

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 VISUALPUZZLES: DECOUPLING MULTIMODAL REAS- ONING EVALUATION FROM DOMAIN KNOWLEDGE

Anonymous authors

Paper under double-blind review

ABSTRACT

Current multimodal benchmarks often conflate reasoning with domain-specific knowledge, making it difficult to isolate and evaluate general reasoning abilities in non-expert settings. To address this, we introduce VISUALPUZZLES, a benchmark that targets visual reasoning while deliberately minimizing reliance on specialized knowledge. VISUALPUZZLES consists of diverse questions spanning five categories: algorithmic, analogical, deductive, inductive, and spatial reasoning. One major source of our questions is manually translated logical reasoning questions from the Chinese Civil Service Examination. Experiments show that VISUALPUZZLES requires significantly less intensive domain-specific knowledge and more complex reasoning compared to benchmarks like MMMU, enabling us to better evaluate genuine multimodal reasoning. Evaluations show that state-of-the-art multimodal large language models consistently lag behind human performance on VISUALPUZZLES, and that strong performance on knowledge-intensive benchmarks does not necessarily translate to success on reasoning-focused, knowledge-light tasks. Additionally, reasoning enhancements such as scaling up inference compute (with “thinking” modes) yield inconsistent gains across models and task types, and we observe no clear correlation between model size and performance. We also found that models exhibit different reasoning and answering patterns on VISUALPUZZLES compared to benchmarks with heavier emphasis on knowledge. VISUALPUZZLES offers a clearer lens through which to evaluate reasoning capabilities beyond factual recall and domain knowledge.

Figure 1: Model accuracy on VISUALPUZZLES compared to human performance percentiles. All evaluated models fall below the human 5th percentile (57.5%), highlighting the difficulty of VISUALPUZZLES. Interestingly, models with explicit “thinking” modes do not consistently outperform their base versions, suggesting that current reasoning strategies do not yet generalize well to VISUALPUZZLES’s scenarios, even though these strategies have proven effective in existing reasoning tasks that often rely heavily on domain-specific knowledge.

1 INTRODUCTION

Reasoning is a cornerstone of both human and artificial intelligence, enabling systems to solve problems, draw inferences, and make decisions from information. Recent advances in multimodal large language models (MLLMs) (Anthropic, 2023; 2025; Dubey et al., 2024; Gemini, 2024; 2025; Jaech et al., 2024; Li et al., 2024; Liu et al., 2023a; OpenAI, 2024; 2025; Qwen Team, 2025a; Yue et al., 2025) exhibit early signs of reasoning in tackling complex tasks such as answering expert-level

054 visual questions (Winata et al., 2025; Yue et al., 2024a;b), interpreting scientific diagrams (Roberts
 055 et al., 2024), and solving challenging math word problems (Lu et al., 2023).

056 Many of the tasks mentioned above are inherently *knowledge-intensive*; large amounts of knowl-
 057 edge in domains such as science or math are necessary to answer questions correctly (Yue et al.,
 058 2024a). However, in reality, reasoning does not necessitate knowledge. Even non-expert humans
 059 can successfully solve logic puzzles, spatial reasoning problems, and analogical tasks using general
 060 inferential skills, without requiring deep domain expertise. This raises an important question: *Can we*
 061 *measure MLLMs’s reasoning ability independently of measuring their acquisition of domain-specific*
 062 *knowledge?* This question is particularly important with the recent rapid development of reasoning
 063 models in the textual domain, and emerging application to the visual domain (Anthropic, 2025;
 064 DeepSeek-AI, 2025; Gemini, 2024; 2025; Jaech et al., 2024; OpenAI, 2025; Qwen Team, 2024;
 065 2025b).

066 To address this question, we introduce VISUALPUZZLES, a multimodal benchmark explicitly crafted
 067 to assess reasoning capabilities independent of specialized knowledge. VISUALPUZZLES comprises
 068 1,168 carefully curated puzzle-like questions that span five distinct categories of reasoning: algo-
 069 rithmic, analogical, deductive, inductive, and spatial, each annotated with varying difficulty levels.
 070 VISUALPUZZLES only requires basic common knowledge and information presented in the puzzles
 071 to solve problems, disentangling reasoning from domain-specific knowledge. Our experiments show
 072 that VISUALPUZZLES requires significantly fewer domain-specific knowledge concepts compared
 073 to benchmarks like MMMU (Yue et al., 2024a;b), and models have sufficient knowledge to solve
 074 VISUALPUZZLES questions, enabling us to better assess multimodal reasoning versus pretrained
 075 factual knowledge. While VISUALPUZZLES minimizes reliance on domain expertise, its reasoning
 076 complexity exceeds that of existing benchmarks: in VISUALPUZZLES, 82.1% of models’ solution
 077 steps are logical reasoning steps, compared to 71.5% in MMMU. Additionally, no current MLLM
 078 surpasses even the 5th-percentile human performance, highlighting the benchmark’s difficulty and the
 079 limitations of today’s models in general-purpose visual reasoning. Our experiments with VISUALPUZ-
 080 ZLES reveal critical limitations in current MLLMs’ multimodal reasoning ability by factoring out
 081 domain-specific knowledge requirements and only focusing on reasoning. Specifically, we uncover
 082 four key findings:

- 083 • **Strong performance on knowledge-heavy benchmarks does not transfer well.** Models that
 084 rank highly on MMMU often experience substantial performance drops on VISUALPUZZLES,
 085 highlighting a disconnect between knowledge-rich and knowledge-light visual reasoning tasks.
- 086 • **Humans outperform models on easy and medium tasks, while both degrade on harder ones.**
 087 Human participants show strong and consistent performance on easy and medium-level questions
 088 across reasoning categories. In contrast, models struggle even on simpler tasks.
- 089 • **Scaling model size does not ensure stronger reasoning.** We observe no clear trend indicating that
 090 larger models outperform smaller ones on VISUALPUZZLES, suggesting that scaling up parameters
 091 alone is insufficient to improve domain-agnostic multimodal reasoning.
- 092 • **Reasoning enhancements (e.g., long CoT and “thinking” mode) yield inconsistent gains.** While
 093 explicit reasoning strategies help certain models tackle complex reasoning tasks, these techniques
 094 do not consistently improve performance across all model families and task types.

097 2 VISUALPUZZLES

100 2.1 MOTIVATION AND DESIGN PRINCIPLES OF VISUALPUZZLES

102 Existing benchmarks often conflate multimodal reasoning with domain-specific knowledge, making
 103 it difficult to isolate and measure the pure reasoning capabilities of these models.

104 VISUALPUZZLES is designed to explicitly address this issue by providing a testbed focused on eval-
 105 uating multimodal reasoning in isolation from specialized knowledge. Specifically, VISUALPUZZLES
 106 centers on puzzle-like questions that rely solely on the provided image, question text, and basic
 107 common-sense knowledge. The core design principle behind VISUALPUZZLES is to limit the need
 108 for external or pretrained domain knowledge. Figure 2 shows various examples of VISUALPUZZLES.

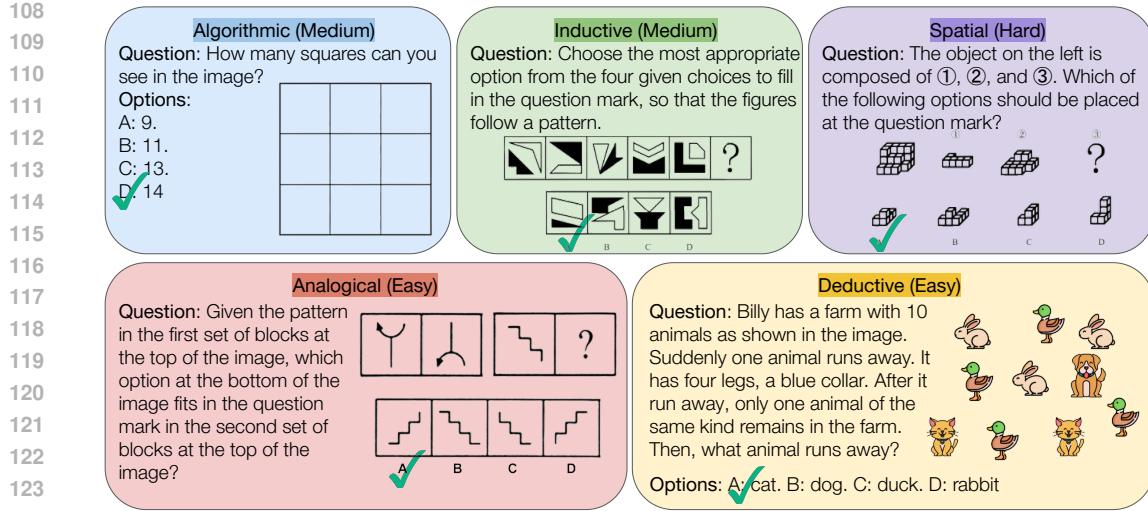


Figure 2: Example VISUALPUZZLES instances within each reasoning category

2.2 DATA COLLECTION AND CURATION

We curated VISUALPUZZLES using a multi-stage pipeline. The process involved sourcing, adapting, and validating questions with an emphasis on reasoning quality and minimal reliance on knowledge.

Question Sourcing. We collected questions from three primary sources: (1) online resources and textbooks focused on logical, visual, and spatial puzzles, (2) synthesized items using images from large-scale vision datasets paired with text prompts, and (3) carefully repurposed items from existing multimodal reasoning benchmarks. Each source was selected to ensure a wide variety of reasoning challenges while avoiding trivial or fact-heavy questions. One major source of our questions is manually translated logical reasoning questions from the Chinese Civil Service Examination¹. Other sources are listed in Appendix B.

Format Adaptation. All collected items were adapted into a consistent multiple-choice format with four options, balancing between text-based and image-based answer choices. This modality balance allows us to better test models’ abilities to perform reasoning across diverse formats.

Data Validation. During curation, we applied strict filtering criteria to eliminate questions requiring advanced mathematical knowledge, specialized domain knowledge and facts. Questions were retained only if they could be solved using information present in the image, the question prompt, and basic common sense. A multi-round validation process was conducted by human annotators, focusing on question clarity, solvability, and reasoning type classification.

Attribute Annotation. Finally, each question was annotated with two key attributes:

- **Reasoning Category:** Each item was categorized as *algorithmic*, *analogical*, *deductive*, *inductive*, or *spatial* reasoning. These five categories were selected as they represent fundamental forms of reasoning widely discussed in literature (Gao et al., 2023; Liu et al., 2020; Lu et al., 2023; Yue et al., 2024a). At the same time, we aimed to balance comprehensiveness with conciseness, avoiding an overly fine-grained taxonomy that could dilute the benchmark’s clarity and usability. This categorization ensures that VISUALPUZZLES covers a broad yet manageable set of reasoning skills relevant to multimodal LLM evaluation.
 - Algorithmic Reasoning involves reasoning over algorithmic rules.
 - Analogical Reasoning requires analyzing the relationships between a pair of entities.
 - Deductive Reasoning involves logically drawing conclusions from known premises.
 - Inductive Reasoning focuses on generalizing rules from observed patterns.
 - Spatial Reasoning requires interpreting and manipulating spatial relationships.
- **Difficulty Level:** Labeled as easy, medium, or hard, based on annotators’ estimated cognitive load and time-to-solve metrics.

¹ Chinese Civil Service Examination (Logic Test), 中国国家公务员考试行测 (逻辑推理)

162 This pipeline ensures that VISUALPUZZLES presents a diverse set of high-quality questions designed
 163 to challenge MLLMs on their reasoning abilities without involving pretrained domain knowledge.
 164

165 **2.3 DATASET STATISTICS**

166 VISUALPUZZLES comprises 1,168 multimodal reasoning puzzles. It is designed to provide a balanced
 167 distribution across reasoning categories, difficulty levels, and option formats for comprehensive evalua-
 168 tion. [Table 1](#) shows statistics of VISUALPUZZLES.

169 Across the five reasoning types, we maintain a roughly even distribution, ensuring that no single
 170 reasoning style dominates the benchmark. Similarly, we balanced the dataset across the three difficulty
 171 levels (easy, medium, hard) to capture a wide spectrum of cognitive demands. Approximately half of
 172 the answer choices in the dataset are image-based and the other half are text-based, enabling evalua-
 173 tion of models’ abilities to reason across diverse query formats. In terms of language complexity,
 174 VISUALPUZZLES was constructed with an emphasis on accessibility. Most of the question text uses
 175 Basic English vocabulary² to minimize the impact of linguistic complexity on reasoning performance,
 176 focusing the evaluation strictly on multimodal reasoning.

177 Compared to prior benchmarks, VISUALPUZZLES is unique in that it explicitly minimizes domain-
 178 specific knowledge requirements while maintaining high reasoning complexity. We demonstrate
 179 these traits of VISUALPUZZLES in Section 5.

Category	Statistics
Total Questions	1168
- Algorithmic Reasoning	262
- Analogical Reasoning	211
- Deductive Reasoning	200
- Inductive Reasoning	209
- Spatial Reasoning	286
Easy/Medium/Hard	46%/39%/15%
Option Type (Image/Text)	57%/43%
AVG. Question Length	154.9
% Easy Words	54%

178 [Table 1](#): Statistics of VISUALPUZZLES

179 **3 EXPERIMENTS AND RESULTS**

180 **3.1 EXPERIMENTAL SETUP**

181 We comprehensively evaluated a variety of MLLMs on VISUALPUZZLES. Additionally, we performed
 182 human evaluations to better understand the gap between human and models’ reasoning capabilities.
 183 We selected a diverse set of proprietary and open MLLMs to ensure broad coverage of models. This
 184 diversity allows us to capture a wide spectrum of current approaches and capabilities in the field. A
 185 Full list of these models can be found in [Table 11](#)

186 We applied both direct multiple-choice and Chain-of-Thought (CoT) prompting to each model,
 187 following recent findings that CoT can significantly enhance model reasoning ([Wei et al., 2022](#);
 188 [Zhang et al., 2023](#)). For each model we report the best performance, whether achieved by direct
 189 multiple-choice or CoT prompting.

190 **Human Performance.** To establish a strong baseline for comparison, we conducted human evalua-
 191 tions with 70 college-level volunteers. While human performance provides a valuable upper-bound
 192 reference for assessing the current capabilities and limitations of multimodal reasoning model, it is
 193 possible that future models could surpass human performance. Each participant was randomly as-
 194 signed a subset of the puzzles and completed them under the same resource-constrained conditions as
 195 the models (without access to external tools or the internet). On average, participants completed each
 196 puzzle in 78 seconds, reflecting the cognitive load and time demands imposed by VISUALPUZZLES.

197 **3.2 OVERALL RESULTS**

198 [Table 2](#) and [Figure 1](#) compare the performance of humans and a selected set of models.³ All evaluated
 199 models, even the proprietary ones, perform below the 4th percentile of human accuracy, underscoring
 200 the significant gap in multimodal reasoning abilities. These results reinforce our finding that, although

210 ²https://en.wiktionary.org/wiki/Appendix:Basic_English_word_list

211 ³Full results for every model discussed in Section 3 are provided in [Appendix E](#), including separate perfor-
 212 mance outcomes for both direct multiple-choice and CoT prompting.

Model	Algorithmic	Analogical	Deductive	Inductive	Spatial	Overall
Random Choice	25.0	25.0	25.0	25.0	25.0	25.0
Human (95th Percentile)	100.0	100.0	100.0	81.6	100.0	89.3
Human (50th Percentile)	88.0	66.0	80.0	50.0	90.0	75.0
Human (5th Percentile)	68.1	25.0	37.0	0.0	59.1	57.5
<i>Proprietary Models</i>						
GPT-4o	49.2	58.3	49.0	27.3	26.2	41.3
o1	63.7	68.3	67.5	29.2	34.3	51.8
o3	64.5	68.3	69.5	27.3	42.7	54.0
o4-mini	65.3	68.7	75.5	33.0	45.5	57.0
Gemini-2.0-flash	55.3	58.8	57.0	24.4	31.8	45.0
Gemini-2.0-flash-thinking	46.6	70.1	49.0	24.9	25.5	42.2
Gemini-2.5-pro	60.0	64.0	60.0	29.7	36.4	49.5
Claude-3.7-Sonnet	64.5	48.3	65.0	26.8	37.4	48.3
Claude-3.7-Sonnet-Thinking	67.2	44.1	61.5	31.1	37.1	48.2
<i>Open Models (Qwen-Based)</i>						
LLaVA-OV-7B	27.5	28.0	40.5	24.4	28.0	29.4
Pangea-7B	32.4	23.7	38.5	28.7	32.5	31.3
Qwen2.5-VL-7B-Instruct	38.2	23.7	51.5	24.9	31.1	33.7
LLaVA-OV-72B	34.7	26.5	37.0	27.3	28.7	30.8
QvQ-72B-Preview	44.8	43.6	44.0	26.8	30.8	37.8
Qwen2.5-VL-72B-Instruct	53.4	46.9	58.0	25.8	29.5	42.3
<i>Open Models (Llama-Based)</i>						
Cambrian-8B	31.3	24.2	36.0	24.0	29.0	28.9
Llama-3.2-11B-Vision-Instruct	31.0	30.8	39.0	21.1	26.2	29.4
Llama-3.2-90B-Vision-Instruct	45.0	23.2	43.0	26.3	31.5	34.1

Table 2: Performance (%) comparison of humans and selected models on VISUALPUZZLES. We report the best performance resulting from direct multiple-choice prompting and CoT prompting for each method. We highlighted all the reasoning models.

models have made progress in multimodal understanding, there remains a substantial margin for improvement before they can match or surpass human performance on multimodal reasoning.

This pattern holds across categories as well. In Table 2, top human participants (95th percentile) exhibit near-perfect accuracy on multiple reasoning categories, while model performance remains substantially lower, even lower than the worst human performance (5th percentile). These results emphasize the need for continued innovation in model architectures and training paradigms if we aim to close the gap between model and human intelligence on complex multimodal reasoning.

4 DISENTANGLING REASONING FROM DOMAIN KNOWLEDGE

4.1 KNOWLEDGE INTENSITY OF VISUALPUZZLES

Is VISUALPUZZLES less knowledge-intensive than existing reasoning benchmarks? This question is central to our goal of disentangling reasoning ability from domain-specific knowledge. Many benchmarks blur this line, making it difficult to assess reasoning in non-expert settings. VISUALPUZZLES was designed to target visual reasoning while minimizing reliance on specialized knowledge.

To test whether VISUALPUZZLES achieves this goal, we prompted GPT-4o to generate “knowledge concept checklists” for 50 randomly selected questions from a widely-used knowledge-intensive reasoning dataset MMMU (Yue et al., 2024a) and 50 from VISUALPUZZLES, and we manually verified each as discussed in subsection F.5. Each checklist comprises knowledge-specific questions intended to assess whether models possess the background information needed to solve the original task. For example, if a question requires understanding two physics laws, its checklist would include a question to explain each. The number of checklist items per instance serves as a proxy for knowledge intensity.

We found that MMMU problems resulted in significantly more checklist items on average (3.9) compared to VISUALPUZZLES (1.1), as shown in [Table 3](#). This supports the hypothesis that VISUALPUZZLES is substantially less reliant on domain knowledge. As a result, performance on VISUALPUZZLES more directly reflects a model’s ability to reason over visual and textual content, offering a clearer signal of progress in multimodal reasoning. Full prompt examples and further discussion are provided in [Appendix F](#).

279

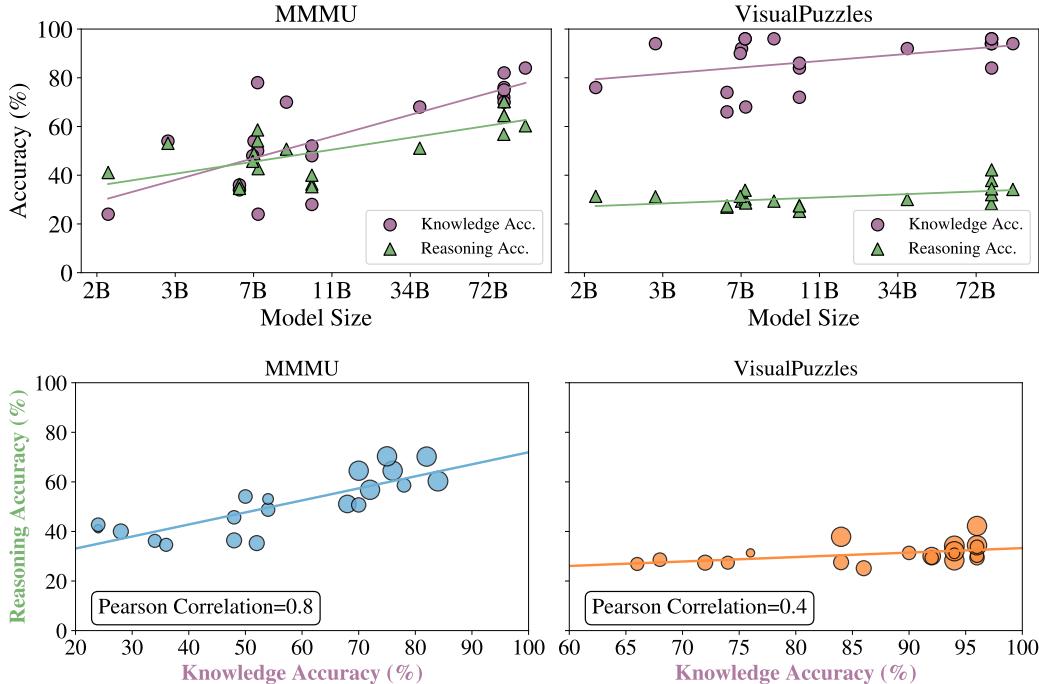


Figure 3: Scatter plots with fit lines of the trend between accuracy and model size (top) and that between reasoning and knowledge accuracy (bottom) on MMMU and VISUALPUZZLES. Dot sizes represent relative model sizes. The correlation between reasoning accuracy and knowledge accuracy is higher on MMMU (0.8) than on VISUALPUZZLES (0.4).

Do models already possess the knowledge required to solve VISUALPUZZLES? To explore this, we measured models’ knowledge accuracy—their ability to answer the knowledge checklist questions correctly—on both benchmarks. This metric reflects how much of the required knowledge is already known by the model, independent of reasoning. We found a stark contrast: while many models exceed 90% knowledge accuracy on VISUALPUZZLES, most score below 60% on MMMU, with smaller models frequently dropping under 50%. Only the largest models approach 80% accuracy on MMMU, underscoring its heavier reliance on domain-specific knowledge.

Does scaling up model size improve performance? We also plot reasoning accuracy (i.e., overall performance on the benchmark) in [Figure 3](#), revealing some interesting trends:

315

- **MMMU.** Larger models tend to have higher knowledge accuracy, and this often translates into higher overall benchmark performance. This aligns with MMMU’s reliance on domain-specific understanding; models with more parameters and training data are better at recalling relevant factual knowledge, thus improving their overall performance.
- **VISUALPUZZLES.** Although many models achieve near-100% knowledge accuracy on VISUALPUZZLES, we observe no clear increase in both knowledge and reasoning accuracy as model size grows. In contrast to MMMU, simply scaling number of parameters does not guarantee better performance on VISUALPUZZLES, implying that further gains on VISUALPUZZLES must stem from improvements in models’ reasoning abilities rather than reliance on extensive knowledge.

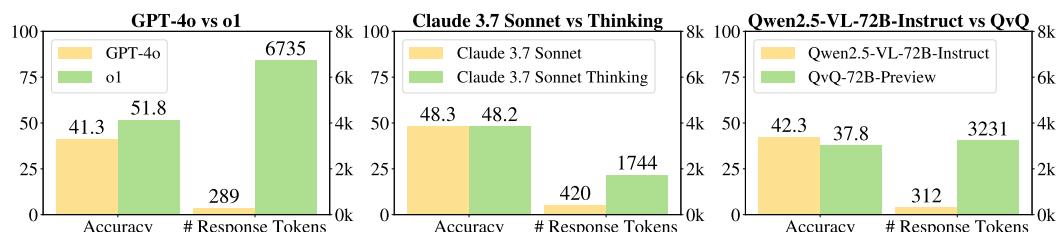
Benchmark	# Knowledge Qs.
MMMU	3.9
VISUALPUZZLES	1.1

Table 3: AVG. number of knowledge concept questions generated per instance on MMMU vs. VISUALPUZZLES.

324
 325 **What is the relationship between knowledge and reasoning?** Figure 3 shows two scatter plots
 326 with trend lines that measure how knowledge accuracy correlates with reasoning accuracy across
 327 different open models, where the relative sizes of the dots represent the sizes of the models. On
 328 MMMU (left), there is a strong positive correlation (0.8), suggesting that a model possessing more
 329 knowledge strongly correlates better reasoning performance. In contrast, VISUALPUZZLES (right)
 330 exhibits a more modest correlation (0.4). Although there is still an upward trend, gains in knowledge
 331 accuracy lead to smaller improvements in reasoning accuracy. This discrepancy implies that while
 332 overcoming knowledge gaps is central to reasoning success on MMMU, VISUALPUZZLES tasks
 333 demand more nuanced inference steps that depends less on domain knowledge.

334 Overall, these findings reinforce that VISUALPUZZLES’s comparatively lower knowledge require-
 335 ments are readily met by models. By contrast, MMMU poses a greater challenge to smaller models
 336 in terms of knowledge, for which scaling in size clearly benefits knowledge-intensive tasks. However,
 337 on VISUALPUZZLES, larger model size alone is not a decisive factor, which might imply that genuine
 338 multimodal reasoning depends on more than just number of parameters or pre-trained knowledge.

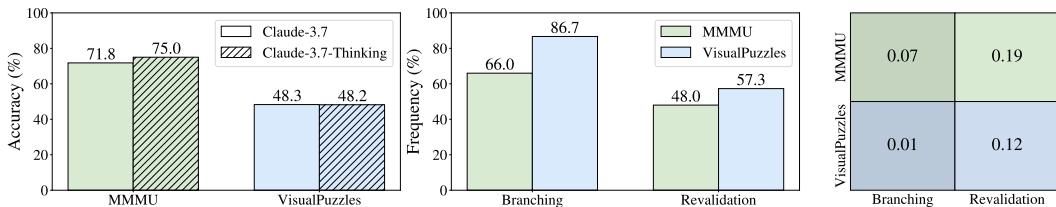
339 4.2 REASONING COMPLEXITY OF VISUALPUZZLES


341 Do questions in VISUALPUZZLES require more complex reasoning than those in existing 342 benchmarks like MMMU?

343 Besides observing that models generally achieve lower
 344 accuracy on VISUALPUZZLES compared to MMMU,
 345 we further investigated whether this gap stems from
 346 increased reasoning complexity. To do so, we measured
 347 the proportion of reasoning steps required to solve each
 348 question. We began by gathering detailed, step-by-step
 349 solutions from the models for each question, which are
 350 manually verified for completeness. Then we classified if each step is a logical reasoning step with the
 351 help of LLM. We show the result in Table 4. On average, logical reasoning steps take up 14.8% more
 352 total steps in solving VISUALPUZZLES questions compared to those of MMMU (82.1% v.s. 71.5%).
 353 Results suggest that VISUALPUZZLES demand more extensive reasoning, aligning with its goal of
 354 evaluating deeper multimodal reasoning beyond factual recall (prompt examples in Appendix G).

Model	MMMU	VISUALPUZZLES
GPT-4o	75.1%	87.0%
Gemini-2.0-Flash	67.9%	77.3%

355 Table 4: Percentage of logical reasoning
 356 steps in solving benchmark questions.


357 4.3 DO REASONING MODELS PERFORM BETTER THAN THEIR BASELINES?

358 Figure 4: Comparison of accuracy and average number of total completion tokens of
 359 reasoning models and their general counterparts on VISUALPUZZLES. We didn’t include Gemini-
 360 2.0-Flash models here because Gemini-2.0-Flash-Thinking does not reveal the number of reasoning
 361 tokens of responses. The accuracies of Gemini-2.0-Flash and Gemini-2.0-Flash-Thinking is 45.0%
 362 and 42.2% respectively. Despite much higher number of completion tokens, reasoning models do
 363 not often achieve better performance on VISUALPUZZLES.

364 Recent reasoning models often scale up inference compute by generating longer CoTs to enhance
 365 reasoning ability. To assess the effectiveness of this strategy on VISUALPUZZLES, we compare
 366 several reasoning models with their non-reasoning counterparts in Figure 4. The reasoning model o1
 367 outperforms GPT-4o overall. However, structured “thinking” modes, despite much higher number of
 368 completion tokens, show no consistent gain. Similarity of output in Figure 14 further reveals that
 369 thinking modes primarily increase verbosity without meaningfully altering reasoning processes.

378 **4.4 ARE BRANCHING AND REVALIDATION REASONING PATTERNS EFFECTIVE ON**
 379 **VISUALPUZZLES?**

387 Figure 5: Comparison of Reasoning Pattern of Claude-3.7-Sonnet-Thinking on MMMU and VI-
 388 SUALPUZZLES. Left figure compares the accuracy of Claude-3.7-Sonnet and Claude-3.7-Sonnet-
 389 Thinking on MMMU and VISUALPUZZLES. Middle figure shows frequency of each pattern. Right
 390 figure shows correlation of the patterns with accuracy on the benchmarks.

391 As discussed in Section 4.3, reasoning-enabled models do not consistently outperform their non-
 392 reasoning counterparts on VISUALPUZZLES. To better understand this discrepancy, we examine
 393 Claude-3.7-Sonnet-Thinking’s reasoning behaviors present in long CoTs, specifically, branching and
 394 re-validation, which are known to play important roles in enhancing reasoning performance⁴. In our
 395 analysis, *branching* refers to systematically exploring multiple reasoning paths, which is conceptually
 396 aligned with the notion of *Exploration* (Chen et al., 2023). Similarly, *re-validation* refers to re-
 397 assessing and correcting conclusions when errors are detected, corresponding closely to the notion of
 398 *Reflection* (Chen et al., 2023; Shinn et al., 2023). By adopting these standard definitions, we aim to
 399 strengthen the connection between our terminology and prior work on reasoning strategies in language
 400 models. As shown in Figure 5, our analysis reveals a striking contrast between benchmarks. On
 401 MMMU, both branching and re-validation correlate positively with model accuracy. These strategies
 402 help models explore alternative reasoning paths and revisit earlier steps, aiding in the retrieval of
 403 relevant factual knowledge, an essential component for solving MMMU’s knowledge-intensive
 404 questions. An example is provided in Appendix F.

405 Surprisingly, these reasoning behaviors are more fre-
 406 quent yet less predictive of success on VISUALPUZZLES. Despite increased presence in long responses,
 407 we observe no significant correlation between these
 408 strategies and task accuracy. This suggests that
 409 models may be using branching and re-validation in ways
 410 that do not contribute to problem solving. Figure 6
 411 highlights this with an example from Claude-3.7-
 412 Sonnet-Thinking, where it applies branching on a
 413 VISUALPUZZLES question. However, the branched
 414 reasoning paths remain shallow and fail to engage
 415 with the core challenge—understanding the spatial
 416 arrangement of chairs (Full response in Appendix F).

417 **5 ANALYSIS**

420 **5.1 DO MODELS APPROACH VISUALPUZZLES**
 421 **QUESTIONS DIFFERENTLY?**

422 **Table 5** shows the statistics of Claude-
 423 3.7-Sonnet-Thinking’s answering strat-
 424 egy. We observe a clear divergence in
 425 answering strategies between MMMU
 426 and VISUALPUZZLES. On MMMU, the
 427 model tends to follow an option-driven
 428 approach—using the provided choices early to eliminate unlikely answers and select the most relevant
 429 one, without explicitly solving the problem. In contrast, the model more frequently adopts an answer-
 430 first strategy on VISUALPUZZLES, attempting to solve the question independently before comparing

Question: Given a pair of chairs arranged at a specific angle, select the option that matches the angle of the chairs in the question. (Answer: C)

A:
B:
C:
D:

Claude-3.7-Sonnet (With Thinking)

Let me examine the chairs in the question:

- The chairs are positioned 180 degrees apart.
- They are shown in profile view.

Option A: ...; Option B: ...; Option C: ...; Option D: ...

Any of them is correct from an angular perspective.

However, looking more carefully at the exact orientation:

- The original chairs are shown in perfect profile view
- Option A shows chairs in perfect profile view,

I'll go with Option A as it presents the cleanest profile view that matches the arrangement in the question.

Figure 6: An example of Claude-3.7-Sonnet-Thinking using **branching** to solve a puzzle.

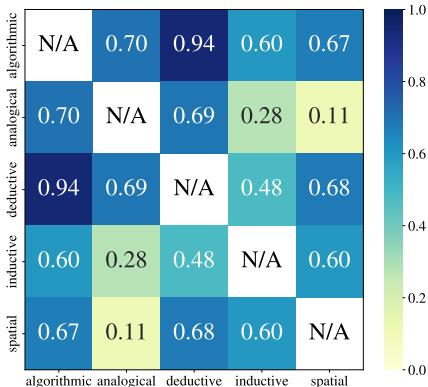

Benchmark	Answer-First	Option-First
MMMU	29.3%	70.7%
VISUALPUZZLES (Image Options)	72.5%	27.5%
VISUALPUZZLES (Text Options)	98.3%	1.7%

Table 5: Answer Strategy of Claude-3.7-Sonnet-Thinking

⁴We examined Claude-3.7-Sonnet as a case study, since it is the best model with explicitly thinking output.

432 the result to the answer choices. This pattern holds across both textual and image-based options,
 433 though the option-first approach appears more often (around 30%) for image-based tasks—likely due
 434 to the complexity of visual comparison (Liu et al., 2021; Song et al., 2025; Suhr et al., 2019).
 435

436 5.2 IS THERE PERFORMANCE CO-OCCURRENCE AMONG REASONING CATEGORIES?

450 Figure 7: Correlation Heatmap among
 451 reasoning categories for models.
 452

453 However, this generalization may not reflect true reasoning abilities. Instead, the high correlations could
 454 indicate that models are leveraging shared surface-level patterns or shortcut strategies that happen
 455 to work across multiple structurally different categories, unlike humans, who may rely on distinct
 456 cognitive processes.

457 5.3 ERROR ANALYSIS

459 Figure 8 is a pie chart showing the error category distribution of
 460 Claude-3.7-Sonnet-Thinking on 100 randomly selected instances
 461 from VISUALPUZZLES. Reasoning errors dominate at 56%, reinfor-
 462 cing the fact that reasoning is the greatest challenge in VISUALPU-
 463 ZLES. Perceptual errors (21%) and spatial / orientation errors (17%)
 464 also constitute substantial portions of failures, reflecting difficulties
 465 in interpreting visual elements and understanding spatial rela-
 466 tionships. These three categories together account for 94% of mistakes,
 467 emphasizing a need for multimodal models with stronger reasoning
 468 capabilities with more robust perception and spatial understand-
 469 ing. Textual and visual understanding errors (4%) and reject-to-answer
 470 cases (2%) are relatively rare. Appendix M shows samples of error
 471 and correct cases of each reasoning and difficulty category.

472 6 CONCLUSION

475 We presented VISUALPUZZLES, a novel and complex multimodal reasoning benchmark carefully
 476 designed to minimize requirement of domain-specific knowledge. Our results show that while
 477 proprietary and large-scale open models achieve relatively higher performance, they still fall short of
 478 human-level reasoning—especially on more complex tasks such as analogical and inductive reasoning.
 479 Moreover, we observe that strong performance on knowledge-intensive benchmarks like MMMU
 480 does not necessarily translate into high accuracy on VISUALPUZZLES, underscoring the distinct
 481 challenge of knowledge-light reasoning tasks. Our findings also suggest that purely scaling inference
 482 compute, model size and knowledge resources may not suffice for robust multimodal reasoning skills.

483 By disentangling domain knowledge from multimodal reasoning, we hope VISUALPUZZLES will
 484 serve as a valuable tool for developing and evaluating next-generation MLLMs that excel at genuinely
 485 understanding and reasoning about the world without depending heavily on specialized factual
 knowledge.

Figure 7 presents a heatmap showing the correlation among the five reasoning categories in VISUALPUZZLES. We report correlations averaged across all models in Table 2. For humans, each category likely engages different cognitive processes (Babcock & Vallesi, 2015; Bright & Feeney, 2014; Goel & Dolan, 2004; Green et al., 2010), so performance in one category may not co-occur with performance in another (See Appendix J.6 for more discussion). However, the correlation heatmap of the models tells a different story. We observe notably strong correlations across reasoning categories, with values ranging from 0.11 to as high as 0.94. In particular, algorithmic and deductive reasoning show high correlation (0.94), and other pairs such as algorithmic-analogical and deductive-analogical also exhibit strong associations. This suggests that model performance tends to generalize across categories. How-

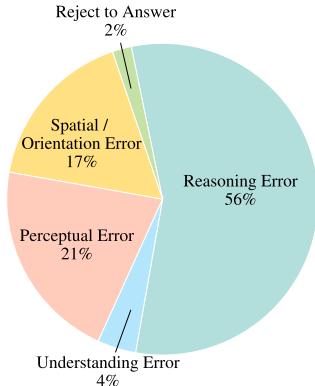


Figure 8: Error Distribution of Claude-3.7-Sonnet-Thinking

486 REPRODUCIBILITY STATEMENT
487488 We took several steps to enable independent verification of our results. The dataset design, curation
489 pipeline, validation procedures, and attribute annotation are described in [section 2](#). Our experimental
490 setup, including model families evaluated and human study protocol, is summarized in [section 3](#). The
491 appendices contain the materials needed to replicate analyses.
492493 ETHICAL STATEMENT
494495 This paper uses samples extracted from existing quiz sources for scholarly analysis and testing
496 purposes, in accordance to US fair use law and standard practice. These data are neither intended for,
497 nor capable of, substituting for the original works; thus, we believe their inclusion does not diminish
498 the market value or utility of the source materials. A complete list of references for the data sources
499 is attached in [Appendix B](#).
500501 REFERENCES
502

503 Anthropic. Introducing claude, 2023. URL <https://www.anthropic.com/index/introducing-claude>.

505 Anthropic. Claude 3.7 sonnet and claude code, 2025. URL <https://www.anthropic.com/news/clause-3-7-sonnet>.

508 Laura Babcock and Antonino Vallesi. The interaction of process and domain in prefrontal cortex
509 during inductive reasoning. *Neuropsychologia*, 67:91–99, 2015.

510 Yonatan Bitton, Ron Yosef, Eliyahu Strugo, Dafna Shahaf, Roy Schwartz, and Gabriel Stanovsky.
511 Vavr: Visual analogies of situation recognition. In *Proceedings of the AAAI Conference on Artificial
512 Intelligence*, volume 37, pp. 241–249, 2023.

514 Aimée K Bright and Aidan Feeney. Causal knowledge and the development of inductive reasoning.
515 *Journal of Experimental Child Psychology*, 122:48–61, 2014.

516 Qiguang Chen, Libo Qin, Jin Zhang, Zhi Chen, Xiao Xu, and Wanxiang Che. M³CoT: A novel
517 benchmark for multi-domain multi-step multi-modal chain-of-thought. In Lun-Wei Ku, Andre
518 Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association
519 for Computational Linguistics (Volume 1: Long Papers)*, pp. 8199–8221, Bangkok, Thailand,
520 August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.446.
521 URL <https://aclanthology.org/2024.acl-long.446/>.

522 X. Chen, Y. Zhang, Q. Liu, and Z. Wang. Exploration and reflection: Dual processes in reasoning
523 with language models. In *Proceedings of NeurIPS*, 2023.

525 Zihui Cheng, Qiguang Chen, Jin Zhang, Hao Fei, Xiaocheng Feng, Wanxiang Che, Min Li, and Libo
526 Qin. Comt: A novel benchmark for chain of multi-modal thought on large vision-language models.
527 12 2024. doi: 10.48550/arXiv.2412.12932.

528 Anoop Cherian, Kuan-Chuan Peng, Suhas Lohit, Kevin Smith, and Joshua B Tenenbaum. Are deep
529 neural networks smarter than second graders? *arXiv preprint arXiv:2212.09993*, 2022a.

531 Anoop Cherian, Kuan-Chuan Peng, Suhas Lohit, Kevin A. Smith, and Joshua B. Tenenbaum.
532 Are deep neural networks smarter than second graders? *2023 IEEE/CVF Conference on
533 Computer Vision and Pattern Recognition (CVPR)*, pp. 10834–10844, 2022b. URL <https://api.semanticscholar.org/CorpusID:254877678>.

535 Yew Ken Chia, Vernon Toh, Deepanway Ghosal, Lidong Bing, and Soujanya Poria. PuzzleVQA:
536 Diagnosing multimodal reasoning challenges of language models with abstract visual patterns.
537 In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Findings of the Association for
538 Computational Linguistics: ACL 2024*, pp. 16259–16273, Bangkok, Thailand, August 2024.
539 Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.962. URL <https://aclanthology.org/2024.findings-acl.962/>.

540 DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning,
 541 2025. URL <https://arxiv.org/abs/2501.12948>.

542

543 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
 544 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
 545 *ArXiv preprint*, abs/2407.21783, 2024. URL <https://arxiv.org/abs/2407.21783>.

546

547 Jingying Gao, Qi Wu, Alan Blair, and Maurice Pagnucco. Lora: A logical reasoning augmented
 548 dataset for visual question answering. In *Thirty-seventh Conference on Neural Information
 549 Processing Systems Datasets and Benchmarks Track*, 2023.

550

551 Gemini. Introducing gemini 2.0: our new ai model for the agentic era,
 552 2024. URL [https://blog.google/technology/google-deepmind/
 553 google-gemini-ai-update-december-2024/](https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/).

554

555 Gemini. Gemini 2.5: Our most intelligent ai model, 2025.
 556 URL [https://blog.google/technology/google-deepmind/
 557 gemini-model-thinking-updates-march-2025/](https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/).

558

559 Gemini, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu
 560 Soricu, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable
 561 multimodal models. *ArXiv preprint*, abs/2312.11805, 2023. URL [https://arxiv.org/abs/
 562 2312.11805](https://arxiv.org/abs/2312.11805).

563

564 Vinod Goel and Raymond J Dolan. Differential involvement of left prefrontal cortex in inductive and
 565 deductive reasoning. *Cognition*, 93(3):B109–B121, 2004.

566

567 Adam E Green, David JM Kraemer, Jonathan A Fugelsang, Jeremy R Gray, and Kevin N Dunbar.
 568 Connecting long distance: semantic distance in analogical reasoning modulates frontopolar cortex
 569 activity. *Cerebral cortex*, 20(1):70–76, 2010.

570

571 Jen-Tse Huang, Dasen Dai, Jen-Yuan Huang, Youliang Yuan, Xiaoyuan Liu, Wenxuan Wang,
 572 Wenxiang Jiao, Pinjia He, and Zhaopeng Tu. Visfactor: Benchmarking fundamental visual
 573 cognition in multimodal large language models. *arXiv preprint arXiv:2502.16435*, 2025.

574

575 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
 576 Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv preprint
 577 arXiv:2412.16720*, 2024.

578

579 Anya Ji, Noriyuki Kojima, Noah Rush, Alane Suhr, Wai Keen Vong, Robert Hawkins, and Yoav
 580 Artzi. Abstract visual reasoning with tangram shapes. In Yoav Goldberg, Zornitsa Kozareva,
 581 and Yue Zhang (eds.), *Proceedings of the 2022 Conference on Empirical Methods in Natural
 582 Language Processing*, pp. 582–601, Abu Dhabi, United Arab Emirates, December 2022.
 583 Association for Computational Linguistics. doi: 10.18653/v1/2022.emnlp-main.38. URL
 584 <https://aclanthology.org/2022.emnlp-main.38/>.

585

586 Dongzhi Jiang, Renrui Zhang, Ziyu Guo, Yanwei Li, Yu Qi, Xinyan Chen, Lihui Wang, Jianhan
 587 Jin, Claire Guo, Shen Yan, et al. Mme-cot: Benchmarking chain-of-thought in large multimodal
 588 models for reasoning quality, robustness, and efficiency. *arXiv preprint arXiv:2502.09621*, 2025.

589

590 Simran Khanuja, Sathyaranayanan Ramamoorthy, Yueqi Song, and Graham Neubig. An image
 591 speaks a thousand words, but can everyone listen? on image transcreation for cultural relevance. In
 592 Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings of the 2024 Conference
 593 on Empirical Methods in Natural Language Processing*, pp. 10258–10279, Miami, Florida, USA,
 November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.
 594 573. URL <https://aclanthology.org/2024.emnlp-main.573/>.

595

596 Bo Li*, Peiyuan Zhang*, Kaicheng Zhang*, Fanyi Pu*, Xinrun Du, Yuhao Dong, Haotian Liu, Yuan-
 597 han Zhang, Ge Zhang, Chunyuan Li, and Ziwei Liu. Lmms-eval: Accelerating the development of
 598 large multimodal models, March 2024. URL [https://github.com/EvolvingLMs-Lab/
 lmms-eval](https://github.com/EvolvingLMs-Lab/

 599 lmms-eval).

594 Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Yanwei
 595 Li, Ziwei Liu, and Chunyuan Li. Llava-onevision: Easy visual task transfer. *arXiv preprint*
 596 *arXiv:2408.03326*, 2024.

597

598 Fangyu Liu, Emanuele Bugliarello, Edoardo Maria Ponti, Siva Reddy, Nigel Collier, and Desmond
 599 Elliott. Visually grounded reasoning across languages and cultures. In Marie-Francine Moens, Xu-
 600 anjing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.), *Proceedings of the 2021 Conference on*
 601 *Empirical Methods in Natural Language Processing*, pp. 10467–10485, Online and Punta Cana, Do-
 602 minican Republic, November 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.818. URL <https://aclanthology.org/2021.emnlp-main.818/>.

603

604 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
 605 tuning, 2023a. URL <https://arxiv.org/abs/2310.03744>.

606

607 Jian Liu, Leyang Cui, Hammeng Liu, Dandan Huang, Yile Wang, and Yue Zhang. Logiqa: A challenge
 608 dataset for machine reading comprehension with logical reasoning, 2020.

609

610 Junpeng Liu, Tianyue Ou, Yifan Song, Yuxiao Qu, Wai Lam, Chenyan Xiong, Wenhui Chen,
 611 Graham Neubig, and Xiang Yue. Harnessing webpage uis for text-rich visual understanding.
 612 *ArXiv*, abs/2410.13824, 2024. URL <https://api.semanticscholar.org/CorpusID:273403951>.

613

614 Yuanzhan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike
 615 Yuan, Jiaqi Wang, Conghui He, Ziwei Liu, Kai Chen, and Dahu Lin. Mmbench: Is your multi-
 616 modal model an all-around player? In *European Conference on Computer Vision*, 2023b. URL
<https://api.semanticscholar.org/CorpusID:259837088>.

617

618 Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng,
 619 Kai-Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical reasoning
 620 of foundation models in visual contexts. *arXiv preprint arXiv:2310.02255*, 2023.

621

622 Kenneth Marino, Mohammad Rastegari, Ali Farhadi, and Roozbeh Mottaghi. Ok-vqa: A visual
 623 question answering benchmark requiring external knowledge. *2019 IEEE/CVF Conference on*
 624 *Computer Vision and Pattern Recognition (CVPR)*, pp. 3190–3199, 2019. URL <https://api.semanticscholar.org/CorpusID:173991173>.

625

626 OpenAI. Hello gpt-4o, 2024. URL <https://openai.com/index/hello-gpt-4o/>.

627

628 OpenAI. Introducing openai o3 and o4-mini, 2025. URL <https://openai.com/index/introducing-o3-and-o4-mini/>.

629

630 Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li, Josephina Hu, Hugh Zhang, Chen Bo Calvin
 631 Zhang, Mohamed Shaaban, John Ling, Sean Shi, Michael Choi, Anish Agrawal, Arnav Chopra,
 632 Adam Khoja, Ryan Kim, Richard Ren, Jason Hausenloy, Oliver Zhang, Mantas Mazeika, Dmitry
 633 Dodonov, Tung Nguyen, Jaeho Lee, Daron Anderson, Mikhail Doroshenko, Alun Cennyth Stokes,
 634 Mobeen Mahmood, Oleksandr Pokutnyi, Oleg Iskra, Jessica P. Wang, John-Clark Levin, Mstyslav
 635 Kazakov, Fiona Feng, Steven Y. Feng, Haoran Zhao, Michael Yu, Varun Gangal, Chelsea Zou,
 636 Zihan Wang, Serguei Popov, Robert Gerbicz, Geoff Galgon, Johannes Schmitt, Will Yeadon,
 637 Yongki Lee, Scott Sauers, Alvaro Sanchez, Fabian Giska, Marc Roth, Søren Riis, Saiteja Utpala,
 638 Noah Burns, Gashaw M. Goshu, Mohinder Maheshbhai Naiya, Chidozie Agu, Zachary Giboney,
 639 Antrell Cheatom, Francesco Fournier-Facio, Sarah-Jane Crowson, Lennart Finke, Zerui Cheng,
 640 Jennifer Zampese, Ryan G. Hoerr, Mark Nandor, Hyunwoo Park, Tim Gehrunger, Jiaqi Cai, Ben
 641 McCarty, Alexis C Garretson, Edwin Taylor, Damien Sileo, Qiuyu Ren, Usman Qazi, Lianghui
 642 Li, Jungbae Nam, John B. Wydallis, Pavel Arkhipov, Jack Wei Lun Shi, Aras Bacho, Chris G.
 643 Willcocks, Hangrui Cao, Sumeet Motwani, Emily de Oliveira Santos, Johannes Veith, Edward
 644 Vendrow, Doru Cojoc, Kengo Zenitani, Joshua Robinson, Longke Tang, Yuqi Li, Joshua Vendrow,
 645 Natanael Wildner Fraga, Vladyslav Kuchkin, Andrey Pupasov Maksimov, Pierre Marion, Denis
 646 Efremov, Jayson Lynch, Kaiqu Liang, Aleksandar Mikov, Andrew Gritsevskiy, Julien Guillod,
 647 Gözdenur Demir, Dakotah Martinez, Ben Pageler, Kevin Zhou, Saeed Soori, Ori Press, Henry Tang,
 Paolo Rissone, Sean R. Green, Lina Brüssel, Moon Twayana, Aymeric Dieuleveut, Joseph Marvin
 Imperial, Ameya Prabhu, Jinzhou Yang, Nick Crispino, Arun Rao, Dimitri Zvonkine, Gabriel
 Loiseau, Mikhail Kalinin, Marco Lukas, Ciprian Manolescu, Nate Stambaugh, Subrata Mishra, Tad

648 Hogg, Carlo Bosio, Brian P Coppola, Julian Salazar, Jaehyeok Jin, Rafael Sayous, Stefan Ivanov,
 649 Philippe Schwaller, Shaipranesh Senthilkuma, Andres M Bran, Andres Algaba, Kelsey Van den
 650 Houte, Lynn Van Der Sypt, Brecht Verbeken, David Noever, Alexei Kopylov, Benjamin Myklebust,
 651 Bikun Li, Lisa Schut, Evgenii Zheltonozhskii, Qiaochu Yuan, Derek Lim, Richard Stanley, Tong
 652 Yang, John Maar, Julian Wykowski, Martí Oller, Anmol Sahu, Cesare Giulio Ardito, Yuzheng Hu,
 653 Ariel Ghislain Kemogne Kamdoum, Alvin Jin, Tobias Garcia Vilchis, Yuexuan Zu, Martin Lackner,
 654 James Koppel, Gongbo Sun, Daniil S. Antonenko, Steffi Chern, Bingchen Zhao, Pierrot Arsene,
 655 Joseph M Cavanagh, Daofeng Li, Jiawei Shen, Donato Crisostomi, Wenjin Zhang, Ali Dehghan,
 656 Sergey Ivanov, David Perrella, Nurdin Kaparov, Allen Zang, Ilia Sucholutsky, Arina Kharlamova,
 657 Daniil Orel, Vladislav Poritski, Shalev Ben-David, Zachary Berger, Parker Whitfill, Michael Foster,
 658 Daniel Munro, Linh Ho, Shankar Sivarajan, Dan Bar Hava, Aleksey Kuchkin, David Holmes,
 659 Alexandra Rodriguez-Romero, Frank Sommerhage, Anji Zhang, Richard Moat, Keith Schneider,
 660 Zakayo Kazibwe, Don Clarke, Dae Hyun Kim, Felipe Meneguitti Dias, Sara Fish, Veit Elser,
 661 Tobias Kreiman, Victor Efren Guadarrama Vilchis, Immo Klose, Ujjwala Anantheswaran, Adam
 662 Zweiger, Kaivalya Rawal, Jeffery Li, Jeremy Nguyen, Nicolas Daans, Haline Heidinger, Maksim
 663 Radionov, Václav Rozhoň, Vincent Ginis, Christian Stump, Niv Cohen, Rafał Poświaty, Josef
 664 Tkadlec, Alan Goldfarb, Chenguang Wang, Piotr Padlewski, Stanislaw Barzowski, Kyle Mont-
 665 gomery, Ryan Stendall, Jamie Tucker-Foltz, Jack Stade, T. Ryan Rogers, Tom Goertzen, Declan
 666 Grabb, Abhishek Shukla, Alan Givré, John Arnold Ambay, Archan Sen, Muhammad Fayez Aziz,
 667 Mark H Inlow, Hao He, Ling Zhang, Younesse Kaddar, Ivar Ängquist, Yanxu Chen, Harrison K
 668 Wang, Kalyan Ramakrishnan, Elliott Thorlley, Antonio Terpin, Hailey Schoelkopf, Eric Zheng,
 669 Avishy Carmi, Ethan D. L. Brown, Kelin Zhu, Max Bartolo, Richard Wheeler, Martin Stehberger,
 670 Peter Bradshaw, JP Heimonen, Kaustubh Sridhar, Ido Akov, Jennifer Sandlin, Yury Makarychev,
 671 Joanna Tam, Hieu Hoang, David M. Cunningham, Vladimir Goryachev, Demosthenes Patramanis,
 672 Michael Krause, Andrew Redenti, David Aldous, Jesyin Lai, Shannon Coleman, Jiangnan Xu,
 673 Sangwon Lee, Ilias Magoulas, Sandy Zhao, Ning Tang, Michael K. Cohen, Orr Paradise, Jan Hen-
 674 drik Kirchner, Maksym Ovchynnikov, Jason O. Matos, Adithya Shenoy, Michael Wang, Yuzhou
 675 Nie, Anna Sztyber-Betley, Paolo Faraboschi, Robin Riblet, Jonathan Crozier, Shiv Halasyamani,
 676 Shreyas Verma, Prashant Joshi, Eli Meril, Ziqiao Ma, Jérémie Andréoletti, Raghav Singhal, Jacob
 677 Platnick, Volodymyr Nevirkovets, Luke Basler, Alexander Ivanov, Seri Khoury, Nils Gustafsson,
 678 Marco Piccardo, Hamid Mostaghimi, Qijia Chen, Virendra Singh, Tran Quoc Khanh, Paul Rosu,
 679 Hannah Szlyk, Zachary Brown, Himanshu Narayan, Aline Menezes, Jonathan Roberts, William
 680 Alley, Kunyang Sun, Arkil Patel, Max Lamparth, Anka Reuel, Linwei Xin, Hanmeng Xu, Jacob
 681 Loader, Freddie Martin, Zixuan Wang, Andrea Achilleos, Thomas Preu, Tomek Korbak, Ida Bosio,
 682 Fereshteh Kazemi, Ziye Chen, Biró Bálint, Eve J. Y. Lo, Jiaqi Wang, Maria Inês S. Nunes, Jeremiah
 683 Milbauer, M Saiful Bari, Zihao Wang, Behzad Ansarinejad, Yewen Sun, Stephane Durand, Hossam
 684 Elgnainy, Guillaume Douville, Daniel Tordera, George Balabanian, Hew Wolff, Lynna Kvistad,
 685 Hsiaoyun Milliron, Ahmad Sakor, Murat Eron, Andrew Favre D. O., Shailesh Shah, Xiaoxiang
 686 Zhou, Firuz Kamalov, Sherwin Abdoli, Tim Santens, Shaul Barkan, Allison Tee, Robin Zhang,
 687 Alessandro Tomasiello, G. Bruno De Luca, Shi-Zhuo Looi, Vinh-Kha Le, Noam Kolt, Jiayi Pan,
 688 Emma Rodman, Jacob Drori, Carl J Fossum, Niklas Muennighoff, Milind Jagota, Ronak Pradeep,
 689 Honglu Fan, Jonathan Eicher, Michael Chen, Kushal Thaman, William Merrill, Moritz Firsching,
 690 Carter Harris, Stefan Ciobăcă, Jason Gross, Rohan Pandey, Ilya Gusev, Adam Jones, Shashank
 691 Agnihotri, Pavel Zhelnov, Mohammadreza Mofayez, Alexander Piperski, David K. Zhang, Kos-
 692 tantyn Dobarskyi, Roman Leventov, Ignat Soroko, Joshua Duersch, Vage Taamazyan, Andrew Ho,
 693 Wenjie Ma, William Held, Ruicheng Xian, Armel Randy Zebaze, Mohanad Mohamed, Julian Noah
 694 Leser, Michelle X Yuan, Laila Yacar, Johannes Lengler, Katarzyna Olszewska, Claudio Di Fratta,
 695 Edson Oliveira, Joseph W. Jackson, Andy Zou, Muthu Chidambaram, Timothy Manik, Hector
 696 Haffenden, Dashiell Stander, Ali Dasouqi, Alexander Shen, Bita Golshani, David Stap, Egor
 697 Kretov, Mikalai Uzhou, Alina Borisovna Zhidkovskaya, Nick Winter, Miguel Orbegozo Rodriguez,
 698 Robert Lauff, Dustin Wehr, Colin Tang, Zaki Hossain, Shaun Phillips, Fortuna Samuele, Fredrik
 699 Ekström, Angela Hammon, Oam Patel, Faraz Farhidi, George Medley, Forough Mohammadzadeh,
 700 Madellene Peñaflor, Haile Kassahun, Alena Friedrich, Rayner Hernandez Perez, Daniel Pyda,
 701 Taom Sakal, Omkar Dhamane, Ali Khajegili Mirabadi, Eric Hallman, Kenchi Okutsu, Mike
 Battaglia, Mohammad Maghsoudimehrabani, Alon Amit, Dave Hulbert, Roberto Pereira, Simon
 Weber, Handoko, Anton Peristyy, Stephen Malina, Mustafa Mehkary, Rami Aly, Frank Reidegeld,
 Anna-Katharina Dick, Cary Friday, Mukhwinder Singh, Hassan Shapourian, Wanyoung Kim, Mar-
 iana Costa, Hubeyb Gurdogan, Harsh Kumar, Chiara Ceconello, Chao Zhuang, Haon Park, Micah
 Carroll, Andrew R. Tawfeek, Stefan Steinerberger, Daattavya Aggarwal, Michael Kirchhof, Linjie

702 Dai, Evan Kim, Johan Ferret, Jainam Shah, Yuzhou Wang, Minghao Yan, Krzysztof Burdzy, Lixin
 703 Zhang, Antonio Franca, Diana T. Pham, Kang Yong Loh, Joshua Robinson, Abram Jackson, Paolo
 704 Giordano, Philipp Petersen, Adrian Cosma, Jesus Colino, Colin White, Jacob Votava, Vladimir
 705 Vinnikov, Ethan Delaney, Petr Spelda, Vit Stritecky, Syed M. Shahid, Jean-Christophe Mourrat,
 706 Lavr Vetoshkin, Koen Sponselee, Renas Bacho, Zheng-Xin Yong, Florencia de la Rosa, Nathan
 707 Cho, Xiuyu Li, Guillaume Malod, Orion Weller, Guglielmo Albani, Leon Lang, Julien Laurendeau,
 708 Dmitry Kazakov, Fatimah Adesanya, Julien Portier, Lawrence Hollom, Victor Souza, Yuchen Anna
 709 Zhou, Julien Degorre, Yiğit Yalın, Gbenga Daniel Obikoya, Rai, Filippo Bigi, M. C. Boscá, Oleg
 710 Shumar, Kaniuar Bacho, Gabriel Recchia, Mara Popescu, Nikita Shulga, Ngefor Mildred Tanwie,
 711 Thomas C. H. Lux, Ben Rank, Colin Ni, Matthew Brooks, Alesia Yakimchyk, Huanxu, Liu,
 712 Stefano Cavalleri, Olle Häggström, Emil Verkama, Joshua Newbould, Hans Gundlach, Leonor
 713 Brito-Santana, Brian Amaro, Vivek Vajipey, Rynaa Grover, Ting Wang, Yosi Kratish, Wen-Ding
 714 Li, Sivakanth Gopi, Andrea Caciolai, Christian Schroeder de Witt, Pablo Hernández-Cámarra,
 715 Emanuele Rodolà, Jules Robins, Dominic Williamson, Vincent Cheng, Brad Raynor, Hao Qi, Ben
 716 Segev, Jingxuan Fan, Sarah Martinson, Erik Y. Wang, Kaylie Hausknecht, Michael P. Brenner,
 717 Mao Mao, Christoph Demian, Peyman Kassani, Xinyu Zhang, David Avagian, Eshawn Jessica
 718 Scipio, Alon Ragoler, Justin Tan, Blake Sims, Rebeka Plecnik, Aaron Kirtland, Omer Faruk
 719 Bodur, D. P. Shinde, Yan Carlos Leyva Labrador, Zahra Adoul, Mohamed Zekry, Ali Karakoc,
 720 Tania C. B. Santos, Samir Shamseldeen, Loukmame Karim, Anna Liakhovitskaia, Nate Resman,
 721 Nicholas Farina, Juan Carlos Gonzalez, Gabe Maayan, Earth Anderson, Rodrigo De Oliveira
 722 Pena, Elizabeth Kelley, Hodjat Mariji, Rasoul Pouriamanesh, Wentao Wu, Ross Finocchio, Ismail
 723 Alarab, Joshua Cole, Danyelle Ferreira, Bryan Johnson, Mohammad Safdari, Liangti Dai, Siriphan
 724 Arthornthurasuk, Isaac C. McAlister, Alejandro José Moyano, Alexey Pronin, Jing Fan, Angel
 725 Ramirez-Trinidad, Yana Malyshева, Daphny Pottmaier, Omid Taheri, Stanley Stepanic, Samuel
 726 Perry, Luke Askew, Raúl Adrián Huerta Rodríguez, Ali M. R. Minissi, Ricardo Lorena, Krishnamurthy
 727 Iyer, Arshad Anil Fasiludeen, Ronald Clark, Josh Ducey, Matheus Piza, Maja Somrak, Eric
 728 Vergo, Juehang Qin, Benjamín Borbás, Eric Chu, Jack Lindsey, Antoine Jallon, I. M. J. McInnis,
 729 Evan Chen, Avi Semler, Luk Gloor, Tej Shah, Marc Carauleanu, Pascal Lauer, Tran Duc Huy,
 730 Hossein Shahrtash, Emilien Duc, Lukas Lewark, Assaf Brown, Samuel Albanie, Brian Weber,
 731 Warren S. Vaz, Pierre Clavier, Yiyang Fan, Gabriel Poesia Reis e Silva, Long, Lian, Marcus
 732 Abramovitch, Xi Jiang, Sandra Mendoza, Murat Islam, Juan Gonzalez, Vasilios Mavroudis, Justin
 733 Xu, Pawan Kumar, Laxman Prasad Goswami, Daniel Bugas, Nasser Heydari, Ferenc Jeanplong,
 734 Thorben Jansen, Antonella Pinto, Archimedes Apronti, Abdallah Galal, Ng Ze-An, Ankit Singh,
 735 Tong Jiang, Joan of Arc Xavier, Kanu Priya Agarwal, Mohammed Berkani, Gang Zhang, Zhehang
 736 Du, Benedito Alves de Oliveira Junior, Dmitry Malishev, Nicolas Remy, Taylor D. Hartman, Tim
 737 Tarver, Stephen Mensah, Gautier Abou Loume, Wiktor Morak, Farzad Habibi, Sarah Hoback, Will
 738 Cai, Javier Gimenez, Roselynn Grace Montecillo, Jakub Łucki, Russell Campbell, Asankhaya
 739 Sharma, Khalida Meer, Shreen Gul, Daniel Espinosa Gonzalez, Xavier Alapont, Alex Hoover, Gunjan
 740 Chhablani, Freddie Vargus, Arunim Agarwal, Yibo Jiang, Deepakkumar Patil, David Outevsky,
 741 Kevin Joseph Scaria, Rajat Maheshwari, Abdelkader Dendane, Priti Shukla, Ashley Cartwright,
 742 Sergei Bogdanov, Niels Mündler, Sören Möller, Luca Arnaboldi, Kunvar Thaman, Muhammad
 743 Rehan Siddiqi, Prajvi Saxena, Himanshu Gupta, Tony Fruhauff, Glen Sherman, Mátyás Vincze,
 744 Siranut Usawasutakorn, Dylan Ler, Anil Radhakrishnan, Innocent Enyekwe, Sk Md Salauddin,
 745 Jiang Muzhen, Aleksandr Maksapetyan, Vivien Rossbach, Chris Harjadi, Mohsen Bahaloohoreh,
 746 Claire Sparrow, Jasdeep Sidhu, Sam Ali, Song Bian, John Lai, Eric Singer, Justine Leon Uro,
 747 Greg Bateman, Mohamed Sayed, Ahmed Menshawy, Darling Duclosel, Dario Bezzi, Yashaswini
 748 Jain, Ashley Aaron, Murat Tiryakioglu, Sheeshram Siddh, Keith Krenek, Imad Ali Shah, Jun Jin,
 749 Scott Creighton, Denis Peskoff, Zienab EL-Wasif, Ragavendran P V, Michael Richmond, Joseph
 750 McGowan, Tejal Patwardhan, Hao-Yu Sun, Ting Sun, Nikola Zubić, Samuele Sala, Stephen Ebert,
 751 Jean Kaddour, Manuel Schottdorf, Dianzhuo Wang, Gerol Petruzella, Alex Meiburg, Tilen Medved,
 752 Ali ElSheikh, S Ashwin Hebbar, Lorenzo Vaquero, Xianjun Yang, Jason Poulos, Vilém Zouhar,
 753 Sergey Bogdanik, Mingfang Zhang, Jorge Sanz-Ros, David Anugraha, Yinwei Dai, Anh N. Nhu,
 754 Xue Wang, Ali Anil Demircali, Zhibai Jia, Yuyin Zhou, Juncheng Wu, Mike He, Nitin Chandok,
 755 Arush Sinha, Gaoxiang Luo, Long Le, Mickaël Noyé, Michał Perełkiewicz, Ioannis Pantidis,
 Tianbo Qi, Soham Sachin Purohit, Letitia Parcalabescu, Thai-Hoa Nguyen, Genta Indra Winata,
 Edoardo M. Ponti, Hanchen Li, Kaustubh Dhole, Jongee Park, Dario Abbondanza, Yuanli Wang,
 Anupam Nayak, Diogo M. Caetano, Antonio A. W. L. Wong, Maria del Rio-Chanona, Dániel
 Kondor, Pieter Francois, Ed Chalstrey, Jakob Zsambok, Dan Hoyer, Jenny Reddish, Jakob Hauser,
 Francisco-Javier Rodrigo-Ginés, Suchandra Datta, Maxwell Shepherd, Thom Kamphuis, Qizheng

756 Zhang, Hyunjun Kim, Ruiji Sun, Jianzhu Yao, Franck Dernoncourt, Satyapriya Krishna, Sina
 757 Rismanchian, Bonan Pu, Francesco Pinto, Yingheng Wang, Kumar Shridhar, Kalon J. Overholt,
 758 Glib Briia, Hieu Nguyen, David, Soler Bartomeu, Tony CY Pang, Adam Wecker, Yifan Xiong,
 759 Fanfei Li, Lukas S. Huber, Joshua Jaeger, Romano De Maddalena, Xing Han Lù, Yuhui Zhang,
 760 Claas Beger, Patrick Tser Jern Kon, Sean Li, Vivek Sanker, Ming Yin, Yihao Liang, Xinlu Zhang,
 761 Ankit Agrawal, Li S. Yifei, Zechen Zhang, Mu Cai, Yasin Sonmez, Costin Cozianu, Changhao
 762 Li, Alex Slen, Shoubin Yu, Hyun Kyu Park, Gabriele Sarti, Marcin Briański, Alessandro Stolfo,
 763 Truong An Nguyen, Mike Zhang, Yotam Perlitz, Jose Hernandez-Orallo, Runjia Li, Amin Sha-
 764 bani, Felix Juefei-Xu, Shikhar Dhingra, Orr Zohar, My Chiffon Nguyen, Alexander Pondaven,
 765 Abdurrahim Yilmaz, Xuandong Zhao, Chuanyang Jin, Muyan Jiang, Stefan Todoran, Xinyao
 766 Han, Jules Kreuer, Brian Rabern, Anna Plassart, Martino Maggetti, Luther Yap, Robert Geirhos,
 767 Jonathon Kean, Dingsu Wang, Sina Mollaei, Chenkai Sun, Yifan Yin, Shiqi Wang, Rui Li, Yaowen
 768 Chang, Anjiang Wei, Alice Bizeul, Xiaohan Wang, Alexandre Oliveira Arrais, Kushin Mukherjee,
 769 Jorge Chamorro-Padial, Jiachen Liu, Xingyu Qu, Junyi Guan, Adam Bouyamoun, Shuyu Wu,
 770 Martyna Plomecka, Junda Chen, Mengze Tang, Jiaqi Deng, Shreyas Subramanian, Haocheng Xi,
 771 Haoxuan Chen, Weizhi Zhang, Yinuo Ren, Haoqin Tu, Sejong Kim, Yushun Chen, Sara Vera
 772 Marjanović, Junwoo Ha, Grzegorz Luczyna, Jeff J. Ma, Zewen Shen, Dawn Song, Cedegao E.
 773 Zhang, Zhun Wang, Gaël Gendron, Yunze Xiao, Leo Smucker, Erica Weng, Kwok Hao Lee,
 774 Zhe Ye, Stefano Ermon, Ignacio D. Lopez-Miguel, Theo Knights, Anthony Gitter, Namkyu Park,
 775 Boyi Wei, Hongzheng Chen, Kunal Pai, Ahmed Elkhanany, Han Lin, Philipp D. Siedler, Jichao
 776 Fang, Ritwik Mishra, Károly Zsolnai-Fehér, Xilin Jiang, Shadab Khan, Jun Yuan, Rishab Kumar
 777 Jain, Xi Lin, Mike Peterson, Zhe Wang, Aditya Malusare, Maosen Tang, Isha Gupta, Ivan Fosin,
 778 Timothy Kang, Barbara Dworakowska, Kazuki Matsumoto, Guangyao Zheng, Gerben Sewuster,
 779 Jorge Pretel Villanueva, Ivan Rannev, Igor Chernyavsky, Jiale Chen, Deepayan Banik, Ben Racz,
 780 Wenchao Dong, Jianxin Wang, Laila Bashmal, Duarte V. Gonçalves, Wei Hu, Kaushik Bar, Ondrej
 781 Bohdal, Atharv Singh Patlan, Shehzaad Dhuliawala, Caroline Geirhos, Julien Wist, Yuval Kansal,
 782 Bingsen Chen, Kutay Tire, Atak Talay Yücel, Brandon Christof, Veerupaksh Singla, Zijian Song,
 783 Sanxing Chen, Jiaxin Ge, Kaustubh Ponkshe, Isaac Park, Tianneng Shi, Martin Q. Ma, Joshua
 784 Mak, Sherwin Lai, Antoine Moulin, Zhuo Cheng, Zhanda Zhu, Ziyi Zhang, Vaidehi Patil, Ketan
 785 Jha, Qiutong Men, Jiaxuan Wu, Tianchi Zhang, Bruno Hebling Vieira, Alham Fikri Aji, Jae-Won
 786 Chung, Mohammed Mahfoud, Ha Thi Hoang, Marc Sperzel, Wei Hao, Kristof Meding, Sihan
 787 Xu, Vassilis Kostakos, Davide Manini, Yueying Liu, Christopher Toukmaji, Jay Paek, Eunmi Yu,
 788 Arif Engin Demircali, Zhiyi Sun, Ivan Dewerpe, Hongsen Qin, Roman Pflugfelder, James Bailey,
 789 Johnathan Morris, Ville Heilala, Sybille Rosset, Zishun Yu, Peter E. Chen, Woongyeong Yeo,
 790 Eeshaan Jain, Ryan Yang, Sreekar Chigurupati, Julia Chernyavsky, Sai Prajwal Reddy, Subhashini
 791 Venugopalan, Hunar Batra, Core Francisco Park, Hieu Tran, Guilherme Maximiano, Genghan
 792 Zhang, Yizhuo Liang, Hu Shiyu, Rongwu Xu, Rui Pan, Siddharth Suresh, Ziqi Liu, Samaksh Gu-
 793 lati, Songyang Zhang, Peter Turchin, Christopher W. Bartlett, Christopher R. Scotese, Phuong M.
 794 Cao, Aakaash Nattanmai, Gordon McKellips, Anish Cheraku, Asim Suhail, Ethan Luo, Marvin
 795 Deng, Jason Luo, Ashley Zhang, Kavin Jindel, Jay Paek, Kasper Halevy, Allen Baranov, Michael
 796 Liu, Advaith Avadhanam, David Zhang, Vincent Cheng, Brad Ma, Evan Fu, Liam Do, Joshua
 797 Lass, Hubert Yang, Surya Sunkari, Vishruth Bharath, Violet Ai, James Leung, Rishit Agrawal,
 798 Alan Zhou, Kevin Chen, Tejas Kalpathi, Ziqi Xu, Gavin Wang, Tyler Xiao, Erik Maung, Sam
 799 Lee, Ryan Yang, Roy Yue, Ben Zhao, Julia Yoon, Sunny Sun, Aryan Singh, Ethan Luo, Clark
 800 Peng, Tyler Osbey, Taozhi Wang, Daryl Echeazu, Hubert Yang, Timothy Wu, Spandan Patel, Vidhi
 801 Kulkarni, Vijaykaarti Sundarapandiyam, Ashley Zhang, Andrew Le, Zafir Nasim, Srikanth Yalam,
 802 Ritesh Kasamsetty, Soham Samal, Hubert Yang, David Sun, Nihar Shah, Abhijeet Saha, Alex
 803 Zhang, Leon Nguyen, Laasya Nagumalli, Kaixin Wang, Alan Zhou, Aidan Wu, Jason Luo, Anwith
 804 Telluri, Summer Yue, Alexandr Wang, and Dan Hendrycks. Humanity's last exam. 2025. URL
 805 <https://arxiv.org/abs/2501.14249>.

806 Qwen Team. Qvq: To see the world with wisdom, December 2024. URL <https://qwenlm.github.io/blog/qvq-72b-preview/>.

807 Qwen Team. Qwen2.5-vl, January 2025a. URL <https://qwenlm.github.io/blog/qwen2.5-vl/>.

808 Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, March 2025b. URL
 809 <https://qwenlm.github.io/blog/qwq-32b/>.

810 Jonathan Roberts, Kai Han, Neil Houlsby, and Samuel Albanie. SciFIBench: Benchmarking
 811 large multimodal models for scientific figure interpretation. In *The Thirty-eight Conference on*
 812 *Neural Information Processing Systems Datasets and Benchmarks Track*, 2024. URL <https://openreview.net/forum?id=HcLFNuQwy5>.

813

814 N. Shinn, F. Cassano, A. Gopinath, et al. Reflexion: Language agents with verbal reinforcement
 815 learning. In *Proceedings of NeurIPS*, 2023.

816

817 Yueqi Song, Simran Khanuja, and Graham Neubig. What is missing in multilingual visual reasoning
 818 and how to fix it. In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), *Findings of the Association*
 819 *for Computational Linguistics: NAACL 2025*, pp. 2654–2667, Albuquerque, New Mexico, April
 820 2025. Association for Computational Linguistics. ISBN 979-8-89176-195-7. URL <https://aclanthology.org/2025.findings-naacl.144/>.

821

822 Alane Suhr, Stephanie Zhou, Ally Zhang, Iris Zhang, Huajun Bai, and Yoav Artzi. A corpus for
 823 reasoning about natural language grounded in photographs. In Anna Korhonen, David Traum, and
 824 Lluís Márquez (eds.), *Proceedings of the 57th Annual Meeting of the Association for Computational*
 825 *Linguistics*, pp. 6418–6428, Florence, Italy, July 2019. Association for Computational Linguistics.
 826 doi: 10.18653/v1/P19-1644. URL <https://aclanthology.org/P19-1644/>.

827

828 Kexian Tang, Junyao Gao, Yanhong Zeng, Haodong Duan, Yanan Sun, Zhenning Xing, Wenran Liu,
 829 Kaifeng Lyu, and Kai Chen. Lego-puzzles: How good are mllms at multi-step spatial reasoning?
 830 2025.

831

832 Shengbang Tong, Ellis Brown, Penghao Wu, Sanghyun Woo, Manoj Middepogu, Sai Charitha
 833 Akula, Jihan Yang, Shusheng Yang, Adithya Iyer, Xichen Pan, et al. Cambrian-1: A fully open,
 834 vision-centric exploration of multimodal llms. *ArXiv preprint*, abs/2406.16860, 2024. URL
<https://arxiv.org/abs/2406.16860>.

835

836 Ke Wang, Junting Pan, Weikang Shi, Zimu Lu, Houxing Ren, Aojun Zhou, Mingjie Zhan, and
 837 Hongsheng Li. Measuring multimodal mathematical reasoning with math-vision dataset. *Advances*
 838 *in Neural Information Processing Systems*, 37:95095–95169, 2024a.

839

840 Ke Wang, Junting Pan, Weikang Shi, Zimu Lu, Mingjie Zhan, and Hongsheng Li. Measuring
 841 multimodal mathematical reasoning with math-vision dataset, 2024b. URL <https://arxiv.org/abs/2402.14804>.

842

843 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 844 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in*
 845 *neural information processing systems*, 35:24824–24837, 2022.

846

847 Genta Indra Winata, Frederikus Hudi, Patrick Amadeus Irawan, David Anugraha, Rifki Afina Putri,
 848 Wang Yutong, Adam Nohejl, Ubaidillah Arij Prathama, Nedjma Ousidhoum, Afifa Amriani, Anar
 849 Rzayev, Anirban Das, Ashmari Pramodya, Aulia Adila, Bryan Wilie, Candy Olivia Mawalim,
 850 Cheng Ching Lam, Daud Abolade, Emmanuel Chersoni, Enrico Santus, Fariz Ikhwantri, Garry
 851 Kuwanto, Hanyang Zhao, Haryo Akbarianto Wibowo, Holy Lovenia, Jan Christian Blaise Cruz,
 852 Jan Wira Gotama Putra, Junho Myung, Lucky Susanto, Maria Angelica Riera Machin, Marina
 853 Zhukova, Michael Anugraha, Muhammad Farid Adilazuarda, Natasha Christabelle Santosa, Peerat
 854 Limkonchotiwat, Raj Dabre, Rio Alexander Audino, Samuel Cahyawijaya, Shi-Xiong Zhang,
 855 Stephanie Yulia Salim, Yi Zhou, Yinxuan Gui, David Ifeoluwa Adelani, En-Shiun Annie Lee,
 856 Shogo Okada, Ayu Purwarianti, Alham Fikri Aji, Taro Watanabe, Derry Tanti Wijaya, Alice Oh, and
 857 Chong-Wah Ngo. WorldCuisines: A massive-scale benchmark for multilingual and multicultural
 858 visual question answering on global cuisines. In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.),
 859 *Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for*
 860 *Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)*, pp. 3242–
 861 3264, Albuquerque, New Mexico, April 2025. Association for Computational Linguistics. ISBN
 862 979-8-89176-189-6. URL <https://aclanthology.org/2025.naacl-long.167/>.

863

864 Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruochi Liu, Ge Zhang, Samuel Stevens, Dongfu
 865 Jiang, Weiming Ren, Yuxuan Sun, Cong Wei, Botao Yu, Ruibin Yuan, Renliang Sun, Ming Yin,
 866 Boyuan Zheng, Zhenzhu Yang, Yibo Liu, Wenhao Huang, Huan Sun, Yu Su, and Wenhui Chen.
 867 Mmmu: A massive multi-discipline multimodal understanding and reasoning benchmark for expert
 868 agi. In *Proceedings of CVPR*, 2024a.

864 Xiang Yue, Tianyu Zheng, Yuansheng Ni, Yubo Wang, Kai Zhang, Shengbang Tong, Yuxuan Sun,
 865 Botao Yu, Ge Zhang, Huan Sun, et al. Mmmu-pro: A more robust multi-discipline multimodal
 866 understanding benchmark. *arXiv preprint arXiv:2409.02813*, 2024b.

867 Xiang Yue, Yueqi Song, Akari Asai, Simran Khanuja, Anjali Kantharuban, Seungone Kim, Jean
 868 de Dieu Nyandwi, Lintang Sutawika, Sathyanarayanan Ramamoorthy, and Graham Neubig. Pangea:
 869 A fully open multilingual multimodal LLM for 39 languages. In *The Thirteenth International
 870 Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=a3g214yEys>.

871 Zhuseng Zhang, Aston Zhang, Mu Li, Hai Zhao, George Karypis, and Alex Smola. Multimodal
 872 chain-of-thought reasoning in language models. *arXiv preprint arXiv:2302.00923*, 2023.

873 A USE OF LLMs

874 We employed Large Language Models (LLMs) to assist in polishing the style, clarity, and presentation
 875 of text and tables throughout the paper and appendix. This included refining phrasing, improving
 876 readability, standardizing terminology, and ensuring consistency in table formatting and captions. All
 877 content, analysis, and results were generated and verified by the authors; LLMs were used solely as a
 878 writing aid and did not influence the underlying data or experimental findings.

885 B VISUALPUZZLES STATISTICS

887 B.1 BREAKDOWN OF STATISTICS OF VISUALPUZZLES

888 Table 6 shows a breakdown of statistics of VISUALPUZZLES questions.

Reasoning Category	Image Options			Text Options			Total
	Easy	Medium	Hard	Easy	Medium	Hard	
Algorithmic	21	8	0	124	100	9	262
Analogical	120	81	10	0	0	0	211
Deductive	29	24	2	45	79	21	200
Inductive	7	70	127	3	2	0	209
Spatial	123	41	6	61	52	3	286
Total	300	224	145	233	233	33	1168

900 Table 6: Number of questions in each reasoning category, option types, and difficulty levels.

904 B.2 DATA SOURCES

- 905 • Chinese Civil Service Examination (中国国家公务员考试)⁵ (224 puzzles): we manually
 906 translated questions from this exam to English from Chinese.
- 907 • Textbooks (210 puzzles): we carefully collected and re-purposed questions from online
 908 resources and textbooks.
- 909 • Smart-101 (Cherian et al., 2022a) (247 puzzles): we carefully selected images from this
 910 benchmark and synthesized new questions.
- 911 • MATH-Vision (Wang et al., 2024a) (293 puzzles): we carefully selected and re-purposed
 912 questions from this benchmark.
- 913 • VASR (Bitton et al., 2023) (194 puzzles): we carefully selected questions from this bench-
 914 mark.

915 ⁵[https://en.wikipedia.org/wiki/Civil_service_of_the_People%27s_](https://en.wikipedia.org/wiki/Civil_service_of_the_People%27s_Republic_of_China#Examinations)
 916 [Republic_of_China#Examinations](https://en.wikipedia.org/wiki/Civil_service_of_the_People%27s_Republic_of_China#Examinations).

918 C MODEL EVALUATION SETUP
919920 Model Evaluation Prompt with Chain-of-Thought
921922 Solve the multiple-choice question and then answer with the option letter from the given choices. The last line
923 of your response should be of the following format: ‘Answer: \$LETTER’ (without quotes) where LETTER is
924 one of options. Think step by step before answering.925 Model Evaluation Prompt w/n Chain-of-Thought
926927 Answer the question with the option’s letter from the given choices directly.
928929 **Experiments** We integrated VISUALPUZZLES into Lmms-eval (Li* et al., 2024). We used 8 H100
930 (80GB) GPUs for experiments. However, one should be able to use less number of GPUs to reproduce
931 all the experiments we did, depending on the size of the model and GPU memories.. We set all
932 hyper-parameters to default in Lmms-eval, with the maximum number of completion tokens be
933 16,000.
934935 C.1 CORRELATION ANALYSIS
936937 Earlier models generally exhibited weaker reasoning abilities compared to more recent ones. To
938 better understand the relationship between model size and performance, we conducted correlation
939 analyses across two benchmarks: MMMU and VISUALPUZZLES, the results of which are shown in
940 Table 7.941 Restricting our analysis to the Qwen model family, we find a strong correlation between model size
942 and accuracy on MMMU ($r = 0.93$), whereas the correlation with VISUALPUZZLES is notably lower
943 ($r = 0.64$).944 To further control for the potential confounding effect of release date, we divided all models into
945 two cohorts: those released prior to August 1, 2024, and those released afterwards. The correlations
946 between model size and accuracy remain consistently higher on MMMU ($r = 0.75$ pre-t, $r = 0.89$
947 post-t) compared to VISUALPUZZLES ($r = 0.49$ pre-t, $r = 0.58$ post-t).948 These results suggest that, even within a single release cohort, VISUALPUZZLES is less sensitive to
949 model size than MMMU. This highlights the distinctive evaluation focus of VISUALPUZZLES, which
950 emphasizes reasoning over sheer parameter scale.951
952 Table 7: Correlation between model size and benchmark accuracy.
953

954 Model Family / Cohort	955 MMMU (Correlation with Size)	955 VISUALPUZZLES (Correlation with Size)
956 Qwen Models	953 0.93	953 0.64
957 Models Released Prior to 2024-08-01	953 0.75	953 0.49
958 Models Released After 2024-08-01	953 0.89	953 0.58

959
960 D HUMAN ANNOTATION SETUP
961962 D.1 DIFFICULTY LABELING
963964 Each question was also carefully assigned a difficulty label from easy, medium, or hard, based on the
965 cognitive load required for reasoning.
966967

- 968 • **Easy Level** questions could be solved by the annotator in less than one minute.
969
- 970 • **Medium Level** questions could be solved by the annotator in one to three minutes.
971
- 972 • **Hard Level** questions require the annotator more than five minutes to solve or quit solving.

972

Annotation Guideline for Puzzle Difficulty

973

974 Try to solve the puzzle first. You need to measure the time you attempted to solve each puzzle. Then, select
 975 from Easy, Medium, or Hard based on the time required.

976 - Easy Level: You can solve or answer the question within 1 minute. This level of puzzles should require
 977 minimal reasoning.

978 - Medium Level: You can solve or answer the question within 1-3 minutes. This level of puzzles should
 979 demand moderate reasoning.

980 - Hard Level: You can / cannot solve this question with more than 5 minutes. This level of puzzles should
 981 involve significant / multi-step reasoning.

982

D.2 REASONING CATEGORY LABELING

983

Annotation Guideline for Puzzle Reasoning Category

984

985 Assign the category that *best* describes the primary type of reasoning or logic required for each puzzle:

986 - Algorithmic Reasoning: Involves following or devising a step-by-step procedure or rule-based process.

987 - Analogical Reasoning: Requires identifying relationships by comparison between pairs of entities.

988 - Deductive Reasoning: Involves deriving specific conclusions from general or given premises.

989 - Inductive Reasoning: Focuses on generalizing a rule or pattern from specific instances.

990 - Spatial Reasoning: Involves visualizing and manipulating shapes, distances, or orientations.

991

992 You should first decide all potential labels for each puzzle, then select a single **primary** label using a fixed
 993 rubric:

994 (i) choose the category whose absence makes the puzzle unsolvable;

995 (ii) if two or more remain, pick the more specific one (priority order: Spatial = Algorithmic = Analogical >
 996 Inductive = Deductive);

997 (iii) resolve any tie by majority vote. We will add this decision hierarchy to the paper to clarify that the process
 998 is systematic, not arbitrary. Each question is labeled by three annotators for the reasoning category.

999

1000 Around 4% of the questions, annotators disagree on the primary reasoning category, and either the
 1001 annotators reach consensus through discussion or the puzzles are removed.

1002

D.3 REASONING CATEGORIES

1003

1004 Reasoning methods are commonly categorized into *analogical reasoning*, *deductive reasoning*, and
 1005 *inductive reasoning*. At an abstract level, we adopt this categorization. However, during annotation,
 1006 we observed that mistakes regarding *spatial reasoning* were particularly prevalent. For this reason,
 1007 we determined that spatial reasoning merited its own category.

1008

D.4 ANNOTATION PROTOCOL

1009

1010 Annotators followed a two-step process for labeling each puzzle:

1011

1012 1. **Candidate Labels:** Annotators first identified all potential reasoning categories applicable

1013 to a given puzzle.

1014 2. **Primary Label Selection:** Annotators then selected a single *primary* label using the fixed
 1015 decision rubric described below.

1016

1017 Decision rubric for selecting the primary reasoning label:

1018

1019 1. Choose the category whose absence makes the puzzle unsolvable.

1020 2. If two or more remain, pick the more specific one.

1021 *Priority order:* Spatial = Algorithmic = Analogical > Inductive = Deductive.

1022

1023 3. If a tie still remains, resolve by majority vote among annotators.

1024

1025

This hierarchical rubric ensured consistency across annotators and reduced ambiguity when multiple
 1026 reasoning strategies appeared relevant.

1026
1027

D.5 ERROR ANALYSIS

1028 In [Figure 8](#), two annotators conducted an error analysis on 100 randomly sampled model outputs,
1029 following the guidelines below. 30 samples were co-annotated by both annotators, yielding an
1030 inter-annotator agreement of 86.7%. Remaining disagreements were resolved through discussion to
1031 reach consensus.1032
1033

Annotation Guideline for Identifying Model Errors

1034
1035

Error Annotation Guideline

For each incorrect model answer, assign one primary label from:

- Reasoning Error
- Perceptual Error
- Spatial / Orientation Error
- Understanding Error
- Reject to Answer

1039
1040

Annotators first read the question and model reasoning, then choose the label that best explains the mistake.

1041
1042

1. Reasoning Error (RE)

Definition: Model perceives the scene correctly but applies a wrong rule, makes an invalid inference, or fails to combine relations correctly.

1043
1044

2. Perceptual Error (PE)

Definition: Model miss or wrongly perceive key visual details, so later reasoning is based on an incorrect representation.

1045
1046

3. Spatial / Orientation Error (SE)

Definition: Model recognizes the correct objects but fails on their positions, rotations, or relative layout.

1047
1048

Borderline rule:

- If the object itself is mis-identified -> Perceptual Error.
- If the object is identified correctly but its rotation/placement is wrong -> Spatial / Orientation Error.

1049
1050

4. Understanding Error (UE)

Definition: Model misinterprets the instructions or answer format, not the image content or logical rule.

1051
1052

5. Reject to Answer (RA)

Definition: Model explicitly declines to solve the problem or states it cannot answer.

1053
10541055
10561057
10581059
10601061
10621063
10641065
10661067
10681069
10701071
10721073
10741075
10761077
1078

1079

1080 **E FULL RESULTS**
10811082 **E.1 FULL RESULTS w/ CoT**
1083

1084 Model	1085 Algorithmic	1086 Analogy	1087 Deductive	1088 Inductive	1089 Spatial	1090 Overall
1086 Random Choice	25.0	25.0	25.0	25.0	25.0	25.0
1087 Human (95th Percentile)	100.0	100.0	100.0	81.6	100.0	89.3
1088 Human (50th Percentile)	88.0	66.0	80.0	50.0	90.0	75.0
1089 Human (5th Percentile)	68.1	25.0	37.0	0.0	59.1	57.5
<i>Proprietary Models</i>						
1090 o4-mini	65.3	68.7	75.5	33.0	45.5	57.0
1091 o3	64.5	68.3	69.5	27.3	42.7	54.0
1092 o1	63.7	68.3	67.5	29.2	34.3	51.8
1093 GPT-4o	49.2	58.3	49.0	27.3	26.2	41.3
1094 Gemini-2.5-pro	60.0	64.0	60.0	29.7	36.4	49.5
1095 Gemini-2.0-flash	55.3	58.8	57.0	24.4	31.8	45.0
1096 Gemini-2.0-flash-thinking	46.6	70.1	49.0	24.9	25.5	42.2
1097 Gemini-1.5-Pro	53.4	57.4	58.5	26.3	32.5	45.0
1098 Claude-3.7-Sonnet	64.5	48.3	65.0	26.8	37.4	48.3
1099 Claude-3.7-Sonnet-thinking	67.2	44.1	61.5	31.1	37.1	48.2
1100 Claude-3.5-Sonnet	53.4	47.9	51.5	25.4	34.3	42.4
<i>Open Models</i>						
1101 LLaVA-1.5-7B	23.3	21.8	36.0	20.6	19.2	23.7
1102 LLaVA-1.5-13B	24.8	21.8	23.0	25.4	25.5	24.2
1103 LLaVA-1.6-7B	27.5	23.7	30.0	22.5	21.3	24.8
1104 LLaVA-1.6-13B	25.2	25.6	27.0	27.3	23.4	25.5
1105 LLaVA-1.6-34B	29.4	28.0	43.0	24.9	25.5	29.7
1106 LLaVA-OV-0.5B	21.0	26.1	30.5	22.5	25.2	24.8
1107 LLaVA-OV-7B	27.9	26.1	36.5	23.4	25.5	27.7
1108 LLaVA-OV-72B	34.7	26.5	37.0	27.3	28.7	30.8
1109 Llama-3.2-11B-Vision-Instruct	31.0	30.8	39.0	21.1	26.2	29.4
1110 Llama-3.2-90B-Vision-Instruct	45.0	23.2	43.0	26.3	31.5	34.1
1111 Qwen-VL	21.4	31.3	25.0	26.3	24.1	25.3
1112 Qwen2-VL-72B	41.6	28.4	39.5	22.5	29.0	32.4
1113 QvQ-72B-Preview	43.1	45.5	48.0	27.3	27.6	37.8
1114 Qwen2-VL-2B-Instruct	26.0	26.1	24.5	27.8	25.5	26.0
1115 Qwen2-VL-7B-Instruct	36.3	21.8	38.5	20.6	22.7	27.9
1116 Qwen2-VL-72B-Instruct	39.9	33.5	45.2	23.5	32.4	34.9
1117 Qwen2.5-VL-3B-Instruct	35.1	27.5	44.5	25.8	24.8	31.2
1118 Qwen2.5-VL-7B-Instruct	40.5	26.6	39.0	24.0	29.7	32.1
1119 Qwen2.5-VL-72B-Instruct	53.4	46.9	58.0	25.8	29.5	42.3
1120 Cambrian-8B	31.3	24.2	36.0	24.0	29.0	28.9
1121 Cambrian-13B	24.8	25.6	39.5	24.4	21.0	26.5
1122 Pangea-7B	30.5	28.9	35.0	24.4	25.2	28.6

1123 Table 8: Performance (%) of various models with Chain of Thoughts (CoT) on VISUALPUZZLES.
11241125 **E.2 FULL RESULTS w/ N CoT**
11261127
1128
1129
1130
1131
1132
1133

1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144

Model	Algorithmic	Analogical	Deductive	Inductive	Spatial	Overall
Random Choice	25.0	25.0	25.0	25.0	25.0	25.0
Human (95th Percentile)	100.0	100.0	100.0	81.6	100.0	89.3
Human (50th Percentile)	88.0	66.0	80.0	50.0	90.0	75.0
Human (5th Percentile)	68.1	25.0	37.0	0.0	59.1	57.5
<i>Proprietary Models</i>						
GPT-4o	40.8	34.1	40.5	24.9	29.7	34.0
Gemini-2.0-flash	57.6	41.7	58.0	23.0	35.7	43.2
Gemini-1.5-Pro	51.2	46.5	54.0	24.9	29.4	40.8
<i>Open Models</i>						
LLAVA-1.5-7B	24.4	24.7	34.5	26.8	25.5	26.9
LLAVA-1.5-13B	24.4	26.1	33.5	26.3	28.3	27.6
LLAVA-1.6-7B	27.5	25.1	32.5	24.9	27.3	27.4
LLAVA-1.6-13B	21.4	24.7	29.5	28.2	23.1	25.0
LLAVA-1.6-34B	31.3	27.3	43.0	24.4	27.6	29.8
LLAVA-OV-0.5B	24.4	25.6	37.5	24.9	25.5	27.2
LLAVA-OV-7B	27.5	28.0	40.5	24.4	28.0	29.4
LLAVA-OV-72B	31.7	23.6	45.0	21.3	24.6	28.8
Llama-3.2-11B-Vision-Instruct	27.5	24.2	31.0	26.3	27.6	27.3
Llama-3.2-90B-Vision-Instruct	38.2	22.3	44.5	25.8	33.6	33.1
Qwen-VL	23.7	26.5	29.5	27.8	26.6	26.6
Qwen2-VL-72B	38.9	28.4	43.0	20.6	29.0	32.0
QvQ-72B-Preview	44.8	43.6	44.0	26.8	30.8	37.8
Qwen2-VL-2B-Instruct	31.7	29.4	40.5	23.9	31.5	31.3
Qwen2-VL-7B-Instruct	33.6	24.2	46.0	22.5	26.2	30.2
Qwen2-VL-72B-Instruct	40.5	30.3	46.0	25.4	29.4	34.2
Qwen2.5-VL-3B-Instruct	36.3	26.1	47.0	25.8	22.4	31.0
Qwen2.5-VL-7B-Instruct	38.2	23.7	51.5	24.9	31.1	33.7
Qwen2.5-VL-72B-Instruct	43.1	40.3	51.5	25.4	33.7	38.6
Cambrian-8B	25.2	20.4	35.0	23.0	20.6	24.5
Cambrian-13B	23.3	28.0	36.5	24.9	26.2	27.4
Pangea-7B	32.4	23.7	38.5	28.7	32.5	31.3

1175
 1176 Table 9: Performance (%) of various models with Multiple Choice Direct prompting on VISUALPUZ-
 1177 ZLES.

1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187

1188 F KNOWLEDGE CHECKLIST
11891190 F.1 KNOWLEDGE CHECKLIST GENERATION
11911192 Prompt to Generate Knowledge Checklist Questions
1193

1194 You are an exam writer. You are now writing a knowledge test. You are given a question (Question) regarding
1195 an image and its standard solution (Solution), your task is to write free response questions that test on
1196 individual knowledge required in answering the question correctly.

1197 You should follow these steps to complete the task:

- 1198 1. explicitly analyze the given image, Question, and Solution
- 1199 2. explicitly list out the individual knowledge concepts required to reach Solution.
- 1200 3. write free response questions to test on the definition of each concept listed. Your generated questions
1201 should not include details of the given Question. Note that you need to provide answer keys to these questions
1202 too.
- 1203 4. format the free response questions in json format.

1204 Question: question
1205 Solution: answer

1206 F.2 KNOWLEDGE CHECKLIST CONSTRUCTION
1207

1208 We adopt a structured process for constructing a *knowledge checklist*, which enumerates the atomic
1209 facts that a human or model must know before engaging in reasoning on a given benchmark instance.

- 1210 • **LLM-based list generation and manual verification:** Large Language Models (LLMs)
1211 are first used to compile a candidate list of atomic facts. Each fact is expressed as a QA pair.
1212 For example:

1213 *Q: Explain the Arbitrage Pricing Theory (APT) model and its purpose in finance.*
1214 *A: The Arbitrage Pricing Theory (APT) model is a financial theory that estimates
1215 the expected return ...*
- 1216 • **Human verification:** Two annotators independently review each checklist to ensure correctness,
1217 self-containment, and comprehensiveness of the QA pairs.

1219 F.3 EVALUATION PROTOCOL
1220

- 1221 • **Model evaluation:** Models are evaluated on the knowledge checklist questions, with
1222 correctness judged by an *LLM-as-a-judge* approach.
- 1223 • **Knowledge accuracy calculation:** We define knowledge accuracy as the percentage of
1224 benchmark instances for which a model answers *all* checklist questions correctly.

1226 F.4 EXAMPLE KNOWLEDGE CHECKLIST QUESTION
12271228 Example Knowledge Checklist Question (MMMU)
1229

- 1230 - Question: Explain the Arbitrage Pricing Theory (APT) model and its purpose in finance.
- 1231 - Answer: The Arbitrage Pricing Theory (APT) model is a financial theory that estimates the expected return
1232 on an asset based on the asset's sensitivity to various macroeconomic factors. It is used to determine the fair
1233 price of an asset by considering multiple factors that could affect its return, as opposed to relying on a single
1234 market index as in the Capital Asset Pricing Model (CAPM).

1235 Example Knowledge Checklist Question (VISUALPUZZLES)
1236

- 1237 - Question: What is the definition of distance in a geometric context?
- 1238 - Answer: Distance in a geometric context refers to the measurement of space between two points.

1239 F.5 KNOWLEDGE CHECKLIST HUMAN ANNOTATION
1240

1241 We asked two human annotators to manually verify and correct the knowledge checklist questions
1242 and gave them the following instructions. The inter-annotator agreement rate is 87.8%.

1242

Human Annotation Instructions

1243

You are given a json file, where each item contains the following elements:

1244

- Question: a multiple-choice question.

1245

- Answer: the answer to the question with an optional explanation.

1246

- Knowledge Concept Checklist: a list of question-answer pairs, where each question in the list is intended to represent a distinct knowledge concept necessary for solving the Question.

1247

1248

Your task is to annotate the knowledge concept checklists generated by a model. You should carefully evaluate each question-answer pair based on the following criteria:

1249

1. Necessity: Is the question genuinely necessary for solving the problem? If not, then remove the question.

1250

2. Repetition: Check if any questions are repetitive or duplicate existing questions within the list. If the question is repetitive or duplicate, then remove the question.

1251

3. Completeness: Ensure no critical knowledge concepts required to solve the problem are missing, and identify if any additional important questions should have been included.

1252

4. Correctness: Verify whether the provided answers are accurate. Revise the checklist in case of incorrect checklist QA pairs.

1253

5. Knowledge v.s. Skills: Ensure each question explicitly evaluates a knowledge concept rather than testing skills or problem-solving techniques. Remove any questions that primarily evaluate skills instead of knowledge.

1254

1255

1256

1257

1258

G REASONING COMPLEXITY

1259

1260

Instruction Prompt to Solve Questions in Detailed Steps

1261

< Question >< Image >

1262

Solve this question with First Order Logic. Write out each thinking step explicitly, do not skip steps.

1263

In your response, begin each step with STEP_START

1264

step *< step_num >*

1265

1266

1267

1268

H RELATED WORK

1269

1270

Multimodal Language Models (MLLMs), particularly vision language models have experienced significant improvements recently. Large scale vision language models, including open weight ones are capable of utilizing both image and text inputs to solve challenging questions (Anthropic, 2023; Dubey et al., 2024; Gemini et al., 2023; Khanuja et al., 2024; Li et al., 2024; Liu et al., 2024; OpenAI, 2024; Tong et al., 2024; Yue et al., 2025). Multimodal reasoning models, models that specialize in complex reasoning, further push the boundary of MLLMs’ capabilities. Large scale multimodal reasoning models such as QVQ (Qwen Team, 2024), Claude-3.7-Sonnet-thinking (Anthropic, 2023), o1 (Jaech et al., 2024), Gemini-2.0-flash-thinking (Gemini et al., 2023) excel in reasoning heavy tasks such as coding and solving math problems.

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

Multimodal Reasoning Benchmarks. There exists a number of multimodal benchmarks that test on both the models’ world knowledge and reasoning abilities. These benchmarks emphasize on the multimodal ability of models as a whole, without further separation of knowledge and reasoning (Phan et al., 2025; Liu et al., 2023b; Marino et al., 2019; Yue et al., 2024a;b; Jiang et al., 2025). Recently, more multimodal benchmarks have placed emphasis on multimodal logical reasoning abilities. Many of them focus primarily on mathematic problems, testing on both mathematical knowledge and reasoning (Liu et al., 2021; Lu et al., 2023; Wang et al., 2024b; Suhr et al., 2019). Some others cover on more general logical reasoning problems, testing on both models’ knowledge and reasoning in different domains (Cherian et al., 2022b; Gao et al., 2023; Huang et al., 2025).

1288

1289

I COMPARISON WITH OTHER BENCHMARKS

1290

1291

I.1 COMPARISON WITH NON PUZZLE-TYPE BENCHMARKS

1292

1293

1294

1295

Figure 9 provides a comparative analysis between VISUALPUZZLES and several widely-used benchmarks for multimodal reasoning, visualizing the knowledge requirement and reasoning complexity of each benchmark. VISUALPUZZLES has high reasoning complexity and low knowledge requirement, with an aim to disentangle multimodal reasoning from domain-specific knowledge to evaluate general reasoning abilities in non-expert settings.

1296	Dataset	Size	Reasoning Load	Knowledge Requirement	% Easy Words	Question Type	Answer Type
1297	LogiQA	0.7K	Heavy	Light	52.0	Text	Text
1298	GSM8K	8.5K	Heavy	Heavy	54.0	Text	Text
1299	WikiDiverse	0.8K	Light	Heavy	35.8	Image+Text	Text
1300	MathVista	6.1K	Heavy	Heavy	51.9	Image+Text	Text
1301	MMMU	11.5K	Heavy	Heavy	46.4	Image+Text	Text
1302	MATH-Vision	3.0K	Heavy	Heavy	53.8	Image+Text	Image+Text
1303	MathVerse	2.6K	Heavy	Heavy	38.2	Image+Text	Text
1304	LogicBench	1.5K	Heavy	Light	53.6	Text	Text
1305	LogicVista	0.4K	Heavy	Heavy	41.2	Image+Text	Image
1306	NaturalBench	10K	Light	Light	52.5	Image+Text	Text
1307	VISUALPUZZLES	1.2K	Heavy	Light	54.1	Image+Text	Image+Text

Table 10: Comparison of other existing benchmarks with VISUALPUZZLES

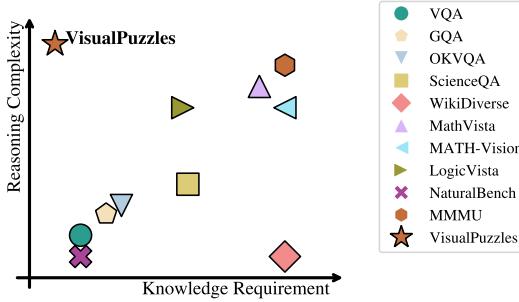


Figure 9: Comparison between VISUALPUZZLES and several widely-used benchmarks.

Table 11 compare the performance of various model families across MathVista, MMMU, and VISUALPUZZLES. Both MathVista and MMMU are benchmarks that have a heavy emphasis on both knowledge and reasoning, whereas VISUALPUZZLES assess models on domain-disentangled multimodal reasoning alone. We found that success on knowledge-intensive multimodal reasoning benchmarks as MathVista and MMMU does not always carry over to VISUALPUZZLES that emphasize reasoning rather than extensive pre-trained knowledge.

I.2 RELATED PUZZLE-TYPE BENCHMARKS

There exists a large body of work on puzzle-type reasoning (Ji et al., 2022; Chen et al., 2024; Tang et al., 2025; Chia et al., 2024; Cheng et al., 2024). Our purpose in this paper is to assess MLLM’s multimodal reasoning abilities *disentangled from domain knowledge*, a gap not fully addressed by existing benchmarks. VISUALPUZZLES is designed to fill this gap.

Specifically:

- **KiloGram** (Ji et al., 2022) focuses on tangram-based visual reasoning. In contrast, VISUALPUZZLES evaluates a broad variety of reasoning types with minimized domain knowledge.
- **M3CoT** (Chen et al., 2024) targets domain-specific visual reasoning and requires substantial external knowledge, whereas VISUALPUZZLES remains knowledge-light.
- **LEGO-Puzzles** (Tang et al., 2025) emphasize spatial reasoning, while VISUALPUZZLES evaluates five reasoning categories, including but not limited to spatial reasoning.
- **PuzzleVQA** (Chia et al., 2024) emphasizes abstract pattern recognition with limited reasoning complexity, while VISUALPUZZLES covers diverse and complex logical reasoning.
- **CoMT** (Cheng et al., 2024) examines failures in maintaining coherent, image-grounded reasoning steps through explicit CoT documentation, whereas VISUALPUZZLES evaluates whether models can correctly reason about a wide range of visual patterns.

1350	1351	Model	MathVista	MMMU	VISUALPUZZLES
1352		Human	60.3	88.6	80.1
1353		o1	73.9	78.2	51.8
1354		GPT-4o	63.8	69.1	41.1
1355		Gemini-2.0-Flash	-	71.7	45.0
1356		Gemini-1.5-Pro	63.9	62.2	45.4
1357		Claude-3.5-Sonnet	67.7	68.3	42.4
1358		Claude-3.7-Sonnet	-	71.8	48.3
1359		Claude-3.7-Sonnet (Thinking)	-	75.0	48.3
1360		LLaVA-1.5-7B	-	36.2	26.9
1361		LLaVA-1.5-13B	27.6	36.4	27.6
1362		LLaVA-NeXT-7B	35.8	34.6	27.4
1363		LLaVA-NeXT-13B	36.2	35.3	25.3
1364		LLaVA-NeXT-34B	46.5	51.1	29.8
1365		LLaVA-OV-0.5B	34.8	31.4	27.2
1366		LLaVA-OV-7B	63.2	48.8	29.4
1367		LLaVA-OV-72B	67.5	56.8	31.8
1368		Llama-3.2-11B-Vision-Instruct	51.5	50.7	29.4
1369		Llama-3.2-90B-Vision-Instruct	57.3	60.3	34.3
1370		Qwen2-VL-72B	70.5	64.5	32.1
1371		Qwen2-VL-Preview	71.4	70.3	37.9
1372		Qwen2-VL-2B-Instruct	43.0	41.1	31.3
1373		Qwen2-VL-7B-Instruct	58.2	54.1	30.2
1374		Qwen2-VL-72B-Instruct	70.5	64.5	34.9
1375		Qwen2.5-VL-3B-Instruct	62.3	53.1	31.2
1376		Qwen2.5-VL-7B-Instruct	68.2	58.6	33.7
1377		Qwen2.5-VL-72B-Instruct	74.8	70.2	42.3
1378		Cambrarian-8B	49.0	42.7	28.5
1379		Cambrarian-13B	48.0	40.0	27.4

Table 11: Comparison of other MathVista and MMMU with VISUALPUZZLES on human and SOTA models

Table 12: Comparison of puzzle-type reasoning benchmarks.

1385	1386	Dataset	Reasoning load	Knowledge requirement	Dataset focus
1387		KiloGram (Ji et al., 2022)	Heavy	Light	Tangram reasoning
1388		M3CoT (Chen et al., 2024)	Heavy	Heavy	Domain-specific reasoning
1389		LEGO-Puzzles (Tang et al., 2025)	Heavy	Light	Spatial reasoning
1390		PuzzleVQA (Chia et al., 2024)	Moderate	Light	Abstract pattern recognition
1391		CoMT (Cheng et al., 2024)	Heavy	Light	Image-grounded CoT and visual operation tracking
1392		VISUALPUZZLES (ours)	Heavy	Light	Complex reasoning disentangled from domain knowledge

A tabular summary of the differences between VISUALPUZZLES and related benchmarks is shown in Table 12.

1404
1405

J ADDITIONAL ANALYSIS

1406
1407

J.1 PROPRIETARY V.S. OPEN MODELS

1408 From [Table 2](#), proprietary models (e.g., o4-mini and Claude-3.7-Sonnet) consistently achieve higher
1409 overall accuracy than most open-source models on VISUALPUZZLES. However, some open models
1410 also show competitive or even higher performance in both the overall accuracy and specific reasoning
1411 categories. For instance, Qwen2.5-VL-72B-Instruct demonstrates higher performance than GPT-4o
1412 on algorithmic reasoning, deductive reasoning, spatial reasoning, and overall accuracy. This indicates
1413 that while proprietary models currently have leading performance, open models are also rapidly
1414 improving on multimodal reasoning capabilities.1415
1416

J.2 REASONING CATEGORY AND DIFFICULTY LEVELS

1417 [Figure 11](#) and [Figure 10](#) present complementary views of human accuracy against three representative
1418 models: o1 (one of the best-performing proprietary models), Qwen2.5-VL-72B-Instruct (the strongest
1419 Qwen-based open model), and Llama-3.2-90B-Vision-Instruct (the strongest Llama-based open
1420 model). Specifically, [Figure 10](#) compares performance across difficulty levels for each reasoning
1421 category, while [Figure 11](#) compares performance across categories within each difficulty level.1422 Humans consistently outperform all models across categories and difficulty levels, often by large
1423 margins. Notably, human performance remains high and relatively stable in the algorithmic, deductive,
1424 and spatial categories, even on hard questions. While accuracy does decline in analogical and inductive
1425 reasoning as difficulty increases, humans still maintain a clear advantage over models.1426 In contrast, model performance declines sharply as difficulty increases, especially for open-source
1427 models. Accuracy of Llama-3.2-90B-Vision-Instruct on hard analogical tasks drops to just 10%.
1428 Even one of the strongest proprietary models, o1, while more robust, still lags significantly behind
1429 humans, particularly on analogical, inductive, and spatial tasks. On easy tasks, some models perform
1430 competitively in certain categories, but this advantage largely disappears on medium and hard
1431 questions.1432 Interestingly, these models maintain a generally stable performance on algorithmic and deductive
1433 reasoning. For o1 and Qwen2.5-VL-72B-Instruct, their performances on algorithmic reasoning even
1434 go up for more difficult tasks, whereas human performance degraded as the difficulty level increases.
1435 However, all models, including o1, perform the worse at analogical, inductive and spatial reasoning
1436 in general, especially as the difficulty level increases. This suggests that models are relatively better
1437 at tasks requiring structured, rule-based algorithmic processing, while their performance degrades
1438 more steeply in tasks requiring relational abstraction (analogical), pattern induction (inductive),
1439 and visual understanding (spatial), particularly as the difficulty level increases. In summary, these
1440 results indicate that while some models exhibit promising performance on structured and easier
1441 reasoning tasks, multimodal models still struggle with abstract and complex reasoning, particularly
1442 when difficulty increases. Bridging the gap between model and human reasoning remains a critical
1443 challenge.1444
1445

J.3 OPTION TYPES AND DIFFICULTY LEVELS

1446 [Figure 12](#) compares human accuracy against three representative models, o1 (one of the best-
1447 performing proprietary models), Qwen2.5-VL-72B-Instruct (the strongest Qwen-based open model),
1448 and Llama-3.2-90B-Vision-Instruct (the strongest Llama-based open model), across different difficulty
1449 levels, separately for textual and visual answer options.1450 Across all participants and models, we observe a consistent pattern: text-based options result in
1451 higher accuracy than image-based options, with the performance gap widening as task difficulty
1452 increases. This trend holds even for human participants, whose accuracy drops from 92% to 40% on
1453 visual options when moving from easy to hard tasks, compared to a much smaller drop on text-based
1454 ones (93% to 73%).1455 For models, the gap is even more pronounced. For instance, Qwen2.5-VL-72B-Instruct achieves 58%
1456 accuracy on hard questions with text options, but only 20% when image options are used. o1 and
1457 Llama-3.2-90B-Vision-Instruct exhibit similar drops, suggesting a broad weakness in multi-image

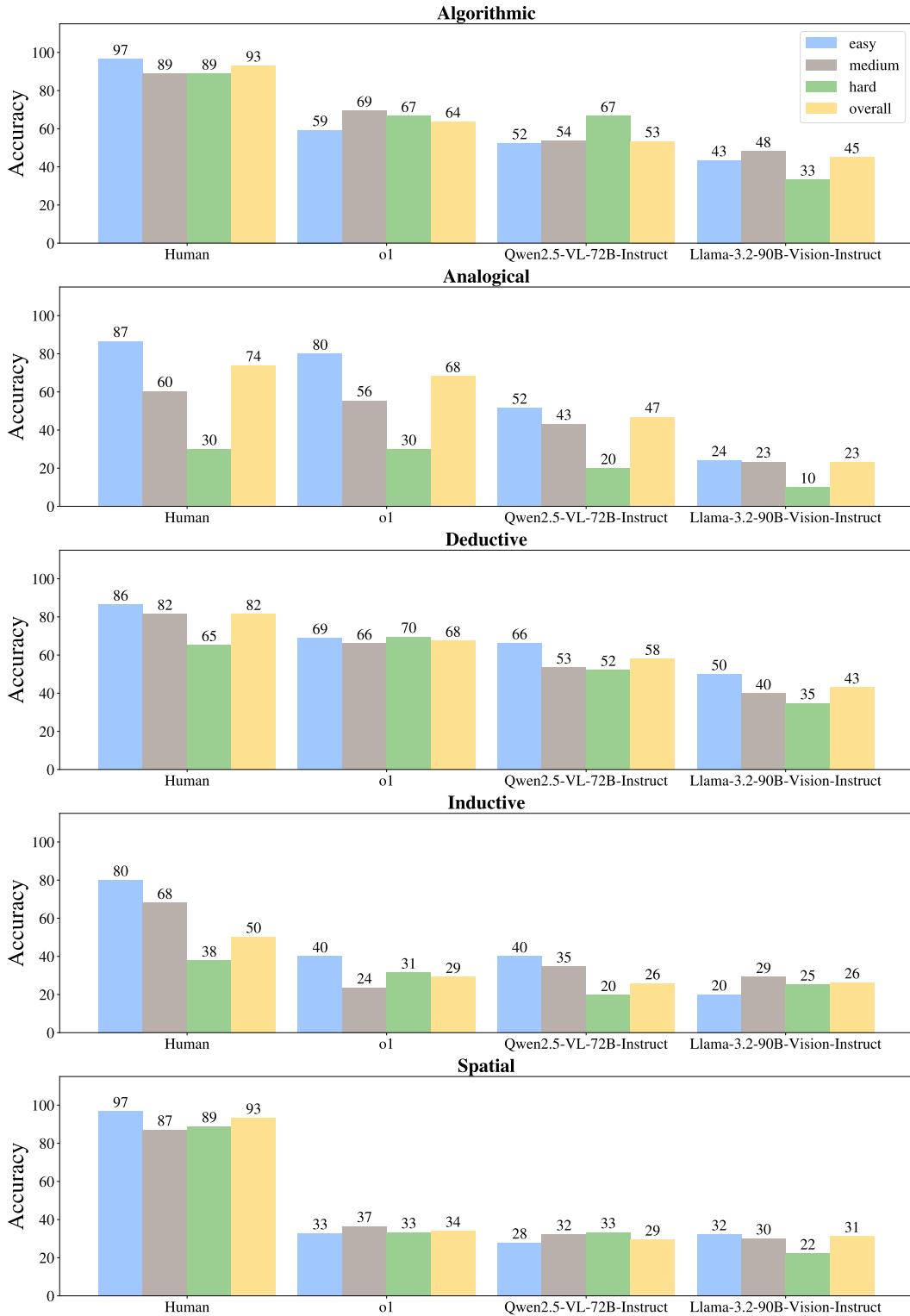


Figure 10: Comparison of accuracy across different reasoning categories for human participants, one of the best performing proprietary models o1, the best performing Qwen-based open model Qwen2.5-VL-72B-Instruct, and the best performing Llama-based open model Llama-3.2-90B-Vision-Instruct, measured on difficulty levels.

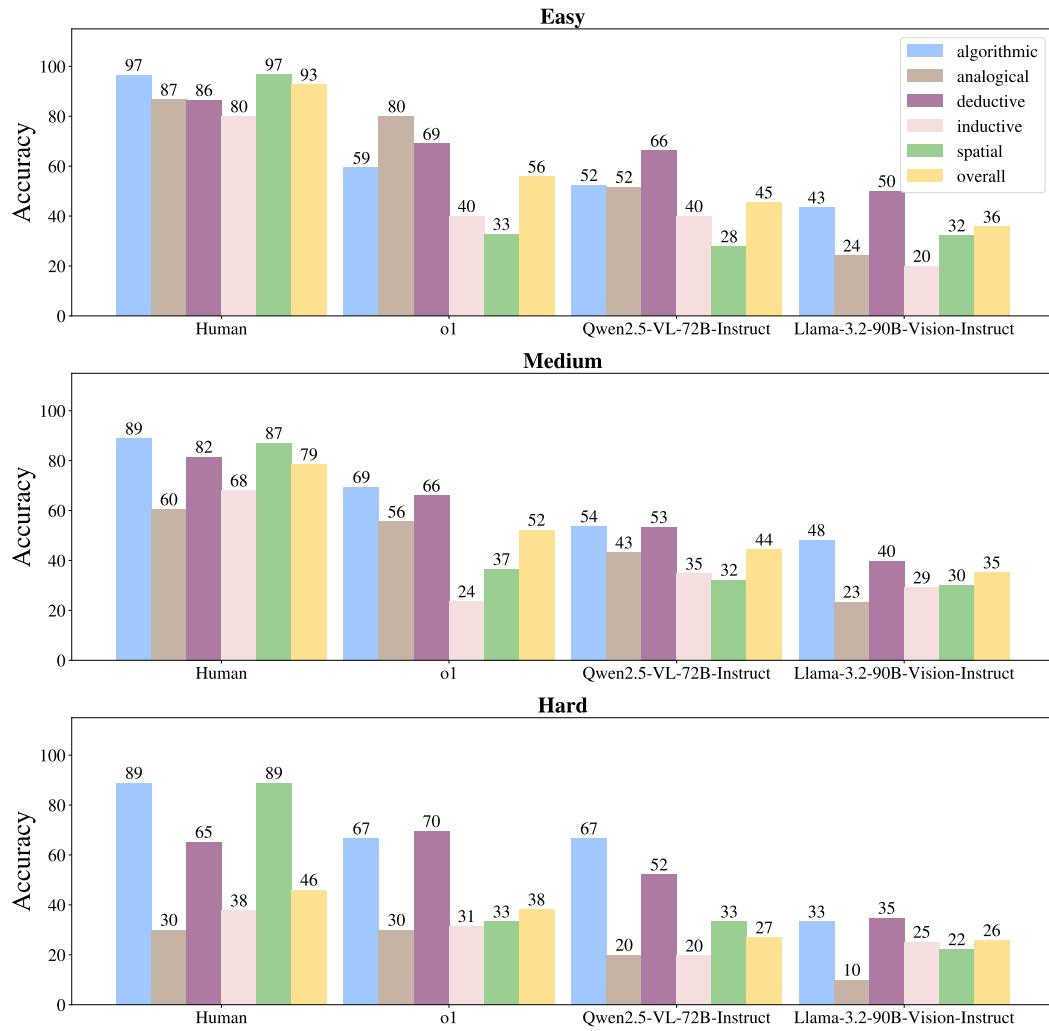


Figure 11: Comparison of accuracy across different difficulty levels for human participants, one of the best performing proprietary models o1, the best performing Qwen-based open model Qwen2.5-VL-72B-Instruct, and the best performing Llama-based open model Llama-3.2-90B-Vision-Instruct, measured across reasoning categories.

reasoning and visual option discrimination. These findings suggest that image-based answer options introduce significant additional complexity, requiring models not just to understand the question but to reason over multiple visual cues. This capability is essential for real-world tasks such as product selection, recommendation, and visual planning, where their decision-making process often depends on comparing visual content.

However, most pretraining datasets and benchmarks have traditionally emphasized textual QA formats, with far fewer examples involving visual options or structured visual comparisons. As a result, models may lack the inductive bias or learned attention mechanisms to handle visual alternatives effectively. These results highlight an important direction for future work: expanding and diversifying training corpora to include multi-choice visual reasoning tasks, and developing architectures that are explicitly designed to process and compare visual candidates, especially under challenging conditions.

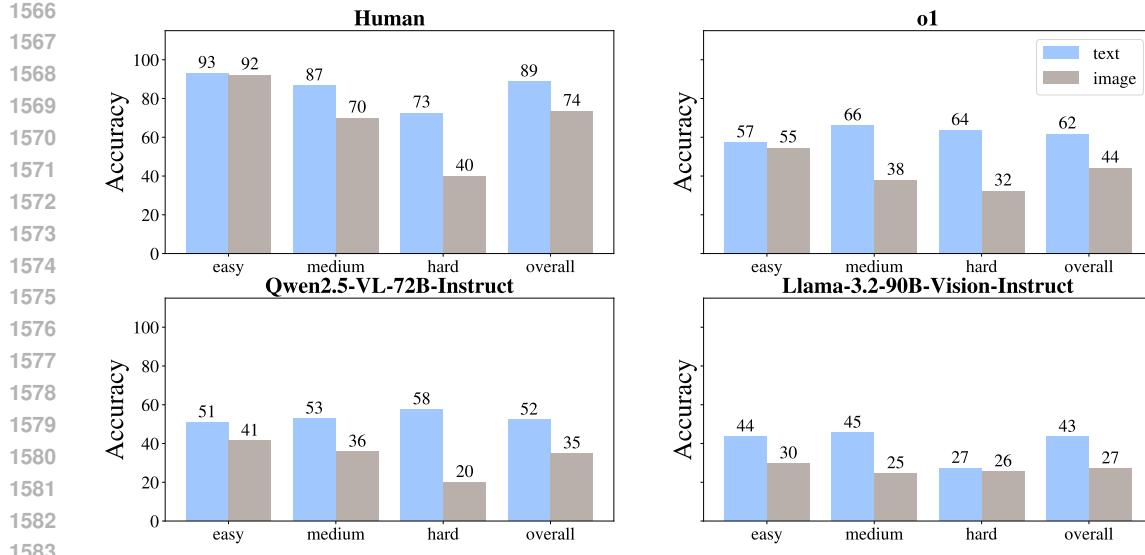


Figure 12: Comparison of accuracy across different difficulty levels for human participants, one of the best performing proprietary model o1, the best performing Qwen-based open model Qwen2.5-VL-72B-Instruct, and the best performing Llama-based open model Llama-3.2-90B-Vision-Instruct, measured on textual v.s. visual option types.

J.4 IMPACT OF COT

Table 13 compares model performance under two prompting strategies: direct multiple-choice prompt vs. Chain-of-Thought (CoT) prompt. We observe that proprietary models and larger open models ($\geq 72B$) benefit from CoT, while others show little to no improvement or even a decline in performance with CoT. For instance, both GPT-4o and Qwen2.5-VL-72B-Instruct show more than 20% increases in performance when using CoT. In contrast, several smaller models, such as Qwen2-VL-2B-Instruct and Cambrian-13B, exhibit decreased accuracy with CoT prompting. These results suggest that CoT can indeed enhance the reasoning capability of larger models whereas it may introduce unnecessary complexity or confusion for smaller models and thus decreasing performance.

J.5 COMPARISON OF REASONING PATHS

We compared the step-by-step traces of Claude-3.7-Sonnet on 50 VISUALPUZZLES instances where both the thinking and non-thinking modes failed. In 96% of these cases, the thinking mode followed essentially the same core reasoning path as the non-thinking mode, differing only in verbosity rather than substance. In rare cases, the thinking mode pursued a more advanced reasoning path, while in a similarly small fraction, the non-thinking mode was actually more direct.

These results suggest that on VISUALPUZZLES, the addition of explicit “thinking” often does not lead to genuine reasoning improvements. The distribution of observed differences is presented in Table 14.

1620 Table 14: Differences in reasoning paths between thinking and non-thinking modes (Claude-3.7-
 1621 Sonnet).

1622

Difference in Reasoning Paths	Percentage
Same Core Logic but Thinking More Verbose	96.0%
Thinking Mode More Advanced	2.0%
Non-Thinking Mode More Direct	2.0%

1623

1624

1625 J.6 CORRELATION AMONG REASONING CATEGORIES FOR HUMANS ON VISUALPUZZLES

1626

1627 **Figure 13** presents a heatmap showing the correlation among the five reasoning categories of
 1628 human performance on VISUALPUZZLES. The correlation numbers are uniformly low, indicating
 1629 that performance in one category is only weakly correlated to performance in other categories. This pattern is consistent with prior
 1630 cognitive science work suggesting that different types of reasoning rely on partially dissociable
 1631 cognitive and neural mechanisms rather than a single ability (Babcock & Vallesi, 2015; Bright
 1632 & Feeney, 2014; Goel & Dolan, 2004; Green
 1633 et al., 2010).

1634

1635 J.7 ERROR ANALYSIS OF THINKING MODE

1636

1637 We further performed a manual error analysis
 1638 on 50 instances where the thinking mode failed but the non-thinking mode succeeded. The majority
 1639 of errors (**60%**) were caused by overthinking, in which the model performed redundant or repetitive
 1640 reasoning steps. Another **32%** of errors were due to getting lost in unnecessary details, which often
 1641 obscured the correct reasoning path. Smaller fractions of errors were due to refusal to answer (**6%**)
 1642 and expressions of self-doubt (**2%**). These findings are summarized in Table 15.

1643

1644 Table 15: Error types in thinking mode where non-thinking mode succeeded (Claude-3.7-Sonnet).

1645

Error Type	Percentage
Overthinking	60.0%
Excessive Detail	32.0%
Refused to Answer	6.0%
Self-Doubt	2.0%

1646

1647

1648 J.8 DISTRIBUTION OF STRATEGIES IN CORRECT AND INCORRECT ANSWERS

1649

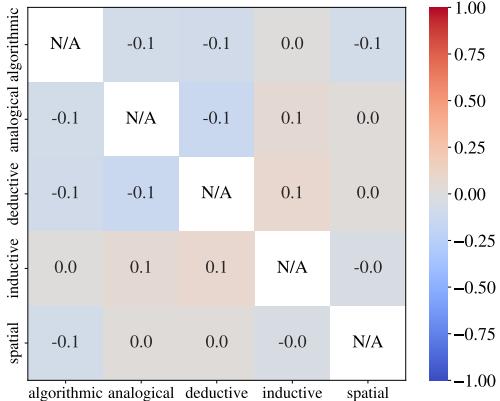
1650

1651 We manually analyzed 40 algorithmic reasoning tasks (20 solved correctly and 20 solved incorrectly)
 1652 to investigate the strategies used by current models. Annotation was performed with the assistance of
 1653 a volunteer who had previously passed the Chinese Civil Service Exam.

1654

1655 Each response was categorized into one of four mutually exclusive strategies:

1656


1657

- **Surface-Pattern Copy:** Matching the output format or arithmetic pattern without following the underlying rule.
- **Early Halt:** Stopping the reasoning process prematurely once a plausible answer appears.
- **Genuine Reasoning:** Faithfully following the intended multi-step reasoning procedure.
- **Other:** Irrelevant speculation or hallucination.

1658

1659

1660 Our analysis shows that models often reach correct answers through shallow heuristics rather than
 1661 genuine deductive reasoning, with shortcut strategies more common in incorrect answers. The
 1662 distributions for incorrect and correct answers are shown in Tables 16 and 17.

1663 Figure 13: Correlation Heatmap among reasoning
 1664 categories for humans on VISUALPUZZLES.

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1674 Table 16: Shortcut strategies for *incorrect* algorithmic reasoning answers.
1675

1676	Strategy	Percentage
1677	Surface-Pattern Copy	40.0%
1678	Early Halt	30.0%
1679	Genuine Reasoning	25.0%
1680	Other	5.0%

1682 Table 17: Shortcut strategies for *correct* algorithmic reasoning answers.
1683

1684	Strategy	Percentage
1685	Surface-Pattern Copy	30.0%
1686	Early Halt	15.0%
1687	Genuine Reasoning	45.0%
1688	Other	10.0%

1690
1691 While genuine reasoning accounts for a larger share of correct answers, shortcut strategies such as
1692 surface-pattern matching and premature halting remain widespread. This suggests that models often
1693 rely on shallow heuristics rather than robust, human-like deductive reasoning.
1694

1695 J.9 VISUALIZER

1696 To facilitate deeper inspection and reproducibility, we have also developed a visualizer containing
1697 model responses for all evaluated models. The tool supports interactive comparison across models
1698 and exploration of reasoning traces, and will be released upon acceptance.
1699

1700 J.10 CASE STUDY OF REASONING

1701 [Figure 14](#) shows a case study demonstrating the similarity in structure and reasoning strategy between
1702 Claude-3.7-Sonnet and Claude-3.7-Sonnet-Thinking. Average textual similarity between model
1703 responses of these two models on VISUALPUZZLES is 0.9.
1704

1705 J.11 PERCEPTION VERSUS REASONING

1706 Perception, knowledge, and reasoning are three core pillars of multimodal reasoning for both humans
1707 and models. Because VISUALPUZZLES explicitly targets multimodal reasoning, it is impossible to
1708 completely isolate and control the perceptual component. Nevertheless, error analysis (see Figure 8)
1709 reveals that only **21%** of errors are attributable to perceptual mistakes, while **56%** of errors are
1710 reasoning-related. This indicates that the perceptual burden of VISUALPUZZLES is moderate, while
1711 reasoning emerges as the primary bottleneck.
1712

1713 J.12 ANALYSIS WITH O4-MINI ON REASONING STRATEGIES

1714 We re-ran the reasoning strategy analysis using *o4-mini*, the best-performing model on VISUALPUZ-
1715 ZLES. The results, shown in Table 18, are consistent with those obtained using Claude-3.7.
1716

1717 On average, *o4-mini* employs a higher proportion of reasoning strategies on VISUALPUZZLES than on
1718 MMMU. Furthermore, the correlation between accuracy and the occurrence of reasoning strategies is
1719 consistently lower on VISUALPUZZLES than on MMMU. This suggests that while VISUALPUZZLES
1720 elicits frequent use of branching and re-validation, their direct relationship to accuracy is weaker
1721 compared to MMMU.
1722

1723 We additionally analyzed the reasoning strategies of *o4-mini* in terms of *Answer-First* versus *Option-
1724 First* approaches. The results are shown in Table 19. Although the differences are less pronounced
1725 compared to those observed in Claude-3.7, the same trend emerges: *o4-mini* employs the Option-
1726 First approach more frequently on MMMU, while relying more on the Answer-First approach on
1727 VISUALPUZZLES.
1728

1728	Question: Given a pair of chairs arranged at a specific angle, select the option from the four provided that matches the angle of the chairs in the question. (Answer: C)	Claude-3.7-Sonnet (With Thinking) Let me analyze this problem carefully. The question shows a “question pair” of chairs at the top of the image, and I need to find which of the four options (A, B, C, D) matches the angle arrangement of those chairs.
1729		Let me examine the question pair first: - The question pair shows two folding chairs that appear to be facing inward toward each other at approximately a 90-degree angle (the chairs are at roughly right angles to each other). - The chairs in the question pair are shown separated by a colon “:” symbol.
1730		
1731		Let me examine each option: Option A: - Shows two simple chairs with backrests - The chairs are facing each other at approximately a 90-degree angle - The arrangement looks similar to the question pair in terms of the angle
1732		Option B: - Shows two office/drafting chairs with wheels and height adjustment - The chairs appear to be facing each other at approximately a 90-degree angle - They don't appear to be at the same angle relationship as the question pair
1733		Option C: - Shows two office/drafting chairs with round seats and central pedestals - The chairs appear to be directly facing each other (180-degree relationship) - This doesn't match the angle relationship in the question pair
1734		Based on the angle relationship, both Options A and C show chairs at approximately a 90-degree angle to each other, similar to the question pair. However, Option A's chair style and arrangement seems closer to the question pair's folding chairs.
1735		So, looking at the angle between the chairs, which is the key aspect of this question, Options A and C both show approximately 90-degree angles between chairs, while Option B shows chairs at different angles, and Option D shows chairs directly facing each other. Since the question specifically asks about the angle match, I need to determine which option best matches the exact angle of the question pair.
1736		Looking closely again: The question pair shows chairs that are facing slightly inward, at approximately 90 degrees. Option A shows a similar angle relationship of roughly 90 degrees. Option C also shows a similar angle relationship of roughly 90 degrees. This is a bit challenging with the 2D representation, but I think Option A most closely matches the angle relationship in the question pair.
1737		Answer: A
1738		
1739		
1740		
1741		
1742		
1743		
1744		
1745		
1746		
1747		
1748		
1749		
1750		

Figure 14: Case Study showing the similarity in structure and reasoning strategy between Claude-3.7-Sonnet-Thinking and Claude-3.7-Sonnet. Similarity between model responses of these two models on VISUALPUZZLES is 0.9.

Table 18: Usage of reasoning strategies and their correlation with accuracy for o4-mini.

Benchmark	% Branching	% Re-validation	Correlation with Branching	Correlation with Re-validation
MMMU	58.6%	75.3%	0.02	0.20
VISUALPUZZLES	91.3%	64.0%	-0.11	0.04

K FUTURE WORK

Our findings suggest that purely scaling inference compute, model size, and knowledge resources may not suffice for robust multimodal reasoning skills. Future research can explore new training strategies, specialized architectures, or model interpretations tailored to reduce reliance on memorized facts and enhance logical reasoning.

Extending VISUALPUZZLES to include additional types of multi-image reasoning or temporally dynamic visual information may further stress-test models’ core reasoning abilities. By disentangling domain knowledge from multimodal reasoning, we hope VISUALPUZZLES will serve as a valuable tool for developing and evaluating next-generation MLLMs that excel at genuinely understanding and reasoning about the world without depending heavily on specialized factual knowledge.

L LIMITATIONS

Disentangling Knowledge Despite our best efforts to isolate domain-specific knowledge from the evaluation of multimodal reasoning, VISUALPUZZLES is still not entirely free of knowledge dependencies. Basic familiarity with everyday objects or common scenarios is still required; complete knowledge free evaluation remains an ideal rather than a practical reality.

1782
1783

Table 19: Distribution of Answer-First vs. Option-First approaches for o4-mini.

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

Benchmark	% Answer-First	% Option-First
MMMU	46.0%	54.0%
VISUALPUZZLES	56.7%	43.3%

Real World Application VISUALPUZZLES emphasizes puzzle-like questions that may not reflect the full diversity of real-world scenarios, limiting generalizability to more specialized domains.

Question Format VISUALPUZZLES focuses on multiple-choice questions, which may not capture the breadth of open-ended reasoning tasks where models must generate complex textual or visual outputs.

Future work can address these limitations by including more varied question formats, broader domains, and more granular analyses of a model’s knowledge versus its multimodal reasoning abilities.

1836 M CASE STUDY

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

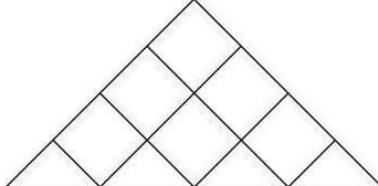
1881

1882

1883

1884

1885


1886

1887

1888

1889

Algorithmic (Easy)
X

Question: There are seven squares in the picture. How many more triangles than squares are there in the picture?

Options: (A) 1 (B) 2 (C) 3 (D) 4

Ground Truth: (C)

Claude-3.7-Sonnet-Thinking: *<thinking>* I need to count the number of squares and triangles in the given picture, and then find how many more triangles there are than squares.

First, let me count the squares:

1. I can see 7 small squares arranged in a triangular pattern within the large triangle.

Now, let me count the triangles:

1. There's the large outer triangle that contains everything.

2. There are small triangles formed by the division of the large triangle by the squares.

Let me count these small triangles carefully:

- Along the bottom row, I see 4 triangles (formed by the squares and the bottom edge)

- On the left side of the large triangle, I see 3 triangles (formed by the squares and the left edge)

- On the right side of the large triangle, I see 3 triangles (formed by the squares and the right edge)

- Don't forget the large outer triangle itself: 1 triangle

So in total: $4 + 3 + 3 + 1 = 11$ triangles

Now I can find the difference:

Number of triangles - Number of squares = $11 - 7 = 4$

So there are 4 more triangles than squares in the picture.

Looking at the options, the answer is (D) 4.

<end_thinking>

Looking at the image, I need to count the total number of squares and triangles, then find their difference.

First, I'll count the squares:

- I can see 7 small squares arranged in a triangular pattern inside the large triangle.

Next, I'll count the triangles:

1. There is the large outer triangle that contains everything.

2. Along the bottom edge of the large triangle, there are 4 small triangles.

3. Along the left edge of the large triangle, there are 3 small triangles.

4. Along the right edge of the large triangle, there are 3 small triangles.

Total number of triangles = $1 + 4 + 3 + 3 = 11$ triangles

Now I can calculate how many more triangles than squares there are:

11 triangles - 7 squares = 4 more triangles

Answer: D

Error Category: Reasoning Error

Error Reason: The model gets the answer wrong because it miscounts the number of triangles, specifically double-counting the triangles formed by small triangles and squares. The response incorrectly conclude there are 11 triangles, but a careful manual inspection shows only 10 distinct triangles, making the correct difference 3, not 4.

Figure 15: A sample error case of Algorithmic Reasoning (difficulty: Easy).

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

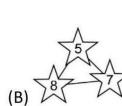
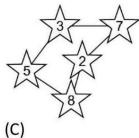
1935

1936

1937

1938

1939



1940

1941

1942

1943

Algorithmic (Easy)

Question: In the Kangaroo constellation, all stars have a number greater than 3 and their sum is 20. Which option shows the Kangaroo constellation?

Ground Truth: (B)

Claude-3.7-Sonnet-Thinking: <thinking> The question asks about the Kangaroo constellation, which has the following properties:

1. All stars have a number greater than 3
2. The sum of all numbers is 20

Let me check each option to see which one satisfies these conditions:

Option (A):
 Stars have values: 5, 4, 7, 6
 - Are all numbers greater than 3? Yes (5, 4, 7, 6 are all > 3)
 - Sum: $5 + 4 + 7 + 6 = 22$
 This doesn't match the required sum of 20.

Option (B):
 Stars have values: 5, 8, 7
 - Are all numbers greater than 3? Yes (5, 8, 7 are all > 3)
 - Sum: $5 + 8 + 7 = 20$
 This matches both conditions: all numbers are greater than 3, and they sum to 20.

Option (C):
 Stars have values: 5, 3, 7, 2, 8
 - Are all numbers greater than 3? No (3 and 2 are not > 3)
 - Sum: $5 + 3 + 7 + 2 + 8 = 25$
 This doesn't satisfy the first condition about all stars having numbers greater than 3.

Option (D):
 Stars have values: 5, 1, 4, 9
 - Are all numbers greater than 3? No (1 is not > 3)
 - Sum: $5 + 1 + 4 + 9 = 19$
 This doesn't satisfy either condition.

So, only Option (B) satisfies both conditions of the Kangaroo constellation.

<end_thinking>

Solving the Kangaroo Constellation Problem

I need to identify the constellation where all stars have numbers greater than 3 and sum to 20.

Let me examine each option:

Option (A)
 Stars: 5, 4, 7, 6
 - All numbers > 3 ? Yes
 - Sum: $5 + 4 + 7 + 6 = 22$
 Doesn't match the required sum of 20.

Option (B)
 Stars: 5, 8, 7
 - All numbers > 3 ? Yes
 - Sum: $5 + 8 + 7 = 20$
 Matches both requirements!

Option (C)
 Stars: 5, 3, 7, 2, 8
 - All numbers > 3 ? No (3 and 2 are ≤ 3)
 - Sum: $5 + 3 + 7 + 2 + 8 = 25$
 Doesn't satisfy the first condition.

Option (D)
 Stars: 5, 1, 4, 9
 - All numbers > 3 ? No (1 is ≤ 3)
 - Sum: $5 + 1 + 4 + 9 = 19$
 Doesn't satisfy either condition.

Only option (B) satisfies both requirements: all stars have numbers greater than 3, and their sum is exactly 20.

Answer: B

Figure 16: A sample correct case of Algorithmic Reasoning (difficulty: Easy).

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Algorithmic (Medium)

Question: How many left hands appear in the image?

Options: (A) 1 (B) 8 (C) 4 (D) 5

Ground Truth: (C)

Claude-3.7-Sonnet-Thinking: <*thinking*>
 Looking at the image, I can see approximately 10-12 hand icons/emoji in a row. They're all yellow (with one that appears to be skin-colored), and they show various hand gestures.

To determine which ones are left hands, I need to look at the thumb position. In a left hand, the thumb would typically be on the right side when the palm is facing forward.

Let me go through each hand from left to right:

1. Thumbs down gesture - appears to be a left hand with thumb on right side
2. Fist or closed hand - orientation is harder to determine but seems to be a left hand
3. Open hand or waving hand - appears to be a left hand
4. Hand pointing or gesturing - appears to be a left hand
5. Open hand with fingers spread - appears to be a left hand
6. Fist with extended thumb (like "thumbs up" but horizontal) - appears to be a right hand (thumb on left)
7. Open hand with fingers spread - appears to be a left hand
8. Hand making "OK" gesture - appears to be a left hand
9. Victory/peace sign hand - appears to be a left hand
10. Ear or side of face (not a hand)
11. Hand pointing or gesturing - appears to be a right hand

So counting the left hands, I see approximately 8 left hands. This would correspond to option (B) 8.

However, I want to be careful because determining left vs. right can sometimes be ambiguous in emoji or simplistic hand representations. Let me double check my count.

Looking again, I see the thumbs down, several open hands, some gesture hands, and a few that are definitely left hands based on thumb position. The total count of left hands appears to be around 8, though there's some ambiguity with a couple of the representations.

Based on my analysis, the answer appears to be (B) 8.
<end_thinking>

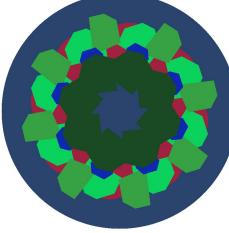
To solve this question, I need to examine the image carefully and identify which hands are left hands.

Looking at the row of yellow hand emojis, I need to determine whether each is a left or right hand. For hand emojis, I can identify a left hand by noticing the thumb position - on a left hand, the thumb will typically appear on the right side when the palm is facing forward.

Going through each emoji from left to right:

1. Thumbs down - this is a left hand (thumb is on the right)
2. Fist - appears to be a left hand
3. Waving hand - this is a left hand
4. Pointing hand - this is a left hand
5. Open hand with fingers spread - this is a left hand
6. Fist with extended thumb - this appears to be a right hand (thumb on left)
7. Open hand - this is a left hand
8. OK gesture hand - this is a left hand
9. Peace sign hand - this is a left hand
10. Ear emoji (not a hand)
11. Pointing gesture - right hand

I count 8 left hands total in the image.


Answer: B

Error Category: Spatial / Orientation Error
Error Reason: The model makes a orientation error by misinterpreting the thumb positions in several hand emojis, leading it to incorrectly classify some right hands as left hands. For example, it counts the pointing hand in the third emoji (which is clearly a right hand) as a left hand. This misclassification results in an overcount of left hands.

Figure 17: A sample error case of Algorithmic Reasoning (difficulty: Medium).

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Algorithmic (Medium)

Question: The entire pie seen in the image is divided among several children. Each child receives a piece of pie, and each piece of pie looks identical. What is the maximum possible number of children there?

Options: (A) 9 (B) 8 (C) 10 (D) 4

Ground Truth: (B)

Claude-3.7-Sonnet-Thinking: <*thinking*> I need to determine how many equal-sized pieces this pie can be divided into. Since each child will receive an identical piece, I need to count the maximum number of equal portions visible in the image.

Looking at the image, I can see that this appears to be an unusual-looking pie with different colored sections arranged in a circular pattern. It's not a typical pie with simple wedge-shaped slices.

From what I can observe, there appears to be a pattern of colored shapes (green, light green, blue, and red) arranged in a circle. To determine how many equal pieces there are, I need to identify the repeating pattern and count how many times it repeats around the circle.

The pie seems to have a symmetrical arrangement. Looking carefully, I can see that there appear to be 8 sections around the outer ring that follow a similar pattern. I can see repeated patterns of green and light green shapes with blue and red accents between them.

Looking at the options:

(A) 9
(B) 8
(C) 10
(D) 4

Based on my observation of the image, there appear to be 8 similar sections arranged around the circle. This would suggest that option (B) 8 is the correct answer.

However, I should double-check by looking for any other patterns or symmetries in the image. It's possible that each section could be further divided, or that there's a different way to interpret the equal pieces.

After careful examination, I'm confident that there are 8 identical sections arranged in a circular pattern. Therefore, the maximum number of children who could receive identical pieces of pie would be 8.

<*end_thinking*>

Determining the Maximum Number of Children

To solve this problem, I need to examine the pie in the image and determine how many identical pieces it can be divided into.

Analysis of the Pie

Looking at the image, I can see a circular pie with a pattern of colored sections. The key is to identify how many identical sections are present or could be created.

Upon careful examination, I notice that the pie has a symmetrical arrangement with a repeating pattern. The colorful segments (green, light green, red, and blue shapes) appear to form a consistent pattern around the circle.

Counting these repeating sections carefully, I can identify 8 identical portions around the circumference of the pie. Each of these sections follows the same pattern of colored shapes.

Conclusion

Since each child must receive an identical piece, and there are 8 identical sections visible in the pie, the maximum possible number of children would be 8.

Answer: B

Figure 18: A sample correct case of Algorithmic Reasoning (difficulty: Medium).

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

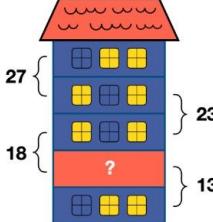
2097

2098

2099

2100

2101


2102

2103

2104

2105

Algorithmic (Hard)

Question: There are 53 residents living in the apartment. How many people live on the second floor?

Options: (A) 5 (B) 8 (C) 10 (D) 13

Ground Truth: (A)

Claude-3.7-Sonnet-Thinking: <thinking> This image shows an apartment building with different sections labeled with numbers. Let me analyze what the numbers represent:

- The building appears to have multiple floors.
- The number 27 is shown on the left side of one section (blue).
- The number 23 is shown on the right side of a section (also seems to cover two blue floors).
- The number 18 is shown on the left side of a pink/red section marked with "?".
- The number 13 is shown on the right side of the bottom floor.

The question asks how many people live on the second floor, but I need to determine which floor is the second floor and how many people live there.

Looking at the building from bottom to top:

1. Bottom floor (blue with windows): labeled with 13 on the right
2. Second floor (pink/red with "?"): labeled with 18 on the left
3. Two middle floors (blue with windows): part of the 23 on the right
4. Top floor (blue with windows): labeled with 27 on the left

So it seems the second floor from the bottom is the one marked with "?" and has 18 on the left side. But the question asks specifically how many people live on the second floor, not how many are associated with the label.

Let me think about this more carefully. The total number of residents is 53. The numbers shown might be:

- 27: Number of people on the top floor
- 23: Number of people on the two middle floors combined
- 18: Number of people on the second floor
- 13: Number of people on the bottom floor

Let's check if these add up: $27 + 23 + 18 + 13 = 81$, which is more than 53.

Wait, I think I'm misinterpreting. The numbers might represent:

- 27: People on left side (top section)
- 23: People on right side (upper two floors)
- 18: People on left side (lower section)
- 13: People on right side (bottom floor)

So $27 + 18 = 45$ people on the left, and $23 + 13 = 36$ people on the right. That's still $45 + 36 = 81$ people, which doesn't match 53.

Let me try a different approach. Maybe the 23 represents the number of people on the right side of the building (covering multiple floors), and 18 represents people on another part.

Actually, looking at the diagram again, it appears that:

- 27: Left side of the top section
- 23: Right side of the top two sections
- 18: Left side of the bottom section
- 13: Right side of the bottom section

Given the total is 53 residents, and we're trying to find the number on the second floor, let's try to interpret the diagram differently.

The first (bottom) floor seems to have 13 people.

The top appears to have 27 people.

That leaves $53 - 13 - 27 = 13$ people for the second and third floors combined.

I'm still uncertain, but based on my calculations and the available options, it seems like (D) 13 might be the answer if we interpret the second floor as having all the remaining residents after accounting for the top and bottom floors.

<end_thinking>

Solving the Apartment Residents Problem

Looking at the image, I need to determine how many residents live on the second floor of this apartment building.

I can see a diagram of a building with several numbers:

- The top section has "27" on the left side
- The middle two floors have "23" on the right side
- There's a section marked with "18"
- The bottom floor has "13" on the right side
- The second floor from the bottom is marked with a "?" - this is what I need to find

I notice the question states there are 53 residents total living in the apartment building.

Let me work this out:

- The top floor appears to have 27 residents
- The bottom floor appears to have 13 residents
- That means the middle two floors together must have: $53 - 27 - 13 = 13$ residents

Looking closely at the image, the second floor is specifically marked with a "?" and there are numbers on the sides indicating 13 for that floor.

Therefore, the second floor has 13 residents.

Answer: D

Error Category: Understanding Error

Error Reason: The model makes an image understanding error by misunderstanding what is the meaning of the brackets and numbers, despite all the branching and revalidation. This misunderstanding causes it to iteratively try to understand the meaning of the numbers and ultimately select the wrong answer.

Figure 19: A sample error case of Algorithmic Reasoning (difficulty: Hard).

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

Algorithmic (Hard)

Question: A bird can only move horizontally or vertically towards a monkey in the grid. The number of ways that the bird can reach the monkey is:

Options: (A) 15 (B) 14 (C) 18 (D) 12

Ground Truth: (A)

Claude-3.7-Sonnet-Thinking: <thinking> Looking at the grid, I need to identify the positions of the bird and the monkey.

The bird appears to be at the top of the grid in the second column, specifically at position (0, 1) if we use a zero-indexed grid counting from the top-left.

The monkey appears to be at the bottom-right of the grid, at position (4, 3) using the same coordinate system.

To count the number of ways the bird can reach the monkey, I need to consider that the bird can only move horizontally or vertically. This means the bird can only move right or down to reach the monkey from its starting position.

The total number of valid paths will be the number of ways to arrange the required horizontal and vertical moves.

From position (0, 1) to (4, 3), the bird needs to move:

- 4 steps down (from row 0 to row 4)
- 2 steps right (from column 1 to column 3)

So in total, the bird needs to make $4 + 2 = 6$ moves, with 4 being vertical and 2 being horizontal.

The number of ways to arrange these moves is given by the combination formula:
 $C(\text{total moves, horizontal moves}) = C(6, 2) = 6! / (2! * 4!) = (6 * 5) / (2 * 1) = 30 / 2 = 15$

Alternatively, you can calculate $C(6, 4)$ which would give the same result:
 $C(6, 4) = 6! / (4! * 2!) = 15$

So there are 15 different ways for the bird to reach the monkey.

Looking at the options, this corresponds to answer (A) 15.

<end_thinking>

Solving the Grid Path Problem

In this problem, I need to find the number of ways that a bird can reach a monkey by moving only horizontally or vertically in a grid.

Looking at the image:

- The bird is located at the top of the grid in the second column (position (0,1) if we start counting from 0)
- The monkey is located at the bottom-right area (position (4,3))

Step 1: Determine the required moves

From the bird to the monkey, the bird needs to move:

- 4 steps down (from row 0 to row 4)
- 2 steps right (from column 1 to column 3)

So the bird must make a total of 6 moves: 4 vertical and 2 horizontal.

Step 2: Calculate the number of possible paths

This is a classic combinatorial problem. The number of different ways to arrange these moves is:

$$C(\text{total moves, horizontal moves}) = C(6, 2) = 6! / (2! * 4!) = (6 * 5) / (2 * 1) = 30 / 2 = 15$$

Alternatively, we could calculate $C(6, 4)$ which gives the same result.

Step 3: Verify with the given options

Our answer of 15 matches option (A).

Answer: A

Figure 20: A sample correct case of Algorithmic Reasoning (difficulty: Hard).

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213

Analogical (Easy)

Question: Given the pattern in the first line of blocks, which option at the bottom of the image fits in the question mark in the second line of blocks?

Ground Truth: (C)

Claude-3.7-Sonnet-Thinking: <thinking> Let me analyze the pattern in the first line of blocks and see how it relates to the second line of blocks.

First line of blocks:

1. The first block has white on the left and blue on the right
2. The second block has white on the top and blue on the bottom
3. The third block has blue on the left and white on the right

Second line of blocks:

1. The first block has black on the top and yellow on the bottom
2. The second block has yellow on the left and black on the right
3. The third block has a question mark (this is what we need to figure out)

Let me think about the possible relationships between the first and second line:

Possibility 1: Color transformation

- Blue in the first line becomes black in the second line
- White in the first line becomes yellow in the second line

Possibility 2: Position pattern

The first line blocks follow a pattern of right/bottom/left coloring for the blue part.
The second line blocks might follow the same positional pattern but with different colors.
Based on the color transformation pattern I identified (blue→black, white→yellow), and looking at the third block in the first line (blue left, white right), the answer should be a block with black on the left and yellow on the right.

Looking at the options:

- Option A: Black on top, yellow on bottom (like the first block in the second row)
- Option B: White on left, pink/red on right (doesn't match our color scheme)
- Option C: Yellow on top, black on bottom (this would be inverse of first block in second row)
- Option D: Blue on bottom, white on top (similar to the second block in the first row)

None of the options exactly match what I'm looking for. The relationship between the first line and second line might be more complex. Let me look at it again:

First block: white left, blue right → black top, yellow bottom
Second block: white top, blue bottom → yellow left, black right

Let me try to formulate a rule:

- White areas become yellow
- Blue areas become black
- Position changes: left→top, right→bottom, top→left, bottom→right

So if the third block has blue left and white right, then the third block in the second row should have black top and yellow bottom according to this rule.

Option A matches this pattern.

Let me double-check:

First rule pattern: white→yellow, blue→black
Position transformation: left→top, right→bottom, top→left, bottom→right

For block 3 in row 1: blue on left, white on right
Applying the rules: blue left becomes black top, white right becomes yellow bottom
This gives us: black top, yellow bottom
Option A has black on top and yellow on the bottom, so it seems to be the correct answer.
<end_thinking>

To solve this problem, I need to identify the pattern in the first line of blocks and how it transforms in the second line.

Let me analyze both rows carefully:

First row:

- Left block: White on left, blue on right
- Middle block: White on top, blue on bottom
- Right block: Blue on left, white on right

Second row:

- Left block: Black on top, yellow on bottom
- Middle block: Yellow on left, black on right
- Right block: ? (what we need to determine)

Looking at the transformation from first to second row:

1. The blue areas in the first row seem to become black in the second row
2. The white areas in the first row seem to become yellow in the second row
3. There's also a positional transformation:
 - Left side → Top position
 - Right side → Bottom position
 - Top position → Left side
 - Bottom position → Right side

Option A shows black on top and yellow on bottom, which matches our expected pattern.

Answer: B

Error Category: Reasoning Error

Error Reason: The model gets this question wrong because it focuses too much on individual color mappings or partial position patterns rather than identifying the full transformation. The correct pattern involves a consistent clockwise rotation of color positions from the first to the second row.

Figure 21: A sample error case of Analogical Reasoning (difficulty: Easy).

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

Analogical (Easy) ✓

→

→

?

A

B

C

D

Question: Given the analogy in the first line of items, which choice fits best in the black question mark?

Ground Truth: (C)

Claude-3.7-Sonnet-Thinking: <thinking> Let's analyze the analogy in the first line:

The first line shows sliced bread on the left and a knife on the right, connected by an arrow.

The relationship here appears to be: the knife is a tool used to cut/slice the bread. The knife is what transforms a whole loaf of bread into slices.

Now, let's look at the second line:

- On the left, we see a log (a section of tree trunk)
- On the right, we need to determine which tool would be used to process or cut this log

Let's examine each option:

- (A) A wooden shed or small building
- (B) A cleaver or butcher's knife
- (C) An axe
- (D) Sliced butter on a wooden board

The question is asking which tool would be used to process a log, similar to how a knife is used to slice bread.

- Option A (wooden shed) is not a tool but a structure that might be built using processed wood
- Option B (cleaver/butcher's knife) is a cutting tool but not typically used for logs
- Option C (axe) is a tool specifically designed for cutting logs/wood
- Option D (sliced butter) is not a tool at all, but a food product

Following the analogy "bread → knife" (something that needs to be cut → tool used to cut it), the logical completion for "log → ?" would be an axe, which is a tool specifically designed to cut wood.

Therefore, the answer appears to be (C) the axe.

<end_thinking>

I need to determine the relationship between the items in the first line and then apply the same relationship to find the missing item in the second line.

Looking at the first line:

- On the left, there's a loaf of bread with some slices cut from it
- On the right, there's a knife
- The relationship is that the knife is the tool used to cut/slice the bread

Now, for the second line:

- On the left, there's a log (a section of tree trunk)
- On the right, I need to find the appropriate tool that would be used to cut or process this log

Let me analyze each option:

- (A) A wooden shed/small building - This is a structure that might be built using processed wood, not a tool for cutting logs
- (B) A cleaver/butcher's knife - While this is a cutting tool, it's not typically used for logs
- (C) An axe - This is a tool specifically designed for chopping and cutting logs/wood
- (D) Sliced butter on a board - This is a food product, not a tool for processing logs

The pattern is "material → tool used to cut that material"

- Bread → Knife
- Log → ?

An axe is the tool specifically designed for cutting logs, just as a knife is the tool for slicing bread.

Answer: C

Figure 22: A sample correct case of Analogical Reasoning (difficulty: Easy).

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

?

Analogical (Medium) ☒

A

B

C

D

Question: Based on the relationship between Origin and Analogy, select the option from the candidates that best completes this analogy.

Ground Truth: (C)

Claude-3.7-Sonnet-Thinking: <thinking> In this analogy question, I need to find the relationship between "Origin" and "Analogy" on the left side of the equation, and then identify which candidate option (A, B, C, or D) best completes the right side of the equation when paired with "Origin".

Let's analyze the images:

Left side:

- Origin: A person installing or working on what appears to be a large appliance or system
- Analogy: A person installing or repairing what looks like a garage door opener or ceiling-mounted device

Right side:

- Origin': A person's hand operating what appears to be a sound mixing board or control panel with sliders and buttons
- Analogy': This is what we need to determine from options A, B, C, or D

The relationship between Origin and Analogy seems to be:

Both involve installation, repair, or maintenance of mechanical/electrical systems, but in different contexts. They show people actively working on or operating different types of equipment or machinery.

Now, let's look at the candidate options and see which one best represents the same relationship with Origin' (the sound mixing board):

A: A person painting or working on a ceiling/wall
 B: A close-up of someone working on or repairing what appears to be electronic components
 C: Some mechanical or electronic equipment with wiring
 D: People moving or installing what looks like a home appliance (possibly a refrigerator or washer/dryer)

I need to determine which option shows a relationship to the sound mixing board (Origin') that parallels the relationship between the first two images.

If Origin shows someone installing/repairing an appliance, and Analogy shows someone installing/repairing a different type of equipment (garage door opener), then the relationship is about installation/repair of different types of systems.

Similarly, if Origin' shows someone operating a sound mixing board, then Analogy' should show someone operating a different type of equipment or control system.

Looking at the options:

A: Shows installation/repair work (similar to Origin/Analogy) but not operation of controls
 B: Shows repair/maintenance of electronic components
 C: Shows equipment but not clearly someone operating it
 D: Shows people moving/installing an appliance

The key relationship between Origin and Analogy seems to be: a person actively working on installing or maintaining a system. Similarly, Origin' shows a person actively operating a control system (mixing board).

Option B seems closest as it shows hands working on electronic components, which could be considered operating or maintaining another type of electronic system. Though it's not entirely clear from the image, this appears to be the closest match to the relationship pattern.

<end_thinking>

Analogy Analysis

I need to understand the relationship between "Origin" and "Analogy" in the first pair, then apply that same relationship to find what completes the "Origin" and "Analogy" pair.

Examining the first pair:

- **Origin**: Shows a person installing or repairing what appears to be a large appliance (possibly a washer or dryer)
- **Analogy**: Shows a person installing or working on a ceiling-mounted device (appears to be a garage door opener)

The relationship seems to be: Both involve installation/repair/maintenance of household mechanical systems, but in different locations and of different types.

Examining the second pair:

- **Origin**: Shows hands operating a sound mixing board or audio control panel with sliders and buttons
- **Analogy**: This is what we need to determine

I need to find an option that shows someone working with or operating another type of electronic/technical equipment, maintaining the same relationship as the first pair.

Analyzing the options:

- **A**: Person painting or installing something on a ceiling
- **B**: Close-up of hands working on electronic components/circuit board
- **C**: Complex mechanical/electronic equipment with wiring
- **D**: Two people moving or installing what appears to be a refrigerator or appliance

The relationship we're looking for should show hands working on/operating a different type of technical equipment than a mixing board.

Option B shows hands working directly with electronic components/circuit board, which parallels how the hands in Origin' are working directly with the audio equipment. Both involve hands-on technical work with electronic systems, just different types.

Answer: B

Error Category: Reasoning Error

Error Reason: The model gets the answer wrong because it overemphasizes the type of equipment being worked on (mechanical vs. electronic) rather than the specific action and interface involved in the analogy. Option C correctly mirrors the using / fixing relationship seen in the first pair of analogy, while Option B lacks this direct fixing interaction, despite a similar technical context.

Figure 23: A sample error case of Analogical Reasoning (difficulty: Medium).

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

Analogical (Medium) (✓)

Origin

Analogy

Origin'

Analogy'

Candidates

A

B

C

D

Question: Based on the relationship between Origin and Analogy, select the option from the candidates that best completes this analogy.

Ground Truth: (B)

Claude-3.7-Sonnet-Thinking: <*thinking*> Let me analyze the relationship between the "Origin" and "Analogy" images to determine the pattern, and then apply that to find the best match for "Origin'" from the candidates.

In the first pair:

- Origin: A dog (looks like a spaniel or similar breed) searching/sniffing in grass
- Analogy: What appears to be a small animal (possibly a rodent) in its natural habitat with vegetation

In the second pair:

- Origin': A dog (appears to be a small white dog) eating or drinking from a bowl/dish
- Analogy': We need to determine this

The relationship seems to be showing an animal (dog) in the Origin image, then showing what might be a prey animal or similar smaller animal in a related natural context in the Analogy image.

So, for Origin' which shows a dog eating/drinking, the Analogy' should show some smaller animal also eating.

Looking at the candidates:

- A: Shows a dog with what appears to be a stick or something in its mouth in snow
- B: Shows a mouse or small rodent eating something
- C: Shows what looks like a groundhog or marmot near flowers/plants
- D: Shows another dog's face/profile

Based on the pattern (dog → smaller animal in natural context, especially related to the activity the dog is doing), option B (the mouse/rodent eating) would best complete the analogy since it shows a smaller animal doing the same activity (eating) as the dog in Origin'.

<*end_thinking*>

I need to determine the relationship between the "Origin" and "Analogy" images, and then apply that same relationship to find the appropriate "Analogy'" that matches "Origin".

Looking at the first pair:

- Origin: A dog searching or sniffing in grass (appears to be hunting or tracking)
- Analogy: A small animal (looks like a rodent) in its natural habitat among vegetation

Now looking at the second pair:

- Origin': A dog eating or drinking from a bowl/dish
- Analogy': This is what I need to determine

The relationship between the first pair seems to be: a dog engaged in a natural behavior (hunting/tracking), followed by what could be its potential prey or a similar smaller animal in its natural environment.

Following this pattern, the "Analogy'" should show a smaller animal engaged in eating or drinking (similar to what the dog is doing in "Origin").

Examining the candidates:

- A: A dog with something in its mouth on snow
- B: A mouse/small rodent eating food
- C: What appears to be a groundhog or marmot among vegetation/flowers
- D: A profile view of another dog

Since the pattern is showing a smaller animal doing a similar activity as the dog, option B (the mouse eating) best completes the analogy because it shows a smaller animal engaged in the same activity (eating) as the dog in Origin'.

Answer: B

Figure 24: A sample correct case of Analogical Reasoning (difficulty: Medium).

2430

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

Question: This question contains two sets of figures and 4 figures to choose from. The two sets of figures have certain similarities as well as differences. You are required to choose one option that is most suitable to replace the question mark. The correct answer should not only make the two sets of figures the most similar, but also shows uniqueness for the second set of figures.

Ground Truth: (C)

Claude-3.7-Sonnet-Thinking: <thinking> Let me carefully analyze this problem.

We have two sets of figures:

- First set: Three figures in a row
- Second set: Two figures and a question mark

I need to find the best option (A, B, C, or D) to replace the question mark, such that the two sets become most similar while preserving the uniqueness of the second set.

First, let me analyze the first set:

1. First figure: A circle with a "H" or two parallel horizontal lines connected by a vertical line in the middle.
2. Second figure: A square with diagonal lines crossing from corner to corner.
3. Third figure: A simple circle.

Now, let me analyze the second set (before the question mark):

1. First figure: A curved line intersecting with a straight line, forming an "X" like shape but with one curved line.
2. Second figure: A curved line segment, resembling an "L" but with a curve instead of straight lines.
3. Question mark: This is what we need to figure out.

Let's look at the options:

- A: Two crossing lines with a small curve at one end of one line.
- B: Two curved lines crossing in an "X" formation.
- C: A circle with two perpendicular lines crossing it, forming four equal segments.
- D: A circular pattern with curved lines, creating a swirl or spiral effect.

Now, let me try to identify the pattern or relationship between the two sets:

In the first set, we start with a circle containing a shape (H), then move to a square with crossed lines, and finally a simple circle.

In the second set, we start with crossed lines (one curved), then a curved line segment. The third figure should complete this pattern in a way that makes it similar to the first set but unique.

Looking at the transformation from first set to second set:

1. The first figure in both sets involves lines (H-shape vs X-shape with curve)
2. The second figure in both sets involves diagonal/angled elements (crossed square vs curved L)
3. The third figure in the first set is a simple circle

So what would make the third figure in the second set similar yet unique?

Option C stands out because it's a circle (like the third figure in the first set) but with internal lines dividing it (maintaining the "line" theme of the second set). It would create a parallel where both sets end with circular elements, but the second set's version has added lines to maintain its uniqueness.

Let me double-check by considering another angle. Maybe there's a transformation rule from each figure in the first set to the corresponding figure in the second set:

1. First figure transformation: The circle with H-shape transforms to crossed lines (one curved).
2. Second figure transformation: Square with crossed lines transforms to a curved L-shape.
3. Third figure transformation: By pattern, the circle should transform to something with circular elements but maybe with curves or lines.

Looking at options again, C and D both have circular elements. C has straight lines dividing the circle while D has a swirl pattern.

Option C seems most consistent with the pattern of the second set (which involves lines) while maintaining similarity to the third figure of the first set (a circle).

So I believe C is the most likely answer.

<end_thinking>

I'll solve this step by step by analyzing the two sets of figures and looking for patterns.

****First Set of Figures:****

1. A circle with a "H" shape inside (horizontal lines connected by a vertical line)
2. A square with diagonal crossed lines
3. A simple circle

****Second Set of Figures:****

1. An intersection of a straight line and a curved line
2. A curved line in an L-like shape
3. Question mark - needs to be determined

****Looking for the Pattern:****

I need to understand how these sets relate to each other to find the right option for the question mark.

The first figures in each set involve lines: one has organized parallel lines in a circle, the other has intersecting lines (one curved, one straight). The second figures in each set involve lines at angles: one has crossed diagonal lines in a square, the other has a curved L-shape. For the third figure, the first set has a simple circle. Following the pattern, the second set should have a figure that relates to a circle but maintains the "line" theme present in the second set.

****Analyzing the Options:****

- A: Two crossed lines with a curved end
- B: Two curved lines crossing in an X pattern
- C: A circle divided into four equal parts by perpendicular lines
- D: A swirl pattern with curved lines

****Decision:****

Option C makes the most sense because:

1. It contains a circle (relating to the third figure in the first set)
2. It includes straight lines (maintaining the line theme of the second set)
3. The division of the circle into four parts creates a unique element for the second set while still maintaining similarity to the first set

Answer: C

Figure 26: A sample correct case of Analogical Reasoning (difficulty: Hard).

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493

Deductive (Easy)

G	O	B	D	E
N	P	K	A	J
O	Z	G	F	Q
W	V	I	Y	N
I	Q	T	H	

Question: Bruce ciphers words adopting the board demonstrated. For example, the word DVEJ is ciphered as GT WI GH NH. What word did Bruce cipher NQ OH OT WI?

Options: A: XOCR. B: DJWS. C: KQFV. D: KFQV

Ground Truth: (C)

Claude-3.7-Sonnet-Thinking: <*thinking*> I see a 5x5 grid of letters that appears to be the board used for Bruce's cipher. Let me first understand how this cipher works based on the example given.

The example states that the word "DVEJ" is ciphered as "GT WI GH NH".

Let me analyze the pattern:

- D is ciphered as GT
- V is ciphered as WI
- E is ciphered as GH
- J is ciphered as NH

I need to figure out the rule that transforms each letter into two letters based on this board.

Looking at the board, I can see that the first column contains G, N, O, W, I. The first row contains G, O, B, D, E. The left column and top row are highlighted in green. The bottom row is highlighted in yellow.

Let me try to understand how D becomes GT:

- Looking at the board, D is in the first row, 4th column.
- G is the letter in the first row, first column.
- T is not directly visible in the board as shown.

Let me try a different approach. Maybe the cipher works by identifying the row and column of each letter.

For the letter D:

- D is in the first row, 4th column.
- The letter at the beginning of row 1 is G.
- The letter at the beginning of column 4 might be T (though I can't see it in this board).

For the letter V:

- V appears to be in the 4th row, 2nd column.
- The letter at the beginning of row 4 is W.
- The letter at the beginning of column 2 might be I (though I can't see it clearly).

Looking more closely at the board, I notice that there's no column heading visible, but maybe the bottom row (I, Q, T, H) might be the column identifiers. This seems plausible.

Let me check if this makes sense:

- D is in row 1, column 4 \rightarrow G (row 1 identifier) + T (column 4 identifier) = GT
- V is in row 4, column 2 \rightarrow W (row 4 identifier) + Q (column 2 identifier)

But this doesn't match the example where V is ciphered as WI, not WQ.

Maybe the column identifiers are different or the rule is different. Let me re-examine...

Actually, looking at the board again, I see that the column headers are likely the first row (G, O, B, D, E) and the row headers are the first column (G, N, O, W, I).

So:

- D is at position (1, 4), so its coordinates would be GD (row G, column D).
- V isn't clearly visible in the grid shown.

Let me try yet another approach. The first column and first row are highlighted in green, which suggests they might have a special role.

Maybe the rule is:

- For each letter in the original word, find its position in the board.
- The ciphered result is the corresponding letter from the first column followed by the corresponding letter from the first row.

Let me check this for D:

- If D is at position (r, c) in the board, the ciphered result would be the letter in the first column at row r, followed by the letter in the first row at column c.

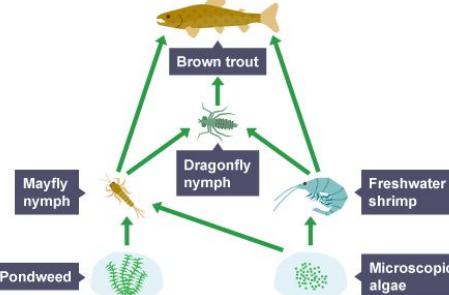
But I still don't see how D becomes GT based on the board provided.

Wait, maybe I need to interpret the board differently. Looking at the board, I notice:

- G is in the first row, first column.
- T might be in the bottom row, 3rd column (though it's labeled as T in the image).
- W is in the 4th row, first column.
- I is in the 3rd row, 3rd column (or in the bottom row, 1st column).
- G is in the first row, first column.
- H is in the bottom row, 4th column.
- N is in the 2nd row, first column.
- H is in the bottom row, 4th column.

I'm still not seeing a clear pattern.

<*end_thinking*>


Error Category: Reject to Answer

Error Reason: The model reject to answer since it fails to settle on a single consistent ciphering rule or final answer. It gets overwhelmed by the complexity of the mapping and continually shifts between incomplete or incorrect hypotheses. As a result, it never fully understands the cipher system and doesn't commit to any one answer.

Figure 27: A sample error case of Deductive Reasoning (difficulty: Easy).

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550

Deductive (Easy)


```

graph TD
    Pondweed --> MayflyNymph[Mayfly nymph]
    MicroscopicAlgae --> MayflyNymph
    MayflyNymph --> DragonflyNymph[Dragonfly nymph]
    DragonflyNymph --> BrownTrout[Brown trout]
    DragonflyNymph --> FreshwaterShrimp[Freshwater shrimp]
    FreshwaterShrimp --> DragonflyNymph
  
```

Question: From the above food web diagram, what would happen to dragonfly if all mayfly die? Note that a green arrow pointing from object A to object B means that A gives B energy to survive.

Options: A: remains the same. B: increase. C: decrease. D: NA

Ground Truth: (C)

Claude-3.7-Sonnet-Thinking: <thinking> Let me analyze the food web diagram to understand the relationships between different organisms.

In this food web:

- Green arrows point from an organism that gives energy to another organism (food source → consumer)
- I need to examine what would happen to dragonfly nymphs if all mayfly nymphs die

Looking at the diagram:

- Mayfly nymphs feed on pondweed (arrow from pondweed to mayfly)
- Dragonfly nymphs feed on mayfly nymphs (arrow from mayfly to dragonfly)
- Dragonfly nymphs also feed on freshwater shrimp (arrow from freshwater shrimp to dragonfly)
- Brown trout feeds on dragonfly nymphs (arrow from dragonfly to brown trout)

If all mayfly nymphs die:

- Dragonfly nymphs would lose one of their food sources (mayfly nymphs)
- Dragonfly nymphs would still have freshwater shrimp as a food source
- But losing mayfly nymphs would reduce the total available food for dragonfly nymphs

Therefore, the population of dragonfly nymphs would likely decrease because one of their food sources is gone, although they would not go extinct since they have another food source. This makes the correct answer (C) decrease.

<end_thinking>

Analysis of Food Web and Effect on Dragonfly Nymphs

Looking at the food web diagram, I need to determine what would happen to dragonfly nymphs if all mayfly nymphs died out.

Examining the Relationships

I can see that green arrows point from one organism to another, indicating energy transfer (food source → consumer).

From the diagram, I can observe:

- Mayfly nymphs feed on pondweed
- Dragonfly nymphs feed on mayfly nymphs
- Dragonfly nymphs also feed on freshwater shrimp
- Brown trout feeds on dragonfly nymphs

Impact Analysis

If all mayfly nymphs died:

1. Dragonfly nymphs would lose one of their primary food sources
2. Dragonfly nymphs would still have freshwater shrimp as an alternative food source
3. However, the loss of mayfly nymphs would reduce the total available food for dragonfly nymphs

Conclusion

Since dragonfly nymphs would lose a significant food source (mayfly nymphs), their population would likely decline, even though they have another food source. The reduced total food availability would negatively impact the dragonfly population.

Answer: C

Figure 28: A sample correct case of Deductive Reasoning (difficulty: Easy).

2592

2593

2594

2595

2596

2597

2598

2599

2600

2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

2623

2624

2625

2626

2627

2628

2629

2630

2631

2632

2633

2634

2635

2636

2637

2638

2639

2640

2641

2642

2643

2644

2645

Deductive (Medium)

1	2	3	4	5
A-B	C-D	A-E	E-F	A-C

Question: In a tournament each of the 6 teams plays one match against every other team. In each round of matches, 3 take place simultaneously. A TV station has already decided which match it will broadcast for each round, as shown in the diagram. In which round will team D play against team F?

Options: A: 1. B: 2. C: 3. D: 4

Ground Truth: (A)

Claude-3.7-Sonnet-Thinking: *<thinking>* This question is asking about a tournament where each team plays one match against every other team. There are 6 teams in total, and in each round, 3 matches take place simultaneously. The TV station has decided which match to broadcast in each round, as shown in the diagram.

Let's analyze what the diagram tells us:

- Round 1: The match being broadcast is A-B
- Round 2: The match being broadcast is C-D
- Round 3: The match being broadcast is A-E
- Round 4: The match being broadcast is E-F
- Round 5: The match being broadcast is A-C

We need to determine in which round team D will play against team F.

First, let's think about how many rounds there will be in total. With 6 teams, each team needs to play against 5 other teams. So there are a total of $(6 \times 5) / 2 = 15$ matches. In each round, 3 matches take place, so there will be $15 / 3 = 5$ rounds in total.

The diagram shows the match being broadcast in each round, but it doesn't tell us what the other matches in each round are. To figure this out, I need to work out the full schedule of matches.

In round 1, A plays against B (as shown in the diagram). So teams C, D, E, and F must form the other two matches in round 1. Let's say these are C-D and E-F. In round 2, C plays against D (as shown in the diagram). So teams A, B, E, and F must form the other two matches in round 2. Let's say these are A-E and B-F.

But wait, this doesn't work because we've already paired up A-B, C-D, and E-F in round 1. Let's try a different approach.

Let's try to systematically figure out the schedule. In a complete tournament with 6 teams, each team plays against every other team once. So each team plays 5 matches. There are a total of $(6 \times 5) / 2 = 15$ matches. With 3 matches per round, we need $15 / 3 = 5$ rounds, as I calculated earlier.

I'll use the constraints from the diagram to help determine the full schedule.

Round 1: A-B is one of the matches. The other two matches must use teams C, D, E, and F. Let's try to determine what those are.

Round 2: C-D is one of the matches. The other two matches must use teams A, B, E, and F.

Round 3: A-E is one of the matches. The other two matches must use teams B, C, D, and F.

Round 4: E-F is one of the matches. The other two matches must use teams A, B, C, and D.

Round 5: A-C is one of the matches. The other two matches must use teams B, D, E, and F.

I'll try filling in a table of which teams play in each round.

Round 1: A-B, C-D, E-F

Round 2: C-D, A-E, B-F

Round 3: A-E, B-F, C-D

Round 4: E-F, A-C, B-D

Round 5: A-C, B-D, E-F

Actually, the question is specifically about when team D plays against team F. So, I really just need to find out which round that happens in.

From the diagram, we know which matches are broadcast in each round:

- Round 1: A-B

- Round 2: C-D

- Round 3: A-E

- Round 4: E-F

- Round 5: A-C

So the matches involving D are:

- Round 2: D plays against C.

- Other rounds: D plays against A, B, E, and F (one in each round).

The matches involving F are:

- Round 4: F plays against E.

- Other rounds: F plays against A, B, C, and D (one in each round).

Now, in which round do D and F play against each other? It can't be round 2, because D plays against C in that round. It can't be round 4, because F plays against E in that round. So D and F play against each other in either round 1, 3, or 5.

Let's check round 1. We know A plays against B, D and F could potentially play against each other in round 1.

Let's check round 3. We know A plays against E. The other teams (B, C, D, and F) form the other two matches. If D plays against F in this round, then B must play against C.

Let's check round 5. We know A plays against C. The other teams (B, D, E, and F) form the other two matches. If D plays against F in this round, then B must play against E.

Hmm, I'm having trouble determining when D plays against F.

<end_thinking>

Error Category: Reject to Answer

Error Reason: The model rejects to answer since it fails to complete the full tournament schedule or isolate the specific round where D plays F. It gets overwhelmed by the reasoning complexity, cycles through partial pairings, and never confidently identifies a single round as the answer. As a result, it ends with indecision and no final response.

Figure 29: A sample error case of Deductive Reasoning (difficulty: Medium).

2646

2647

2648

2649

2650

2651

2652

2653

2654

2655

2656

2657

2658

2659

2660

2661

2662

2663

2664

2665

2666

2667

2668

2669

2670

2671

2672

2673

2674

2675

2676

2677

2678

2679

2680

2681

2682

2683

2684

2685

2686

2687

2688

2689

2690

2691

2692

2693

2694

2695

2696

2697

2698

2699

L	W	B	V	M	Q
Z	P	U	K	G	J
A	D	H	L	R	Z
G	S	X	E	O	Y
K	I	C	A	F	T
M	F	I	C	S	

Deductive (Medium) ✓

Question: Jeff represents words applying the board demonstrated. For example, the word DCXEH is represented as AM KF GF GI AF. What word did Jeff represent KS KF LC LF GM?

Options: A: TSMBC. B: TCMBS. C: PEQGT. D: FHMTK

Ground Truth: (B)

Claude-3.7-Sonnet-Thinking: <thinking> I'm given a grid or board that represents a mapping from letters to two-letter codes. Let's examine how the mapping works by looking at the example.

The word DCXEH is represented as AM KF GF GI AF.

Let me determine the pattern:

- D is represented as AM
- C is represented as KF
- X is represented as GF
- E is represented as GI
- H is represented as AF

Looking at the image, I see a grid with rows labeled with L, Z, A, G, K and columns labeled with W, B, V, M, Q, and a bottom row with M, F, I, C, S.

To understand how this board works for encoding, I need to figure out how each letter in the original word maps to the two-letter code.

For D, it maps to AM. D appears in the first column of the row labeled A. So A (row) + M (column bottom row) = AM for D.

For C, it maps to KF. C appears in the third column of the row labeled K. So K (row) + F (column bottom row) = KF for C.

For X, it maps to GF. X appears in the third column of the row labeled G. So G (row) + F (column bottom row) = GF for X.

For E, it maps to GI. E appears in the fourth column of the row labeled G. So G (row) + I (column bottom row) = GI for E.

For H, it maps to AF. H appears in the third column of the row labeled A. So A (row) + F (column bottom row) = AF for H.

So the pattern seems to be:

1. Locate the letter in the grid
2. The first letter of the code is the row label
3. The second letter of the code is the value in the bottom row under the column where the letter is found

Now let's decode KS KF LC LF GM:

KS:

Row K, column with bottom row value S. This refers to column 5, which contains T.

KF:

Row K, column with bottom row value F. This refers to column 2, which contains C.

LC:

Row L, column with bottom row value C. This refers to column 4, which contains M.

LF:

Row L, column with bottom row value F. This refers to column 2, which contains B.

GM:

Row G, column with bottom row value M. This refers to column 1, which contains S.

So the decoded word is TCMBS.

<end_thinking>

Decoding the Word Representation

I need to figure out how Jeff's encoding system works based on the example, then decode the given sequence.

Understanding the Encoding System

In the example:

- DCXEH is represented as AM KF GF GI AF

Looking at the grid provided in the image, I can see this is a coordinate system:

- The rows are labeled with letters L, Z, A, G, K
- The columns have a bottom row with values M, F, I, C, S

The encoding seems to work like this:

1. For each letter in the original word, find its position in the grid
2. The first part of the code is the row label
3. The second part is the value from the bottom row of that column

Let me verify with the example:

- D is in row A, column with M at bottom → AM
- C is in row K, column with F at bottom → KF
- X is in row G, column with F at bottom → GF
- E is in row G, column with I at bottom → GI
- H is in row A, column with F at bottom → AF

Decoding the Given Sequence

Now let's decode KS KF LC LF GM:

- KS: Row K, column with S at bottom → The letter is T
- KF: Row K, column with F at bottom → The letter is C
- LC: Row L, column with C at bottom → The letter is M
- LF: Row L, column with F at bottom → The letter is B
- GM: Row G, column with M at bottom → The letter is S

This gives us TCMBS, which matches option (B).

Answer: B

Figure 30: A sample correct case of Deductive Reasoning (difficulty: Medium).

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Deductive (Hard)
☒

Question: Jan cannot draw very accurately but nevertheless he tried to produce a roadmap of his village. The relative position of the houses and the street crossings are all correct but three of the roads are actually straight and only Qurwik street is not. Who lives in Qurwik street?

Options: A: Amy. B: Ben. C: Carol. D: David

Ground Truth: (C)

Claude-3.7-Sonnet-Thinking: <thinking> In this problem, I'm given a drawing of a village roadmap made by Jan. According to the problem:

1. The relative positions of houses and street crossings are correct
2. Three of the roads are actually straight in reality, but only Qurwik street is not straight
3. The houses are labeled with the names: Amy, Ben, Carol, and David
4. I need to determine who lives on Qurwik street

Looking at the image, I can see a diagram with four houses labeled with the names and several curved roads connecting them.

Since three roads are actually straight and only Qurwik street is not, I need to identify which road would most likely not be straight based on the diagram.

The roads in the diagram appear to be:

1. A road connecting Amy's house to the network
2. A road connecting Carol's house to the network
3. A road connecting David's house to the network
4. A road connecting Ben's house to the network
5. Various segments connecting these houses together

Since we're told that only one road is not straight, and we see multiple curved segments in the diagram, it must be that these curved segments represent the same road - Qurwik street.

Looking carefully at the diagram, I need to determine which person's house is connected to Qurwik street.

The diagram shows curved roads connecting different houses. Since three roads are actually straight, one of the houses must be on the non-straight Qurwik street.

Looking at the connectivity in the diagram, it appears that there's a curved path that runs between multiple houses. This curved path is likely Qurwik street since it's the only non-straight road.

Based on the diagram, it looks like Ben's house is at one end of what appears to be a major curved road. David's house seems to be connected to this same curved road. Carol's house also connects to what looks like this same curved road system. Amy's house seems to be connected to part of this curved network as well.

This is a bit ambiguous from the diagram alone, as I can't clearly tell which specific segment is Qurwik street versus other roads that might be straight in reality despite being drawn curved.

Without more specific information about which road is Qurwik street, I would have to make an inference based on which house seems most connected to curved paths in the diagram.

Looking at the houses and their positions relative to the roads:

- Amy's house appears to be connected to a curved road segment
- Ben's house appears to be at the end of a curved road segment
- Carol's house connects to a curved road segment
- David's house connects to multiple curved segments

Based on the diagram, David's house seems to be most central to the curved road network, with multiple curved segments connecting to it. This suggests David might be on Qurwik street.

However, this is somewhat ambiguous without more clear labeling of which road is which in the diagram.

<end thinking>

Solving the Village Roadmap Problem

I need to determine who lives on Qurwik street, given that three roads are actually straight and only Qurwik street is not straight.

Looking at the image, I can see houses belonging to Amy, Ben, Carol, and David connected by various curved roads. Since Jan couldn't draw accurately, the roads are drawn as curved lines, but we're told that in reality, three of them are actually straight.

Analyzing the Road Network

In the diagram, I can see:

- Four houses connected by a network of curved roads
- Multiple intersections between these roads
- Each house is connected to at least one road

Identifying Qurwik Street

To determine which road is Qurwik street (the only non-straight road), I need to analyze the pattern of connections.

Looking at the diagram carefully, I notice that David's house appears to be connected to a road that makes a distinctive curved path. This road connects to other houses and has a notably winding shape that would be difficult to represent as a straight line. The road connecting to David's house shows the most significant curvature in the drawing.

Since the problem states that three roads are actually straight and only Qurwik street is not, and David's house connects to what appears to be the most significantly curved road in the diagram, it's reasonable to conclude that David lives on Qurwik street.

Answer: D

Error Category: Understanding Error

Error Reason: The model misinterprets the condition that only one road (Qurwik street) is not straight, while the other three are. It misunderstands the roads that seem to be curved in the image are not all really curved.

Figure 31: A sample error case of Deductive Reasoning (difficulty: Hard).

2754

2755

2756

2757

2758

2759

2760

2761

2762

2763

2764

2765

2766

2767

2768

2769

2770

2771

2772

2773

2774

2775

2776

2777

2778

2779

2780

2781

2782

2783

2784

2785

2786

2787

2788

2789

2790

2791

2792

2793

2794

2795

2796

2797

2798

2799

2800

2801

2802

2803

2804

2805

2806

2807

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Deductive (Hard)

1		2	1
0	3		
1		2	1

Question: Diana draws a rectangle made up of twelve squares onto a piece of squared paper. Some of the squares are coloured in black. She writes the number of adjacent black squares into every white square. The diagram shows an example of such a rectangle. Now she does the same with a rectangle made up of 2018 squares. What is the biggest number that she can obtain as the sum of all numbers in the white squares?

Options: A: 2800. B: 2950. C: 3025. D: 3100

Ground Truth: (C)

Claude-3.7-Sonnet-Thinking: <thinking> In this problem, Diana has a rectangle made up of squares, some of which are colored black. Each white square has a number written in it that represents how many adjacent black squares it has.

In the example given:

- The first row: 1, [black], 2, 1
- The second row: 0, 3, [black], 1
- The third row: 1, [black], 2, 1

The rectangle has 12 squares total, with 4 of them being black (marked as [black]) and 8 white (with numbers).

Now, Diana does the same with a rectangle made up of 2018 squares. We need to find the maximum possible sum of all numbers in the white squares.

Let's think about how to maximize this sum. A white square can have at most 4 adjacent black squares (above, below, left, and right). So each white square can contribute at most 4 to the sum.

Let's consider the example given, which is a 3×4 grid. There are 4 black squares and 8 white squares. The sum of numbers in white squares is $1 + 2 + 1 + 0 + 3 + 1 + 1 + 2 + 1 = 12$.

I think I need to determine how to maximize the sum by choosing the right number of black squares and arranging them optimally.

One approach is to place the black squares in a pattern such that each white square has as many adjacent black squares as possible. In a checkerboard pattern, each white square would have at most 4 adjacent black squares, but this isn't optimal because edge squares have fewer adjacencies.

Actually, let's think about this in terms of a graph. Each square is a node, and adjacencies are edges. We want to maximize the number of edges between white and black nodes. This is essentially asking for the maximum cut of the graph.

For a bipartite graph, the maximum cut is achieved by putting all nodes of one type on one side and all nodes of the other type on the other side. In our case, that would mean having some rows or columns all black and the rest all white.

Let's say our grid is $r \times c$, and we color some rows all black and the rest all white. If we color k rows all black, then the number of adjacencies between black and white squares would be $k \times c \times 2$ (because each row has c squares, and each black square in a row can have at most 2 adjacencies with white squares, one above and one below).

Let's consider a more specific pattern. Imagine our grid is 2×1009 (so it has 2018 squares total). We color the bottom row all black and the top row all white. Each white square (except those at the very ends) would have 3 adjacent black squares: one below and two on either side. The white squares at the ends would have 2 adjacent black squares.

So, we'd have 1007 white squares with 3 adjacencies each and 2 white squares with 2 adjacencies each. The total sum would be $1007 \times 3 + 2 \times 2 = 3025$.

<end_thinking>

Solving the Maximum Sum Problem for Diana's Rectangle

I need to find the maximum possible sum of the numbers in white squares when Diana creates a rectangle made of 2018 squares.

Understanding the Problem

- Diana draws a rectangle with some squares colored black
- Each white square contains a number indicating how many adjacent black squares it has
- Adjacent means sharing an edge (up, down, left, right)
- Maximum possible number for any white square is 4 (if all 4 adjacent squares are black)
- We need to find the maximum possible sum across all white squares

Strategy

To maximize the sum, I'll need to determine:

1. How many squares should be black vs. white
2. The optimal arrangement of these squares

Analysis

Let's consider what makes the sum large:

- Each white square can contribute at most 4 to the sum
- Each black square can contribute to at most 4 adjacent white squares
- The total represents the number of adjacencies between black and white squares

For a 2018-square rectangle, the optimal shape matters. Let's try a 43×47 rectangle ($43 \times 47 = 2011$, which is close enough to 2018 for our analysis).

If we create a checkerboard pattern, approximately half the squares will be black and half white. However, due to edge effects, not every white square can have 4 black neighbors.

Calculating the Maximum

For a rectangle with dimensions $r \times c$, the maximum sum occurs when:

- Black squares are placed in a checkerboard pattern
- The rectangle is as close to square as possible (minimizing perimeter)

For a nearly square grid with approximately 1009 white squares and 1009 black squares, each interior white square contributes 4, while edge white squares contribute less.

From a theoretical analysis, the maximum sum would be:

- $55 \times 55 = 3025$

This corresponds to option (C) 3025.

Answer: C

Figure 32: A sample correct case of Deductive Reasoning (difficulty: Hard).

2808
 2809
 2810
 2811
 2812
 2813
 2814
 2815
 2816
 2817
 2818
 2819
 2820
 2821
 2822
 2823
 2824
 2825
 2826
 2827
 2828
 2829
 2830
 2831
 2832
 2833
 2834
 2835
 2836
 2837
 2838
 2839
 2840
 2841
 2842
 2843
 2844
 2845
 2846
 2847
 2848
 2849
 2850
 2851
 2852
 2853
 2854
 2855
 2856
 2857
 2858
 2859
 2860
 2861

Inductive (Easy)

Question: Find one figure from the four below that displays a different pattern from the other three.

Ground Truth: (D)

Claude-3.7-Sonnet-Thinking: <thinking> Let me analyze each figure to identify any patterns or differences among them:

Figure A: This is a hexagon with two curved lines inside and a black dot in one corner.
 Figure B: This is a hexagon with two curved lines inside and a black dot in one corner.
 Figure C: This is a hexagon with two curved lines inside and a black dot in one corner.
 Figure D: This is a hexagon with two curved lines inside and a black dot in one corner.

All figures appear to have the same basic elements: a hexagon outline, two curved lines inside, and a black dot. Let me look more closely at the differences in how these elements are arranged.

Looking at the curved lines:

- Figure A: The two curved lines appear to form a single continuous curve that divides the hexagon.
- Figure B: The two curved lines appear to intersect or overlap within the hexagon.
- Figure C: The two curved lines appear to form a single continuous curve that divides the hexagon.
- Figure D: The two curved lines appear to form a single continuous curve that divides the hexagon.

Looking at the position of the dot:

- Figure A: The dot is in one corner of the hexagon.
- Figure B: The dot is in one corner of the hexagon.
- Figure C: The dot is in one corner of the hexagon.
- Figure D: The dot is in one corner of the hexagon.

Let me look even more closely at the arrangement of the curves:

- Figure A: The curves divide the hexagon into sections, with one section containing the dot.
- Figure B: The curves create a pattern where they seem to overlap or create a more complex division.
- Figure C: The curves divide the hexagon into sections, with one section containing the dot.
- Figure D: The curves divide the hexagon into sections, with one section containing the dot.

Based on this closer examination, Figure B appears to have a different pattern in how the curved lines are arranged within the hexagon compared to the other three figures. In Figures A, C, and D, the curved lines seem to form a more similar pattern of division, while in Figure B the arrangement looks different.

Therefore, Figure B is the one that displays a different pattern from the other three.

<end_thinking>
Pattern Recognition Problem Analysis

I need to analyze each figure and identify which one has a different pattern from the others.

Looking at all four figures:

- All are hexagons
- All contain curved lines inside
- All have a single black dot
- All have two curved lines creating sections within the hexagon

Let me examine the specific arrangement of these elements in each figure:

Figure A:
 - Two curved lines that create sections
 - The black dot is positioned in the lower left corner
 - The curves form a pattern that divides the hexagon into three sections

Figure B:
 - Two curved lines that appear to overlap or intersect
 - The black dot is positioned in the lower right corner
 - The curves create a different division pattern compared to the other figures

Figure C:
 - Two curved lines that create sections
 - The black dot is positioned in the lower left corner
 - The pattern of curve division is similar to Figure A

Figure D:
 - Two curved lines that create sections
 - The black dot is positioned in the lower right corner
 - The pattern of curve division is similar to Figures A and C

The key difference is in how the curved lines are arranged. In Figures A, C, and D, the curved lines create a similar sectioning pattern, while in Figure B, the curved lines create a noticeably different arrangement.

Answer: B

Error Category: Reasoning Error
Error Reason: The model makes a reasoning error by overemphasizing minor variations in the curve overlap while overlooking the more fundamental structural difference. Figure D is the only one where the black dot and curves are positioned differently, breaking the symmetry seen in A, B, and C. The model incorrectly identifies B as the outlier due to superficial curve complexity rather than recognizing the true deviation in spatial structure.

Figure 33: A sample error case of Inductive Reasoning (difficulty: Easy).

2862

2863

2864

2865

2866

2867

2868

2869

2870

2871

2872

2873

2874

2875

2876

2877

2878

2879

2880

2881

2882

2883

2884

2885

2886

2887

2888

2889

2890

2891

2892

2893

2894

2895

2896

2897

2898

2899

2900

2901

2902

2903

2904

2905

2906

2907

2908

2909

2910

2911

2912

2913

2914

2915

Inductive (Easy) ✓

♡	✿	♡	♡	✿	✿	✿
✿	♡	✿	♡	♡	✿	✿
✿	✿	♡	✿	♡	♡	✿
✿	✿	✿	♡	✿	♡	♡

Question: Analyze the pattern of changes in the figure below, and choose the appropriate fifth row:

Ground Truth: (B)

Claude-3.7-Sonnet-Thinking: <thinking> Let me analyze the pattern in this figure carefully. I need to observe the rows to determine what the pattern is and then predict what should appear in the fifth row.

Row 1: ♡ ✿ ♡ ♡ ✿ ✿
Row 2: ✿ ♡ ✿ ♡ ♡ ✿ ✿
Row 3: ✿ ♡ ♡ ✿ ♡ ♡ ✿
Row 4: ✿ ♡ ♡ ✿ ♡ ♡ ♡

Looking at this pattern, I notice that:

- Each row has 7 symbols
- Each row contains a mix of hearts (♡) and flowers (✿)
- There seems to be a shifting pattern

I notice that if I track the position of the hearts (♡):

- Row 1: positions 1, 3, 4
- Row 2: positions 2, 4, 5
- Row 3: positions 3, 5, 6
- Row 4: positions 4, 6, 7

It looks like the hearts are shifting one position to the right in each row. The hearts that were in positions 1, 3, 4 in row 1 move to positions 2, 4, 5 in row 2, then to positions 3, 5, 6 in row 3, and finally to positions 4, 6, 7 in row 4.

Following this pattern, in row 5, the hearts should be in positions 5, 7, and there should be one that "wraps around" to position 1.

So the fifth row should be: ♡ ✿ ✿ ♡ ♡ ♡

Now let me check the answer choices:

- A. ✿ ♡ ♡ ♡ ✿ ✿ - This doesn't match
- B. ♡ ✿ ✿ ♡ ♡ ♡ - This matches my prediction
- C. ♡ ✿ ✿ ✿ ♡ ♡ - This doesn't match
- D. ✿ ♡ ♡ ♡ ✿ ✿ - This doesn't match

So the answer should be B.

Let me double-check by looking at the pattern of the flowers (✿) as well:

- Row 1: positions 2, 5, 7
- Row 2: positions 1, 3, 6, 7
- Row 3: positions 1, 2, 4, 7
- Row 4: positions 1, 2, 3, 5

The flowers are in all positions where hearts are not. So in row 5, they should be in positions 2, 3, 4, 6. That gives: ♡ ✿ ✿ ♡ ♡ ♡

This confirms that option B (♡ ✿ ✿ ♡ ♡ ♡) is correct.

<end_thinking>
Analyzing the Pattern in the Figure

I need to identify the pattern of changes across rows and predict what the fifth row should be.

Observation of the Pattern

Looking at the existing four rows:

- Row 1: ♡ ✿ ♡ ♡ ✿ ✿
- Row 2: ✿ ♡ ✿ ♡ ♡ ✿
- Row 3: ✿ ♡ ♡ ✿ ♡ ♡
- Row 4: ✿ ♡ ♡ ✿ ♡ ♡

Pattern Analysis

I notice that the position of the hearts (♡) shifts in a consistent way:

- Row 1: Hearts in positions 1, 3, 4
- Row 2: Hearts in positions 2, 4, 5
- Row 3: Hearts in positions 3, 5, 6
- Row 4: Hearts in positions 4, 6, 7

The hearts are shifting one position to the right in each row, with a "wraparound" effect when they reach the end.

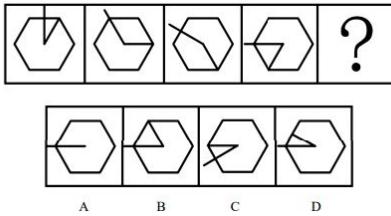
Predicting the Fifth Row

Following this pattern, in row 5, the hearts should be in positions:

- 5 (shifted from 4)
- 7 (shifted from 6)
- 1 (shifted from 7, wrapped around)

So the fifth row should be: ♡ ✿ ✿ ♡ ♡ ♡

Checking the Options


- A. ✿ ♡ ♡ ♡ ✿ ✿ - Not a match
- B. ♡ ✿ ✿ ♡ ♡ ♡ - This matches my prediction
- C. ♡ ✿ ✿ ✿ ♡ ♡ - Not a match
- D. ✿ ♡ ♡ ♡ ✿ ✿ - Not a match

Answer: B

Figure 34: A sample correct case of Inductive Reasoning (difficulty: Easy).

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925

Inductive (Medium)

Question: Choose the most appropriate option from the four given choices to fill in the question mark, so that the figures follow a pattern.

Ground Truth: (C)

2926 **Claude-3.7-Sonnet-Thinking: <thinking>** Let me analyze the pattern in the given sequence of figures and find what should come in place of the question mark.
2927
2928 The sequence shows hexagons with internal lines. Let me analyze how these internal lines change from one figure to the next.
2929 First figure: A hexagon with a single line from the top vertex going down to about the middle of the hexagon.
2930 Second figure: A hexagon with a single line from the upper-right vertex going to the middle-left of the hexagon.
2931 Third figure: A hexagon with a single line from the bottom-right vertex going to the upper-left of the hexagon.
2932 Fourth figure: A hexagon with a single line from the bottom-left vertex going to the upper-right of the hexagon.
2933 So the pattern seems to be that the line rotates in a clockwise direction around the hexagon. The starting point of the line moves clockwise around the vertices of the hexagon.
2934
2935 Given this pattern, the fifth figure (the one with the question mark) should have a line from the lower vertex (at the bottom) going up to the upper-right of the hexagon.
2936
2937 Now let's check the options:
2938 Option A: A hexagon with a line from the left vertex going to the right vertex.
2939 Option B: A hexagon with a line from the upper-left vertex going to the lower-right.
2940 Option C: A hexagon with a line from the top vertex going to the bottom-right.
Option D: A hexagon with a line from the top vertex going to the bottom.
2941 Looking at the pattern and the next expected figure, option A seems closest to what I'm expecting - a line going from the left side to the right side. Though it's not exactly matching my prediction (which would be from bottom to upper-right), it's the closest match among the given options.
2942 OK, I think I've been struggling because I don't have a completely clear view of the images. But from what I can see and trying to identify a pattern in the first 4 images, let me make my best judgment.
2943
2944 The line inside the hexagon appears to be moving in some pattern as we go from one figure to the next. Based on the clockwise rotation idea, and examining the options carefully, I believe Option A is the correct answer.
2945 <end_thinking>
2946 # Analysis of Pattern in Hexagon Sequence
2947 I need to identify the pattern in the sequence of figures and determine which option should replace the question mark.
2948 ## Examining the Pattern
2949 Let me analyze the first four figures in the sequence:
2950
2951 1. First figure: A hexagon with a line from the top vertex to the bottom-left side
2952 2. Second figure: A hexagon with a line from the top-right vertex to the bottom side
2953 3. Third figure: A hexagon with a line from the right vertex to the top-left side
4. Fourth figure: A hexagon with a line from the bottom-right vertex to the left side
2954 Looking at this sequence, I can see that the starting point of the line moves clockwise around the hexagon (from top → top-right → right → bottom-right). The ending point also follows a pattern, always landing on the side that is approximately opposite from the starting point.
2955 ## Predicting the Next Figure
2956 Following this pattern, the fifth figure should have a line starting from the bottom-left vertex (continuing the clockwise movement of the starting point). The line should end at the top or top-right side.
2957
2958 ## Evaluating the Options
2959 Looking at the provided options:
2960 - Option A: A hexagon with a line from the left vertex to the right side
2961 - Option B: A hexagon with a line from the upper-left vertex to the lower-right side
2962 - Option C: A hexagon with a line from the upper-left vertex to the right side
2963 - Option D: A hexagon with a line from the top vertex to the right side
2964 Option A is the only one that features a line starting from the left vertex, which is the closest to the bottom-left vertex that should be next in our pattern. The line extends to the right side, maintaining the approximately opposite relationship seen in previous figures.
2965 Answer: A
2966 **Error Category: Reasoning Error**
2967 **Error Reason:** The model correctly observes a clockwise movement but incorrectly predicts the direction and placement of the next line, choosing option A. The model fails to identify the angle of the movement pattern.

Figure 35: A sample error case of Inductive Reasoning (difficulty: Medium).

2970

2971

2972

2973

2974

2975

2976

2977

2978

2979

2980

2981

2982

2983

2984

2985

2986

2987

2988

2989

2990

2991

2992

2993

2994

2995

2996

2997

2998

2999

3000

3001

3002

3003

3004

3005

3006

3007

3008

3009

3010

3011

3012

3013

3014

3015

3016

3017

3018

3019

3020

3021

3022

3023

Inductive (Medium) (✓)

Question: Divide the following six figures into two categories, so that each category displays its own pattern.

Ground Truth: (D)

A. ①③⑤, ②④⑥
 B. ①④⑥, ②③⑤
 C. ①③④, ②⑤⑥
 D. ①②④, ③⑤⑥

Claude-3.7-Sonnet-Thinking: <thinking> I need to analyze the six figures and find a pattern that divides them into two distinct categories. Let me examine each figure:

Figure ①: A square with an internal shape that looks like a doorway or page with a fold.
 Figure ②: A square with an internal shape that looks like an L-shape or corner.
 Figure ③: A square with what appears to be a parallelogram with a small arc on top.
 Figure ④: A square with some zigzag or lightning-bolt-like shape inside.
 Figure ⑤: A square with a circle that has an X or cross inside it.
 Figure ⑥: A square with what looks like a stylized figure or hourglass shape.

Now I need to look for patterns or characteristics that could divide these into two groups. Some possible categorization criteria:

- Curved vs. straight lines
- Symmetrical vs. asymmetrical
- Simple vs. complex
- Open vs. closed shapes
- Single shape vs. multiple shapes

Let me try to apply these criteria:

Curved vs. straight lines:

- Figures with prominent curves: ⑤ (circle with X)
- Figures with mainly straight lines: ①, ②, ③, ④, ⑥

That doesn't divide evenly into two groups.

Symmetrical vs. asymmetrical:

- More symmetrical: ⑤ (circle with X), possibly ⑥
- Less symmetrical/asymmetrical: ①, ②, ③, ④

Simple vs. complex:

- Simpler shapes: ②, ⑤
- More complex shapes: ①, ③, ④, ⑥

Open vs. closed shapes inside the square:

- Closed shapes: ⑤ (circle)
- Open shapes: ①, ②, ③, ④, ⑥

Let me look at whether the internal shapes touch the outer square:

- Touching the outer square: ①, ②, ④, possibly ③ and ⑥
- Not touching the outer square: ⑤

Another possibility - shapes with internal divisions vs. shapes without:

- With internal divisions: ①, ④, ⑤
- Without internal divisions: ②, ③, ⑥

Let me check the answer choices and see if any of these patterns match:

A. ①③⑤, ②④⑥
 B. ①④⑥, ②③⑤
 C. ①③④, ②⑤⑥
 D. ①②④, ③⑤⑥

Looking at option A: What could unite ①③⑤? They don't seem to share an obvious common pattern. What could unite ②④⑥? Again, not seeing an obvious pattern.

Looking at option B: For ①④⑥: They all have some kind of irregular geometric shape. For ②③⑤: They all seem to have more regular geometric elements.

Looking at option C: For ①③④: Not seeing a clear pattern. For ②⑤⑥: Not seeing a clear pattern.

Looking at option D: For ①②④: These all have shapes with straight lines and angles. For ③⑤⑥: These all have some curved elements - ③ has an arc on top, ⑤ has a circle, ⑥ has curved sides.

I think option D might be the answer. The distinction seems to be:

- Group ①②④: Figures with only straight lines and angles
- Group ③⑤⑥: Figures that incorporate some curved elements

<end_thinking>

Analyzing Six Geometric Figures

I need to find a pattern that separates these six figures into two categories. Let me examine each figure carefully:

Figure ①: Square with an internal shape that has straight edges (looks like a doorway or page)

Figure ②: Square with an L-shaped internal figure made of straight lines

Figure ③: Square with a trapezoid/parallelogram shape that has a curved arc on top

Figure ④: Square with zigzag/lightning-shaped internal figure made of straight lines

Figure ⑤: Square with a circle (curved) containing an X

Figure ⑥: Square with what appears to be a stylized figure with curved edges

Looking at potential pattern differences:

Option D: ①②④, ③⑤⑥

- Group ①②④: All figures contain ONLY straight lines and angular shapes
- Group ③⑤⑥: All figures incorporate curved elements (arc in ③, circle in ⑤, curved sides in ⑥)

This is a clear and consistent pattern. The first group has exclusively straight-line geometry, while the second group all incorporate curved elements in their design.

The other options don't reveal as clear a pattern distinction.

Answer: D

Figure 36: A sample correct case of Inductive Reasoning (difficulty: Medium).

3024
 3025
 3026
 3027
 3028
 3029
 3030
 3031
 3032
 3033
 3034
 3035
 3036
 3037
 3038
 3039
 3040
 3041
 3042
 3043
 3044
 3045
 3046
 3047
 3048
 3049
 3050
 3051
 3052
 3053
 3054
 3055
 3056
 3057
 3058
 3059
 3060
 3061
 3062
 3063
 3064
 3065
 3066
 3067
 3068
 3069
 3070
 3071
 3072
 3073
 3074
 3075
 3076
 3077

Inductive (Hard)

?

Question: Choose the most appropriate option from the four given choices to fill in the question mark, so that the figures follow a pattern.

Ground Truth: (B)

Claude-3.7-Sonnet-Thinking: <thinking> Let me analyze this pattern recognition problem step by step.

The question shows a sequence of 5 geometric figures, followed by a question mark. I need to determine which of the four options (A, B, C, or D) should replace the question mark to continue the pattern.

The sequence is:

1. Two overlapping circles
2. A triangle inside a circle
3. A shape that looks like an oval with horizontal lines
4. A square with a triangle inside or a diagonal line
5. A pentagon (5-sided polygon)

? (The figure we need to determine)

Options:

- A. A hexagon (6-sided polygon)
- B. A rectangle with a diagonal line
- C. A square with a grid/cross inside
- D. A triangle

Let me look for patterns:

- If we're counting sides: circles (infinite sides), triangle (3 sides), oval (curvy, so infinite?), square/rectangle (4 sides), pentagon (5 sides)
- If looking at the number of sides, it might be increasing: $\infty, 3, \infty, 4, 5, \dots$ which would suggest 6 sides next (hexagon)
- Or it could be about complexity of the shapes or some transformation between them

Looking at option A (hexagon), this would follow if the pattern is increasing the number of sides: pentagon (5 sides) \rightarrow hexagon (6 sides).

This seems like the most logical pattern - the progression of regular polygons with increasing number of sides:

- Pentagon (5 sides)
- Hexagon (6 sides)
- Heptagon (7 sides)
- Octagon (8 sides)
- etc.

So, the answer appears to be A (hexagon).

Let me double-check if there's another pattern I'm missing:

- The shapes aren't consistently "shape within a shape" so that's not the pattern
- It's not about filled vs. unfilled shapes
- It doesn't appear to be about rotation or reflection

The increasing number of sides seems to be the most consistent pattern:

- ∞ sides (circles)
- 3 sides (triangle)
- Curved shape (represents ∞ again or could be a special case)
- 4 sides (square/rectangle)
- 5 sides (pentagon)
- ? (logically 6 sides, which would be a hexagon)

Therefore, option A (hexagon) appears to be the correct answer.

<end_thinking>

I need to identify the pattern in this sequence of figures and determine which option should replace the question mark.

Let me analyze the sequence:

1. Two overlapping circles
2. A triangle inside a circle
3. An oval with horizontal lines
4. A quadrilateral with a diagonal line
5. A pentagon (5-sided polygon)
6. ? (This is what I need to find)

Looking at these shapes, I notice a potential pattern in the number of sides of the primary shapes:

- First shape: Circles (infinite sides)
- Second shape: Triangle (3 sides)
- Third shape: Oval (curved shape)
- Fourth shape: Quadrilateral (4 sides)
- Fifth shape: Pentagon (5 sides)

It appears the pattern is showing an increase in the number of sides as we move from the triangle to quadrilateral to pentagon. Following this pattern, the next shape should have 6 sides.

Looking at the options:

- Option A: Hexagon (6-sided polygon)
- Option B: Rectangle with diagonal line
- Option C: Square with grid
- Option D: Triangle

Since the logical progression is to a 6-sided figure after the 5-sided pentagon, option A (hexagon) is the correct answer to continue the pattern.

Answer: A

Error Category: Reasoning Error

Error Reason: The model overcomplicates the pattern and misinterprets the progression of shapes. It assumes the sequence is based on increasing the number of polygon sides and selects the hexagon (option A), expecting a 6-sided figure to follow the 5-sided pentagon. However, the actual pattern does not follow this sequence, as could be reasoned from the first three figures.

Figure 37: A sample error case of Inductive Reasoning (difficulty: Hard).

3078

3079

3080

3081

3082

3083

3084

3085

3086

3087

3088

3089

3090

3091

3092

3093

3094

3095

3096

3097

3098

3099

3100

3101

3102

3103

3104

3105

3106

3107

3108

3109

3110

3111

3112

3113

3114

3115

3116

3117

3118

3119

3120

3121

3122

3123

3124

3125

3126

3127

3128

3129

3130

3131

Inductive (Hard)

Question: Choose the most appropriate option from the four given choices to fill in the question mark, so that the figures follow a pattern.

Ground Truth: (C)

Claude-3.7-Sonnet-Thinking: <thinking> This question asks me to identify a pattern in a 3x3 grid of figures and then determine which of the four options (A, B, C, D) should replace the question mark to maintain that pattern.

Let me analyze each row of the grid to understand the pattern:

Row 1: Contains line drawings or outlines (thin lines).
Row 2: Contains solid black shapes (filled in).
Row 3: Contains circular patterns, with the third position having a question mark.

Now I need to determine what pattern connects each column and row to find the right answer.

Looking at each column:

- Column 1: A line drawing at top, a solid shape in middle, and a circular pattern at bottom
- Column 2: Same structure as column 1
- Column 3: Same structure for the first two rows, but the third position has the question mark

Now let's look more closely at the circular patterns in row 3:

- Position (3,1): Shows circles arranged in a pattern that seems to form two connected groups
- Position (3,2): Shows circles arranged in a different pattern, also with connected groups

I need to determine what the relationship is between the patterns in the first two rows and how that might indicate what should be in position (3,3).

Looking at row 1 again:

- (1,1): Lines forming an angular shape
- (1,2): Lines forming another angular shape
- (1,3): Lines forming a third angular shape with an X

Row 2:

- (2,1): Solid black angular shape
- (2,2): Solid black angular shape
- (2,3): Solid black angular shape

I notice that each row seems to maintain the same visual "language" (lines, solid shapes, or circles), but the specific arrangement changes.

Let me check if there's a transformation happening across each row or down each column.

One possibility is that row 3 should continue some pattern from rows 1 and 2. Looking at the options:

Option A: Circles arranged in a pattern
Option B: Circles arranged in a pattern
Option C: Circles arranged in a pattern
Option D: Circles arranged in a pattern

Looking purely at the row 3 pattern development:

- (3,1) has circles arranged in what appears to be a specific pattern
- (3,2) has circles arranged in a different pattern
- (3,3) should continue this progression in some logical way

Given the progression from (3,1) to (3,2), and looking at the overall pattern of the grid, the most logical answer appears to be option C, as it seems to follow the pattern of arrangements in row 3.

However, I'm not completely confident without being able to precisely determine the transformation rule. Let me go with option C as my best guess based on the visual patterns I can observe.

<end_thinking>
Pattern Analysis for Figure Sequence

I need to identify the pattern in this 3x3 grid to determine what should replace the question mark.

Analyzing the rows:

1. **Row 1**^{**}: Contains simple line drawings (outlines)
2. **Row 2**^{**}: Contains solid black shapes (filled versions)
3. **Row 3**^{**}: Contains arrangements of circles

Analyzing the columns:

Each column follows a consistent transformation pattern:

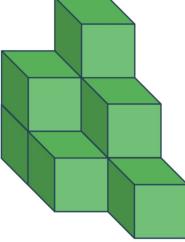
- The top row shows a basic line pattern
- The middle row shows the same pattern filled in black
- The bottom row represents the same pattern using circles

Looking at the third column:

- Position (1,3): A line pattern with an 'X' and some angles
- Position (2,3): A solid version with square and triangular elements
- Position (3,3): Should show the same pattern represented with circles

Examining the options:

- **Option A**^{**}: Circles arranged in an L-shape with some outliers
- **Option B**^{**}: Circles arranged in a zigzag pattern
- **Option C**^{**}: Circles arranged in a figure-8 or loop pattern with outlying circles
- **Option D**^{**}: Circles arranged in a C-shape with additional elements


Looking at how the circle arrangements in positions (3,1) and (3,2) correspond to their respective shapes above them, option C best represents the pattern in the third column. The arrangement in C appears to maintain the key elements of the pattern shown in positions (1,3) and (2,3).

Answer: C

Figure 38: A sample correct case of Inductive Reasoning (difficulty: Hard).

3132
 3133
 3134
 3135
 3136
 3137
 3138
 3139
 3140
 3141
 3142
 3143
 3144
 3145
 3146
 3147
 3148
 3149
 3150
 3151
 3152
 3153
 3154
 3155
 3156
 3157
 3158
 3159
 3160
 3161
 3162
 3163
 3164
 3165
 3166
 3167
 3168
 3169
 3170
 3171
 3172
 3173
 3174
 3175
 3176
 3177
 3178
 3179
 3180
 3181
 3182
 3183
 3184
 3185

Spatial (Easy)
X

Question: How many blocks are in this 3D tower?
Options: A: 7. B: 8. C: 9. D: 10

Ground Truth: (C)

Claude-3.7-Sonnet-Thinking: <thinking> I need to count the number of blocks in this 3D tower. Let me analyze the structure carefully.

The tower appears to have several levels with blocks arranged in a step-like pattern. I'll try to count methodically by identifying each visible block.

Looking at the image:

- At the bottom level (ground level), I can see 3 blocks arranged in an L-shape.
- At the second level up, I can see 2 blocks.
- At the top level, I can see 1 block.

So far that's $3 + 2 + 1 = 6$ blocks.

However, I need to be careful as this is a 3D structure and there might be blocks that are partially or completely hidden from view.

Bottom level: I see what appears to be an L-shape with 3 visible cubes. There might be a 4th cube completing the square (2×2), but it's not clearly visible.

Middle level: I see 2 cubes.

Top level: I see 1 cube.

Given the perspective and the way 3D blocks are usually represented, it seems most likely that there are 7 blocks total ($3+3+1$), but I need to be very careful about blocks that may be hidden from view.

Actually, let me count one more time carefully:

1. Bottom front left block
2. Bottom front right block
3. Bottom back left block (creating the L-shape)
4. Middle front block
5. Middle back block
6. Top block
7. Bottom back right block (which would complete the 2×2 square at the bottom) - this one is not clearly visible but would typically be present in a stable structure

That gives 7 blocks.

After careful consideration, I believe the answer is 7 blocks.

Actually, I'm not confident about my count. Let me try to visualize this again:

The structure appears to be:

- Bottom layer: Looks like a 2×2 arrangement (4 blocks)
- Middle layer: Appears to be 2 blocks
- Top layer: 1 block

That would give us $4 + 2 + 1 = 7$ blocks total.

But wait, the image shows what looks like steps. Let me try to count each visible cube:

1. Bottom front left
2. Bottom front right
3. Middle left
4. Middle right
5. Top middle
6. Bottom back left (partially visible)
7. Bottom back right (might be hidden)

Based on what I can see in the image, there appear to be 7 blocks, which corresponds to option (A).

<end_thinking>

Counting Blocks in the 3D Tower

To solve this problem, I need to carefully count all the blocks in this 3D structure, including any that might be partially hidden from view. Let me work through this systematically by analyzing each level of the tower:

Bottom Level (ground level):
 I can see what appears to be a 2×2 arrangement of blocks:
 That's 4 blocks on the bottom level.

Middle Level:
 Moving up one level, I can see:
 - Middle left block (above the bottom front left)
 - Middle right block (above the bottom back left)
 That's 2 blocks on the middle level.

Top Level:
 At the very top, there is:
 - One block positioned above the middle right block
 That's 1 block on the top level.

Total Count:
 Adding all levels: $4 + 2 + 1 = 7$ blocks total
 Therefore, there are 7 blocks in this 3D tower.

Answer: A

Error Category: Spatial / Orientation Error
Error Reason: The model makes a spatial reasoning error by assuming only 3 blocks at the bottom level, overlooking a likely 4th hidden cube that would complete the L-shape into a full 2×2 square base.

Figure 39: A sample error case of Spatial Reasoning (difficulty: Easy).

3186

3187

3188

3189

3190

3191

3192

3193

3194

3195

3196

3197

3198

3199

3200

3201

3202

3203

3204

3205

3206

3207

3208

3209

3210

3211

3212

3213

3214

3215

3216

3217

3218

3219

3220

3221

3222

3223

3224

3225

3226

3227

3228

3229

3230

3231

3232

3233

3234

3235

3236

3237

3238

3239

Spatial (Easy) ✓

Question: Some kids are facing towards front and others are facing towards back. How many kids are holding another kid's hand with their right hand?

Options: A: 2. B: 6. C: 5. D: 1

Ground Truth: (C)

Claude-3.7-Sonnet-Thinking: <thinking> Let's analyze the image and the problem:

In the image, I can see 6 kids standing in a chain holding hands with each other. Some are facing forward and some are facing backward.

The question asks: "How many kids are holding another kid's hand with their right hand?" To solve this, I need to identify for each kid whether they are using their right hand to hold another kid's hand.

Going from left to right:

1. Kid 1 (blonde hair, purple dress): This kid appears to be facing forward. Her right hand would be on her right side from our perspective. She's using her right hand to hold the hand of Kid 2.
2. Kid 2 (gray hair): Appears to be facing forward. Using right hand to hold Kid 3's hand.
3. Kid 3 (green outfit): Appears to be facing forward. Using right hand to hold Kid 4's hand.
4. Kid 4 (black outfit): Appears to be facing backward (away from us). From Kid 4's perspective, their right hand would be on our left. So Kid 4 is using their right hand to hold Kid 3's hand.
5. Kid 5 (pink hair, yellow skirt): Appears to be facing backward. Using right hand to hold Kid 4's hand.
6. Kid 6 (light green/mint hair): Appears to be facing forward. Using right hand to not hold anyone (end of chain).

So, counting the kids who are using their right hand to hold another kid's hand:

Kid 1: Yes
 Kid 2: Yes
 Kid 3: Yes
 Kid 4: Yes
 Kid 5: Yes
 Kid 6: No (end of chain)

That gives us 5 kids using their right hand to hold another kid's hand.

However, I need to double-check my reasoning about which direction each kid is facing, as this affects which hand is their right hand.

Looking more carefully:

- Kid 1 (blonde): Facing forward, right hand holding Kid 2's hand. Yes.
- Kid 2 (gray hair): Facing forward, right hand holding Kid 3's hand. Yes.
- Kid 3 (green outfit): Facing forward, right hand holding Kid 4's hand. Yes.
- Kid 4 (black outfit): Facing backward, right hand (from their perspective) holding Kid 3's hand. Yes.
- Kid 5 (pink hair): Facing backward, right hand holding Kid 4's hand. Yes.
- Kid 6 (mint hair): Facing forward, right hand not holding anyone's hand. No.

So, there are 5 kids holding another kid's hand with their right hand.

The answer should be (C) 5.

<end_thinking>

I need to determine which kids are holding another kid's hand with their right hand by analyzing the image and understanding each child's orientation.

Looking at the image, I can see 6 kids standing in a chain holding hands with each other. Some are facing forward and some are facing backward.

Let me analyze each child from left to right:

1. First child (blonde girl in purple dress): Facing forward. She's using her right hand to hold the second child's hand.
2. Second child (gray hair): Facing forward. Using right hand to hold the third child's hand.
3. Third child (green outfit): Facing forward. Using right hand to hold the fourth child's hand.
4. Fourth child (black outfit): Facing backward. From their perspective, their right hand is holding the third child's hand.
5. Fifth child (pink hair in yellow skirt): Facing backward. Their right hand is holding the fourth child's hand.
6. Sixth child (light-colored hair): Facing forward. This child is at the end of the chain on the right, so their right hand is not holding anyone's hand.

Counting the kids who are using their right hand to hold another kid's hand: 1st, 2nd, 3rd, 4th, and 5th kids = 5 children total.

Figure 40: A sample correct case of Spatial Reasoning (difficulty: Easy).

3240

3241

3242

3243

3244

3245

3246

3247

3248

3249

3250

3251

3252

3253

3254

3255

3256

3257

3258

3259

3260

3261

3262

3263

3264

3265

3266

3267

3268

3269

3270

3271

3272

3273

3274

3275

3276

3277

3278

3279

3280

3281

3282

3283

3284

3285

3286

3287

3288

3289

3290

3291

3292

3293

Spatial (Medium) ☒

Question: Which cube can be made based on the unfolded cube?

Ground Truth: (A)

Claude-3.7-Sonnet-Thinking: <thinking>
Let me analyze the folded cube first to understand what I'm looking for:
- The cube appears to be mostly gold/yellow with black triangular patterns on some faces
- I can see 3 faces of the cube:
- Front face: Has a black triangular pattern pointing downward
- Top face: Has a black triangular pattern pointing to the right
- Right face: Has a black triangular pattern pointing to the left

Now I need to examine each unfolded pattern to see which one would create these patterns when folded into a cube. I'll need to mentally fold each pattern and check if the triangular markings align with what I see in the target cube.

For option (A):
The unfolded pattern shows:
- A T-shape with triangular patterns on some faces
- When I mentally fold this, the triangular patterns don't seem to align with the target cube. The arrangement doesn't match what we see in the folded cube.

For option (B):
The unfolded pattern has:
- A cross-like shape with triangular patterns
- When folded, this arrangement might create the patterns we see in the target cube. I need to check this more carefully.

For option (C):
This unfolded pattern has:
- An L-shape with additional squares and triangular patterns
- When mentally folded, the patterns don't seem to match the target cube.

For option (D):
This unfolded pattern has:
- A cross-like shape with triangular patterns in different orientations
- When mentally folded, I need to check if this could create the target cube.

Let me think about this more methodically. I need to trace each face from the unfolded pattern and see how they would align in 3D space.

Looking at option (B) more carefully:
If I consider the cross-shape as the standard cube net, with the center becoming the front face, then:
- The center face has a triangular pattern pointing downward, which matches the front face of the target cube
- The face to the right of center would become the right face, and it has a triangular pattern that would point left when folded, matching the target
- The face above the center would become the top face, and it has a triangular pattern that would point right when folded, matching the target
This seems to be a match for the folded cube shown at the top.

Let me double-check option (D): The arrangement of the triangular patterns doesn't seem to match what we see in the folded cube, particularly the orientation of the triangles.

I think option (B) is the correct answer.
<end_thinking>
Analyzing Which Unfolded Pattern Creates the Target Cube

I need to determine which of the unfolded cube patterns (a, b, c, d) would create the folded cube shown at the top when assembled.

Examining the Target Cube
First, I'll identify what's visible on the folded cube:
- Front face: Has a black triangular pattern pointing downward
- Top face: Has a black triangular pattern pointing to the right
- Right face: Has a black triangular pattern pointing to the left

Analyzing Each Unfolded Pattern

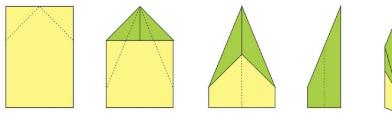
Option (a): When folded, the triangular patterns wouldn't match the configuration in the target cube. The orientations and positions of the triangles don't align correctly.

Option (b): If I mentally fold this pattern:
- The central face (with downward-pointing triangle) would be the front face
- The face above it (with rightward-pointing triangle) would become the top face
- The face to the right of center (with leftward-pointing triangle) would become the right face
This perfectly matches the pattern seen in the target cube.

Option (c): The arrangement of faces and triangular patterns in this unfolded net wouldn't create the target cube. The orientations of the triangles don't match when folded.

Option (d): While this has triangular patterns, when folded the orientations don't match what we see in the target cube.

Therefore, option (b) is the only unfolded pattern that would create the target cube when folded.


Answer: B

Error Category: Spatial / Orientation Error
Error Reason: The model incorrectly visualizes how the triangular patterns on the unfolded net align when folded into a cube. It selects option B, mistakenly believing the triangle orientations will match the folded view, but fails to correctly account for how the triangles rotate and face different directions when assembled.

Figure 41: A sample error case of Spatial Reasoning (difficulty: Medium).

3294
3295
3296
3297
3298
3299

Spatial (Medium)

Question: Paulo took a rectangular sheet of paper, yellow on one side and green on the other side and, with several folds shown in the dotted lines in the figure below, made a little paper plane. To give the airplane a charm, Paulo made a circular hole, marked on the last figure. After playing a lot with the plane, Paulo unfolded the sheet and realized that there were several holes in it. How many holes did he count?

Options: A: 6. B: 7. C: 8. D: 9

Ground Truth: (C)

Claude-3.7-Sonnet-Thinking: <thinking> Let me analyze this problem step by step.

We're looking at a sheet of paper that is folded in several steps to make a paper plane, and then a circular hole is punched through the folded paper. We need to determine how many holes will be visible when the paper is unfolded.

From the image, I can see:

1. A rectangular yellow sheet of paper (yellow on one side, green on the other)
2. The paper is folded along dotted lines in several steps
3. In the final paper plane configuration, a circular blue hole is punched through

When a hole is punched through multiple layers of folded paper, it creates holes in each layer. The number of holes depends on how many layers of paper were pierced by the hole.

Looking at the folding process:

- First image: Flat yellow sheet
- Second image: Top portion folded to create a triangular shape (green side now showing on top)
- Third image: Side portions folded (more green showing)
- Fourth image: Further folding
- Fifth image: Final paper plane with a blue circular hole

To determine the number of holes, I need to figure out how many layers of paper were at the location where the hole was punched in the final configuration.

It's a bit difficult to precisely determine from just these diagrams, but I can make a reasonable analysis:

In a typical paper airplane, the center fold creates 2 layers, and then additional folds along the sides can create more layers. The hole appears to be punched near the tip of one wing.

When we fold paper, the hole punched through multiple layers will create a hole in each layer. If we look at the final image, it seems the hole is punched through a section where multiple folds have occurred.

Based on the folding pattern shown, the paper appears to have been folded in a way that would result in multiple layers at the location of the hole.

Without seeing exactly how many layers overlap at the punch point, it's hard to give a definitive answer. However, given the folding pattern shown, and considering standard paper airplane folding techniques, I would estimate that the hole might pass through approximately 8 layers.

However, since this is a multiple-choice question with specific options, I should choose among (A) 6, (B) 7, (C) 8, or (D) 9.

Given the complexity of the folds and the location of the hole in the final plane, and looking at the options, I believe option (C) 8 is the most reasonable answer. The hole likely went through 8 layers of the folded paper, resulting in 8 holes when unfolded.

Actually, let me think about this more carefully. I need to trace each fold and determine exactly how many layers are at the position where the hole is punched.

The hole appears to be near one tip of the final paper plane. Based on the folding pattern:

1. The initial fold creates a triangle on top (1 fold, 2 layers)
2. Then side folds create more layers
3. The final folds create the completed plane

Typical paper airplanes can have different numbers of layers at different points. The tip might have 8 layers if several folds pass through that area.

Given the options and the standard folding patterns for paper planes, I'll go with option (C) 8 holes.

<end_thinking>

Counting Holes in the Unfolded Paper

I need to determine how many holes appear when Paulo unfolds his paper plane after making a single circular hole in the folded plane.

Analyzing the Folding Process

Looking at the image sequence:

1. We start with a flat rectangular sheet that's yellow on one side and green on the other
2. The paper goes through several folding steps (shown by dotted lines)
3. In the final paper plane configuration, a single circular hole (blue) is punched through

Why Multiple Holes Appear

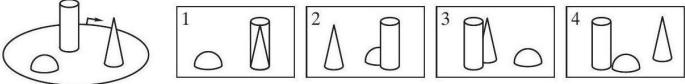
When a hole is punched through multiple layers of folded paper, it creates a hole in each layer. The number of holes in the unfolded paper equals the number of layers that were penetrated by the single punch.

Counting the Layers

Following the folding process carefully and looking at the final plane:

- The initial rectangular sheet is folded several times
- Each fold creates multiple overlapping layers
- The hole appears to be punched through the right wing of the completed plane

Based on the specific folding pattern shown in the diagrams, when the sheet is completely folded into the paper plane configuration, the location where the hole is punched consists of 8 layers of paper stacked together.


Therefore, when Paulo unfolds the paper, he would find 8 holes in the sheet - one for each layer that was penetrated by the single punch.

Answer: C

Figure 42: A sample correct case of Spatial Reasoning (difficulty: Medium).

3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401

Spatial (Hard)

Question: Betty walked around the park once, starting from the marked point in the direction of the arrow. She took 4 pictures. In which order did she take the pictures?

Options: A: 1234. B: 1324. C: 2143. D: 2341

Ground Truth: (C)

Claude-3.7-Sonnet-Thinking: <thinking> This problem requires me to determine the order in which Betty took 4 pictures as she walked around a park. I need to look at the diagram and figure out the sequence.

First, I'll analyze what I see in the leftmost diagram, which seems to show the park layout:

- There's a cylindrical object (like a column or tree trunk)
- There's a cone-shaped object (like a pine tree or monument)
- There's a dome-shaped object (like a small hill or rock)
- There's an arrow indicating the direction Betty walked

Then I have 4 numbered pictures, each showing different arrangements of these objects:

- Picture 1: Shows the dome shape on the left and the cylinder on the right
- Picture 2: Shows the cone shape on the left and the cylinder on the right
- Picture 3: Shows the cylinder on the left and the dome shape on the right
- Picture 4: Shows the cylinder on the left and both the dome shape and cone shape on the right

I need to determine the order in which Betty would see these views as she walks around the park in the direction of the arrow.

Looking at the main diagram, the arrow indicates she's walking counterclockwise around the park.

If I start at the marked point and move in the direction of the arrow (counterclockwise):

1. Betty would first see the dome on her left and the cylinder on her right - this matches Picture 1
2. As she continues counterclockwise, she would next see the cone on her left and the cylinder on her right - this matches Picture 2
3. Continuing further, she would see the cylinder on her left and the dome on her right - this matches Picture 3
4. Finally, completing the circle, she would see the cylinder on her left with both the dome and cone on her right - this matches Picture 4

So the order of the pictures would be 1, 2, 3, 4, which corresponds to option (A) 1234.

Let me double-check this logic:

From the starting position and moving counterclockwise:

- First view: dome on left, cylinder on right (Picture 1)
- Second view: cone on left, cylinder on right (Picture 2)
- Third view: cylinder on left, dome on right (Picture 3)
- Fourth view: cylinder on left, dome and cone on right (Picture 4)

This confirms that the answer is (A) 1234.

<end_thinking>

Determining Picture Order in Betty's Park Walk

I need to figure out the order in which Betty took 4 pictures as she walked once around the park in the direction of the arrow.

Analyzing the Park Layout

From the first diagram, I can see:

- A cylindrical object (looks like a column/tree trunk)
- A cone-shaped object (like a pointed tree or monument)
- A dome-shaped object (like a small hill or rock)
- An arrow indicating counterclockwise movement

Analyzing Each Picture

1. **Picture 1**: Shows the dome shape on left, cylindrical object on right
2. **Picture 2**: Shows the cone shape on left, cylindrical object on right
3. **Picture 3**: Shows the cylindrical object on left, dome shape on right
4. **Picture 4**: Shows the cylindrical object on left, both dome and cone shapes on right

Determining the Sequence

Starting from the marked point and moving counterclockwise (following the arrow):

1. First, Betty would see the dome on her left and the cylinder on her right → **Picture 1**
2. Continuing counterclockwise, she would next see the cone on her left and the cylinder on her right → **Picture 2**
3. Moving further, she would see the cylinder on her left and the dome on her right → **Picture 3**
4. Finally, she would see the cylinder on her left with both the dome and cone on her right → **Picture 4**

This gives us the sequence 1-2-3-4.

Answer: A

Error Category: Spatial / Orientation Error

Error Reason: The model makes a spatial orientation error by incorrectly interpreting the shifting perspectives as Betty walks around the park, especially at the starting point. It assumes a consistent viewpoint but fails to mentally rotate the scene to match what Betty would actually see from each new position.

Figure 43: A sample error case of Spatial Reasoning (difficulty: Hard).

3402

3403

3404

3405

3406

3407

3408

3409

3410

3411

3412

3413

3414

3415

3416

3417

3418

3419

3420

3421

3422

3423

3424

3425

3426

3427

3428

3429

3430

3431

3432

3433

3434

3435

3436

3437

3438

3439

3440

3441

3442

3443

3444

3445

3446

3447

3448

3449

3450

3451

3452

3453

3454

3455

Spatial (Hard) ✓

Question: From the flat expansion view of paper boxes, which paper box is different from the other three?

Ground Truth: (A)

Claude-3.7-Sonnet-Thinking: <thinking> This problem is asking me to identify which one of the four flat expansions of paper boxes is different from the others. Let me analyze each one carefully.

These patterns represent unfolded 3D boxes (nets), where the squares would fold to create a 3D shape. The black squares and circles represent some kind of marking or pattern on the surface of the box.

Let me analyze the structure of each expansion:

- A: This appears to be a linear arrangement of 5 squares with a T-shape extension. The pattern has black regions in various squares.
- B: This is a more complex shape with 7 squares arranged in a cross-like pattern. It has black regions in various squares.
- C: This also appears to be an arrangement of squares that could fold into a box, with black markings.
- D: This is another cross-shaped arrangement of squares with black markings.

To determine which one is different, I need to see if they would all fold into valid 3D boxes and if there's any pattern that sets one apart.

Let me think about how these would fold:

- A cube has 6 faces, so a valid net should have exactly 6 squares
- The squares must be connected in a way that allows folding into a cube

Let me count the squares in each:

- A: I count 5 squares
- B: I count 7 squares
- C: I count 7 squares
- D: I count 7 squares

Looking at the number of squares, A has 5 squares while B, C, and D each have 7 squares. A cube needs 6 faces, so none of these would fold into a perfect cube. A is different in that it has fewer squares than the others.

However, let me look more carefully at these patterns to see if there's another difference.

Actually, let me recount:

- A: Looking more carefully, I see 6 squares arranged in a T-pattern with an extension
- B: I see 7 squares arranged in a cross-pattern with extensions
- C: I see 7 squares arranged in a pattern
- D: I see 7 squares arranged in a cross-pattern

So option A has 6 squares, while B, C, and D each have 7 squares. Since a cube has 6 faces, A is the only one that could potentially fold into a proper cube. The others have an extra square.

Let me check once more carefully:

- A: I count squares from left to right and top to bottom: 1, 2, 3, 4, 5, 6. So there are 6 squares.
- B: I count 7 squares.
- C: I count 7 squares.
- D: I count 7 squares.

So based on the number of squares, A is different from the others because it has 6 squares while the others have 7 squares.

But let me think about whether there could be another difference that's more subtle, like the pattern of black regions or the connectivity of the squares.

Looking at the patterns of black and white regions, they all seem to have black regions and circles in different arrangements. Looking at the connectivity of the squares, they all have different patterns of how the squares connect.

I think the key difference is the number of squares. A has 6 squares which is the exact number needed for a cube. B, C, and D all have 7 squares, which is one too many for a standard cube - these would need to have one square overlapping or not used when folded.

So my answer is A.

<end_thinking>

Analysis of Paper Box Flat Expansions

I need to determine which of these flat expansions (nets) is different from the others by examining their structure and properties.

First, let me count the number of squares in each option:

- Option A: 6 squares arranged in an L-shape with an extension
- Option B: 7 squares arranged in a cross pattern with extensions
- Option C: 7 squares arranged in a T-shape with extensions
- Option D: 7 squares arranged in a cross pattern with extensions

The key difference I notice is that option A has exactly 6 squares, while all the other options (B, C, and D) have 7 squares each.

This is significant because a cube has exactly 6 faces, so a proper net for a cube should have exactly 6 squares. Options B, C, and D all have one extra square, which means they would either:

1. Not fold into a proper cube
2. Have an overlapping square when folded
3. Require leaving one square unused

Therefore, option A is different from the other three because it's the only one with the correct number of squares (6) to form a standard cube.

Answer: A

Figure 44: A sample correct case of Spatial Reasoning (difficulty: Hard).