In this work, we introduce Attention-based Partially Decoupled Actor-Critic (APDAC), an actor-critic architecture for generalization in reinforcement learning, which partially separates the policy and the value function. To learn directly from images, traditional actor-critic architectures use a shared network to represent the policy and value function. While a shared representation for policy and value allows parameter and feature sharing, it can also lead to overfitting that catastrophically hurts generalization performance. On the other hand, two separate networks for policy and value can help to avoid overfitting and reduce the generalization gap, but at the cost of added complexity both in terms of architecture design and hyperparameter tuning. APDAC provides an intermediate tradeoff that combines the strengths of both architectures by sharing the initial part of the network and separating the later parts for policy and value. It also incorporates an attention mechanism to propagate relevant features to the separate policy and value blocks. Our empirical analysis shows that APDAC significantly outperforms the PPO base-line and achieves comparable performance with respect to the recent state-of-the-art method IDAAC on the challenging RL generalization benchmark Procgen.

1 Introduction

Deep reinforcement learning algorithms have shown human-level performance on a variety of different control tasks [Mnih et al., 2015; Mnih et al., 2016; Haarnoja et al., 2018]. They can master complex tasks by exploring and specializing over a training task and environment given a large number of samples. Deployment of such intelligent systems in real-world applications requires significant generalization and faster adaptation capabilities with respect to similar but unseen scenarios or environments. However, generalizability of this magnitude has yet to be achieved for standard RL algorithms [Cobbe et al., 2021; Cobbe et al., 2020; Grigsby and Qi, 2020; Justesen et al., 2018].

Until recently, deep RL algorithms were trained and tested on the same environment. Thus, the issue of overfitting was not consistently observed and measured, but instead implicitly appreciated. Several recent works reveal the potential side effects of such a limited approach to evaluation in the assessment of generalization. These findings motivate the development of benchmarks that provide a better way to quantify an agent’s ability to generalize. With the emergence of such benchmarks, it has become customary to train and test on different sets of similar scenarios to effectively evaluate generalization [Cobbe et al., 2021; Cobbe et al., 2020; Raileanu and Fergus, 2021].

Generalization is a fundamental aspect of representation learning in episodic tasks consisting of diverse levels. Compared to hand-designed levels, procedural content generation techniques enable generation of a nearly unlimited number of highly varied levels. In this work, we consider the problem of generalization to unseen scenarios or levels of procedurally generated environments given exposure to a limited number of levels during training. The levels vary in terms of background, dynamics,
Figure 1: Comparison of architectures: (left) a fully shared network for policy and value (middle), two explicitly separate networks for policy and value (right), and our proposed partially separated network for policy and value function

37. game assets, and the attributes of the entities such as position, spawn time, shape, and color; however, all the levels share the same end goal. Thus, it significant generalization capability is needed to learn a robust policy that perform well on levels, episodes, or scenarios that have not yet encountered at training time.

38. Recently, [Raileanu and Fergus, 2021] demonstrated a policy-value representation asymmetry, which suggests that value estimation requires more information compared to that needed to learn an optimal policy. Thus, shared representation of policy and value function can lead to overfitting. The learned representation can easily be biased towards the instance specific features responsible for accurate estimation of the value function. Consequently, the learned policy which generally requires only the minimal set of task relevant features loses its ability to generalize to unseen variations of the same task.

39. An alternative to the shared representation is to separate the policy and the value networks [Cobbe et al., 2021; Raileanu and Fergus, 2021]. This helps to disentangle the features necessary to properly estimate the value and policy function. However, the policy function cannot be learned in isolation, via standalone training: it requires gradients from the value function to learn the optimal policy. Thus, additional measures need to be taken to improve the policy network, which increases the complexity of overall training. Moreover, two networks entail increased memory requirements and training time.

40. As shown in Figure 1, we trade-off between these two extreme approaches - fully shared vs. fully separate networks - by combining the benefits of both while mitigating their disadvantages. We propose an Attention-based Partially Decoupled Actor-Critic (APDAC) that shares some early layer blocks of the network while separating the later (downstream) ones into policy and value subnetworks fed by the shared blocks. Additionally, we deploy an attention mechanism in the two separate branches, which further decouples policy and value function approximation. We attribute the benefits of our approach to the hierarchical representation of feature and the ability of attention mechanisms to effectively identify the components of an input pertinent to the optimization task. We also conduct an ablation study to better understand the significance of each component of our contribution.

41. In summary, the key contributions of this work are as follows: (i) we propose a new approach that partially shares and partially decouples the value and policy network; (ii) we develop an integrated attention mechanism to encourage distinct feature learning for policy and value with minimum overhead; (iii) we demonstrate competitive performance compared to the state-of-the-art methods on the Procgen benchmark.

2 Related Work

42. Many recent works have established that lack of generalization is a systemic issue in the domain deep reinforcement learning and popular algorithms tend to overfit to the environment, resulting in models which seem merely to memorize surface-level details of the environment rather than generalizable skills [Rajeswaran et al., 2017; Justesen et al., 2018; Grigsby and Qi, 2020; Raileanu and Rocktäschel]
We leverage the hierarchical representation of image features to design our network. Generally, which is the main drawback of a shared representation [Raileanu and Fergus, 2021]. However, simply using two explicitly separate network has serious inherent drawbacks due to the dependency of the policy function approximation on the gradient of the value function. Cobbe et al. [2021] shows that, such straightforward method of using two separate networks for policy and value functions brings a performance decrease when compared to the shared network architecture. To address this issue, works which utilize the separate network model to optimize policy and value functions often use an auxiliary value or advantage head in the policy network. This auxiliary head provides a helpful gradient to the separate policy network to learn better task-relevant policy representation, whereas the separate value network optimizes the value function which plays the original role of the critic. Moreover, the two network models bring in additional number of hyperparameters such as the update frequency of the policy network, update frequency of the value network, coefficient for the advantage loss.

We leverage the hierarchical representation of image features to design our network. Generally, the low-level features include minor details such as lines, edges, dots, and curves, whereas the high-level features are composed of multiple low-level features. Based on this, we hypothesize that, although the high-level features responsible for accurate estimation of the policy and value

3.1 Partial Decoupling of Policy and Value function

Decoupling of the policy and the value function is crucial to overcome the problem of overfitting, which is the main drawback of a shared representation [Raileanu and Fergus, 2021]. However, simply employing two explicitly separate network has serious inherent drawbacks due to the dependency of the policy function approximation on the gradient of the value function. Cobbe et al. [2021] shows that, such straightforward method of using two separate networks for policy and value functions brings a performance decrease when compared to the shared network architecture. To address this issue, works which utilize the separate network model to optimize policy and value functions often use an auxiliary value or advantage head in the policy network. This auxiliary head provides a helpful gradient to the separate policy network to learn better task-relevant policy representation, whereas the separate value network optimizes the value function which plays the original role of the critic. Moreover, the two network models bring in additional number of hyperparameters such as the update frequency of the policy network, update frequency of the value network, coefficient for the advantage loss.

We leverage the hierarchical representation of image features to design our network. Generally, the low-level features include minor details such as lines, edges, dots, and curves, whereas the high-level features are composed of multiple low-level features. Based on this, we hypothesize that, although the high-level features responsible for accurate estimation of the policy and value
We argue that the additional overhead introduced by the reliance of the policy optimization on value estimates where \(r_t \) is the estimation of the advantage function at timestep \(t \). The only difference is that the parameters \(\theta \) are not affected by the value loss \(L_V \) while the parameters \(\phi \) are. The value loss \(L_V \) is a squared error loss and defined as follows:

\[
L_V(\theta, \phi) = \mathbb{E}_t \left[\frac{1}{2} (V_t(\theta, \phi) - V_{targ}^t)^2 \right]
\]

where \(V_{targ}^t \) is the value function target.

We argue that the additional overhead introduced by the reliability of the policy optimization on value gradient, increased number of hyperparameters, and higher memory footprint in case of separate network architecture can be overcome by a single network architecture which partially separates the policy and the value. At the same time, our experimental results show that this partial separation prevents the model from being trapped into the common pitfalls of the fully shared network.

3.2 Relevant Feature Learning using Attention

To ensure maximum separation between the features learned by the partially separated policy and value sub-networks, we propose to incorporate individual attention mechanisms within the corresponding blocks of the network. Attention has been shown as an effective means to learn high quality and meaningful representation. A good number of attention mechanisms have evolved depending on the type of feature domain they focus on. We propose to use attention modules similar to Squeeze and Excitation (SE) network that explicitly models the inter-dependencies between the channels of its convolutional features. The Squeeze and Excitation block leverages global information to put relative importance to the useful features compared to the less useful ones. The SE block in the later layers of a deep network enables distinct feature learning in a highly class-specific manner while in the initial layers it learns in a class-agnostic manner. This characteristic of the SE block has made it a suitable choice for our task, where we need to learn distinct features relevant to policy and value. Thus, we propose to deploy the SE block only in the split value and policy section of the network. Our architecture incorporates the SE block in almost the same fashion as SENet for the Residual Blocks; however, we add extra SE attention block for the convolutional layers outside of the Residual block (See Section ?? for details). To utilize global information beyond the local receptive field of
We implement APDAC on top of the implementation of IDAAC Raileanu and Fergus [2021]. We evaluate our proposed architecture on the complete Procgen benchmark presented in Cobbe et al. [2020]. We followed the same hyperparameter setup from Raileanu and Fergus [2021]. The only difference was in turns each residual block includes two Conv layer. APDAC shares the first two blocks (10 convolutional layers) of the IMPALA CNN, then branches out for the third block. Thus, APDAC employs five separate convolutional layers each for policy and value function in order to learn features distinctly. Finally, it incorporates one attention unit per residual block along with one at the very beginning of the separation and another just following the first convolutional block.

4.1 Network Architecture

Following previous works involving Procgen, we chose IMPALA’s deeper residual CNN architecture as our backbone citepcobbe2020procgen[2020][Cobbe et al., 2021][Raileanu and Fergus, 2021]. Although this is a relatively large model, it strikes a good balance between the performance on the highly diverse environment and the required computational power [Cobbe et al., 2020]. This particular IMPALA CNN architecture has 15 convolutional layers divided into three groups [Espeholt et al., 2018]. Each group has a similar configuration like Conv - Pooling - Residual Block - Residual Block where in turns each residual block includes two Conv layer. APDAC shares the first two blocks (10 convolutional layers) of the IMPALA CNN, then branches out for the third block. Thus, APDAC employs five separate convolutional layers each for policy and value function in order to learn features distinctly. Finally, it incorporates one attention unit per residual block along with one at the very beginning of the separation and another just following the first convolutional block.

We implement APDAC on top of the implementation of IDAAC Raileanu and Fergus [2021]. We also used the same PPO code used in [Raileanu and Fergus, 2021] which is actually built using the PyTorch implementation of [Kostrikov, 2018]. When training PPO and IDAAC, whenever applicable, we followed the same hyperparameter setup from [Raileanu and Fergus, 2021]. The only difference is that we reduced the number of mini batch size to minimize computational cost. IDAAC trials were run using the best hyperparameters for each individual Procgen environment as established in [Raileanu and Fergus, 2021].

The feature map \(U \) is realized by two fully-connected (FC) layers around the non-linearity:

\[
F_{\text{sq}}(u_c) = \frac{1}{H \times W} \sum_{i=1}^{H} \sum_{j=1}^{W} u_c(i, j),
\]

where \(u_c \in \mathbb{R}^{H \times W} \) and \(U = [u_1, u_2, ..., u_c] \) denotes the convolved feature output produced by the previous convolutional layer. In the next phase, the excitation operation attempts to capture channel-wise nonlinear dependencies based on the channel-descriptor \(z \). The excitation operation is realized by two fully-connected (FC) layers around the non-linearity:

\[
s = F_{\text{ex}}(z, W) = \sigma(g(z, W')) = \sigma(W_2 \delta(W_1 z)),
\]

where \(\sigma \) refers to the sigmoid activation function, \(\delta \) refers to the ReLU function, \(W_1 \in \mathbb{R}^{2 \times C} \), and \(W_2 \in \mathbb{R}^{C \times h}; r \) denotes the reduction ratio parameter between the two FC layers. Finally, the input feature map \(U \) is rescaled as follows using the learned activation \(s \):

\[
x_c = F_{\text{scale}}(u_c, s_c) = s_c u_c,
\]

where \(\vec{X} = [\vec{x}_1, \vec{x}_2, ..., \vec{x}_c] \). This way, a set of channel weight is learned to recalibrate the channel response. Thus, the attention block on the policy and value branch enables attended feature learning specific to the policy and value functions respectively. From our experiment, it is also evident that the attention mechanism coupled with the contribution of Section 3.1 helps to attain the same level of decoupling as the method with two separate network.

4 Experiments and Results

We evaluate our proposed architecture on the complete Procgen benchmark presented in [Cobbe et al., 2020], which consists of 16 distinct environments with procedurally generated levels. The availability of highly diverse procedurally generated levels across a wide variety of game environments has motivated us to choose Procgen as our testbed. Procgen provokes a difficulty setting to tune the difficulty of an environment’s level generation, which can be set to either "easy" or "hard". We experiment with the easy mode of difficulty for 25 million total timesteps as per the recommendation of [Cobbe et al., 2020]. We train the model on 200 levels and test on the full distribution of the levels.
4.2 Comparative Analysis

In our experiments, we compare the performance of our approach, APDAC, with the representatives from two other network topologies. PPO serves as a representative of the models with fully shared policy and value networks, whereas IDAAC represents those having separate policy and value networks [Schulman et al., 2017] [Raileanu and Fergus, 2021]. In addition to decoupling the optimization of the policy and value function using two fully separate networks, IDAAC also uses a discriminator loss function to decrease the dependency on the instance specific aspects of the environment which are irrelevant to learning good policy. Figure 2 shows the rolling mean test score averaged over ten trials for each of the eight environments from the Procgen benchmark. The rolling standard deviation between these trials is calculated as well, with confidence intervals bounding one standard deviation above and below each curve. In these results, APDAC sees significant gains in the performance compared to the shared network approach shown as PPO. Furthermore, it performs similarly, and in some cases even better, than the existing state-of-the-art, IDAAC, and does so with fewer required parameters. As such, we conclude that APDAC succeeds as an efficient and performative compromise between the two existing topologies.

4.3 Ablation

To evaluate the contribution of each proposed component we further experiment with an ablated version of our proposed approach, which eliminates all attention blocks. Thus, this network includes only the partially separated policy and value representation and do not incorporate the contribution mentioned in Section 3.2. We denote this model as Partially Decoupled Actor-Critic (PDAC). To determine the difference in performance brought by this ablation, we compare the results achieved by PPO, APDAC, and the ablation, PDAC, across the entire Procgen benchmark, via the same experimental setup as before. Figure 3 shows the ablation results from three example environments, in which we see APDAC performing better, to an extent, than PDAC. Indeed, it is clear from the comparison with PPO that APDAC’s main performance gain comes from the partial separation of policy and value network. As such, sharing the initial part of the network doesn’t harm performance, and in fact reduces the number of parameters as compared to the network architecture with two separate networks.
5 Conclusion

In this work, we discuss a current systemic issue in deep RL regarding lack of performant generalization. There is an asymmetry in the information required to train the policy and value functions. Thus, fully shared policy and value networks are prone to overfitting, harming generalization. However, the policy approximation requires gradients from the value function to learn the optimal policy, so a performant model cannot completely isolate the two. Our solution, APDAC, addresses these issues in an efficient way by partially decoupling the policy and value networks while also adding attention mechanisms to each sub-network in order to efficiently identify relevant important features. Our approach contrasts with current methods in the partial separation of its networks and keeping the number of convolutional layers lower than its fully separate counterpart. Our results demonstrate similar benefits of a fully decoupled approach while reducing the overall parameters and computational cost. We argue that such a compromise is a promising way forward in the pursuit of generalization in deep RL on the grounds of both performance and efficiency. The low performance gains between APDAC and the ablation can be considered as a limitation to this work, however, attention as it relates to the field of deep RL is still a growing field of study, and our work proves that there is an opportunity for the inclusion of attention to achieve generalization. A hopeful future direction is to investigate more beneficial structures for the attention mechanism.

References

A Appendix
Figure 4: Testing performance for PPO, IDAAC, and APDAC across the entire Procgen benchmark. Mean and standard deviation are calculated over 10 trials, each with a different seed.