THE LEARNING METHOD.

We provide the accuracy, true positive rate (TPR), true negative rate (TNR) precision, and recall of
the learning architecture (Fig. 2) in Table 16.

A.6.3 ABLATION STUDY: A DETAILED COMPARISON WITH ATTENTION-BASED
ARCHITECTURE.

We compare the architecture in Fig. 2 with a more advanced attention based architecture shown in
Fig. 7. We make the following two modifications to obtain the new architecture:

• First, at the machine/operation concatenation block, for each new operation O ∈ Onew,r that does
not have a machine assignment in mr−1, we concatenate it a dummy machine embedding (all-zero
feature) and the global embedding from mean pooling on all entities (operations and machines).

• Then, after the machine/operation concatenation block of the original architecture, we perform
a Multi-Head Attention between the overlapping operations Ooverlap,r and the new operations
Onew,r (with 4 attention heads), and we also include a residual connection for the overlapping
operations.

For the Multi-Head Attention, we take the overlapping operations’ embeddings as queries (Q), and
consider the following three setup for the attention keys (K) and values (V ): (1) New operations
only, (2) Overlapping operations only, and (3) Both overlapping and new operations.
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Table 16: Accuracy, True Positive Rate (TPR), True Negative Rate (TNR), Precision, and Recall of
the learning architecture in Fig. 2 on the hold out validation set for each setting in Table 1 and 2.

Accuracy True Positive Rate True Negative Rate Precision Recall

Table 1

600 (10, 20, 30) 0.77 0.81 0.67 0.86 0.81
800 (10, 20, 40) 0.76 0.79 0.67 0.86 0.79
1200 (10, 20, 60) 0.76 0.77 0.73 0.87 0.77

Table 2

625 (25, 25, 25) 0.78 0.71 0.85 0.83 0.71
1225 (35, 35, 35) 0.81 0.72 0.87 0.79 0.72
1600 (40, 40, 40) 0.81 0.69 0.90 0.83 0.69

In Table 17, we find that for option (1) and (2) the introduction of the attention architecture leads to a
slightly higher True Negative Rate (TNR) but lower True Positive Rate (TPR) and a slight reduction
accuracy, when compared with the architecture without attention. Furthermore, when evaluating the
performance on 600 operations FJSP (10, 20, 30) in Table 1, we see that option (1) and (2) , results
in a longer solve time but an improved makespan from the architecture without attention. We also
note that option (3) is strictly dominated by the performance of the architecture without attention.

We note that the TNR-TPR tradeoff on the performance and solve time aligns with our theoretical
analysis, as fixing something that should not have been (low TNR) harms the objective but helps the
solve time, while failing to fix something that should have been (low TPR) harms the solve time and
also indirectly harms the objective (under a fixed time limit).

Due to the time benefit of the architecture without attention and the relatively competitive objective,
we believe it makes sense to keep the simpler architecture without attention in the main paper.

Figure 7: Ablation neural architecture: Attention among the overlapping and new operations.
The architecture follows Fig. 2, but introduces an additional cross attention among the overlapping
and new operations before output the predicted probability for each overlapping operation.

Table 17: Comparison of the learning architecture in Fig. 2 and the attention-based learning archi-
tecture in Fig. 7 on the hold out validation set for the 600 operations setting (10, 20, 30) in Table 1.

Accuracy TPR TNR Precision Recall Time (s) Makespan

No Attention 0.77 0.81 0.67 0.86 0.81 126 ± 19 1513 ± 70
Attention
(K&V : New Ops.) 0.76 0.77 0.74 0.88 0.77 170 ± 18 1504 ± 68
Attention
(K&V : Overlapping Ops.) 0.75 0.75 0.75 0.88 0.75 179 ± 21 1507 ± 57

Attention
(K&V : Overlapping
and New Ops.)

0.76 0.76 0.74 0.88 0.76 133 ± 14 1527 ± 68
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(a) Only the new operations as keys K and values V .

(b) Only the overlapping operations as keys K and values V .

(c) Both overlapping and new operations as keys K and values V .

Figure 8: Comparison of Learned Attention Maps. We set the overlapping operations as the query
Q (the rows) and consider three different types of keys K and values V (the columns).
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A.6.4 PERFORMANCE COMPARISON WITH DRL UNDER THE SAME NUMBER OF FJSP
TRAINING INSTANCE.

In Table 18, we compare L-RHO with DRL (Wang et al., 2023a) when training on the same set
of 450 FJSP instances. We observe that DRL’s performance degrades with 450 training instances,
especially at larger scales, highlighting L-RHO’s unique advantage with a lighter training set. This
can be beneficial under situations where FJSP training instances are harder to acquire.

Table 18: Compare L-RHO with DLR Wang et al. (2023a) under the same number of FJSP training
instances (DRL-450).

600 (10, 20, 30) 800 (10, 20, 40) 1200 (10, 20, 60) 2000 (10, 20, 100), Transfer
Time (s) ↓ Makespan ↓ Time (s) ↓ Makespan ↓ Time (s) ↓ Makespan ↓ Time (s) ↓ Makespan ↓

CP-SAT 1800 2274 ± 147 1800 4017 ± 413 1800 10925 ± 1013 1800 39585 ± 2707
CP-SAT (10 hours) 36000 1583 ± 65 1800 2128 ± 75 1800 3206 ± 87 1800 18821 ± 1986

DRL-450, Greedy 4 ± 0.04 1635 ± 75 6 ± 0.04 2178 ± 85 11 ± 0.2 3307 ± 115 17 ± 0.5 5415 ± 134
DRL-450, Sample 100 30 ± 1 1563 ± 62 48 ± 1 2093 ± 70 111 ± 3 3237 ± 91 301 ± 8 5341 ± 108
DRL-450, Sample 500 143 ± 4 1546 ± 50 261 ± 8 2070 ± 68 610 ± 25 3210 ± 94 1751 ± 30 5311 ± 111

DRL-20K, Greedy 4 ± 0.02 1628 ± 72 6 ± 0.04 2128 ± 80 10 ± 0.1 3141 ± 97 16 ± 0.2 5184 ± 114
DRL-20K, Sample 100 29 ± 0.3 1551 ± 60 47 ± 1 2048 ± 69 110 ± 3 3063 ± 81 302 ± 10 5082 ± 98
DRL-20K, Sample 500 146 ± 5 1537 ± 61 261 ± 8 2031 ± 68 597 ± 16 3045 ± 79 1738 ± 16 5062 ± 98

Default RHO 244 ± 21 1558 ± 73 348 ± 26 2103 ± 78 545 ± 36 3136 ± 91 862 ± 42 5207 ± 114
Warm Start RHO 203 ± 23 1521 ± 67 278 ± 22 2055 ± 75 420 ± 33 3081 ± 96 716 ± 41 5057 ± 106

L-RHO (450) 126 ± 19 1513 ± 70 160 ± 23 2015 ± 86 259 ± 37 3011 ± 106 473 ± 52 4982 ± 132

A.6.5 PERFORMANCE OF DEFAULT RHO WITH LONGER TIME LIMITS

As described in Appendix A.5.4, two parameters control the time limit per RHO subproblem: 1)
total time limit, where solving terminates if the time exceeds T seconds; 2) early stop time, where
solving terminates early if the objective does not improve within Tes seconds. In Table ??, we
evaluate the default RHO with increased T and Tes. The results show that, as the time limit increases
by over 10x, the default RHO achieves better objectives than our L-RHO, albeit with prohibitively
long runtime. Our L-RHO delivers superior performance under practical time constraints, offering
benefits especially in online cases.

Table 19: Comparison of Default RHO’s performance across different time limit parameters T and
Tes for RHO.

600 (10, 20, 30) 800 (10, 20, 40) 1200 (10, 20, 60)
T,Tes Time (s) Makespan Time (s) Makespan Time (s) Makespan
60, 3 (reported) 244 ± 21 1558 ± 73 348 ± 26 2103 ± 78 545 ± 36 3136 ± 91
60, 10 599± 55 1529 ± 58 728 ± 98 2044 ± 75 1109 ± 108 3002 ± 87
60, 30 923 ± 71 1502 ± 66 1099 ± 130 2028 ± 72 1697 ± 175 2963 ± 78
60, 60 819 ± 117 1494 ± 67 1096 ± 156 2018 ± 71 1714 ± 154 2968 ± 89
120, 60 1476 ± 312 1497 ± 70 1811 ± 241 1997 ± 70 2809 ± 308 2932 ± 75
180, 120 2142 ± 461 1490 ± 70 2509 ± 346 1994 ± 76 3932 ± 590 2924 ± 83
360, 180 3631 ± 816 1476 ± 64 3673 ± 797 1987 ± 68 5663 ± 900 2924 ± 86
L-RHO 126 ± 19 1513 ± 70 160 ± 23 2015 ± 86 259 ± 37 3011 ± 106
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(a) (25, 25, 25) Start Delay (b) (30, 30, 25) Start Delay (c) (30, 30, 25) Start + End Delay

(d) (30, 30, 25) Start and End De-
lay & Observation Noise

(e) (35, 35, 35)
Start Delay

(f) (40, 40, 40)
Start Delay

Figure 9: The empirical p∗fix(i) distribution across a variety of FJSP settings. We plot the
empirical distribution calculated by Eq. equation 15 with the solid green curve, and the fitted linear
approximation p∗fix(i) = b −m i

H−S with the dashed red line. We also plot the empirical standard
error (the shaded green area) computed across all RHO iterations, with Niter ranging from 20 to 75
(based on the FJSP problem size). We observe a consistent linear decreasing trend across all FJSP
distributions, and the low standard errors further indicate consistency across RHO iterations.

A.7 DETAILED THEORETICAL PROBABILISTIC ANALYSIS

Following the main paper, we analyze a generic subproblem P̂r := P̂ at each RHO iteration r. For
ease of notation, we omit the r subscript for the rest of this section when it is clear from the context.

A.7.1 DETAILS OF ALL CONSIDERED RHO METHODS

We consider a set of assignment-based RHO warm start procedure, where we follow the RHOtest

procedure in Fig. 1 (b), bottom but obtain Ofix at each RHO iteration with different methods de-
scribed as follows. For tractability analysis, we consider the same RHO window size H and step
size S, which results in H − S overlapping operations |Ooverlap| = H − S in consecutive RHO
iterations.

• Random σR: Ofix is obtained by selecting each operation in Ooverlap with a probability σR

uniformly at random.

• First σF: Ofix is obtained as the first σF fraction of operations inOoverlap with the earliest RHO
sequence order (determined by release time for delay-based objectives or operation precedence
for makespan). Notably, Random/First σ = 0 exactly matches the default RHO procedure.

• L-RHO (Ours): Ofix is predicted by the learning model fθ as described in Sec. 4 (Fig. 1, (b)
bottom).

• Oracle: the look-ahead Oracle with O∗
fix, which is empirically obtained by applying the same

procedure as in Fig. 1 (b) top but only includes the solve time of the restricted subproblem P̂ ∗. As
illustrated in Fig. 4 (left), we analyze the performance of each method (Random, First, L-RHO)
based on the closeness of Ofix to the Oracle O∗

fix.
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A.7.2 EMPIRICAL VALIDATION OF THE LINEAR DECAY ASSUMPTION FOR p∗fix(i)

We compute the distribution of p∗fix(i) using the training set Ktrain. Specifically, for each
FJSP training instance P and RHO iteration r, we have a training label with the form yP,r∗ =

{yP,r∗
O(i) }O(i)∈Ooverlap,r

, where the index i ∈ {1, ...,H−S} of each operations O(i) follows the RHO
sequence order, and the associated O∗

fix,r = {O(i) ∈ Ooverlap,r : yO(i) = 1}. For each RHO
iteration r, we calculate the empirical

p∗emp
fix,r (i) =

1

NP

∑
FJSP instance P

yP,r∗
O(i) ,

where NP is the number of training instances, from which we obtain the empirical distribution
averaged across all RHO iterations and the associated standard error

p∗emp
fix (i) =

1

Niter

∑
RHO iteration r

p∗emp
fix,r (i),

s.e.(p∗emp
fix (i)) = s.t.d({p∗emp

fix,r (i)}RHO iteration r)/
√
Niter,

(15)

where Niter is the number of RHO iterations. In Fig 9, we visualize the empirical p∗emp
fix (i) distri-

butions (and the associated two standard errors) across a variety of FJSP settings, under the Oracle’s
best RHO parameter setting from grid search (H = 80, S = 25 for most settings). We also plot the
linear approximation p∗fix(i) = b − m i

H−S through fitting the empirical distribution, resulting in

E[n∗
fix] =

∑H−S
i=1 p∗fix(i) = b−m

∑H−S
i=1

i
H−S = (b− m

2 )(H − S)− m
2 .

Observations from the p∗fix distribution in Fig. 9. We observe a consistent linear decreasing trend
across all distributions, with varying slopes and intercepts. The empirical distribution closely aligns
with our fitted linear approximation, hence validating our Assump. 1; the low standard error further
reflects the consistency across RHO iterations. Intuitively, this is because the new operations Onew

in the current RHO subproblem P̂ are closer in the precedence order or release time with the later
overlapping operations in Ooverlap, making them more likely to be scheduled around similar time
and thus have more effect on each other’s solution.

Moreover, E[n∗
fix] is around 0.5(H−S) for all settings, with a higher E[n∗

fix] in (c) for (30, 30, 25)
with Start and End Delay, but lower E[n∗

fix] for larger FJSP sizes (35, 35, 35) and (40, 40, 40) in (e)
and (f). We have the following noteworthy comparisons:

1. Comparing FJSP (30, 30, 25) (c) Start and End Delay and (b) Start Delay, our analysis indicates
that the larger number of Oracle fixed operations (high E[n∗

fix]) in (c) enhances the performance
of the Random and First heuristics (reducing performance gap relative to Default RHO) com-
pared with (b). This aligns with our empirically observation when comparing (i) and (ii) of Fig 3
(Right).

2. Comparing FJSP (30, 30, 25) (d) Start and End Delay & Observation Noise with (c), our anal-
ysis indicates a performance decline of Random and First under observation noise, as (d) has a
significantly lower E[n∗

fix,r] than (c). This is consistent with our empirical observation when
comparing (iii) and (ii) in Fig 3 (Right). Moreover, comparing (d) with (b), we see that (d) has a
similar E[n∗

fix,r] but a notably lower slope m than (b). Our analysis indicates that this reduces
the performance advantage of First over Random, which is reflected by our empirical comparison
of (iii) and (i) in Fig. 3 (Right).

A.7.3 DERIVATIONS OF E[nfp] AND E[nfn] FOR EACH METHOD

Proposition 1. The closed-form of E[nfp] and E[nfn] for Random σR, First σF and L-RHO can be
found in Table 20 for a general p∗fix(i) and a linearly decreasing p∗fix(i) distribution (Assump. 1).
Furthermore, ignoring an m

2 term in E[n∗
fix] for ease of exposition, The FPR and FNR of First σF

and Random σR are (αF , βF ) = (
σF (1−b+m

2 σF )

1−b+m
2

, 1− σF (b−m
2 σF )

b−m
2

) and (αR, βR) = (σR, 1− σR).
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Table 20: Closed-form expressions of E[nfp] and E[nfn] for Default, Random, First, and the learn-
ing method L-RHO with False Positive and Negative Rates (α, β).

Random σR First σF L-RHO (α, β)

General p∗fix(i)

E[nfp] σR

∑
1≤i≤H−S

(1− p∗fix(i))
∑

1≤i≤σF (H−S)

(1− p∗fix(i)) α
∑

1≤i≤H−S

(1− p∗fix(i))

E[nfn] (1− σR)
∑

1≤i≤H−S

p∗fix(i)
∑

σF (H−S)+1≤i≤(H−S)

p∗fix(i) β
∑

1≤i≤H−S

p∗fix(i)

Linear Decreasing p∗fix(i) = b−m i
H−S

E[nfp] σR[(1− b+ m
2 )(H − S) + m

2 ] σF [(1− b+ m
2 σF )(H − S) + m

2 ] α[(1− b+ m
2 )(H − S) + m

2 ]

E[nfn] (1− σR)[(b− m
2 )(H − S)− m

2 ] (1− σF )[(b− m
2 −

m
2 σF )(H − S)− m

2 ] β[(b− m
2 )(H − S)− m

2 ]

Equivalently, Given E[n∗
fix] =

∑
i p

∗
fix(i) = (b− m

2 )(H − S)− m
2

E[nfp] σR

(
H − S − E[n∗

fix]
)

σF

(
H − S − E[n∗

fix]− m
2 (1− σF )(H − S)

)
α
(
H − S − E[n∗

fix]
)

E[nfn] (1− σR)E[n∗
fix] (1− σF )

(
E[n∗

fix]− m
2 σR(H − S)

)
βE[n∗

fix]

Proof. See Appendix A.7.5 for the detailed derivation of Table 20. Since we have E[n∗
fix] =∑

i p
∗
fix(i) = (b − m

2 )(H − S) − m
2 , we can substitute the corresponding terms in the table with

E[n∗
fix] and arrive at the last equivalent closed-forms as in the main paper Prop. 1.

Ignoring the m
2 ∈ [0, 1] term in E[n∗

fix], the coordinate transformation from the FP and FN errors
(E[nfp],E[nfn]) to the FP and FN rates (α, β) involves scaling the axes by H − S − E[n∗

fix] =

(1− b+ m
2 )(H − S) and E[n∗

fix] = (b− m
2 )(H − S), respectively, from which we obtain the FPR

and FNR for First σF and Random σR. For example,

βF =
E[nfn]

E[n∗
fix]

=
(1− σF )(b− m

2 −
m
2 σF )(H − S)

(b− m
2 )(H − S)

=
b− m

2 −
m
2 σF − bσF + m

s σF + m
2 σ

2
F

b− m
2

=
b− m

2 − bσF + m
2 σ

2
F

b− m
2

= 1−
σF (b− m

2 σF )

b− m
2

.

A.7.4 QUALITATIVE RELATIONSHIP BETWEEN (E[nfp] AND E[nfn]) AND (OBJECTIVE,
SOLVE TIME)

Based on empirical observation and analytical insights, we interpret the effects of E[nfp] and E[nfn]
on the objective and solve time in the table below (and also in Fig. 4 left), where + and − reflects
positive and negative correlations, respectively.

Objective Solve Time

E[nfp] +
+ (small E[nfp])

or
− (large E[nfp])

E[nfn] + +

Specifically,

• The objective is significantly affected by E[nfp], the number of operations with incorrectly fixed
machine assignments. A higher E[nfp] indicates fixing more sub-optimal decision variables in
the restricted subproblem P̂r, and hence worsens the objective value (often exponentially, as
observed in Appendix A.6 when σ increases for Random / First). Therefore, reducing E[nfp]
improves the objective.
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• The solve time is heavily influenced by E[nfn], the number of operations that have the same
machine assignments but are failed to be identified. A higher E[nfn] indicates a larger search
space of the optimization subproblem P̂r, hence increasing the solve time (often exponentially,
as observed when σ decreases for Random / First). Hence, a lower E[nfn] reduces the solve
time.

• E[nfp] has a mixed contribution to the solve time. On one hand, an increasing E[nfp] reduces the
size of the subproblem P̂r, which could reduce the solve time; on the other hand, an increasing
E[nfp] leads to more sub-optimal assignment fixing in P̂r, which potentially complicates the
optimization landscapes and hence can increase the solve time, especially when E[nfp] is small.
Generally speaking, we observe that a higher E[nfp] slightly increases the solve time in the
low E[nfp] regime (positive correlation) but reduces the solve time when E[nfp] is close to 1
(negative correlation). Specifically, in Appendix A.6, we see that when E[nfp] is low, L-RHO
typically solves faster than First σf baselines with a similar E[nfn] but a higher E[nfp]; likewise,
Oracle generally has a similar solve time as First 80%, whose E[nfp] is much higher than Oracle.

• Reducing E[nfn] can improve the objective under a given time limit, as the correctly restricted
subproblem P̂r from a low E[nfn] can simplify the optimization landscape. This effect is espe-
cialy evident in the low E[nfp] regime, where the baseline RHO methods often reach the time
limit with a suboptimal solution, whereas our L-RHO with a lower E[nfn] can often solve the
subproblem P̂r optimally with a shorter solve time.

Therefore, to achieve objectives comparable to Default RHO while reducing the solve time, an ef-
fective RHO method should first reduce E[nfp] to mitigate objective degradation, and subsequently
reduce E[nfn], which can further reduces both solve time and objective in the small E[nfp] regime.

More Visualizations. We provide additional visualizations of different FJSP variants in Fig. 10,
using the same plotting procedure as in Fig. 4 (Right). The (α, β) of L-RHO is selected as the False
Positive and Negative Rates on the validation set Kval. Empirically, our L-RHO outperforms all
baseline methods (Random, First, Default RHO) with a lower objective and has a similar solve time
as First 60%; the pink regions in Fig. 10 illustrates the empirical dominance relationship of L-RHO
over the respective First and Random baselines. Based on the above analysis, the effectiveness of
our learning method L-RHO is due to its ability to simultaneously achieve a small E[nfp] (which
ensures a low objective) and a small E[nfn] (which improves both the objective and solve time). In
contrast, the heuristic baselines Random or First trades-off E[nfn] and E[nfp] by adjusting σ, but
cannot obtain a low E[nfn] and a E[nfp] at the same time.
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(a) (25, 25, 25) Start Delay (b) (30, 30, 25) Start Delay

(c) (30, 30, 25) Start and End Delay (d) (30, 30, 25) Start and End Delay & Obs. Noise

(e) (35, 35, 35) Start Delay (f) (40, 40, 40) Start Delay

Figure 10: For a variety of FJSP distributions, we depict E[nfn] and E[nfp] of Random, First, and
L-RHO in the low E[nfp] region, using empirically validated p∗fix(i) distribution from Fig. 9 and
L-RHO FPR-FNR (α, β) on the validation set. The pink region illustrates the empirical dominating
region where our L-RHO has a better solve time and objective than all the baseline methods in the
region; in particular, L-RHO has a better objective than all baseline methods, and a better solve time
for a large range of σ values (up to First 50% − 60%), as it can achieve low E[nfp] and E[nfn]
simultaneously. Additionally, we can transform the coordinates to the FP and FN rates (α, β), as
depicted by the right and top axes, to provide insights on what FP and FN rates should L-RHO
achieve for learning to be effective.
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A.7.5 DETAILED DERIVATION OF TABLE 20.

Proof. (1) General p∗fix(i) distribution.

• Random σR: by independence from the i.i.d. random sampling procedure, we have

E[nRandom σR

fp,r ] =
∑

1≤i≤H−S

Pr(operation Oi ∈ Ofix,r and i /∈ O∗
fix,r),

=
∑

1≤i≤H−S

Pr(operation O(i) ∈ Ofix,r)(1− Pr(O(i) ∈ O∗
fix,r))

=
∑

1≤i≤H−S

σR(1− p∗fix(i)),

E[nRandom σR

fn,r ] =
∑

1≤i≤H−S

Pr(operation O(i) /∈ Ofix,r and O(i) ∈ O∗
fix,r)

=
∑

1≤i≤H−S

Pr(operation O(i) /∈ Ofix,r)Pr(O(i) ∈ O∗
fix,r)

=
∑

1≤i≤H−S

(1− σR)p
∗
fix(i),

where the sum is over all overlapping operations in Ooverlap,r.

• First σF : as it always selects the first σF (H − S) operations, we have

E[nFirst σF

fp,r ] =
∑

1≤i≤σF (H−S)

Pr(operation O(i) /∈ O∗
fix,r) =

∑
1≤i≤σF (H−S)

(1− p∗fix(i)),

E[nFirst σF

fn,r ] =
∑

σF (H−S)≤i≤(H−S)

Pr(operation O(i) ∈ O∗
fix,r) =

∑
σF (H−S)≤i≤(H−S)

p∗fix(i),

where the sum is over the first k(H − S) overlapping operations in Ooverlap,r.

• L-RHO (α, β): Given the the relationship between FP, FN rates and FP, FN errors, we have

E[nL-RHO
fp,r ] = α(H − S − E[n∗

fix,r]) =
∑

1≤i≤H−S

α(1− p∗fix(i)),

E[nL-RHO
fn,r ] = βE[n∗

fix,r] =
∑

1≤i≤H−S

β p∗fix(i).

(2) Linearly decreasing p∗fix(i) = b−m · i
H−S .

We have 1− p∗fix(i) = (1− b) +m · i
H−S , and we first compute the following quantities∑

1≤i≤H−S

i

H − S
=

1 +H − S

2
;

∑
1≤i≤σF (H−S)

i

H − S
=

σF + σ2
F (H − S)

2∑
σF (H−S)≤i≤(H−S)

i

H − S
=

∑
1≤i≤H−S

i

H − S
−

∑
1≤i≤σF (H−S)

i

H − S
=

(1− σF ) + (1− σ2
F )(H − S)

2∑
1≤i≤H−S

p∗fix(i) =
∑

1≤i≤H−S

b−m · i

H − S
= (b− m

2
)(H − S)− m

2∑
1≤i≤σF (H−S)

p∗fix(i) =
∑

1≤i≤σF (H−S)

b−m · i

H − S
= σF (b−

m

2
σF )(H − S)− σF

m

2∑
σF (H−S)+1≤i≤(H−S)

p∗fix(i) = (1− σF )(b−
m

2
− m

2
σF )(H − S)− (1− σF )

m

2∑
1≤i≤H−S

(1− p∗fix(i)) =
∑

1≤i≤(H−S)

(1− b) +m · i

H − S
= (1− b+

m

2
)(H − S) +

m

2∑
1≤i≤σF (H−S)

(1− p∗fix(i)) =
∑

1≤i≤σF (H−S)

(1− b) +m · i

H − S
= σF (1− b+

m

2
σF )(H − S) + σF

m

2

We hence have
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• Random σR:

E[nfp] =
∑

1≤i≤H−S

σR(1− p∗fix(i)) = σR(1− b+
m

2
)(H − S) + σR

m

2
,

E[nfn] =
∑

1≤i≤H−S

(1− σR)p
∗
fix(i) = (1− σR)(b−

m

2
)(H − S)− (1− σR)

m

2
.

• First σF :

E[nFirst σF

fp,r ] =
∑

1≤i≤σF (H−S)

(1− p∗fix(i)) = σF (1− b+
m

2
σF )(H − S) + σF

m

2
,

E[nFirst σF

fn,r ] =
∑

σF (H−S)+1≤i≤(H−S)

p∗fix(i) = (1− σF )(b−
m

2
− m

2
σF )(H − S)− (1− σF )

m

2
.

• L-RHO (α, β):

E[nL-RHO
fp,r ] =

∑
1≤i≤H−S

α(1− p∗fix(i)) = α(1− b+
m

2
)(H − S) + α

m

2
,

E[nL-RHO
fn,r ] =

∑
1≤i≤H−S

β p∗fix(i) = β(b− m

2
)(H − S)− β

m

2
.

A.7.6 INTERPRETATION OF PROP. 1

We obtain the following insights by interpreting Prop. 1 .

1. The p∗fix(i) distribution determines the strength of the Random and First baselines and thus the
potential for improvement by learning methods. Specifically, E[n∗

fix] governs the performance
of Random: when E[n∗

fix] ≈ 0.5, Random suffers from either high FP error or high FN error
across all σR, but when E[n∗

fix] = 0 (or 1), then Random σR = 0 (or 100%) can simultaneously
achieve zero FP and FN errors. Moreover, the magnitude of the slope m indicates how much First
can improve over Random, with a larger m leading to greater improvement (Fig. 4 (middle)).

2. The qualitative relationship between the FP & FN errors and objective & solve time is illustrated
in Fig. 4 (left) and further elaborated in Appendix A.7.4. Specifically, the FP error represents
sub-optimal assignments incorrectly fixed in P̂ , which harms the objective, whereas the FN error
corresponds to (near)-optimal assignments failed to be fixed in P̂ , which negatively impacts both
metrics (solve time and objective) when a time limit is imposed. Thus, effective RHO methods
should maintain low a FP error for a competitive objective and a low FN error to further improve
both metrics; this is indeed achieved by our L-RHO, as evident in Fig. 4 (right).

3. We can further convert the FP and FN errors (E[nfp],E[nfn]) into the FP and FN rates (α, β),
as shown by the right and top axes in Fig. 4 (right). In this case, αF and βF in Prop. 1 can
be interpreted as the FPR and FNR that L-RHO’s learned model should achieve to match the
performance of First σF . This provides a valuable estimate to identify what (α, β) should we aim
for when training L-RHO and to assess the effectiveness of the learned model before deployment.
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