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ABSTRACT

Deep learning methods are known to generalize well from training to future data,
even in an overparametrized regime, where they could easily overfit. One expla-
nation for this phenomenon is that even when their ambient dimensionality, (i.e.
the number of parameters) is large, the models’ intrinsic dimensionality is small;
specifically, their learning takes place in a small subspace of all possible weight
configurations.
In this work, we confirm this phenomenon in the setting of deep multi-task learning.
We introduce a method to parametrize multi-task network directly in the low-
dimensional space, facilitated by the use of random expansions techniques. We
then show that high-accuracy multi-task solutions can be found with much smaller
intrinsic dimensionality (fewer free parameters) than what single-task learning
requires. Subsequently, we show that the low-dimensional representations in
combination with weight compression and PAC-Bayesian reasoning lead to the first
non-vacuous generalization bounds for deep multi-task networks.

1 INTRODUCTION

One of the reasons that deep learning models have been so successful in recent years is that they
can achieve low training error in many challenging learning settings, while often also generalizing
well from their training data to future inputs. This phenomenon of generalization despite strong
overparametrization seemingly defies classical results from machine learning theory, which explain
generalization by a favorable trade-off between the model class complexity, i.e. how many functions
they can represent, and the number of available training examples.

Only recently has machine learning theory started to catch up with practical developments. Instead
of overly pessimistic generalization bounds based on traditional complexity measures, such as VC
dimension (Vapnik & Chervonenkis, 1971), Rademacher complexity (Bartlett & Mendelson, 2002)
or often loose PAC-Bayesian estimates (McAllester, 1998; Alquier, 2024), non-vacuous bounds for
neural networks were derived based on compact encodings (Zhou et al., 2019; Lotfi et al., 2022).
At their core lies the insight that—despite their usually highly overparametrized form—the space
of functions learned by deep models has a rather low intrinsic dimensionality when they are trained
on real-world data (Li et al., 2018). As a consequence, deep models are highly compressible, in the
sense that a much smaller number of values (or even bits) suffices to describe the learned function
compared to what one would obtain by simply counting the number of their parameters.

In this work, we leverage these insights to tackle another phenomenon currently lacking satisfactory
generalization theory: the remarkable ability of deep networks for multi-task learning. In a setting
where multiple related tasks are meant to be learned, high-accuracy deep models that generalize well
can be trained from even less training data per task than in the standard single-task setting.

Our contributions are the following: First, we introduce a new way to parametrize and analyze a
class of deep multi-task learning models that allows us to quantify their intrinsic dimensionality.
Specifically, high-dimensional models are learned as linear combinations of a small number of basis
elements, which themselves are trained in a low-dimensional random subspace of the original network
parametrization.
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We then demonstrate experimentally that for such networks a much smaller effective dimension
per task can suffice compared to single-task learning. Consequently, when learning related tasks,
high-accuracy models can be characterized by a very small number of per-task parameters, which
suggests an explanation for the strong generalization ability of deep MTL in this setting.

Finally, to formalize the latter observation, we prove new generalization bounds for deep multi-task
and transfer learning based on network compression and PAC-Bayesian reasoning. The bounds
depend only on quantities that are available at training time and can therefore be evaluated numerically.
By applying the bounds for models generated by our method and the introduced parameterization, we
find that their values are numerically small, making our results the first non-vacuous bounds for
deep multi-task learning, thereby providing numeric guarantees of the generalization abilities of
Deep MTL, not just conceptual ones as in prior work.

2 BACKGROUND

Notation For an input set X and an output set Y , we formalize the concept of a learning task as
a tuple t = (p, S, ℓ), where p is a probability (data) distribution over X × Y , S is a dataset of size
m that is sampled i.i.d. from p, and ℓ : Y × Y → [0, 1] is a loss function. A learning algorithm has
access to S and ℓ, but not p, and its goal is to learn a prediction model f : X → Y with as small as
possible risk on future data, R(f) = E(x,y)∼p ℓ(y, f(x)).

In a multi-task setting, several learning tasks, t1, . . . , tn, are meant to be solved. A multi-task learning
(MTL) algorithm has access to all training sets, S1, . . . , Sn and it is meant to output one model per
task, f1, . . . , fn1. The expectation is that if the tasks are related to each other, a smaller overall risk
R(f1, . . . , fn) =

1
n

∑n
i=1 R(fi) can be achieved than if each task is learned separately (Caruana,

1997; Thrun & Pratt, 1998; Baxter, 2000).

Intrinsic dimensionality of neural networks Deep networks tend to generalize well to future
data, despite the fact that they are typically parametrized with many more weights than the available
number of training samples. One explanation suggest to explain this phenomenon is that the set
of models that networks actually learn lie on a low-dimensional manifold (Ansuini et al., 2019;
Aghajanyan et al., 2021; Pope et al., 2021).

Li et al. (2018) quantified this effect by introducing the intrinsic dimensionality: instead of training a
model’s high-dimensional parameter vector, θ ∈ RD, directly, they represented it indirectly as

θ = θ0 + Pw, (1)

where θ0 is a random initialization, and w ∈ Rd is a learnable low-dimensional vector, which is
expanded to full dimensionality by multiplication with a fixed large matrix, P ∈ RD×d, with i.i.d.
random entries.

The authors introduced a procedure in which d is determined such that a certain accuracy level is
achieved, typically 90% of an ordinarily-trained full-rank model. The resulting effective dimension
is a property of the model as well as the data, and the authors found that it could usually be chosen
orders of magnitude smaller than the ambient dimension (number of model parameters) D. Later,
Aghajanyan et al. (2021) made similar observations in the context of model fine-tuning. Lotfi and
co-authors used this observation to establish non-vacuous generalization bounds for learning in the
setting of single-task prediction (Lotfi et al., 2022) and generative modeling (Lotfi et al., 2024). To
the best of our knowledge, our work is the first that studies and exploits the concept of intrinsic
dimensions in the context of multi-task learning.

3 AMORTIZED INTRINSIC DIMENSIONALITY FOR MULTI-TASK LEARNING

Our main claim in this work is that the success of deep multi-task learning can be explained by its
ability to effectively express and exploit the relatedness between tasks in a low-dimensional subspace
of the parametrization space.

1In practice, one might enforce that these models share certain components, e.g. a token embedding layer or
a feature extraction stage. In this work, we do not make any such a prior assumptions and let the multi-task
learning algorithm decide in what form to share parameters, if any.
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To quantify this statement, we extend the definition of intrinsic dimensionality from a single-task
setting, where no sharing of information between models takes place, to the multi-task setting,
where sharing information between models can occur. Specifically, we introduce the amortized
intrinsic dimension (AID) that extends the parametrization (1) in a hierarchical way. Instead of
learning in a fully random subspace, we divide the multi-task learning task into two components:
learning the subspace (for which data of all tasks can be exploited), and learning per-task models
within the subspace, for which only the data of the respective task is relevant. Both processes occur
simultaneously in an end-to-end fashion, thereby making full use of the high-dimensional model
parameter space during the optimization progress.

Formally, the learnable parameters consist of shared vectors v1, . . . , vk ∈ Rl, and task-specific
vectors α1, . . . , αn ∈ Rk. We use the shared parameters to construct a learned expansion matrix Q as

Q = [P1v1, P2v2, · · · , Pkvk] ∈ RD×k, (2)

where P1 . . . Pk ∈ RD×l are fixed matrices with i.i.d. unit Gaussian entries. Models for the individual
tasks are learned within the subspace spanned by Q, i.e. the parameter vector of the learned model
for task j is given by:

θj = θ0 +Qαj , (3)

again with θ0 denoting a random initialization.

Overall, this formulation uses l·k parameters to learn an expansion matrix that can capture information
that is shared across all tasks. In addition, for each of the n tasks, k additional parameters are used
to describe a good model within the shared subspace. Consequently, the total number of training
parameters in such a parametrization is lk + nk, i.e. lk

n + k per task.

The following definition introduces the notions of intrinsic dimension and amortized intrinsic dimen-
sion based on the above construction.
Definition 1. For a given model architecture and set of tasks, t1, . . . , tn, and a validation accuracy
level τ , we define:

• the (single-task) intrinsic dimensionality, IDτ , as the smallest value for d in the d-
dimensional expansion (1), such that training the corresponding low-rank models indi-
vidually on each task results in an average across-tasks accuracy of at least τ .

• the (multi-task) amortized intrinsic dimensionality, AIDτ , as the smallest value for lk
n + k

in an (l, k)-dimensional expansion (2)-(3), such that multi-task training the corresponding
low-rank models results in an average across-tasks accuracy of at least τ .

In order to numerically determine values for the intrinsic dimensionality and the amortized intrinsic
dimensionality of Definition 1, one has to select a suitable target accuracy level, τ . In the rest of this
work, we do so by adapting the procedure from Li et al. (2018): Assume that well-trained single-task
models achieve an average validation accuracy of A across the given tasks. Then we set the target
accuracy level as τ∗ = 0.9A, and we write ID∗ and AID∗ as shorthand notations for IDτ∗ and AIDτ∗ ,
respectively. This construction is meant to ensure that, regardless of the tasks characteristics, the
target accuracy is not too high to be reachable, but high enough that reaching it does not become
trivial.

We now formulate our central scientific hypothesis:

Hypothesis. Deep MTL can find models of high accuracy with much smaller amortized intrinsic
dimensionality than the intrinsic dimensionality required for learning the same tasks separately:

AID∗ ≪ ID∗

.

Note that the validity of this hypothesis is not obvious, and its correctness depends on the model
architecture as well as set of tasks to be learned. For example, if the tasks are completely unrelated
such that no shared subspace is expressive enough to learn good models for all of them, one likely
would need one basis element per tasks (k = n), and the basis would need the same dimensionality as
for single-task learning (l = ID∗). Consequently, AID∗ = ID∗+n, i.e. the multi-task parametrization

3
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Table 1: Intrinsic dimensions for single-task learning (ID∗) and multi-task learning (AID∗) at fixed
target accuracies acc90 for different datasets and model architectures (with D parameters, n tasks,
and m samples per task) resulting in the reported ID∗ and AID∗.

Dataset MNIST SP MNIST PL Folktables Products split-CIFAR10 split-CIFAR100
model ConvNet ConvNet MLP MLP ConvNet ViT ConvNet ViT
n /m 30 / 2000 30 / 2000 60 / 900 60 / 2000 100 / 453 30 / 1248 100 / 450 30 / 1250
D 21840 21840 11810 13730 121182 5526346 128832 5543716

acc90 85% 87% 65% 75% 63% 80% 40% 65%

ID∗ 400 300 50 50 200 200 1500 550

AID∗ 31.6 166.6 10 10 12 26.7 36 100
(l, k) (65, 10) (70, 50) (60, 5) (60, 5) (20, 10) (50, 10) (80, 20) (70, 30)

is not more parameter-efficient than the single-task one. In the opposite extreme, if all tasks are
identical, a single ID∗-dimensional model suffices to represent all solutions, i.e. k = 1 and l = ID∗,
such that AID∗ = ID∗

n + 1, i.e. the amortized intrinsic dimensionality of multi-task learning shrinks
quickly with the number of available tasks. For real-world settings, where tasks are related but not
identical, we expect that k and l will have to grow with the number of tasks, but at a sublinear speed
compared to n.

4 DETERMINING THE AID FOR REAL-WORLD TASKS

In this section, we provide evidence for our hypothesis by numerically estimating AID and ID values
for different network architectures (fully connected networks, convolutional networks, transformers),
different data modalities (tabular, images, text) and different training paradigms (from scratch, fine-
tuning). Specifically, we rely on the following six standard multi-task learning benchmarks: Products,
which consists of vectorial sentence embeddings of text data, and Folktables, which contains tabular
data, are binary classification tasks, for which we use fully-connected architectures. MNIST Shuffled
Pixels (SP), MNIST Permuted Labels (PL), split-CIFAR10 and split-CIFAR100 are multi-class image
datasets, and we report results for ConvNets and Vision Transformers (ViT). The ViT weight are
pretrained on the ImageNet dataset, while the other networks are trained from scratch. For more
details on the datasets and network architectures, see Appendix B.

We use a grid search for different values of l and k, compute the lk
n + k, and choose the smallest

value that achieves the desired acc90. Table 1 reports the intrinsic dimensions obtained this way.
It clearly supports our hypothesis: in all tested cases, the amortized intrinsic dimensionality in the
multi-task setting is smaller than the per-task intrinsic dimensionality when training tasks individually,
sometimes dramatically so. For example, to train single-task models on the 30 MNIST SP tasks, it
suffices to work in a 400-dimensional subspace of the models’ overall 21840-dimensional parameter
space. For multi-task learning in representation (3), it even suffices to learn a basis of dimension
k = 10, where each element is learned within a subspace of dimension l = 65 of the model
parameters. Consequently, MTL represents all 30 models by just 10 · 65 + 30 · 10 = 950 parameters,
resulting in an amortized intrinsic dimension of just 950/30 ≈ 32. The other datasets show similar
trends: for the Folktables and Products datasets, the intrinsic dimension is reduced from 50 to 10
in both cases. For split-CIFAR10 and split-CIFAR100, the intrinsic dimensions drop from 200 and
1500 to 12 and 36, respectively. The smallest gain we observe is for MNIST PL, where the amortized
intrinsic dimensions are slightly more than half of the intrinsic dimension of single-task learning.

From our observations, one can expect that the more tasks are available, the more drastic the difference
between single-task ID and multi-task AID can become. Figure 1 visualizes this phenomenon for
the MNIST SP dataset. One can indeed see a clear decrease in the AID with a growing number of
available tasks, whereas the single-task ID would not be affected by this.

Note that the provided results in Table 1, show the amortized intrinsic dimensionality for our model
design. Therefore, the reported values can be seen as upper bounds on the minimum possible
amortized intrinsic dimension of multi-task learning. Choosing a specific multi-task design based
on prior knowledge about the relatedness of the tasks could push the numbers in Table 1 even lower.
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Figure 1: Amortized intrinsic dimensionality, AID∗, for multi-task learning on the MNIST PL (left)
and MNIST SP (right) datasets (n = 10, 20, . . . , 100 tasks, m = 600 samples per task). The more
tasks are available, the fewer learnable parameters per task are required.

However, even without any such additional information, our reported results clearly confirm our
hypothesis by showing a substantial reduction in AID∗ compared to ID∗.

5 NON-VACUOUS GENERALIZATION GUARANTEES FOR DEEP MULTI-TASK
LEARNING

The result in the previous section suggests that using the representation (3), even quite complex
models can be represented with only a quite small number of values. This suggests that the good
generalization properties of deep multi-task learning might be explainable by generalization bounds
that exploit this fact.

Our main theoretical contribution in this work is a demonstration that this is indeed possible: we
derive a new generalization bound for multi-task learning that captures the complexity of all models
by their joint encoding length. Technically, we provide high probability upper-bounds for the true
tasks R(f1, . . . , fn) based on the training error R̂(f1, . . . , fn) = 1

mn

∑
i,j ℓ(yi,j , fi(xi,j)), and

properties of the model.

5.1 BACKGROUND AND RELATED WORK

Before formulating our results, we remind the reader of some classical concepts and results.

Definition 2. For any base set, Z , we call a function E : Z → {0, 1}∗ a (prefix-free) encoding,
if for all z, z′ ∈ Z with z ̸= z′, the string E(z) is a not a prefix of the string E(z′). The function
lE : Z → N, given by lE(z) = length(E(z)) we call the encoding length function of E.

Prefix-free codes have a number of desirable properties. In particular, they are uniquely and efficiently
decodable. Famous examples include variable-length codes, such as Huffman codes (Huffman, 1952)
or Elias codes (Elias, 1975), but also the naive encoding that represents each value of a vector with
floating-point values by a fixed-length binary string.

Classical results allow deriving generalization guarantees from the encodings of models.

Definition 3. For any set of models, F , an encoder with a base set Z = F is called a model encoder.

Model encodings can be as simple as storing all model parameters in a fixed length (e.g. 32-bit)
floating point format. For a d-parameter model, the corresponding length function would simply be
lE(f) = 32d. Alternatively, storing only the non-zero coefficient values as (index, value) leads to a
length function lE(f) = (⌈log2 d⌉+ 32)s, where s is the number of non-zero parameter values. For
highly sparse models, this value can be much smaller than the naive encoding. Over the years, many
more involved schemes have been introduced, including, e.g., weight quantization (Choi et al., 2020),
and entropy or arithmetic coding of parameter values (Frantar & Alistarh, 2024).

Theorem 1 (Shalev-Shwartz & Ben-David (2014), Theorem 7.7). Let E be a model encoding scheme
with length function lE :

⋃∞
n=1 Fn → N. Then, for any δ > 0, the following inequality holds with

5
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probability at least 1− δ (over the random training data of size m): for all f ∈ F

R(f) ≤ R̂(f) +

√
lE(f) log 2 + log( 1δ )

2m
. (4)

Theorem 1 states that models can be expected to generalize well, i.e., have a smaller difference
between their training risk and expected risk, if their encodings are short. Specifically, the dominant

term in the complexity term of (4) is
√

lE(f) log 2
2m . Consequently, for the bound to become non-

vacuous (i.e. the right-hand side to be less than 1), in particular, the encoding length must not be
much larger than the number of training examples.

5.2 COMPRESSION-BASED GUARANTEES FOR MULTI-TASK LEARNING

We now introduce a generalization of Theorem 1 to the multi-task situation.

First, we define two types of encoders, that allow us to formalize the concept of shared versus
task-specific information in multi-task learning.
Definition 4. For any model set, F , we define two type of encoders:

• meta-encoder: an encoder whose base set is a set of global parameters E ∈ E representing
shared information between tasks.

• multi-task (model) encoder: an encoder with base set Z =
⋃∞

n=1 Fn (e.g. arbitrary length
tuples of models) that, given a global parameter E, encodes a tuple of models with the
length lE(f1, . . . , fn) i.e. encodes the task-specific information.

These encoders generalize (single-task) model encoders in the sense of Definition 3 by allowing more
than one model to be encoded at the same time. By exploiting redundancies between the models,
shorter encoding lengths can be achievable. For example, if multiple models share certain parts,
such as feature extraction layers, those would only have to be encoded once by meta-encoder while
multi-task encoder encodes the remaining parts. Additionally, as we will explain in in Section A.4
multi-task encoders can capture unstructured redundancies between task-specific parts to reduce the
encoding lengths.

We are now ready to formulate our main results: new generalization bounds for multi-task learning
based on the lengths of meta- and multi-task model encoders.
Theorem 2. Let E be a set of global parameters, and let l : E → N be the length function of the
meta-encoder. For each E ∈ E , let lE :

⋃∞
n=1 Fn → N be the length function of the multi-task

encoder given E. For any δ > 0, with probability at least 1 − δ over the sampling of the training
data for all E ∈ E and for all f1, ..., fn ∈ F the following inequality holds:

R(f1, ..., fn) ≤ R̂(f1, ..., fn) +

√
(l(E) + lE(f1, ..., fn)) log(2) + log 1

δ

2mn
. (5)

Theorem 2 directly generalizes Theorem 1 to the multi-task situation.

In addition, we also state an alternative fast-rate bound based on the PAC-Bayes framework.
Theorem 3. In the settings of Theorem 2, for any multi-task model encoding, any meta-encoding,
and any δ > 0, it holds with probability at least 1− δ over the sampling of the training data:

kl
(
R̂(f1, . . . , fn)|R(f1, . . . , fn)

)
≤

(l(E) + lE(f1, . . . , fn)) log(2) + log( 2
√
mn
δ )

mn
, (6)

where kl(q|p) = q log q
p + (1 − q) log 1−q

1−p is the Kullback-Leibler divergence between Bernoulli
distributions with mean q and p.

Fast-rate bounds tend to be harder to prove and interpret, but they offer tighter results when the
empirical risk is small. Specifically, fast-rate bounds would result in an upper-bound on the true risk
by numerically inverting the left-hand side of Theorem 3. This bound scales like O( 1

mn ) when the
empirical risk is zero, whereas in Theorem 2 the scaling behaviour is always O( 1√

mn
). For a more

detailed discussion and explanation of inverting the bound, see Appendix A.
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Table 2: Generalization guarantees (upper bound on test error, lower is better) for single-task and
multi-task learning. For all tested datasets the multi-task analysis offers better guarantees than the
single-task analysis, sometimes by a large margin. The bounds are also always non-vacuous. The
fast-rate bound (Theorem 3) offers improved guarantees compared to the more elementary Theorem 2.

Dataset MNIST SP MNIST PL Folktables Products split-CIFAR10 split-CIFAR100
model ConvNet ConvNet MLP MLP ConvNet ViT ConvNet ViT

Single Task
Theorem 1 0.612 0.576 0.566 0.332 0.874 0.660 0.994 0.906

R̂ 0.229 0.194 0.272 0.160 0.310 0.182 0.637 0.376
R 0.239 0.205 0.279 0.160 0.406 0.203 0.714 0.417

MTL

(Theorem 2) 0.230 0.404 0.394 0.222 0.529 0.319 0.869 0.665
(Theorem 3) 0.196 0.350 0.388 0.203 0.527 0.280 0.830 0.658

R̂ 0.101 0.066 0.272 0.139 0.305 0.106 0.627 0.274
R 0.096 0.064 0.268 0.141 0.331 0.114 0.637 0.313

Discussion. Theorem 2 establishes that the multi-task generalization gap (the difference between
empirical risk and expected risk) can be controlled by a term that expresses how compactly the models
can be encoded. Because the inequality is uniform with respect to E ∈ E , the global parameter can
be chosen in a data-dependent way, where tighter guarantees can be achieved if the global parameter
itself can be compactly represented.

To get a better intuition of this procedure, we consider two special cases. First, assume a naive
encoding, where no global shared parameter is encoded, and the multi-task model encoder simply
stores a D-dimensional parameter vector for each model in fixed-width form. Then l(E) = 0 and

lE(f1, . . . , fn) = O(nD), and the resulting complexity term is of the order O(
√

D
m ), as classical

VC theory suggests.

In contrast, assume the setting of Section 3, where each task is encoded as a weighted linear
combination of k dictionary elements, each of which is computed as the product of a large random
matrix with an l-dimensional parameter vector. Setting E to be the set of all such bases, one
obtains l(E) = O(lk) (for now disregarding potential additional savings by storing coefficients more
effectively than with fixed width bits), and lE(f1, . . . , fn) = O(nk). Consequently, the complexity

term in Theorem 2 becomes O(
√

lk/n+k
m ), i.e. the ambient dimension D of the previous paragraph

is replaced by exactly the amortized intrinsic dimension of Definition 1.

5.3 COMPUTING THE BOUNDS NUMERICALLY

Theorem 2 and Theorem 3 are general and can be applied to any multi-task learning methods,
however, to achieve non-vacuous results, we need to use models that can achieve both good training
performance and low complexity. Therefore, we use models with the parameterization introduced in
Section 3. In order to apply our bounds, we use a meta-encoder that encodes the coefficient vectors,
v1, . . . , vk of the basis representation (2), and a multi-task model encoder that jointly encodes the
collection of per-task coefficients, α1, . . . , αn of the per-task representations 3.

The easiest way would be to allow for arbitrary floating point values in the weights and store them
in fixed precision, e.g. 32 bit. The resulting lengths functions would be constant: l(E) = 32kl and

lE(f1, . . . , fn) = 32nk, such that the dominant part of the complexity term becomes O(
√

AID
m ) or

O(AID
m ), respectively. However, it is known that neural networks using quantized weights of fewer

bits per parameter can still achieve competitive performance (Han et al., 2016). Therefore, we employ
a quantized representation for the parameters we learn, adapting the quantization scheme and learned
codebooks of Zhou et al. (2019); Lotfi et al. (2022) to our setting.

Specifically, we use two codebooks, a global one with rg entries, Cg = {c1, . . . , crg} for quantizing
the shared parameters vectors v1, . . . , vk, and a local one with rl values, Cl = {c1, . . . , crl} for
quantizing the per-task parameters vectors α1, . . . , αn.

Now, for any set of models f1, . . . , fn with global v1, . . . , vk, and α1, . . . , αn, the meta-encoder
first stores the rg codebook entries as 16-bit floating-point values. Then, for each entry of the

7
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Table 3: Generalization guarantees (upper bound on test error, lower is better), as well as training
errors and test errors for transfer learning versus learning from scratch (no transfer) as averages over
10 runs. For all the datasets, transfer learning results in better guarantees than simply learning a
classifier from scratch.

Dataset MNIST SP MNIST PL Folktables Products split-CIFAR10 split-CIFAR100
model ConvNet ConvNet MLP MLP ConvNet ViT ConvNet ViT

No transfer
Bound 0.604 0.581 0.548 0.261 0.871 0.681 0.982 0.906
R̂ 0.220 0.199 0.256 0.101 0.304 0.206 0.628 0.374
R 0.243 0.210 0.276 0.105 0.407 0.235 0.720 0.418

MTL + Transfer
Bound 0.151 0.497 0.401 0.161 0.580 0.260 0.848 0.528
R̂ 0.094 0.219 0.261 0.094 0.277 0.134 0.648 0.345
R 0.088 0.218 0.268 0.101 0.304 0.135 0.664 0.333

parameter vectors, it computes the index of the codebook entry that represents its value and it stores
all indices together using arithmetic coding (Langdon, 1984), which exploits the global statistics
of the index values. Analogously, the multi-task model encoder first stores the l codebook entries.
It then represents the entries of α1, . . . , αn as indices in the code, and encodes them jointly using
arithmetic coding. Note that while the latter process of encoding the model coefficients does not
depend on the shared parameters, its decoding process does, because the actual network weights can
only be recovered if also the representation basis, Q, is known.

In practice, training networks with weights restricted to a quantized set is generally harder than
training in ordinary floating-point form. Therefore, for our experiments, we follow the procedure
from Lotfi et al. (2022). We first train all networks in unconstrained form. We then compute
codebooks by (one-dimensional) k-means clustering of the occurring weights, and quantizing each
weight to the closest cluster center, and then fine-tune the quantized network.

The resulting guarantees then hold for the quantized networks. For Theorem 2, we can read off
the guarantees on the multi-task risk directly from the explicit complexity term and the training
error. For Theorem 3, we have to invert the kl-expression, which is easily possible numerically. See
Appendix A for more details.

The results are reported in Table 2 which compares our standard and fast-rate MTL bounds with
the (sota) fast-rate single-task bound of Lotfi et al. (2022), which shows the advantage of MTL over
single-task learning for several different datasets and model architectures.

An advantage of our generalization bounds is that they allow us to encode all tasks together. Formally,
the bound is based on the term lE(f1, . . . , fn) and not the naive

∑n
i=1 lE(fi). Given the conceptual

connections between compressibility, information, and entropy, the difference between these two
quantities can be seen as a computable approximation to the mutual information between the tasks Li
& Vitányi (2019). For more details see Appendix A.4.

5.4 APPLICATION TO TRANSFER LEARNING

The multi-task setting of Section 3 has a straightforward extension to the transfer learning setting 2.
Assume that, after multi-task learning as in previous sections, we are interested in training a model
for another related task. Then, a promising approach is to do so in the already-learned representation,
given by the learned matrix Q. In particular, this procedure has a low risk of overfitting, because Q
is low-dimensional and has been constructed without any training data for the new task. In terms
of formal guarantees, Q is a fixed quantity, so no complexity terms appear for it in a generalization
bound. However, learning purely in this representation would pose the risk of underfitting, because
the MTL representation might not actually be expressive enough also for new tasks.

Consequently, we suggest a transfer learning method with few parameters that combines the flexibility
of single-task learning with the advantages of a learned representation. Specifically, for any new task,

2Note that our transfer learning setup differs from the one in Lotfi et al. (2022): to transfer information from
previous tasks to new ones we use MTL to identify an extremely low-dimensional basis, in which the subsequent
learning of new tasks takes place. In contrast, they use a random basis, and information from a previous task
enters as an offset, which corresponds to our experiments with a pre-trained network in Section 4.
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Figure 2: Comparison of Test Error and MTL upper bound.

we learn a model in a subspace of d′ = k + k′ dimensions, of which k basis vectors stems from the
representation matrix Q (2), and the remaining k′ come from a random basis as in (1), k′ is a tunable
hyperparameter. Formally, the new model has the following representation:

θj = θ0 +Qα+ Pw, (7)

in which Q ∈ RD×k is the result of multi-task learning, P ∈ RD×k′
is a random matrix, and α ∈ Rk

and w ∈ Rk′
are learnable parameters for the new task. If the previous tasks are related to the current

task, we would expect to have a smaller dimension d′ compared to the case that we do not use Q.

Theorem 1 yields generalization guarantees for this situation, in which only the encoding length of α
and w enters the complexity term, while Q (like P ) do not enter the bound. To encode the coefficients
α and w, we can reuse the codebook of the MTL situation, which is now fixed and therefore does
not have to be encoded or learn (and encode) a new one. Table 3 shows the resulting generalization
guarantees. For all datasets, learning a model using the pre-trained representation leads to stronger
guarantees than single-task training from scratch. The bounds are clearly non-vacuous, despite the
fact that only a single rather small training set is available in each case.

5.5 COMPARISON OF TEST ERROR AND MTL UPPER BOUND.

In Figure 2 we plot the values of the actual test error and the computed upper bounds for different
values of l, k, for the ViT experiment on the split-CIFAR10 dataset. As it is shown in the figure, both
the values of the bound and the test error decrease with more parameters and increased expressiveness.
However, the bound reaches a point where the cost of the addition of expressiveness exceeds the
benefit from having a smaller training error. In contrast, the actual test error would not increase, as it
is observed empirically for neural networks, and more progress is needed to make the bounds tighter.

6 RELATED WORK

Multi-task learning (Baxter, 1995; Caruana, 1997) has been an active area of research for many years,
first in classical (shallow) machine learning and then also in deep learning, see, e.g., Yu et al. (2024)
for a recent survey. Besides practical methods that typically concentrate on the question of how to
share information between related tasks (Kang et al., 2011; Sun et al., 2020) and how to establish
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their relatedness (Juba, 2006; Daumé III & Kumar, 2013; Fifty et al., 2021), there has also been
interest from early on to theoretically understand the generalization properties of MTL.

A seminal work in this area is Maurer (2006), where the author studies the feature learning for-
mulation of MTL in which the systems learn a shared representation space and individual per-task
classifiers within that representation. In the case of linear features and linear classifiers, he derives
a generalization bounds based on Rademacher-complexity. Subsequently, a number of follow-up
works extended and refined the results to cover other regularization schemes or complexity mea-
sures (Crammer & Mansour, 2012; Pontil & Maurer, 2013; Yousefi et al., 2018; Pentina & Lampert,
2017; Du et al., 2021). However, none of these results are able to provide non-vacuous bounds for
overparametrized models, such as deep networks.

A related branch of research targets the problems of representation or meta-learning. There, also
multiple tasks are available for training, but the actual problem is to provide generalization guarantees
for future learning tasks (Baxter, 2000) A number of works in this area rely on PAC-Bayesian
generalization bounds (Pentina & Lampert, 2014; Amit & Meir, 2018; Liu et al., 2021; Guan &
Lu, 2022; Riou et al., 2023; Friedman & Meir, 2023; Rezazadeh, 2022; Rothfuss et al., 2023; Ding
et al., 2021b; Tian & Yu, 2023; Farid & Majumdar, 2021; Zakerinia et al., 2024), as we do for our
Theorem 3. This makes them applicable to arbitrary model classes, including deep networks. These
results, however, hold only under specific assumptions on the observed tasks, typically that these are
themselves i.i.d. sample from a task environment. The complexity terms in their bounds are either
not numerically computable, or vacuous by several orders of magnitude for deep networks, because
they are computed in the ambient dimensions, not the intrinsic ones. Another difference to our work
is that, even those parts of their bound that relate to multi-task generalization are sums of per-task
contributions, which prevents the kind of synergetic effects that our joint encoding can provide.

7 CONCLUSION

We presented a new parametrization for deep multi-task learning problems that directly allows one
to read off its intrinsic dimension. We showed experimentally that for common benchmark tasks,
the amortized intrinsic dimension per task can be much smaller than when training the same tasks
separately. We derived two new encoding-based generalization bounds for multi-task learning, that
result in non-vacuous guarantees on the multi-task risk for several standard datasets and model
architectures. To our knowledge, this makes them the first non-vacuous bounds for deep multi-task
learning.

A limitation of our analysis in Section 3 is that it relies on a specific representation of the learned
models. As such, the values we obtain for the amortized intrinsic dimensionality constitute only
upper bounds to the actual, i.e. minimal, number of necessary degrees of freedom. In future work, we
plan to explore the option of extending our results also to other popular multi-task parametrization,
such as methods based on prototypes, MAML (Finn et al., 2017), or feature learning (Collobert &
Weston, 2008). Note that our theoretical results in Section 5 readily apply to such settings, as long as
we define suitable encoders. In this context, as well as in general, it would be interesting to study
if our bounds could be improved further by exploiting more advanced techniques for post-training
weight quantization (Rastegari et al., 2016; Frantar et al., 2023) or learning models directly in a
quantized form (Hubara et al., 2018; Wang et al., 2023). Another promising direction for future work
would be to scale our results to even larger datasets and large language models, which are currently
out of the scope of this paper.

8 REPRODUCIBILITY STATEMENT

The proof of all theoretical results is included in Appendix A. The code for reproducing the ex-
periments is submitted as supplementary material, and the experimental details are included in
Appendix B.
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A PROOFS

A.1 COMPARISON OF THE BOUNDS

Theorem 3 which in the PAC-Bayes literature is referred to as a fast-rate bound, can be tighter
than the bound of Theorem 2. Specifically, up to a different in the log-term we can obtain the
bound of Theorem 2 by relaxing the bound of Theorem 3. Based on Pinsker’s inequality, we have
2(p− q)2 ≤ kl(q|p) and therefore

2
(
R̂(f1, . . . , fn)−R(f1, . . . , fn)

)2
≤ kl(R̂(f1, . . . , fn)|R(f1, . . . , fn)). (8)

Combining Theorem 3 and equation (8) gives that for every δ > 0 with probability at least 1− δ, we
have:

R(f1, ..., fn) ≤ R̂(f1, ..., fn) +

√
(l(E) + lE(f1, ..., fn)) log(2) + log 2

√
mn
δ

2mn
. (9)

This is very similar to the bound of Theorem 2, differing by the additional term log 2
√
mn

2mn , which is
negligible for large m or n.

Alternatively, instead of using Pinsker’s inequality, we can numerically find a better upper-bound for
R(f1, . . . , fn). Following Seeger (2002); Alquier (2024), we define

kl−1(q|b) = sup{p ∈ [0, 1] : kl(q|p) ≤ b}. (10)

Corollary 4. With the same setting as Theorem 3, with probability at least 1− δ, we have:

R(f1, . . . , fn) ≤ kl−1

(
R̂(f1, . . . , fn))

∣∣∣∣∣ (l(E) + lE(f1, . . . , fn)) log(2) + log( 2
√
mn
δ )

mn

)
. (11)

Note that for a fixed q ∈ (0, 1), the function kl(q|p) is minimized for p = q, and it is a convex
increasing function in p, when q ≤ p ≤ 1. Therefore, we can find an upper bound for kl−1(q|b), by
binary search in the range [q, 1], or Newton’s method as in (Dziugaite & Roy, 2017).

As Table 2 shows, the numeric bounds obtained this way can be tighter bound than the upper bound
from the Theorem 2.

A.2 PROOF OF THEOREM 2

Theorem 2. Let E be a set of global parameters, and let l : E → N be the length function of the
meta-encoder. For each E ∈ E , let lE :

⋃∞
n=1 Fn → N be the length function of the multi-task

encoder given E. For any δ > 0, with probability at least 1 − δ over the sampling of the training
data for all E ∈ E and for all f1, ..., fn ∈ F the following inequality holds:

R(f1, ..., fn) ≤ R̂(f1, ..., fn) +

√
(l(E) + lE(f1, ..., fn)) log(2) + log 1

δ

2mn
. (5)

Proof. We rely on standard arguments for coding-based generalization bounds, which we adapt to
the setting of multiple tasks with potentially different data distributions.

For any i = 1, . . . , n, let Si = {zi,1, . . . , zi,m} ⊂ Z be the training data available for a task ti and
let ℓi : F × Z be its loss function. For any tuple of models, F = (f1, . . . , fn), we define random
variables Xi,j = 1

mnℓi(fi, zi,j) ∈ [0, 1
mn ], where n is the number of tasks and m is the number of

samples per task, such that

R̂(F ) := R̂(f1, . . . , fn) =
∑

(i,j)∈I

Xi,j , (12)

for I = {(i, j) : i ∈ {1, . . . , n} ∧ j ∈ {1, . . . ,m}}, and

R(F ) := R(f1, . . . , fn) = E
[∑
(i,j)

Xi,j

]
. (13)

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Therefore, based on Hoeffding’s inequality over these random variables, we have for any t ≥ 0:

P
{
R(F ) ≥ R̂(F ) + t

}
≤ e−2t2mn. (14)

Now, assume a fixed δ > 0. For any meta-encoder, E, and any tuple of models, F = (f1, ..., fn), we
define a weight wE;F = δ ·2−l(E)2−lE(f1,...,fn), where l(·) is the length function of the meta-encoder
and lE(·) is the length function of the encoder E. We instantiate (14) with a value tE;F such that

e−t2E;Fmn = wE;F , i.e. tE;F =
√
− logwE;F

2mn . Taking a union bound over all tuples (E,F ) and

observing that
∑

E;F wE;F = δ ·
∑

E 2−l(E)
(∑

F 2−lE(F )
)
≤ δ, because of the Kraft-McMillan

inequality for prefix codes (Kraft, 1949; McMillan, 1956), we obtain

P

{
∃E,F : R(F )− R̂(F ) ≥

√√√√(l(E) + lE(F )
)
log(2) + log 1

δ

2mn

}
≤ δ. (15)

By rearranging the terms, we obtain the claim of Theorem 2.

A.3 PROOF OF THEOREM 3.

In this section, we provide the proof for Theorem 3. Since our hypothesis set is discrete, we use a
union-bound approach, similar to the proof of Theorem 2. A similar result can be proved using the
PAC-Bayes framework and change of measure, similar to the fast-rate bounds in Guan & Lu (2022),
but we found our version to be conceptually simpler.
Theorem 3. In the settings of Theorem 2, for any multi-task model encoding, any meta-encoding,
and any δ > 0, it holds with probability at least 1− δ over the sampling of the training data:

kl
(
R̂(f1, . . . , fn)|R(f1, . . . , fn)

)
≤

(l(E) + lE(f1, . . . , fn)) log(2) + log( 2
√
mn
δ )

mn
, (6)

where kl(q|p) = q log q
p + (1 − q) log 1−q

1−p is the Kullback-Leibler divergence between Bernoulli
distributions with mean q and p.

Proof. For any fixed tuple of models, F = (f1, . . . , fn), we have

P(kl(R̂(F )|R(F )) ≥ t) = P(emnkl(R̂(f)|R(f)) ≥ emnt) (16)

≤ E[emnkl(R̂(f)|R(f))]

emnt
≤ 2

√
mn

emnt
. (Lemma 7 below) (17)

Subsequently, we follow the steps of the proof of Theorem 2. Assume a fixed δ > 0. For any
meta-encoder, E, and any tuple of models, F = (f1, ..., fn), we define a weight wE;F = δ ·
2−l(E)2−lE(f1,...,fn), where l(·) is the length function of the meta-encoder and lE(·) is the length
function of the encoder E. We instantiate (17) with a value tE;F such that 2

√
mne−tE;Fmn = wE;F ,

i.e. tE;F = − logwE;F

mn . Therefore, we have with probability at least 1− wE,F :

kl(R̂(f)|R(f)) ≤
l(E) + lE(f1, . . . , fn)) log(2) + log 2

√
mn
δ

mn
. (18)

Taking a union bound over all tuples (E,F ) and observing that
∑

E;F wE;F = δ ·∑
E 2−l(E)

(∑
F 2−lE(F )

)
≤ δ, because of the Kraft-McMillan inequality for prefix codes (Kraft,

1949; McMillan, 1956), we obtain

P

{
∀E, f1, . . . , fn : kl(R̂(f)|R(f)) ≤

l(E) + lE(f1, . . . , fn)) log(2) + log 2
√
mn
δ

mn

}
≤ δ. (19)
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A.4 DISCUSSION

Encoding all tasks together An advantage of our generalization bounds is that they allow us to
encode all tasks together. Formally, the bound is based on the term lE(f1, . . . , fn) and not the naive∑n

i=1 lE(fi). Given the conceptual connections between compressibility, information, and entropy,
the difference between these two quantities can be seen as a computable approximation to the mutual
information between the tasks Li & Vitányi (2019).

In practice, the ability to encode tasks jointly helps in particular when using arithmetic coding, which
can exploit redundancies between tasks representations on different levels. Specifically, to encode the
indices of relevant codebook entries, one encodes the length of the codebook, the empirical fraction
of occurrences of the indices, and the arithmetic coding given the fractions. For example, when
performing multi-task learning on the Folktables dataset, in which tasks are highly related, each of
the 60 models was characterized as a 5-dimensional vector (k = 5), resulting in 300 task-specific
parameters overall. To encode these 300 parameters, we used a codebook with rl = 10, which
required 160 bits for the codebook. Encoding the empirical fractions required 90 bits, and arithmetic
coding additional 874 bits. Overall, the encoding length was 1124 bits in total, or ≈ 18.7 bits per task.
In contrast, encoding the same task-specific models separately would result in the sum of encoding
equal to 2591 bits or 43.2 bits per task. This is actually more than double compared to the size of the
joint encoding.

Comparison to the fast-rate bounds of Guan & Lu (2022): As mentioned earlier, Guan & Lu
(2022) proved a fast-rate bound for meta-learning which consists of a multi-task bound and a meta
bound. The multi-task bound provided here, shares a similar structure with the bound of Guan &
Lu (2022), and a similar approach to upper-bound the MGF (Moment generating function). There
are three main differences in how to use the bounds. The first one is that they approximate the
upper-bound for the R(F ) based on a closed-form approximation, which has poorer performance
compared to the numerical optimization, and even in the cases where the empirical error is not small,
their approximation can be even worse than the bound of Theorem 2). The second difference is that
they use Gaussian distributions on the networks that scale with ambient dimensionality, making the
bounds vacuous by several orders of magnitude. The more structural difference is that the sum of the
task-specific complexity terms appears in their bound. On the other hand, we have a joint complexity
term for the task-specific part (which in our case is the length of the multi-task encoding), which as
explained above is much smaller than the sum of individual ones.

Task-relatedness: To check the effect of task relatedness in our results, we report an experiment
with Shuffle Pixel data in which a different number of pixels can change. In this experiment, we
shuffle 100 pixels instead of 200 pixels as in the Tables 1 and 2, therefore, the tasks are more related.
This results in to decrease in the AID from 31.6 to 28.3, and an improvement in the bounds from 0.23
to 0.21, which is consistent with tasks being more related.

A.5 AUXILIARY LEMMAS

Lemma 5. (Berend & Tassa, 2010)[Proposition 3.2] Let Xi, 1 ≤ i ≤ t, be a sequence of independent
random variables for which P (0 ≤ Xi ≤ 1) = 1, X =

∑t
i=1 Xi, and µ = E(X). Let Y be the

binomial random variable with distribution Y ∼ B
(
t, µ

t

)
. Then for any convex function f we have:

Ef(X) ≤ Ef(Y ). (20)

Lemma 6. (Maurer, 2004)[Theorem 1] Let Y be the binomial random variable with distribution
Y ∼ B

(
t, µ

t

)
. Then we have:

E[et kl(Y
t |µt )] ≤ 2

√
t, (21)

where kl(q|p) = q log q
p + (1 − q) log 1−q

1−p is the Kullback-Leibler divergence between Bernoulli
distributions with mean q and p.

Lemma 7. Given the n datasets S1, . . . , Sn of size m. For fixed models, F = (f1, . . . , fn), we have

E[emn kl(R̂(F )|R(F ))] ≤ 2
√
mn. (22)
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Proof. Let f be the function f(x) = mnkl( x
mn |R(F )), this function is convex. If we define

Xi,j = ℓi(fi, zi,k), since fis are fixed, and samples are independent, the random variables Xi,js are
independent. Therefore,

∑
Xi,j = mnR̂(F ), and E[

∑
Xi,j ] = mnR(F ). Let Y ∼ B(mn,R(F )).

Because of Lemma 5 we have

E[ef(mnR̂(F ))] ≤ E[ef(Y )], (23)

or equivalently,

E[e(mn kl(R̂(F )|R(F ))] ≤ E[emn kl( Y
mn |R(F ))]. (24)

Because of Lemma 6, we have:

E[emn kl( Y
mn |R(F )] ≤ 2

√
mn. (25)

Combining these two inequalities completes the proof.

B EXPERIMENTAL DETAILS

In this section, we provide the details of our experiments. Code for reproducing the experiments is
included in the supplementary materials.

B.1 DATASETS

We use six standard datasets that have occurred in the theoretical multi-task learning literature before.

MNIST Shuffled Pixels (SP): (Amit & Meir, 2018) each task is a random subset of the MNIST (Le-
Cun & Cortes, 1998) dataset in which 200 of the input pixels are randomly shuffled. The same
shuffling is consistent across all samples of that task.

MNIST Permuted Labels (PL): (Amit & Meir, 2018) like MNIST-SP, but instead of shuffling pixels,
the label ids of each task are randomly (but consistently) permuted.

Folktables: (Ding et al., 2021a) A tabular dataset consisting of public US census information. From
personal features, represented in a binary encoding, the model should predict if a person’s income is
above or below a threshold. Tasks correspond to different geographic regions.

Multi-task dataset of product reviews (MTPR): (Pentina & Lampert, 2017) The data points are
natural language product reviews, represented as vectorial sentence embeddings. The task is to predict
if the sentiment of the review is positive or negative. Each product forms a different task.

split-CIFAR10: (Zhao et al., 2018) tasks are created by randomly choosing a subset of 3 labels from
the CIFAR10 dataset (Krizhevsky, 2009) and then sampling images corresponding to these classes.

split-CIFAR100: (Zhao et al., 2018) like split-CIFAR10, but using label subsets of size 10 and
images from the CIFAR100 dataset (Krizhevsky, 2009).

B.2 MODEL ARCHITECTURES

For the MNIST experiments, we use convolutional networks used in Amit & Meir (2018). For the
vectorial dataset Product and the tabular dataset Folktables, we use 4-layer fully connected networks.
For the CIFAR experiments, we use two different networks: 1) The CNN used in Scott et al. (2024),
and a ViT model pretrained from ImageNet (Dosovitskiy et al., 2021). The details of the model
architectures are provided in Table 6.

The models’ ambient dimensions (number of network weights) range from approximately 12000 to
approximately 5.5 million, i.e. far more than the available number of samples per task. As random
matrices P for the single-task parametrization (1), we use the Kronecker product projector of Lotfi
et al. (2022), P = Q1 ⊗Q2/

√
D, for Q1, Q2 ∼ N (0, 1)

√
D×

√
d. By this construction, the matrix

P ∈ RD×d never has to be explicitly instantiated, which makes the memory and computational
overhead tractable. For the multi-task representation (3), we use the analogous construction to form
Q′ = [P1, P2, . . . , Pk] = Q′

1 ⊗Q′
2/
√
D ∈ RD×kl.

In this section, we provide experimental details to reproduce the results.
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B.3 MODEL TRAINING DETAILS

All models are implemented in the PyTorch framework. We train them for 400 epochs with Adam
optimizer, weight decay of 0.0005, and learning rate from {0.1, 0.01, 0.001}. The hyperparameter l
(the dimensionality of the random matrices which build Q) is chosen from values in {20, 30, 40, 50,
60, 70, 80, 90, 100, 120, 150, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1200, 1400, 1600, 1800,
2000, 2500, 3000, 3500, 4000, 5000, 6000, 7000, 8000}. The hyperparameter k (the number of basis
vectors in Q) is chosen from values in {5, 10, 15, 20, 30, 35, 40, 50, 60, 70, 80, 90}.

We train all shared and task-specific parameters jointly. After the training is over, we first quantize
the shared parameters, and after fixing them, we quantize each task-specific parameter separately.
Quantization training is done with 30 epochs using SGD with a learning rate of 0.0001. For the
codebook size, for the single-task learning, we choose it from {2, 3, 5, 10, 15, 20, 30, 40}. For
multi-task we choose the codebook size for shared parameters (rG) from {10, 15, 20, 30} and for
encoding the joint task-specific vectors we use codebook size (rl) from {3, 10, 15, 20, 25, 30}. For
transfer learning, we use a 1-bit hyperparameter to decide if we want to learn a small new codebook
for the new task or transfer the codebook from the multi-task learning stage. For each dataset, the
hyperparameters are also encoded and considering in compute the length encoding, since we tune the
hyperparameter in a data-dependent way.

The detailed numeric values used for quantizing parameters in Table 2 are shown in Table 4 and
Table 5.

Table 4: Numeric values contributing to the generalization bounds in Table 2 for n: number of tasks,
m: average number of examples per task, L: number of classes.

dataset MNIST SP MNIST PL Folktables Products
n /m /L 30 / 2000 / 10 30 / 2000 / 10 60 / 900 / 2 60 / 2000 / 2

Single Task

training error 0.229 0.194 0.272 0.160
test error 0.239 0.205 0.279 0.160

Upper bound on R 0.612 0.576 0.566 0.332
codebook size r 10 10 5 5

(average) encoding length 854.0 862.6 211.7 216.4

Multi-task

training error 0.101 0.066 0.272 0.139
test error 0.096 0.064 0.268 0.141

Upper bound on R 0.196 0.350 0.388 0.203
codebook sizes rg / rl 10 / 3 15 / 10 10 / 10 10 / 10

l(E) 2323 14887 1586 1192
lE(f1, . . . , fn) 508 4796 686 1128

(average) encoding length 94.4 651.1 37.9 38.7
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Table 5: Numeric values contributing to the generalization bounds in Table 2.
dataset split-CIFAR10 split-CIFAR100

Model CNN ViT CNN ViT
n /m /L 100 / 453 / 3 30 / 1248 / 3 100 / 450 / 10 30 / 1250 / 10

Single Task

training error 0.310 0.182 0.637 0.376
test error 0.406 0.203 0.714 0.417

Upper bound on R 0.874 0.660 0.994 0.906
codebook size r 10 10 10 10

(average) encoding length 544.4 860.8 542.0 1529.2

Multi-task

training error 0.305 0.106 0.627 0.274
test error 0.331 0.114 0.637 0.313

Upper bound on R 0.527 0.280 0.830 0.658
codebook sizes rg / rl 10 / 20 10 / 20 20 / 10 20 / 30

l(E) 2358 3109 4209 11512
lE(f1, . . . , fn) 4144 1747 3341 4957

(average) encoding length 65.0 161.9 75.5 549.0
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Table 6: Model Architectures
Datasets Layer Details

MNIST-SP/
MNIST-PL

Conv1 Conv2d(input: C, output: 10, kernel: 5× 5)
Activation ELU
Pooling MaxPool2d(kernel: 2× 2)
Conv2 Conv2d(input: 10, output: 20, kernel: 5× 5)
Activation ELU
Pooling MaxPool2d(kernel: 2× 2)
Flatten -
FC1 Linear(input: Conv Output, output: 50)
FC_out Linear(input: 50, output: Output_dim)

Products/
Folktables

FC1 Linear(input: input_dim, output: 128)
Activation ReLU
FC2 Linear(input: 128, output: 64)
Activation ReLU
FC3 Linear(input: 64, output: 32)
Output Linear(input: 32, output: Output_dim)

split-CIFAR10/
split-CIFAR100
(ConvNet)

Conv1 Conv2d(input: C, output: 16, kernel: 5× 5)
Activation ReLU
Pooling MaxPool2d(kernel: 2× 2)
Conv2 Conv2d(input: 16, output: 32, kernel: 5× 5)
Activation ReLU
Pooling MaxPool2d(kernel: 2× 2)
Flatten -
FC1 Linear(input: 800, output: 120)
FC2 Linear(input: 120, output: 84)
FC3 Linear(input: 84, output: Output_dim)

split-CIFAR10/
split-CIFAR100
(ViT)

Patch Embedding Conv2d(input: 3, output: 192, kernel: 16× 16, stride: 16)

12 Transformer Blocks

LayerNorm(shape: 192, eps: 1e−6)
Attention:

Linear(input: 192, output: 576) for qkv
Linear(input: 192, output: 192) for projection

MLP:
LayerNorm(shape: 192, eps: 1e−6)
Linear(input: 192, output: 768)
Activation: GELU
Linear(input: 768, output: 192)

Post-Norm LayerNorm(shape: 192, eps: 1e−6)
Classification Head Linear(input: 192, output: Output_dim)
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