
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

AN EXACT SOLVER FOR SATISFIABILITY MODULO
COUNTING WITH PROBABILISTIC CIRCUITS

Anonymous authors
Paper under double-blind review

ABSTRACT

Satisfiability Modulo Counting (SMC) is a recently proposed general language to
reason about problems integrating statistical and symbolic artificial intelligence.
An SMC formula is an SAT formula in which the truth values of a few Boolean
predicates are determined by model counting, or equivalently, probabilistic infer-
ence. Existing solvers optimize surrogate objectives and hence provide no formal
guarantee. An exact solver is desperately needed. However, the direct integration
of Satisfiability and probabilistic inference solvers results in slow performance
because of many back-and-forth invocations of both solvers. We develop KOCO-
SMC, a fast exact SMC solver, exploiting the fact that many similar probabilistic
inferences are needed throughout SMC solving. We pre-compile the probabilis-
tic inference part of SMC solving into probabilistic circuits, supporting efficient
lower and upper-bound computation. Experiment results in several real-world ap-
plications demonstrate that our approach provides exact solutions, much better
than those from approximate solvers, while is more efficient than direct integra-
tion with the current exact solvers.

1 INTRODUCTION

Symbolic and statistical Artificial Intelligence (AI) are two core paradigms with distinct strengths
and limitations: symbolic AI, exemplified by SATisfiability (SAT) and constraint programming,
excels in constraint satisfaction but cannot handle probability distributions. Statistical AI cap-
tures probabilistic uncertainty but does not guarantee to satisfy the symbolic constraints. Inte-
grating symbolic and statistical AI remains an open field and has gained much research attention
recently (Freuder & O’Sullivan, 2023; nes, 2023; neu, 2023).

As a motivating example, a manager needs to determine a set of supplier channels to ensure sufficient
raw materials for good production, taking into account stochastic events such as natural disasters or
policy risks. This robust supply chain design problem necessitates both symbolic reasoning to find
satisfiable supplier channels and statistical inference to ensure the suppliers are robust to stochastic
natural disasters. Slightly modified problem formulations can be found in many real-world appli-
cations including vehicle routing (Toth & Vigo, 2002), internet resilience (Israeli & Wood, 2002),
social influence maximization (Kempe et al., 2005), energy security (Almeida et al., 2019), etc.

The recently proposed Satisfiability Modulo Counting (SMC) (Fredrikson & Jha, 2014; Li et al.,
2024) provides a general language to reason about problems integrating statistical and symbolic AI,
including the aforementioned supply chain design problem. Specifically, an SMC formula is an SAT
formula in which the truth values of a few Boolean predicates are determined by model counting,
which calculates the number of distinct variable assignments so that the SAT formula evaluates to
true. The statistical reasoning is formulated as the model counting because inference over marginal
probability distribution can be cast as weighted model counting problems (Chavira & Darwiche,
2008). Solving SMC problems poses significant challenges since they are NPPP-complete (Park &
Darwiche, 2004).

Several approximate SMC solvers have been proposed. Approximate solvers based on Sample Aver-
age Approximation (Kleywegt et al., 2002) were the most widely implemented, which used sample
mean to estimate the model counting. Another approximate solver, XOR-SMC (Li et al., 2024),
offers a constant approximation guarantee, by using the XOR-sampling to estimate the counting.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

0.01 0.1 1 10 100 1000 10000
Running Time in seconds (Lower is better)

0%

20%

40%

60%

80%

Pe
rc

en
ta

ge
of

So
lv

ed
In

st
an

ce
s

(H
ig

he
r

is
be

tt
er

)

KOCO-SMC (ours)
SAT-UAI10
SAT-HBFS
SAT-D4
SAT-ADDMC
SAT-SSTD

Easy Medium Hard
Problem Difficulty (Increasing Difficulty)

0%

20%

40%

60%

80%

Pe
rc

en
ta

ge
of

So
lv

ed
In

st
an

ce

KOCO-SMC (ours)
XOR-SMC
Gibbs-SAA
BP-SAA

Figure 1: (Left) Our KOCO-SMC uses less time than all the exact baselines on the synthesized
SMC dataset. Our KOCO-SMC takes 10 seconds to solve roughly 45% of SMC instances while
baselines need 3 hours. (Right) The performance changes as the SMC problem becomes more
challenging. When the SMC problem is harder to solve, approximate solvers constantly produce
incorrect solutions. The performance decline of KOCO-SMC is slower than the rest.

Yet the solution quality of both methods lacks a formal guarantee, as the solution could still violate
a fraction of the constraints. Current exact SMC solvers directly combine an SAT solver for satisfia-
bility with a model counting solver for statistical inference. Specifically, the SAT solver first gives a
feasible variable assignment for the Satisfiability problem, which is then checked against statistical
inference constraints by a model counting solver. If the assignment fails to meet all constraints,
the process restarts with a new variable assignment. This method results in an excessive number of
back-and-forth invocations of SAT and model counter. Particularly for unsatisfiable problems, these
exact SMC solvers enumerate all possible solutions before confirming unsatisfiability and thus are
extremely slow.

We introduce KOCO-SMC, an exact and efficient SMC solver, mitigating the extreme slowness typ-
ically encountered in unsatisfiable SMC problems. KOCO-SMC saves time by detecting the conflict
early and pruning the branch of the variable assignment tree. The core idea involves tracking the
upper and lower bounds of the probability inside probabilistic constraints during variable assign-
ments. If these bounds violate the satisfaction condition—such as when the upper bound of the
probability falls below the required minimum. These conflicts arising from probabilistic constraints
are recorded as ”learned Boolean clauses” and appended to the Boolean part, preventing the same
conflict from occurring in future iterations. Furthermore, integrating knowledge compilation from
discrete functions into probabilistic circuits allows for rapid, repetitive updates of bounds. Conse-
quently, our KOCO-SMC approach greatly improves the efficiency of SMC solving.

In experiments, we evaluate several approximate and exact solvers on 1350 SMC problems from the
UAI Competition benchmark. Figure 1 shows the comparison with state-of-the-art solvers. Com-
pared with exact solvers, KOCO-SMC scales the best. Our KOCO-SMC solves 85% of SMC prob-
lems in 3 hours while other exact solvers can only solve 45%, and KOCO-SMC needs 10 seconds
to solve those 45% of SMC instances. Compared with those approximate solvers, KOCO-SMC
reliably delivers higher quality solutions within the time limit. KOCO-SMC solves 40% more prob-
lems for hard SMC problems, whereas approximate solvers consistently produce infeasible solu-
tions. We also demonstrate the process of formulating real-world problems, supply network design
and package delivery, into the SMC formulation, and highlight the strong capability of our solver in
addressing these problems.

To summarize, our main contributions are: (1) We propose KOCO-SMC, an efficient exact solver
for SMC problems, integrating probabilistic circuits for effective conflict detection. (2) Experiments
on synthetic datasets illustrate KOCO-SMC’s superior performance compared to state-of-the-art
approximate and exact baselines in both solution quality and time efficiency. (3) The case study
demonstrates the potential and effectiveness of applying KOCO-SMC to real-world problems.

2 PRELIMINARIES

Satisfiability Problems and Its Solver. Satisfiability (SAT) determines whether there exists an
assignment of truth values to Boolean variables that makes the entire logical formula true. Numerous

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

SAT solvers (Dudek et al., 2020b; Marques-Silva & Sakallah, 1999; Eén & Sörensson, 2003; Hamadi
et al., 2010) have demonstrated great performance in various applications.

Conflict-Driven Clause Learning (CDCL) (Silva & Sakallah, 1996) is a modern SAT-solving algo-
rithm that has been widely applied. The process begins by making decisions to assign values to
variables and propagating the consequences of these assignments. If a conflict is encountered (i.e.,
a clause is unsatisfied), the solver performs conflict analysis to learn a new clause that prevents the
same conflict in the future. The solver then backtracks to an earlier decision point, and the process
continues. Through clause learning and backtracking, CDCL improves efficiency and increases the
chances of finding a solution or proving unsatisfiability.

Probabilistic Inference and Model Counting. Probabilistic inference encompasses various tasks,
such as calculating conditional probability, marginal probability, maximum a posteriori probability
(MAP), and marginal MAP (MMAP). Each of them is essential in fields like machine learning, data
analysis, and decision-making processes. Model counting calculates the number of satisfying as-
signments (models) for a given logical formula, and is closely related to probabilistic inference. In
many scenarios, especially in discrete probabilistic models, computing probabilities can be trans-
lated to model counting, by counting the number of ways certain events or configurations can occur.

Problem Definition for Satisfiability Modulo Counting Satisfiability Modulo Counting (SMC) is
a recently proposed extension of SAT (Fredrikson & Jha, 2014; Li et al., 2024), which incorporates
constraints that involve model counting. Recognizing the intrinsic connection between probabilis-
tic inference and model counting, SMC adaptively captures the satisfiability problem in scenarios
involving uncertainty.

We use lower-case letters for random variables (i.e., x, y, z, and b) and use bold symbols (i.e., x, y, z
and b) as vectors of Boolean variables, e.g., x = (x1, . . . , xn). Each variable xi takes binary values
in {False, True}. Given a formula ϕ for Boolean constraints and weighted functions {fi}Ki=1, and
{gi}Ki=1 for the discrete probability distributions, the SMC problem is to determine if the following
formula is satisfiable over random variables x = (x1, x2, . . . , xn),yi = (y1, y2, . . . , yn), zi =
(z1, z2, . . . , zn) and b = (b1, b2, . . . , bL):

ϕ(x,b), where bi ⇔
∑
yi

fi(x,yi) ≥ qi or bi ⇔
∑
yi

fi(x,yi) ≥
∑
zi

gi(x, zi). (1)

Each fi (or gi) is an unnormalized discrete probability function over Boolean variables in x and yi

(respectively, x and zi). Hence,
∑

fi and
∑

gi compute the marginal probabilities, with yi and zi
as latent variables that are marginalized out. Thus, only x and b are decision variables. Each bi is
referred to as a Probabilistic Predicate, which is evaluated as true if and only if the inequality over
the marginalized probability is satisfied. Each probabilistic constraint is in the form of either (1) the
marginal or joint probability surpassing a given threshold qi, or (2) one marginal joint probability
being greater than another. Note that the biconditional “⇔” can be generalized to “⇒” or “⇐”,
inequality “≥” case in the above definition can be generalized to “=, >” cases and the reversed
direction inequality “≤, <” cases.

In summary, this SMC formulation provides a general language to reason about problems integrat-
ing symbolic and statistical constraints. Specifically, the symbolic constraint is characterized by a
Boolean satisfiability formula ϕ. The statistical constraint is captured by constraints involving the
weighted model counting term

∑
fi.

Probabilistic Circuits (PCs) are a broad category of probabilistic models known for enabling a
variety of exact and efficient inferences (Darwiche, 2002; 1999; Poon & Domingos, 2011; Rahman
et al., 2014; Kisa et al., 2014; Dechter & Mateescu, 2007; Vergari et al., 2020; Peharz et al., 2020).
Formally, PC is a computational graph encoding a probability distribution P (x) over a set of random
variables x. The graph is composed of leaf nodes, product nodes, and sum nodes. Each node v
represents a probability distribution over certain random variables. Figure 2(c) gives an example
PC over four variables. A leaf node u encodes a tractable probability distribution Pu(xi) over a
single random variable xi, such as Gaussian or Bernoulli distributions. A product node u defines
a factorized distribution Pu(x) =

∏
v∈ch(u) Pv(x) where ch(u) denotes the children nodes of u.

A sum node u represents a mixture distribution Pu(x) =
∑

v∈ch(u) wvPv(x), where wv represent
the normalization weights of child node v. The root node r in the graph has no parent node. A
probabilistic circuit is a model of its root node distribution.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 2: Example of formulating the robust supply chain problem into SMC. (a) shows a road map
containing 4 locations and the road between them. The connectivity of each road is denoted by a
random variable xi, where xi = True indicates the corresponding road is well connected. (b) Model
the supply routine planning as an SMC problem. (c) the probability of every connectivity situation,
represented as the Probabilistic Circuit data structure. Each xi or xi node denotes a leaf node that
encodes a Bernoulli distribution P (xi = True) = 1 or P (xi = False) = 1. ⊕ and ⊗ represent the
sum and product nodes respectively. The values next to the edges are weights for summation nodes.

Probabilistic circuits with specific structural properties enable efficient probability inferences, scal-
ing polynomially with circuit size. For example, partition functions and marginal probabilities are
computed efficiently due to decomposability and smoothness, MAP requires determinism for maxi-
mization, and MMAP further requires Q-determinism Choi et al. (2022).

The process of transforming a probability distribution into a probabilistic circuit with a specific struc-
ture is referred to as knowledge compilation. Several knowledge compilers, such as ACE (Darwiche
& Marquis, 2002), C2D (Darwiche, 2004), and D4 (Lagniez & Marquis, 2017), have been developed
to convert discrete distributions into tractable PCs for various probabilistic inference tasks.

3 METHODOLOGY

3.1 MOTIVATION

We use supply chain design as a case study for the SMC problem to highlight the limitations of
current approximate and exact SMC solvers. As shown in Figure 2(a), the task is to deliver raw
materials from suppliers to demanders on a road map. We slightly abuse the notation for xi, where
i = 1, 2, 3, 4. In the Boolean formula ϕ, xi = True represents the selection of road xi in the route.
In the probabilistic constraint, however, xi = True indicates that road xi is clear. The choice is
between route 1 (x1 = x2 = True) and route 2 (x3 = x4 = True). This choice is captured by the
Boolean variables b1 and b2, where b1 = True (and similarly b2 = True) indicates the selection of
route 1 (or route 2, respectively).

Various random events, such as natural disasters and car accidents, may affect road connectivity.
Such stochasticity is formulated as a joint probability distribution over all roads P (x1, x2, x3, x4)
(modeled as a probabilistic circuit in Figure 2(c)). The probability of x1 and x2 being well connected
is the marginal probability P (x1, x2 are clear) =

∑
x3,x4

P (x1 = x2 = True, x3, x4).

Let q ∈ [0, 1] represent the minimum required probability of good connectivity along the route. The
task of selecting a route that guarantees a sufficient probability (Figure 2(b)) can be formulated as
an SMC problem:

ϕ(x,b) = (b1 ⊕ b2)︸ ︷︷ ︸
(a)

∧ (b1 ⇒ x1 ∧ x2)︸ ︷︷ ︸
(b)

∧ (b2 ⇒ x3 ∧ x4)︸ ︷︷ ︸
(c)

,

b1 ⇒
∑
x3,x4

P (x1, x2, x3, x4) ≥ q︸ ︷︷ ︸
(e)

, b2 ⇒
∑
x1,x2

P (x1, x2, x3, x4) ≥ q︸ ︷︷ ︸
(f)

(2)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

where ⊕ is the logical “exclusive or” operator. In part (a), the constraint ensures that only one route
is selected. In part (b), the clause (b1 ⇒ x1 ∧ x2) indicates that: if route 1 is selected, both x1 and
x2 must be assigned True, representing the edge selection. Part (c) applies a similar condition for
route 2. In part (e),

∑
x3,x4

P (x1, x2, x3, x4) = P (x1, x2) marginalizes out x3 and x4, representing
the probability of route 1’s condition under random factors. Part (f) is analogous to part (e).

An existing SMC solver (like the SAT-* solver in our experiments) finds the routine in the following
manner. If we set q = 0.5,

1. It first uses an SAT solver to solve the Boolean SAT problem ϕ(x,b) and proposes a solution,
e.g., x1 = x2 = b1 = True, x3 = x4 = b2 = False (indicating route 1).

2. Then, it infers the marginal probability
∑

x3,x4
P (x1 = x2 = True, x3, x4) = 0.1 < 0.5, and

find it violates the probabilistic constraint.

3. Setting x1 = x2 = True causes a conflict, so we add clause (x1 ∨ x2) to ϕ to avoid the same
conflict. We then return to step 1 and propose a new assignment.

In this process, the SAT solver and probability inference are sequentially dependent, each waiting
for the other to finish, which results in time waste. In contrast, our KOCO-SMC immediately detects
a conflict upon the partial assignment x1 = True, saving time by avoiding further assignments to
the remaining variables. Although x2 is still unassigned, the highest possible probability value is
below 0.5, i.e., maxx2

∑
x3,x4

P (x1 = True, x2, x3, x4) = 0.1 < 0.5. This should trigger an
immediate conflict instead of waiting for the SAT solver to assign x2. Therefore, KOCO-SMC can
solve SMC problems more efficiently.

3.2 MAIN PIPELINE OF KOCO-SMC

This section presents the proposed KOCO-SMC approach for solving SMC problems both ex-
actly and efficiently. KOCO-SMC follows the Conflict-Driven Clause Learning (CDCL) frame-
work (Silva & Sakallah, 1996; Eén & Sörensson, 2003) (Algorithm 1 in the Appendix), which
comprises four key components: variable assignment, propagation, conflict clause learning, and
backtracking. With the inclusion of probabilistic constraints in SMC problems, KOCO-SMC is
further tailored to efficiently address these challenges.

Pre-compilation. Before SMC problem solving, a knowledge compilation step compiles all dis-
tributions in probabilistic constraints into smooth, decomposable, and Q-deterministic probabilistic
circuits. An example is provided in Figure 2(c).

Propagation. In the CDCL algorithm, unit propagation is used to propagate new variable assign-
ments across clauses. This process can create additional variable assignments or detect conflicts. For
example, if we have the clauses (x1 ∨ ¬x2) and (x2 ∨ x3), and we assign x1 = False, unit prop-
agation would force x2 = False, leading to further propagation x3 = True. This significantly
accelerates SAT solving. However, this procedure is specifically designed for Boolean clauses. How
to incorporate probabilistic constraints into the propagation process, extract useful information from
current variable assignments, and effectively detect conflicts remains an open problem. We propose
the Upper-Lower Watch (ULW) approach, an efficient propagation method for probabilistic con-
straints that leverages the power of probabilistic circuits. By utilizing modern knowledge compilers,
most common probability distributions can be compiled into tractable probabilistic circuits, making
our approach broadly applicable.

Conflicts Clause Learning. In the CDCL algorithm, once a conflict is detected within a Boolean
clause, there are existing techniques to add a learned clause to the original Boolean formula, pre-
venting the same conflict from occurring in the future. When a conflict arises in a probabilistic
constraint, KOCO-SMC generates a learned conflict clause by negating the current variable assign-
ments involved in the constraint and connecting them with logical OR. For example, a conflict in∑

y P (x1 = True, x2 = False, y) > Q will produce the clause (¬x1 ∨ x2), preventing the
assignment x1 = True, x2 = False from being used in future iterations.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3.3 UPPER LOWER WATCH FOR TRACKING PROBABILISTIC CONSTRAINTS

The satisfaction or conflict of a probabilistic constraint is determined by the involved marginal prob-
ability. By maintaining a range of the marginal probability and refining it with each new variable
assignment, we can detect satisfiability or conflict early when the range significantly deviates from
the threshold. Determining the range of a marginal probability is solving the following problem:

max
xremain

∑
y

P (xassigned,xremain,y), min
xremain

∑
y

P (xassigned,xremain,y) (Marginal MAP)

where xassigned denotes the assigned variables, xremain represents the unassigned variables, and y are
the marginalized-out latent variables. This problem is known as the Marginal MAP (MMAP) infer-
ence task. As discussed in the preliminaries, probabilistic circuits with specific structural properties
can efficiently compute MMAP queries. The maximum is referred to as the ”upper bound,” and the
minimum as the ”lower bound.” Our Upper-Lower Watch (ULW) algorithm monitors both values.

By leveraging the pre-compilation step, we can model probabilistic distributions using Q-
deterministic, decomposable, and smooth probabilistic circuits. The computation of upper and lower
bounds is then reduced to performing MMAP inference on these circuits. More specifically, each
node v in the probabilistic circuit represents a distribution Pv over a subset of variables. The ULW
algorithm associates each node with an upper bound UB(v) and a lower bound LB(v) for the
marginal probability of the sub-distribution Pv under the current assignment. Therefore, the UB
and LB at the root node provide the exact upper and lower bounds we seek.

Once a new variable is assigned, the bounds associated with each node can be updated in a bottom-up
manner. The update scheme for the leaf nodes is as follows:

• For a leaf node v over variable x (the variable to be decided), update UB(v) = max{Pv(x =
True), Pv(x = False)} and LB(v) = min{Pv(x = True), Pv(x = False)} if x is not as-
signed. Otherwise, when variable x is assigned to val, UB(v) = LB(v) = Pv(x = val).

• For a leaf node v over y (the variable to be marginalized), update UB(v) = LB(v) = 1.

We use ch(v) to denote the set of children nodes of v. The intermediate nodes, product nodes or
sum nodes, can be updated by:

• For a product node p, update UB(p) =
∏

u∈ch(p) UB(u), and LB(p) =
∏

u∈ch(p) LB(u).

• For a sum node s, update UB(s) = maxu∈ch(s) wuUB(u), and LB(s) = minu∈ch(s) wuLB(u).

This updating mechanism only updates paths from the updated leaf nodes to the root, which ensures
its efficacy. The correctness is guaranteed by Q-determinism, smoothness and decomposability
property of the probabilistic circuit. A former justification is in Lemma 1, see proof in the Ap-
pendix C. This bound-updating scheme forms the propagation process.

The bounds at the root node represent the bounds for the marginal probability in the constraint.
Conflict detection then becomes straightforward. For example, consider the constraint b ⇔∑

y P (x,y) ≥ q, where P (x,y) has been compiled into a probabilistic circuit rooted at node
root. If UB(root) < q or LB(root) ≥ q, we can safely conclude that there is a conflict or that the
constraint is certainly satisfied, respectively.

In addition, frequent variable assignments can empirically cause excessive delays due to the need for
constant bound updates. Inspired by the Two-Literal Watch technique (Marques-Silva & Sakallah,
1999), where the propagation reaches a Boolean clause only when two specific literals are newly
assigned—regardless of the number of literals in the clause—we apply a similar strategy to prob-
abilistic constraints. We define two watched variables for each probabilistic constraint: one de-
cision variable and the probabilistic predicate. For instance, in b1 ⇔

∑
y1,y2

P (x1, x2, y1, y2),
we designate b1 and either x1 or x2 as the watched variables. The upper and lower bounds of∑

y1,y2
P (x1, x2, y1, y2) are updated only when one of the watched variables is assigned, and this

process continues until no unassigned variables remain.

Assumption 1 (Q-Deterministic, Smooth and Decomposable (Choi et al., 2022)). A smooth proba-
bilistic circuit when all children of every sum node share identical sets of variables; A probabilistic

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

circuit is decomposable if the children of every product node have disjoint sets of variables; A proba-
bilistic circuit is Q-deterministic when a partial assignment of all query (decision) variables ensures
that no more than one child of the sum node produces a non-zero output. Smoothness, decompos-
ability, and Q-determinism enable tractable computation of any MMAP query.

Lemma 1. Suppose P (x,y) is a Q-deterministic and decomposable probabilistic circuit defined
over Boolean variables x = (x1, . . . , xN) and y = (y1, . . . , yM). Our ULW algorithm finds exact
bounds.

Sketch of proof. The result is obtained by applying the theoretical properties of Q-deterministic,
smooth, and decomposable probabilistic circuits to solve the marginal MAP problem. Please refer
to Appendix C for a detailed proof.

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

For the experiment, we consider the satisfiability of the following SMC problem: ϕ(x) ∧(∑
y f(x,y) > Q

)
where ϕ(x) is a Boolean formula in CNF, f is a (unnormalized) probability

distribution, x denotes the set of decision variables, y represents variables to be marginalized, and
Q ∈ R is the threshold value. We exclude the variable b from Equation 1 and fix the number of
counting constraints to one in order to better control the properties of SMC problems. This allows
us to gain clearer insights into the capabilities of our solver.

Dataset For f in the probabilistic constraints, we used the partition function-task benchmark that
appears in the Uncertainty in Artificial Intelligence (UAI) Challenge from 2010 and 2022. 50 mod-
els over binary variables are kept. The remaining models can be grouped by 6 categories Alchemy (1
model), CSP (3 models), DBN (6 models), Grids (2 models), Promedas (32 models), and Segmen-
tation (6 models). For ϕ in the Boolean satisfiability, we randomly generated 9 different 3-coloring
problems, in CNF, using CNFgen. The number of involved binary variables ranged from 75 to 675.
The threshold value Q varies according to the task, and will be detailed in the respective sections.

Implementation of KOCO-SMC We applied ACE (Darwiche & Marquis, 2002) as the knowl-
edge compiler. The CDCL skeleton of KOCO-SMC is implemented on top of MiniSAT (Eén &
Sörensson, 2003), for its easily extensible structure. For the ablation study, we include a version
without ULW (KOCO-SMC without ULW).

Baselines We consider several approximate SMC solvers and exact SMC solvers. For the approxi-
mate solver, we include the Sampling Average Approximation (SAA) (Kleywegt et al., 2002)-based
method. Specifically, we use Lingeling (Biere, 2017) SAT solver to enumerate solutions and esti-
mate

∑
y f(xf ,y) by an average over samples, which enables approximate inference of marginal

probabilities. We include Gibbs Sampler (Shapiro, 2003) (Gibbs-SAA) and Belief Propagation (BP-
SAA) (Fan & Yexiang, 2020). We also include XOR-SMC (Li et al., 2024), an approximated solver
specifically for SMC problems.

The baseline exact solver is composed of an exact SAT solver and probabilistic inference solvers.
This approach first identifies a solution to the Boolean formula and then sequentially verifies it
against the probabilistic constraints. For the Boolean SAT solver, we selected Lingeling (Biere,
2017) for its superior performance. For probabilistic inference, we selected top-performing solvers
from the Uncertainty in Artificial Intelligence (UAI) Competitions. Due to limited access to these
solvers, we chose the UAI2010 winning solver implemented in libDAI (Mooij, 2010) (SAT-UAI10)
and the solver based on the hybrid best-first branch-and-bound algorithm (SAT-HBFS) developed
by Toulbar2 (Cooper et al., 2010). Although Toulbar2 was not the winner of the Partition Function
or Marginal Probability tracks, it offers the necessary functionality and demonstrated strong perfor-
mance in our tests. Due to the underlying connection between probabilistic inference and weighted
model counting, we also include model counters from recent Model Counting competitions (Fichte
et al., 2021) from 2020 to 2023: d4 solver (Lagniez & Marquis, 2017) (SAT-D4), ADDMC (Dudek
et al., 2020a) (SAT-ADDMC), and SharpSAT-td (Korhonen & Järvisalo, 2023) (SAT-SSTD).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

10−35 10−30 10−25 10−20 10−15 10−10 10−5 1 105

Threshold Value (Normalized)

0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge
of

So
lv

ed
In

st
an

ce
s

KOCO-SMC (ours)
XOR-SMC
Gibbs-SAA
BP-SAA

Figure 3: Comparison of KOCO-SMC with approximate solvers on solving SMC instances across
varying thresholds. As the threshold increases from 10−35 to 10−10, the chance of discovering
satisfying configurations decreases, leading to a drop in all solvers’ performance. From 10−5 to
105, most SMC problems become unsatisfiable. Higher thresholds impose more extreme conditions,
allowing solvers to quickly determine unsatisfiability, resulting in improved performance. KOCO-
SMC consistently outperforms others, maintaining a high percentage of solved instances.

4.2 RESULT ANALYSIS

Comparison with Approximate Solvers Our approach is compared with baselines across a total
of 9× 50 combinations of benchmark CNF and probabilistic models. For each combination, we use
the partition function of the probabilistic model multiplied by various scalars as the varying thresh-
olds. The scalars range from 10−35 to 105, as shown on the x-axis of Figure 3. Each approximate
solver runs 5 times on each problem, and if one correct solution is found, the problem is considered
’solved’. The portion of solved instances in 1 hour is shown in Figure 3.

As the threshold increases from 10−35 to 10−10, most SMC problems remain satisfiable, but the
likelihood of finding a satisfying configuration decreases, causing a performance decline across all
solvers. Between 10−5 and 105, most problems become unsatisfiable. Higher thresholds create more
extreme conditions, enabling solvers to quickly detect unsatisfiability and improve performance.
Overall, KOCO-SMC demonstrates its strong performance across varying threshold levels.

Comparison with Exact Solvers We study the performance of different exact SMC solvers facing
SMC problems with different numbers of satisfying solutions. This is accomplished by changing the
value of threshold Q and measuring the solving time. As the increase of Q, satisfying assignments
become rare and finally unsatisfiable.

An illustrating result on a specific combination (3-color-5x5.cnf with smokers 10.uai) is shown
in Figure 4(left). At low thresholds, all approaches quickly find a satisfying assignment; KOCO-
SMC’s initial time is higher than average due to the pre-compilation of the probabilistic model. As
the threshold rises, satisfying assignments become rare, leading to increased time costs. Notably,
after the problem shifts from satisfiable to unsatisfiable, our methods’ (KOCO-SMC) time cost de-
creases, while others maintain high time consumption. This efficiency is due to our integrated ULW
propagation, allowing early identification of unsatisfiability, while others have to enumerate all pos-
sible solutions before conclusion. In cases of extremely high thresholds, our method concludes
unsatisfiability immediately.

Runtime Evaluation The efficiency of the KOCO-SMC can be further illustrated by the evaluation
of the whole benchmark. We pick three kinds of threshold values: a critical threshold beyond which
the SMC becomes UNSAT, 50% of the critical threshold, and 150% of the critical threshold. We
have 1350 different SMC instances in total. Figure 4 shows the relation of the percentage of solved
instances with the running time. KOCO-SMC exhibits significantly better performance.

4.3 CASE STUDIES

Effectiveness of Upper-Lower Bound Watch In Figure 5(left), ULW propagation accelerates
KOCO-SMC by 10 times compared with KOCO-SMC without ULW when the threshold reaches

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

6.09 6.44 6.80 7.18 7.58 8.01 8.46 8.93

Threshold (multiply by 10124 for actual value)

10−1

100

101

102

103

104

R
un

ni
ng

Ti
m

e
(s

)

KOCO-SMC (ours)
SAT-UAI10
SAT-HBFS
SAT-D4
SAT-ADDMC
SAT-SSTD

1e2 1e3 1e4 1e5 1e6 0.01 0.1 1 10 100 1000 10000
Running Time (s)

0

20

40

60

80

So
lv

ed
In

st
an

ce
s

(%
)

KOCO-SMC (ours)
SAT-UAI10
SAT-HBFS
SAT-D4
SAT-ADDMC
SAT-SSTD

Figure 4: Comparing with exact solvers, KOCO-SMC solves 80% of SMC problems in 20 minutes
while others solve 40% in 3 hours. (Left) The running time (x-axis) of experiments on a specific
CNF and a Probabilistic Model with varying thresholds (y-axis). Our method typically requires
significantly less time across most instances. Particularly when the threshold exceeds the critical
point at which the SMC becomes UNSAT, our approach exhibits an improved performance. (Right)
The percentage of instances solved in a given time limit.

8.01 8.46 8.93
Threshold (multiply by 10124 for actual value)

100

101

102

R
un

ni
ng

Ti
m

e
(s

)

1e2 1e3 1e4 1e5 1e6

Koco-SMC
Koco-SMC (without ULW)

0.01 0.1 1 10 100 1000 10000
Running Time (s)

0

25

50

75
So

lv
ed

In
st

an
ce

s
(%

) Koco-SMC
Koco-SMC (without ULW)

Figure 5: UWL in KOCO-SMC is shown to be the key component in accelerating SMC solving.
(Left) The running time with varying thresholds. ULW propagation accelerates KOCO-SMC by 10
times compared with KOCO-SMC without ULW when the threshold reaches 10130. (Right) The
percentage of instances solved in a given time limit.

10132. Figure 5(right) further demonstrates the contribution of ULW, where KOCO-SMC is 10
times faster than KOCO-SMC without UWL for SMC problems solvable around 10 minutes.

Application: Supply Chain Design The objective is to develop the best trading plan for each
supplier in the supply chain network, ensuring that all trades have the highest success probability
and satisfy the budget constraints. In the supply chain network, each supplier is represented as a
node, which purchases raw materials from upstream nodes and sells products to downstream nodes.
(1) To balance manufacturing safety and budget constraints, each node purchase raw materials from
exactly two upstream suppliers and sells to exactly two downstream customers. (2) Trades may be
disrupted by random events such as natural disasters, car accidents, or political issues. The trading
plan must ensure a minimum probability of all trades succeeding, guaranteeing resilience against
disruptions.

Let xe ∈ {True, False} represent the selection of a trade between nodes connected by edge e,
where xe = True if the trade is selected. Combining the requirement (1) and (2), we have the SMC
formulation: ϕ(xe) ∧ (

∑
x′ P (xe,x

′) > Q) where ϕ(xe) represents the budget constraints on the
set of selected trades xe, Q is the minimum requirement of successful probability, and P (·) is the
probabilistic transportation model defined over all edges. The marginal probability

∑
x′ P (xe,x

′)
is the probability that all selected trades are carried out successfully.

We use 4-layer supply chain networks from the bread supply chain dataset containing 44 nodes
(Large) (Zokaee et al., 2017), where each layer represents a tier of suppliers. Additionally, we
introduce synthetic networks with 20 nodes (Small) and 28 nodes (Medium) to improve illustration.
To find the plan guaranteeing the highest success probability, we gradually increase the threshold
Q from 0 to 1 in increments of 1 × 10−2, continuing until the threshold makes the SMC problem
unsatisfiable. The running time for finding the best plan is shown in Figure 6 (Left), and detailed

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Small Medium Large
Network Size

102

103

R
un

ni
ng

Ti
m

e
(s

ec
) KOCO-SMC (ours)

SAT-UAI10
SAT-HBFS

SAT-D4
SAT-ADDMC
SAT-SSTD

Amazon UPS USPS
Delivery Graph

102

R
un

ni
ng

Ti
m

e
(s

ec
) KOCO-SMC (ours)

SAT-UAI10
SAT-HBFS

SAT-D4
SAT-ADDMC
SAT-SSTD

(a) Supply Chain (b) Package Delivery

Figure 6: (Left) Running time of each method for identifying the best trading plan. All methods
are tested on three real-world supply chain networks of different sizes. (Right) Running time for
identifying the best delivery path. All methods are tested on three road maps of different sizes. Our
KOCO-SMC finds all the best solution significantly faster.

settings are in Appendix D.4. Through a proper problem definition, KOCO-SMC demonstrates
superior performance in finding the optimal plan.

Application: Package Delivery The task is to find a Hamiltonian path that covers major delivery
locations while minimizing the chance of encountering heavy traffic (Hoong et al., 2012). The
delivery locations and roads are modeled as nodes and edges, respectively. (1) The path must be
Hamiltonian, passing through each node exactly once. (2) Each road segment has a probability
of heavy traffic, depending on the time of travel, weather conditions, and road properties. The
probability of encountering heavy traffic on any segmentation should be lower than a threshold.

Suppose there are N delivery locations indexed from 1 to N . Let xi,j ∈ True, False, where
xi,j = True if and only if the j-th location is visited in the i-th position of the path. Combining
requirements (1) and (2), we derive the SMC formulation: ϕ(x) ∧ (

∑
e P (x, e) < Q), where x is

the set of decision variables xi,j , i, j ∈ 1, . . . , N , e is the set of latent environmental variables, and
P (x, e) represents the probability of encountering heavy traffic given the path encoded by x with
the environmental conditions e. The marginal probability P (x, e) is the exact likelihood of encoun-
tering heavy traffic. Finally, Q ∈ R is the threshold value. Detailed settings are in Appendix D.5.

The graph structures used in our experiments are based on cropped regions from Google Maps. We
consider three sets of delivery locations: 8 Amazon Lockers, 10 UPS Stores, and 6 USPS Stores.
The three maps we examine are: Amazon Lockers only (Amazon), Amazon Lockers plus UPS
Stores (UPS), and UPS graph with the addition of 6 USPS Stores (USPS). These graphs consist
of 8, 18, and 24 nodes, respectively. The traffic condition probability is modeled by the Bayesian
network from Los Angeles traffic data (West, 2020). We gradually decrease the threshold Q from
1 to 0 in increments of 10−2, continuing until the threshold makes the SMC problem unsatisfiable.
The running time for finding the best plan is shown in Figure 6 (Right). KOCO-SMC can efficiently
discover an optimal plan with this proper SMC problem formulation.

5 CONCLUSION

We have introduced KOCO-SMC, an innovative approach for solving Satisfiability Modulo Count-
ing (SMC) problems exactly. Our method is distinct from existing approaches, which typically
combine SAT solvers with model counters. Instead, we introduce an early conflict detection mech-
anism by comparing the upper and lower bounds of probabilistic inferences. Through knowledge
compilation, our proposed Upper Lower Watch algorithm enables efficient tracking of both bounds.
Our experiments on synthetic benchmark problems demonstrate that our approach achieves supe-
rior solution quality compared to approximate solvers and significantly outperforms existing exact
solvers in terms of efficiency. The real-world application highlights the potential of solving practical
problems due to the high generalizability of the SMC formulation.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Neuro-symbolic AI for Agent and Multi-Agent Systems (NeSyMAS) Workshop at AAMAS-23, 2023.

IBM Neuro-Symbolic AI Workshop 2023 – Unifying Statistical and Symbolic AI, 2023.

R. Almeida, Qinru Shi, Jonathan M. Gomes-Selman, Xiaojian Wu, Yexiang Xue, H. Angarita,
N. Barros, B. Forsberg, R. Garcı́a-Villacorta, S. Hamilton, J. Melack, M. Montoya, Guillaume
Perez, S. Sethi, C. Gomes, and A. Flecker. Reducing greenhouse gas emissions of amazon hy-
dropower with strategic dam planning. Nature Communications, 10, 2019.

Armin Biere. Cadical, lingeling, plingeling, treengeling and yalsat entering the sat competition
2018. Proceedings of SAT Competition, 14:316–336, 2017.

Stephen Boyd and Jacob Mattingley. Branch and bound methods. Notes for EE364b, Stanford
University, 2006:07, 2007.

Mark Chavira and Adnan Darwiche. On probabilistic inference by weighted model counting. Arti-
ficial Intelligence, 172(6-7):772–799, 2008.

YooJung Choi, Tal Friedman, and Guy Van den Broeck. Solving marginal MAP exactly by prob-
abilistic circuit transformations. In AISTATS, volume 151 of Proceedings of Machine Learning
Research, pp. 10196–10208. PMLR, 2022.

Martin C Cooper, Simon De Givry, Martı Sánchez, Thomas Schiex, Matthias Zytnicki, and Tomas
Werner. Soft arc consistency revisited. Artificial Intelligence, 174(7-8):449–478, 2010.

Adnan Darwiche. Compiling knowledge into decomposable negation normal form. In IJCAI, vol-
ume 99, pp. 284–289. Citeseer, 1999.

Adnan Darwiche. A logical approach to factoring belief networks. KR, 2:409–420, 2002.

Adnan Darwiche. New advances in compiling cnf to decomposable negation normal form. In Proc.
of ECAI, pp. 328–332. Citeseer, 2004.

Adnan Darwiche and Pierre Marquis. A knowledge compilation map. Journal of Artificial Intelli-
gence Research, 17:229–264, 2002.

Rina Dechter and Robert Mateescu. And/or search spaces for graphical models. Artificial intelli-
gence, 171(2-3):73–106, 2007.

Jeffrey Dudek, Vu Phan, and Moshe Vardi. Addmc: weighted model counting with algebraic deci-
sion diagrams. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pp.
1468–1476, 2020a.

Jeffrey M. Dudek, Vu Phan, and Moshe Y. Vardi. ADDMC: weighted model counting with algebraic
decision diagrams. In AAAI, pp. 1468–1476. AAAI Press, 2020b.

Niklas Eén and Niklas Sörensson. An extensible sat-solver. In International conference on theory
and applications of satisfiability testing, pp. 502–518. Springer, 2003.

Ding Fan and Xue Yexiang. Contrastive divergence learning with chained belief propagation. In
International Conference on Probabilistic Graphical Models, pp. 161–172. PMLR, 2020.

Yu-Wei Fan and Jie-Hong R Jiang. Sharpssat: a witness-generating stochastic boolean satisfiability
solver. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp. 3949–
3958, 2023.

Johannes K Fichte, Markus Hecher, and Florim Hamiti. The model counting competition 2020.
Journal of Experimental Algorithmics (JEA), 26:1–26, 2021.

Matthew Fredrikson and Somesh Jha. Satisfiability modulo counting: a new approach for analyzing
privacy properties. In CSL-LICS, pp. 42:1–42:10. ACM, 2014.

Eugene C. Freuder and Barry O’Sullivan (eds.). AAAI-23 Constraint Programming and Machine
Learning Bridge Program, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Youssef Hamadi, Said Jabbour, and Lakhdar Sais. Manysat: a parallel sat solver. Journal on
Satisfiability, Boolean Modeling and Computation, 6(4):245–262, 2010.

Poo Kuan Hoong, Ian KT Tan, Ong Kok Chien, and Choo-Yee Ting. Road traffic prediction using
bayesian networks. 2012.

Eitan Israeli and R Kevin Wood. Shortest-path network interdiction. Networks: An International
Journal, 40(2):97–111, 2002.

David Kempe, Jon Kleinberg, and Éva Tardos. Influential nodes in a diffusion model for social
networks. In Automata, languages and programming, pp. 1127–1138. Springer, 2005.

Doga Kisa, Guy Van den Broeck, Arthur Choi, and Adnan Darwiche. Probabilistic sentential de-
cision diagrams. In Fourteenth International Conference on the Principles of Knowledge Repre-
sentation and Reasoning, 2014.

Anton J. Kleywegt, Alexander Shapiro, and Tito Homem-de-Mello. The sample average approxi-
mation method for stochastic discrete optimization. SIAM J. Optim., 12(2):479–502, 2002.

Donald E Knuth and Ronald W Moore. An analysis of alpha-beta pruning. Artificial intelligence, 6
(4):293–326, 1975.

Tuukka Korhonen and Matti Järvisalo. Sharpsat-td in model counting competitions 2021-2023.
arXiv preprint arXiv:2308.15819, 2023.

Jean-Marie Lagniez and Pierre Marquis. An improved decision-dnnf compiler. In IJCAI, volume 17,
pp. 667–673, 2017.

Nian-Ze Lee, Yen-Shi Wang, and Jie-Hong R Jiang. Solving stochastic boolean satisfiability under
random-exist quantification. In IJCAI, pp. 688–694, 2017.

Nian-Ze Lee, Yen-Shi Wang, and Jie-Hong R Jiang. Solving exist-random quantified stochastic
boolean satisfiability via clause selection. In IJCAI, pp. 1339–1345, 2018.

Jinzhao Li, Nan Jiang, and Yexiang Xue. Solving satisfiability modulo counting for symbolic and
statistical AI integration with provable guarantees. In AAAI, 2024.

Radu Marinescu, Rina Dechter, and Alexander Ihler. And/or search for marginal map. In UAI, pp.
563–572, 2014.

Joao P Marques-Silva and Karem A Sakallah. Grasp: A search algorithm for propositional satisfia-
bility. IEEE Transactions on Computers, 48(5):506–521, 1999.

Joris M. Mooij. libDAI: A free and open source C++ library for discrete approximate inference in
graphical models. Journal of Machine Learning Research, 11:2169–2173, August 2010.

Christos H Papadimitriou. Games against nature. Journal of Computer and System Sciences, 31(2):
288–301, 1985.

James D. Park and Adnan Darwiche. Complexity results and approximation strategies for map
explanations. J. Artif. Int. Res., 2004.

Robert Peharz, Steven Lang, Antonio Vergari, Karl Stelzner, Alejandro Molina, Martin Trapp,
Guy Van den Broeck, Kristian Kersting, and Zoubin Ghahramani. Einsum networks: Fast and
scalable learning of tractable probabilistic circuits. In ICML, volume 119 of Proceedings of Ma-
chine Learning Research, pp. 7563–7574. PMLR, 2020.

Hoifung Poon and Pedro M. Domingos. Sum-product networks: A new deep architecture. In UAI,
pp. 337–346. AUAI Press, 2011.

Tahrima Rahman, Prasanna V. Kothalkar, and Vibhav Gogate. Cutset networks: A simple, tractable,
and scalable approach for improving the accuracy of chow-liu trees. In ECML/PKDD (2), volume
8725 of Lecture Notes in Computer Science, pp. 630–645. Springer, 2014.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Alexander Shapiro. Monte carlo sampling methods. Handbooks in operations research and man-
agement science, 10:353–425, 2003.

JP Marques Silva and Karem A Sakallah. Grasp-a new search algorithm for satisfiability. In Pro-
ceedings of International Conference on Computer Aided Design, pp. 220–227. IEEE, 1996.

Paolo Toth and Daniele Vigo. The vehicle routing problem. SIAM, 2002.

Antonio Vergari, Y Choi, Robert Peharz, and Guy Van den Broeck. Probabilistic circuits: Repre-
sentations, inference, learning and applications. AAAI Tutorial, 2020.

Cody West. Los angeles traffic prediction bayesian network. https://github.com/
cww2697/LA_Traffic_Bayesian_Net, 2020. Accessed: September 30, 2024.

Shiva Zokaee, Armin Jabbarzadeh, Behnam Fahimnia, and Seyed Jafar Sadjadi. Robust supply
chain network design: an optimization model with real world application. Annals of Operations
Research, 257:15–44, 2017.

13

https://github.com/cww2697/LA_Traffic_Bayesian_Net
https://github.com/cww2697/LA_Traffic_Bayesian_Net

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Availability of KOCO-SMC and Dataset Please find our code repository at:

https://anonymous.4open.science/r/anonym_koco_smc-61FD/

It contains 1) the implementation of our KOCO-SMC method, 2) the list of datasets, and 3) the
implementation of several baselines.

Limitations Our KOCO-SMC requires all probability distributions to be compiled into Q-
deterministic, decomposable, and smooth probability circuits. However, due to the limitations of
knowledge compilers, compiling a complex distribution can (1) take too much time or space, (2)
introduce arithmetic errors, and (3) many knowledge compilers don’t support the structural re-
quirements. The knowledge compiler we used in experiments doesn’t guarantee to generate the
Q-deterministic circuit. There is a gap between our theoretical analysis and the experimental results.

A relaxed version of ULW could be proposed , but it doesn’t guarantee tight upper and lower bounds.
As a result, the loose bounds could potentially slow down the detection of satisfaction or conflict,
representing a trade-off between fast-solving and structural requirements. We will explore it in the
future.

Broader Impact Satisfiability Modulo Counting (SMC) extends traditional Boolean satisfiability by
incorporating constraints that involve probability inference (model counting). This extension allows
for solving complex problems where both logical and probabilistic constraints must be satisfied.
SMC has significant applications in supply chain design, shelter allocation, scheduling problems,
and many others in Operation Research. For example, in scheduling problems, SMC can ensure
that selected schedules meet probabilistic events, while in shelter allocation, it can verify that the
accessibility under random disasters is above a specified threshold.

A EXTENDED RELATED WORKS

Satisfiability Modulo Counting (SMC) was first introduced by Fredrikson & Jha (2014), aiming
to integrate logical satisfiability with probabilistic constraints to address complex decision-making
problems. Due to the novelty of this formulation, only a few specialized solvers have been proposed.
For instance, Li et al. (2024) introduced an approximate solver that employs XOR constraints to
relax SMC problems, enabling more tractable computations.

Other approaches often focus on specific subclasses of SMC problems. A representative example
is Marginal MAP inference, which maximizes a marginal probability over query variables. Its for-
mulation is identical to SMC problems with a single probabilistic constraint. Choi et al. (2022)
developed exact solvers for Marginal MAP by transforming probabilistic circuits. Marinescu et al.
(2014) uses AND-OR search approach to solve the MMAP problem.

Another related domain is Stochastic Satisfiability (SSAT), introduced by Papadimitriou (1985).
SSAT can further solve SMC problems with a Boolean constraint and a single probabilistic con-
straint by combining Boolean SAT with probabilistic quantifiers. Subsequent research has advanced
SSAT solvers (Lee et al., 2017; 2018; Fan & Jiang, 2023). However, despite their power, these
solvers cannot generalize to SMC problems with multiple probabilistic constraints.

The principle idea of our Upper-Lower Bound algorithm is to use the upper and lower bounds of
probabilities to avoid unnecessary search. Similar ideas can be found in branch-and-bound algo-
rithm Boyd & Mattingley (2007), which maintains upper and lower bounds of the objective function
to prune suboptimal branches of the search tree, and in alpha-beta pruning Knuth & Moore (1975),
which uses bounds on the evaluation of game states to eliminate branches in the game tree that
cannot affect the final decision.

B EXTENDED METHODOLOGY

B.1 PROBABILISTIC INFERENCE THROUGH PROBABILISTIC CIRCUITS

The inference of probabilities from a probability circuit can be very efficient. Figure 7 shows a
decomposable, smooth, and deterministic probability circuit. For P (x1 = x3 = x4 = T, x2 = F),
set the value of nodes x1, x3, and x4 to 1, and x1 to 0. Set nodes x2 and x2 oppositely since x2 = F.

14

https://anonymous.4open.science/r/anonym_koco_smc-61FD/

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Evaluate the value at the root node as the probability, which is 0.1. This inference doesn’t require
any special property of the probabilistic circuit.

It is different for the marginal probability. We need the circuit to be decomposable and smooth to
ensure efficacy. For P (x3 = x4 = T), set nodes x3 and x4 to 1 as they are assigned T. For the
marginalized-out variables x1 and x2, set all related nodes, e.g., x1 and x1, to 1. Evaluate the value
at the root node, which should be 1.0.

x2
set True

x1
set False

x2

set False

x1

set True

××××

x4

set True

++x3

set True

××

+

P (x1 = x3 = x4 = T, x2 = F) = 0.1

0.80.20.80.2

0.50.5

(a) compute probability P (x1 = x3 = x4 = T, x2 = F).

x2

set True

x1

F/T

x2

F/T

x1

set True

××××

x4

set True

++x3

set True

××

+
P (x1, . . . , x4) = 0.1/1

0.80.20.80.2

0.50.5

(b) compute marginal probability P (x3 = x4 = T).

Figure 7: To infer the probability P (x1 = x3 = x4 = T, x2 = F), set the value of nodes x1, x3,
and x4 to 1, and x1 to 0. Set values for x2 and x2 oppositely since x2 = F. The value assignment
is shown in red, and the circuit evaluates to the probability 0.1. Similarly, to infer the marginal
probability P (x3 = x4 = T), set nodes x3 and x4 to 1. For the marginalized-out variables x1 and
x2, set all related nodes to 1. The value assignment is shown in blue, and the circuit evaluates to the
marginal probability 1.0.

B.2 KOCO-SMC MAIN PIPELINE

Classical SAT solvers like MiniSAT Eén & Sörensson (2003) have achieved high performance in
real-world applications. We implement our method based on their MiniSAT version 2.2.01 The de-
cision and backtrack steps are primarily from their implementation, but our propagation and conflict
clause learning steps differ. The pseudocode is shown in Algorithm 1.

Pre-Compilation The tractable probabilistic circuits are constructed from the discrete probability
distributions in the form of Bayesian networks or Markov Random Fields. The pipeline is intro-
duced in Darwiche (2002) (Fig. 8) that compiles a distribution into a Boolean formula augmented

1MiniSAT: https://github.com/niklasso/minisat

15

https://github.com/niklasso/minisat

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Figure 8: The process of constructing probabilistic circuits from probabilistic graphical models by
ACE.

with literal weights, and is further compiled into a tractable Boolean circuit—characterized by its de-
terminism, decomposability, and smoothness. From this circuit, one derives a tractable probabilistic
circuit. We use the knowledge compilation tool: ACE2 using their default compile script.

Decision To quickly identify a satisfying solution, the decision is made according to some decision
heuristics. KOCO-SMC utilizes Variable State Independent Decaying Sum (VSIDS) Dudek et al.
(2020b) as the decision heuristic. Generally, each variable assignment is associated with a priority
score. A higher score indicates a higher priority of being decided. During SMC-solving, once cur-
rent variable assignments make the SMC problem unsatisfiable (also referred to as a conflict). The
priority of those assignments will all decrease. All priority scores are then reduced by multiplying
with a constant less than one. A variable’s priority score is dynamically updated to reflect its recent
involvement in conflicts.

Propagation The detailed implementation of propagation involving probabilistic constraints is
shown in Algorithm 2, which corresponds to lines 4-8 of the Algorithm 1 in the main text. The
explanation is as follows.

Pick one new variable assignment (“new” refers to “hasn’t been propagated”): variable x assigned
with value val ∈ {True, False}. The variable x is associated with a watcher list, denoted by
watcher(x), where each element is either a Boolean clause or a probabilistic constraint involving x.
Once x is assigned with a value, only elements in watcher(x) should verify its satisfiability under
the current variable assignment. This mechanism is invented by Eén & Sörensson (2003). It can
avoid examining all constraints involving x and can improve efficacy, especially in problems with
lots of constraints.

Consider a Boolean clause or probabilistic constraint C in watcher(x). If C is a Boolean clause, we
simply run the unit propagation. Otherwise, for each probabilistic circuit cr in C, update the upper
and lower bounds of each marginal probability encoded by cr with current variable assignments.
For example, a probabilistic constraint in the form of b ⇔ ∑

y P (x, y) > Q contains one circuit
encoding P (x, y), we update the upper and lower bounds of

∑
y P (x, y) with the current assignment

of x. The detailed updating rule is specified in Section 3.3 of the main text. Then we can check the
satisfiability with updated bounds, e.g., comparing the bounds of

∑
y P (x, y) with threshold Q

in the abovementioned example. If the comparison produces a conflict, e.g., the upper bound of∑
y P (x, y) is already below Q, then Algorithm 2 returns a conflict with the reference to current

constraint as the reason (specified in line 10-11). Otherwise, we pick a new unassigned variable to
watch, i.e., put the current constraint to the watcher list of another variable. Noted that we don’t
explicitly ”remove” a satisfied probabilistic constraint as in MiniSAT to simplify the backtracking.

Conflict Clause Learning The clause learning step in line 13 of Algorithm 1 can be explained
using the following example. Suppose the conflict is caused by a probabilistic constraint C, and the
assigned variables in C are x1 = True and x2 = False. Then the cause of conflict can be seen
as (x1 ∨ x2) (corresponds to line 2), which is exactly a Boolean clause in a CNF formula. Then
we can utilize an experimentally effective method for Boolean SAT problems based on the First
Unique Implication Point heuristic. We will not give a detailed definition here, please refer to Eén
& Sörensson (2003) for detailed implementation.

2ACE: http://reasoning.cs.ucla.edu/ace

16

http://reasoning.cs.ucla.edu/ace

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Algorithm 1 Solving Satisfiability Modulo Counting Exactly with Probabilistic Circuits.

Input: Boolean Formula ϕ, Probabilistic Constraints {Ci}Ki=1.
Output: Satisfiability and variable assignment.

1: Knowledge compilation ({Ci}Ki=1) ▷ preparation
2: loop
3: Decide to assign variable x to val ∈ {T, F}. ▷ decision
4: for each probabilistic constraint C in {Ci}Ki=1 do. ▷ propagation
5: Update bounds of each circuit in C with v = val.
6: Detect conflict by comparing bounds.
7: for each Boolean clause C ′ in ϕ do
8: Propagate x = val to Boolean clause C ′.
9: if no conflict detected then

10: if all variables assigned then
11: return Satisfiable, Variable assignments
12: else
13: Propose a learned clause Cl. ▷ clause learning
14: ϕ← ϕ ∪ {Cl}
15: if no variable assigned then
16: return Unsatisfiable, no assignment
17: else
18: undoing assignments until the reason no longer holds. ▷ Backtrack

Algorithm 2 Propagation

Input: The set of new assignments S.
Output: Conflict detection result

1: while S not empty do
2: x, val← S.pop() ▷ variable x is assigned with value val
3: for C ∈ watcher(x) do
4: if C is a Boolean clause then
5: Unit propagation
6: if C is a probabilistic constraint then
7: for cr ∈ circuits(C) do
8: update bounds of the marginal probability
9: encoded by cr

10: if C is unsatisfied then
11: return CONFLICT, C
12: if C has another unassigned variable x′ then
13: Add C to watcher(x′)
14: Remove C from watcher(x)

15: return NO CONFLICT, No conflict reason

C PROOF OF LEMMA 1

Definition 1. Denote assigned variables in x as xe and those not assigned as xh. The up-
per and lower bounds of the marginal probability with the partial variable assignment are
maxxh

∑
y P (xe,xh,y) and minxh

∑
y P (xe,xh,y).

Proof. Inferring the strict upper and lower bounds is known as a Marginal Maximum a Posterior
(MMAP) problem. An MMAP problem can be inferred from a Q-deterministic, smooth and decom-
posable probabilistic circuit encoding P (x,y) in polynomial time to the circuit’s size (Choi et al.,
2022).

Use the computation steps of maxxh

∑
y P (xe,xh,y) as an example. For a PC node v defined on

x′
e ⊆ xe x′

h ⊆ xh and y′ ⊆ y, let Pv denote the distribution encoded by node v, and compute
UB(v) = maxx′

h

∑
y′ Pv(x

′
e,x

′
h,y

′).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

• Suppose v is a leaf node over single variable x ∈ xe, then UB(v) = Pv(x) since |x′
h| = |y′| = 0;

Suppose v is a leaf node over variable x ∈ xh, then UB(v) = maxx Pv(x); Suppose v is a leaf
node over variable y ∈ y, then UB(v) =

∑
y Pv(y) = 1.

• Suppose v is a product node. An example is shown in Figure 9. Without loss of generality,
assume v has 2 child nodes: v1 and v2 that encodes Pv1(x

(1)
e ,x

(1)
h ,y(1)) and Pv2(x

(2)
e ,x

(2)
h ,y(2))

respectively. The decomposability property indicates that all its child nodes share no common
variable. So the maximum of the product can be computed as the product of the maximum.
Specifically, we have

UB(v) =max
x′
h

∑
y′

Pv(x
′
e,x

′
h,y

′)

=max
x′
h

∑
y′

Pv1(x
(1)
e ,x

(1)
h ,y(1))Pv2(x

(2)
e ,x

(2)
h ,y(2))

=max
x′
h

∑
y(1)

∑
y(2)

Pv1(x
(1)
e ,x

(1)
h ,y(1))Pv2(x

(2)
e ,x

(2)
h ,y(2))

=max
x
(1)
h

∑
y(1)

Pv1(x
(1)
e ,x

(1)
h ,y(1)) ·max

x
(2)
h

∑
y(2)

Pv2(x
(2)
e ,x

(2)
h ,y(2))

=UB(v1) · UB(v2)

• Suppose v is a sum node. Noted that the probabilistic circuit should be Q-deterministic w.r.t. all
decision variables, including both query and evidence variables. An example is shown in Figure 9.
Without loss of generality, assume v has 2 child nodes v1 and v2 that encodes Pv1 and Pv2 , and
their weights are w1 and w2 respectively. The smoothness ensures that all its child nodes have the
same scope of variables. The Q-determinism ensures that if all querying variables are assigned,
only one of its child nodes will have a non-zero probability value.

UB(v) =max
x′
h

∑
y′

Pv(x
′
e,x

′
h,y

′)

=max
x′
h

∑
y′

(w1Pv1
(x′

e,x
′
h,y

′) + w2Pv2(x
′
e,x

′
h,y

′))

=max
x′
h

∑
y′

w1Pv1(x
′
e,x

′
h,y

′) +
∑
y′

w2Pv2
(x′

e,x
′
h,y

′)


=max

x′
h

∑
y′

w1Pv1(x
′
e,x

′
h,y

′),
∑
y′

w2Pv2(x
′
e,x

′
h,y

′)

 by Q-determinism

=max (w1UB(v1), w2UB(v2))

Using the calculation defined above, we can recursively calculate UB(r) for the root node r. Since
r encodes P (xe,xh,y), the strict upper bound is calculated. Similar steps and proof can be gen-
eralized to the lower bound. Our proposed ULW follows the calculation steps shown above. The
calculation requires only one traversal of the probabilistic circuit.

D EXPERIMENT SETTING

D.1 BASELINES

Gibbs-SAA and BP-SAA are approximate SMC solvers based on Sample Average Approxima-
tion. The marginal probability in the form of

∑
y P (x, y) is approximated by samples from a sam-

pler. More specifically, use the sampler to generate a set of samples {(x, y(i))} according to the
distribution proportional to the P (x, y). Then the estimation of the marginal probability is the sam-
ple average 1

N

∑
y(i) P (x, y(i)) multiplied by the number of possible configurations of y, for binary

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

×

v1 v2

Pp(x1,x2)

Pv1(x1) Pv2(x2)

+

v1 v2

Ps(x1,x2)

Pv1(x1,x2) Pv2(x1,x2)

w1 w2

Figure 9: (Left) Example of a decomposable product node (colored blue). Denote the product node
as p, and it has two children v1 and v2. Child nodes encode Pv1(x1) and Pv2(x2) respectively
and the product node encodes Pp(x1,x2) = Pv1(x1)Pv2

(x2). Decomposability ensures x1 and x2

are disjoint. (Right) Example of a smooth and Q-deterministic (w.r.t. x1,x2) sum node (colored
red). Denote the sum node as s, and it has two children v1 and v2 with weights w1 and w2. Child
nodes encode Pv1(x1,x2) and Pv2(x1,x2) respectively and the sum node encodes Ps(x1,x2) =
w1Pv1(x1,x2) + w2Pv2(x1,x2). Smoothness ensures all nodes encode probabilities over the same
set of variables, and Q-determinism means Pv1(x1,x2) and Pv2(x1,x2) can’t be both non-zero
under the same variable assignment.

variables of length n, there are 2n possible configurations. We used Gibbs Sampler (Gibbs-SAA)
and Belief Propagation (BP-SAA) implemented by (Fan & Yexiang, 2020) as the sampler. However,
the sampling is only an efficient probability inference method, it still requires determining x fore-
head, thus we use MiniSAT to enumerate solutions of ϕ(x). Given a time limit of 1 hour, we set the
number of samples to 10000 and the number of Gibbs burn-in steps to 40. For each SMC problem
in the benchmark dataset, we run Gibbs-SAA 5 times and the problem is considered ”solved” as one
of those runs produces a correct result. The percentage of solved SMCs is shown in Figure 3.

XOR-SMC is an approximate solver from (Li et al., 2024). We set the parameter T (controlling
the probability of a satisfying solution, a higher T gives a better performance but longer run time)
to 3, and incrementally increase the number of XOR constraints from 0 to either timeout or failed,
by doing this we can find the most probable satisfying solution. Similar to SAA based approaches,
we also run XOR-SMC 5 times.

Lingeling-LibDAI and Lingeling-Toulbar2 are the integration of an SAT solver, Lin-
geling (Biere, 2017), with the winning probabilistic inference solver of UAI Approximate Inference
Challenge. The procedure is first run Lingeling to produce one solution satisfying the Boolean for-
mula in an SMC problem, then use the inference solver to calculate the marginal probability given
those assignments. If the marginal probability exceeds the threshold, the solution is reported and
exits. Otherwise, let the SAT solver produce another different solution and redo the procedure until
all solutions have been enumerated. The repetitive file I/O and solvers’ initialization time through-
out the process have been pruned for a fair comparison. Lingeling-LibDAI uses the public inference
solver implemented by LibDAI (Mooij, 2010) available on github3. Lingeling-Toulbar2 uses another
inference solver Toulbar2 (Cooper et al., 2010) which uses a hybrid best-first branch-and-bound al-
gorithm (HBFS) to solve marginal probability. We use the public implementation of Toulbar24 for
PR task with their default parameters.

Lingeling-D4, Lingeling-ADDMC, and Lingeling-SSTD are integrations of the Lingeling SAT
solver with the weighted model counting solver in the Model Counting Competition from 2020-
2023. SAT-D45 uses d4 solver based on knowledge compilation. SAT-ADDMC uses the public
implementation of ADDMC solver 6. SAT-SSTD uses SharpSAT-TD7 as the model counter.

3LibDAI: https://github.com/dbtsai/libDAI/
4Toulbar2: https://toulbar2.github.io/toulbar2/
5d4: https://github.com/crillab/d4
6ADDMC: https://github.com/vardigroup/ADDMC
7SharpSAT-TD: https://github.com/Laakeri/sharpsat-td

19

https://github.com/dbtsai/libDAI/
https://toulbar2.github.io/toulbar2/
https://github.com/crillab/d4
https://github.com/vardigroup/ADDMC
https://github.com/Laakeri/sharpsat-td

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

D.2 HYPER-PARAMETER SETTINGS

In all experiments, we use the public version of Lingeling implemented in PySAT8 with their default
parameter. The time limit for all approximate solvers (Gibbs-SAA, XOR-SMC) is set to 1 hour per
SMC problem. The time limit for all exact solvers is 3 hours. All experiments are executed on two
64-core AMD Epyc 7662 Rome processors with 16 GB of memory.

D.3 DATASET SPECIFICATION

All SMC problems in this study are in the form of ϕ(xϕ,xf) ∧
(∑

y f(xf ,y) > Q
)

where
ϕ(xϕ,xf) is a CNF Boolean formula, f is a (unnormalized) probability distribution. xϕ are variables
appear only in ϕ, xf are random variables shared by ϕ and f , and y are variables to be marginalized.

Boolean Formula All ϕ(xϕ,xf) represent 3-coloring problems for graphs, which is to find an
assignment of colors to the nodes of the graph such that no two adjacent nodes have the same color,
and at most 3 colors are used to complete color the graph. Then each node in the graph corresponds
to 3 random variables, says x1 x2 and x3, that x1 = True iff. this node is colored with the first
color. We consider only grid graphs of size k by k, resulting in k × k × 3 variables.

Those Boolean formulas are generated by CNFgen9 using the command

./cnfgen kcolor 3 grid k k -T shuffle

where the graph size k is set to 5, 10, and 15. For each grid graph, we shuffle the variable names
randomly and keep 3 of them.

Probability Distribution We use probabilistic graphical models from the UAI competition 2010-
202210 including Markov random fields and Bayesian networks for the probabilistic constraints.
Specifically, we pick the data for PR inference task, which includes 8 categories: Alchemy (2 mod-
els), CSP (3), DBN (6), Grids (8), ObjectDetection (79), Pedigree (3), Promedas (33), and Seg-
mentation (6). The models with non-Boolean variables are removed, resulting in the remaining 50
models: Alchemy (1 model), CSP (3), DBN (6), Grids (2), Promedas (32), and Segmentation (6).
All distributions are in the UAI file format. Since model counters d4, ADDMC, and SharpSAT-TD
only accept weight CNF format in the model counting competition, we use bn2cnf11 to convert data.

Boolean Variables Classification We pick random variables from ϕ and f as shared variables
uniformly at random. The number of shared variables between ϕ and f (denoted as xf) is determined
as the lesser of either half the number of random variables in f or the total number of random
variables in ϕ, i.e., the count of variables in xf will not surpass either half the total number of
variables in f or the entire count of variables in ϕ.

D.4 SUPPLY CHAIN DESIGN

For the experiment on real-world supply chain network data, we refer to a 4-layer supply chain
network collected from real-world data (Zokaee et al., 2017). This network consists of 4 layers
of nodes, representing suppliers, with each layer containing 9, 7, 9, and 19 nodes, respectively.
Adjacent layers are fully connected, meaning each node can trade with any node in the adjacent
layers (nearest upstream suppliers and downstream demanders). An example is shown in Figure 10.
Each edge between two nodes represents a trade between them, and the selection of trades can be
encoded as a binary vector x ∈ {0, 1}M , where M is the number of edges. Here, x[i] = 1 indicates
that the i-th edge (trade) is selected.

The original problem does not account for stochastic disasters, so we generated a random Bayesian
Network (BN) over all edges to model such events. For example, P (x1 = True, x2 = False)

8PySAT: https://pysathq.github.io/
9CNFgen: https://massimolauria.net/cnfgen/

10UAI2022: https://uaicompetition.github.io/uci-2022/
11bn2cnf: https://www.cril.univ-artois.fr/KC/bn2cnf.html

20

https://pysathq.github.io/
https://massimolauria.net/cnfgen/
https://uaicompetition.github.io/uci-2022/
https://www.cril.univ-artois.fr/KC/bn2cnf.html

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Figure 10: An example supply chain network. Edges with the red cross sign mean they are broken
due to natural disasters.

represents the probability that trade 1 is successful while trade 2 fails. Each BN node can have at
most 5 parents, and the number of BN edges is approximately half of the maximum possible number.
The generated BN is included in the code repository.

Due to budget constraints, each node is assumed to receive raw materials from exactly 2 upstream
suppliers and sells its product to exactly 2 downstream demanders. We want the probability that all
trades are successfully conducted to be above a certain threshold, even in the face of random events
such as natural disasters. We have the formulation:

ϕ(x,x′) ∧
(∑

x′

P (x,x′) > Q

)

where ϕ(x,x′) represents the plan of executing trades x while discarding x′ to satisfy the budget
constraints. The marginal probability

∑
x′ P (x,x′) is exactly the probability that all selected trades

are carried out successfully. To find the optimal plan, we gradually increase the threshold Q from 0
to 1 in increments of 1 × 10−3, continuing until the threshold makes the SMC problem infeasible.
The last feasible solution is referred to as the best plan.

We test all exact SMC solvers on 3 supply chain networks, including a small [5, 5, 5, 5], a medium
[7, 7, 7, 7], and a large network [9, 7, 9, 19]. The vector [9, 7, 9, 19] is the structure in the real world,
representing a network with 9, 7, 9, and 19 suppliers in each layer, respectively. The other two
networks are synthetic, but they have similar scales. The results are shown in Figure 6.

D.5 PACKAGE DELIVERY SCHEDULING

For the case study of package delivery, our goal is to deliver packages to N residential areas. We
want this path to be a Hamiltonian Path that visits each vertex (residential area) exactly once without
necessarily forming a cycle. The goal is to determine whether such a path exists in a given graph.

Using an order-based formulation with variables xi,j , where xi,j denotes that the i-th position in the
path is occupied by residential area j, i.e., residential area j is the i-th visited place.

xi,j =

{
True if area j is visited in the i-th position in the path,
False otherwise.

where the total number of variables is N2 (for N cities).

To ensure that the variables xi,j correctly represent a valid Hamiltonian Path, several constraints
must be enforced. These constraints formulate the Boolean satisfiability ϕ(x) in the SMC problem
formulation.

• Each position is occupied by exactly one residential area. Or more formally, for every
position i, exactly one residential area j must occupy it.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 11: (Left) Example Hamiltonian delivery path covering major Amazon’s lockers in Los
Angeles. (Right) delivery locations included in experiments. Blue points are Amazon lockers,
orange points are UPS stores, and green points are USPS stores.

– At least one residential area per position:
n∨

j=1

xi,j ∀i ∈ {1, 2, . . . , n}

– At most one residential area per position. For each position i and for every pair of
distinct areas j and k:

¬xi,j ∨ ¬xi,k ∀i, ∀j < k

• Each residential area appears exactly once in the path. Each residential area j must be
assigned to exactly one position i.

– At least one position per residential area.
n∨

i=1

xi,j ∀j ∈ {1, 2, . . . , n}

– At most one position per residential area: For each area j and for every pair of distinct
positions i and k:

¬xi,j ∨ ¬xk,j ∀j,∀i < k

• Consecutive cities in the path are connected by an edge in the graph.
– For each pair of consecutive positions (i, i+1), the cities assigned must be connected

by an edge. For all i ∈ {1, 2, . . . , n−1} and for all pairs of cities (j, k) not connected
by an edge in the graph:

¬xi,j ∨ ¬xi+1,k ∀(j, k) /∈ E

Additionally, we want the schedule to have a very high probability (≥ Q) of encountering light
traffic.

P (light traffic|path) =
∑
l

P (light traffic, l|path) ≥ Q

where l represents latent variables that affect the probability of traffic conditions, such as weather,
road conditions, etc.

The graph structures used in our experiments are based on cropped regions from Google Maps
(Figure 11). We consider three sets of delivery locations: 8 Amazon Lockers, 10 UPS Stores, and 6
USPS Stores. The three maps we examine are: Amazon Lockers only (Amazon), Amazon Lockers

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Figure 12: Bayesian network for a single road (Hoong et al., 2012; West, 2020).

plus UPS Stores (UPS), and UPS graph with the addition of 6 USPS Stores (USPS). These graphs
consist of 8, 18, and 24 nodes, respectively.

The traffic condition probability is modeled by the Bayesian network (Figure 12) from Los Angeles
traffic data (West, 2020). Instead of considering the “Time”, we uses the order of traveling on a road
to implicitly model the time.

To find the best route, we gradually decrease the threshold of the probability of encountering heavy
traffic from 1 to 0 in increments of 10−2, continuing until the threshold makes the SMC problem
unsatisfiable. The running time for finding the best plan is shown in Figure 6 (Right).

E ADDITIONAL RESULTS

E.1 KNOWLEDGE COMPILATION TIME

The time for compiling graphical models to decomposable deterministic and smooth probabilistic
circuits is shown in Figure 13. As shown in the subsequent additional plots, the knowledge com-
pilation time most significantly affects the running time of probabilistic models from DBN and
Segmentation.

0 25 50 75 100 125 150
Knowledge Compilation Time (s)

0

20

40

#I
ns

ta
nc

es

Figure 13: Histogram of the knowledge compilation time for all 50 probability distributions in the
benchmark.

E.2 COMPARISON OF DIFFERENT SAT SOLVERS

As an extension of Figure 4(Right), we also include MiniSAT (MINI-) and CaDiCal (CDC-) SAT
solvers implemented in PySAT as the Boolean SAT oracle. The results are in Figure 14, KOCO-
SMC shows the best performance among baselines.

E.3 COMPARISON WITH EXACT SOLVERS

Figure 4 (Left) is one illustrating example shown in the main text. Additional results on other SMCs
consisting of different Boolean formulas and probabilistic graphical models are shown below.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

0.01 0.1 1 10 100 1000 10000
Running Time (s)

0

20

40

60

80

So
lv

ed
In

st
an

ce
s

(%
)

KOCO-SMC (ours)
Lingeling-UAI10
Lingeling-HBFS
Lingeling-D4
Lingeling-ADDMC
Lingeling-SSTD
Cadical-UAI10
Cadical-HBFS
Cadical-D4
Cadical-ADDMC
Cadical-SSTD
MiniSAT-UAI10
MiniSAT-HBFS
MiniSAT-D4
MiniSAT-ADDMC
MiniSAT-SSTD

Figure 14: Running time of different exact solvers. Our KOCO-SMC solves more instances given
the same amount of wall time.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

(a) Probabilistic model from Alchemy

6.09e+124 7.52e+124 9.29e+124
Threshold

10−1

100

101

102

103

104

R
un

ni
ng

Ti
m

e
(s

)

kcolor 3 5x5.cnf with smokers 10.uai
Koco-SMC
SAT-UAI10
SAT-HBFS
SAT-D4
SAT-ADDMC
SAT-SSTD

9.96e+126 9.96e+129

(b) Probabilistic model from CSP

4.80e-118 2.10e-89 9.23e-61
Threshold

100

101

102

103

104

R
un

ni
ng

Ti
m

e
(s

)

kcolor 3 5x5.cnf with 54.wcsp.uai
Koco-SMC
SAT-UAI10
SAT-HBFS
SAT-D4
SAT-ADDMC
SAT-SSTD

3.26e-49 3.26e-46

(c) Probabilistic model from DBN

4.49e+20 9.77e+30 2.13e+41
Threshold

10−1

100

101

102

103

104

R
un

ni
ng

Ti
m

e
(s

)

kcolor 3 5x5.cnf with rbm 20.uai
Koco-SMC
SAT-UAI10
SAT-HBFS
SAT-D4
SAT-ADDMC
SAT-SSTD

5.93e+46 5.93e+49

(d) Probabilistic model from Grids

7.05e+90 1.53e+168 3.30e+245
Threshold

100

101

102

103

104

R
un

ni
ng

Ti
m

e
(s

)

kcolor 3 5x5.cnf with grid10x10.f10.uai
Koco-SMC
SAT-UAI10
SAT-HBFS
SAT-D4
SAT-ADDMC
SAT-SSTD

1.98e+273 1.98e+276

(e) Probabilistic model from Promedas

1.45e-25 1.17e-19 9.43e-14
Threshold

10−1

101

103

R
un

ni
ng

Ti
m

e
(s

)

kcolor 3 5x5.cnf with or chain 218.fg.uai
Koco-SMC
SAT-UAI10
SAT-HBFS
SAT-D4
SAT-ADDMC
SAT-SSTD

8.77e-10 8.77e-07

(f) Probabilistic model from Segmentation

2.18e-111 4.54e-97 9.45e-83
Threshold

10−1

100

101

102

103

104

R
un

ni
ng

Ti
m

e
(s

)

kcolor 3 5x5.cnf with 2 17 s.binary.uai
Koco-SMC
SAT-UAI10
SAT-HBFS
SAT-D4
SAT-ADDMC
SAT-SSTD

5.61e-76 5.61e-73

Figure 15: Results of SMC problems that consists of a fixed CNF file (kcolor 3 5x5.cnf) repre-
senting the 3 color problem on a 5 × 5 grid map and probabilistic graphical models from different
categories.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

(a) Probabilistic model from Alchemy

6.06e+124 7.16e+124 8.46e+124
Threshold

10−1

100

101

102

103

104

R
un

ni
ng

Ti
m

e
(s

)

kcolor 3 10x10.cnf with smokers 10.uai
Koco-SMC
SAT-UAI10
SAT-HBFS
SAT-D4
SAT-ADDMC
SAT-SSTD

8.94e+126 8.94e+129

(b) Probabilistic model from CSP

4.80e-118 1.28e-89 3.39e-61
Threshold

100

101

102

103

104

R
un

ni
ng

Ti
m

e
(s

)

kcolor 3 10x10.cnf with 54.wcsp.uai
Koco-SMC
SAT-UAI10
SAT-HBFS
SAT-D4
SAT-ADDMC
SAT-SSTD

1.01e-49 1.01e-46

(c) Probabilistic model from DBN

4.49e+20 2.76e+31 1.69e+42
Threshold

10−1

100

101

102

103

104

R
un

ni
ng

Ti
m

e
(s

)

kcolor 3 10x10.cnf with rbm 20.uai
Koco-SMC
SAT-UAI10
SAT-HBFS
SAT-D4
SAT-ADDMC
SAT-SSTD

6.68e+47 6.68e+50

(d) Probabilistic model from Grids

5.32e+86 2.46e+165 1.14e+244
Threshold

100

101

102

103

104

R
un

ni
ng

Ti
m

e
(s

)

kcolor 3 10x10.cnf with grid10x10.f10.uai
Koco-SMC
SAT-UAI10
SAT-HBFS
SAT-D4
SAT-ADDMC
SAT-SSTD

1.90e+272 1.90e+275

(e) Probabilistic model from Promedas

1.45e-25 1.17e-19 9.43e-14
Threshold

10−1

101

103

R
un

ni
ng

Ti
m

e
(s

)

kcolor 3 10x10.cnf with or chain 218.fg.uai
Koco-SMC
SAT-UAI10
SAT-HBFS
SAT-D4
SAT-ADDMC
SAT-SSTD

8.77e-10 8.77e-07

(f) Probabilistic model from Segmentation

1.26e-148 3.18e-133 8.02e-118
Threshold

10−1

100

101

102

103

104

R
un

ni
ng

Ti
m

e
(s

)

kcolor 3 10x10.cnf with 2 17 s.binary.uai
Koco-SMC
SAT-UAI10
SAT-HBFS
SAT-D4
SAT-ADDMC
SAT-SSTD

1.09e-110 1.09e-107

Figure 16: Results of SMC problems that consists of a fixed CNF file (kcolor 3 10x10.cnf) repre-
senting the 3 color problem on a 10× 10 grid map and probabilistic graphical models from different
categories.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

(a) Probabilistic model from Alchemy

6.08e+124 7.34e+124 8.86e+124
Threshold

10−1

100

101

102

103

104

R
un

ni
ng

Ti
m

e
(s

)

kcolor 3 15x15.cnf with smokers 10.uai
Koco-SMC
SAT-UAI10
SAT-HBFS
SAT-D4
SAT-ADDMC
SAT-SSTD

9.43e+126 9.43e+129

(b) Probabilistic model from CSP

4.80e-118 4.12e-91 3.55e-64
Threshold

100

101

102

103

104

R
un

ni
ng

Ti
m

e
(s

)

kcolor 3 15x15.cnf with 54.wcsp.uai
Koco-SMC
SAT-UAI10
SAT-HBFS
SAT-D4
SAT-ADDMC
SAT-SSTD

3.37e-53 3.37e-50

(c) Probabilistic model from DBN

4.49e+20 2.76e+31 1.69e+42
Threshold

10−1

100

101

102

103

104

R
un

ni
ng

Ti
m

e
(s

)

kcolor 3 15x15.cnf with rbm 20.uai
Koco-SMC
SAT-UAI10
SAT-HBFS
SAT-D4
SAT-ADDMC
SAT-SSTD

6.68e+47 6.68e+50

(d) Probabilistic model from Grids

2.86e+83 1.74e+162 1.06e+241
Threshold

100

101

102

103

104

R
un

ni
ng

Ti
m

e
(s

)

kcolor 3 15x15.cnf with grid10x10.f10.uai
Koco-SMC
SAT-UAI10
SAT-HBFS
SAT-D4
SAT-ADDMC
SAT-SSTD

1.93e+269 1.93e+272

(e) Probabilistic model from Promedas

1.45e-25 1.17e-19 9.43e-14
Threshold

10−1

101

103

R
un

ni
ng

Ti
m

e
(s

)

kcolor 3 15x15.cnf with or chain 218.fg.uai
Koco-SMC
SAT-UAI10
SAT-HBFS
SAT-D4
SAT-ADDMC
SAT-SSTD

8.77e-10 8.77e-07

(f) Probabilistic model from Segmentation

1.88e-150 1.39e-133 1.03e-116
Threshold

10−1

100

101

102

103

104

R
un

ni
ng

Ti
m

e
(s

)

kcolor 3 15x15.cnf with 2 17 s.binary.uai
Koco-SMC
SAT-UAI10
SAT-HBFS
SAT-D4
SAT-ADDMC
SAT-SSTD

4.31e-109 4.31e-106

Figure 17: Results of SMC problems that consists of a fixed CNF file (kcolor 3 15x15.cnf) repre-
senting the 3 color problem on a 15× 15 grid map and probabilistic graphical models from different
categories.

27

	Introduction
	Preliminaries
	Methodology
	Motivation
	Main Pipeline of Koco-SMC
	Upper Lower Watch for Tracking Probabilistic Constraints

	Experiments
	Experiment Settings
	Result Analysis
	Case Studies

	Conclusion
	Extended Related Works
	Extended Methodology
	Probabilistic Inference through Probabilistic Circuits
	Koco-SMC Main Pipeline

	Proof of Lemma 1
	Experiment Setting
	Baselines
	Hyper-Parameter Settings
	Dataset Specification
	Supply Chain Design
	Package Delivery Scheduling

	Additional Results
	Knowledge Compilation Time
	Comparison of Different SAT Solvers
	Comparison with Exact Solvers

