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Abstract

In this work, we introduce Attention-based Partially Decoupled Actor-Critic (AP-1

DAC), an actor-critic architecture for generalization in reinforcement learning,2

which partially separates the policy and the value function. To learn directly from3

images, traditional actor-critic architectures use a shared network to represent the4

policy and value function. While a shared representation for policy and value5

allows parameter and feature sharing, it can also lead to overfitting that catastrophi-6

cally hurts generalization performance. On the other hand, two separate networks7

for policy and value can help to avoid overfitting and reduce the generalization8

gap, but at the cost of added complexity both in terms of architecture design and9

hyperparameter tuning. APDAC provides an intermediate tradeoff that combines10

the strengths of both architectures by sharing the initial part of the network and11

separating the later parts for policy and value. It also incorporates an attention12

mechanism to propagate relevant features to the separate policy and value blocks.13

Our empirical analysis shows that APDAC significantly outperforms the PPO base-14

line and achieves comparable performance with respect to the recent state-of-the-art15

method IDAAC on the challenging RL generalization benchmark Procgen.16

1 Introduction17

Deep reinforcement learning algorithms have shown human-level performance on a variety of different18

control tasks Mnih et al. [2015] Mnih et al. [2016] [Haarnoja et al., 2018]. They can master complex19

tasks by exploring and specializing over a training task and environment given a large number of20

samples. Deployment of such intelligent systems in real-world applications requires significant21

generalization and faster adaptation capabilities with respect to similar but unseen scenarios or22

environments. However, generalizability of this magnitude has yet to be achieved for standard RL23

algorithms [Cobbe et al., 2021][Cobbe et al., 2020][Grigsby and Qi, 2020]Justesen et al. [2018].24

Until recently, deep RL algorithms were trained and tested on the same environment. Thus, the25

issue of overfitting was not consistently observed and measured, but instead implicitly appreciated.26

Several recent works reveal the potential side effects of such a limited approach to evaluation in the27

assessment of generalization. These findings motivate the development of benchmarks that provide a28

better way to quantify an agent’s ability to generalize. With the emergence of such benchmarks, it29

has become customary to train and test on different sets of similar scenarios to effectively evaluate30

generalization[Cobbe et al., 2021][Cobbe et al., 2020]Raileanu and Fergus [2021].31

Generalization is a fundamental aspect of representation learning in episodic tasks consisting of32

diverse levels. Compared to hand-designed levels, procedural content generation techniques enable33

generation of a nearly unlimited number of highly varied levels. In this work, we consider the problem34

of generalization to unseen scenarios or levels of procedurally generated environments given exposure35

to a limited number of levels during training. The levels vary in terms of background, dynamics,36
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Figure 1: Comparison of architectures: (left) a fully shared network for policy and value (middle),
two explicitly separate networks for policy and value (right), and our proposed partially separated
network for policy and value function

game assets, and the attributes of the entities such as position, spawn time, shape, and color; however,37

all the levels share the same end goal. Thus, it significant generalization capability is needed to learn38

a robust policy that perform well on levels, episodes, or scenarios that have not yet encountered at39

training time.40

Recently, Raileanu and Fergus [2021] demonstrated a policy-value representation asymmetry, which41

suggests that value estimation requires more information compared to that needed to learn an optimal42

policy. Thus, shared representation of policy and value function can lead to overfitting. The learned43

representation can easily be biased towards the instance specific features responsible for accurate44

estimation of the value function. Consequently, the learned policy which generally requires only the45

minimal set of task relevant features loses its ability to generalize to unseen variations of the same46

task.47

An alternative to the shared representation is to separate the policy and the value networks[Cobbe48

et al., 2021]Raileanu and Fergus [2021]. This helps to disentangle the features necessary to properly49

estimate the value and policy function. However, the policy function cannot be learned in isolation,50

via standalone training: it requires gradients from the value function to learn the optimal policy. Thus,51

additional measures need to be taken to improve the policy network, which increases the complexity52

of overall training. Moreover, two networks entail increased memory requirements and training time.53

As shown in Figure 1, we trade-off between these two extreme approaches - fully shared vs. fully54

separate networks - by combining the benefits of both while mitigating their disadvantages. We55

propose an Attention-based Partially Decoupled Actor-Critic (APDAC) that shares some early layer56

blocks of the network while separating the later (downstream) ones into policy and value subnetworks57

fed by the shared blocks. Additionally, we deploy an attention mechanism in the two separate58

branches, which further decouples policy and value function approximation. We attribute the benefits59

of our approach to the hierarchical representation of feature and the ability of attention mechanisms60

to effectively identify the components of an input pertinent to the optimization task. We also conduct61

an ablation study to better understand the significance of each component of our contribution.62

In summary, the key contributions of this work are as follows: (i) we propose a new approach that63

partially shares and partially decouples the value and policy network; (ii) we develop an integrated64

attention mechanism to encourage distinct feature learning for policy and value with minimum65

overhead; (iii) we demonstrate competitive performance compared to the state-of-the-art methods on66

the Procgen benchmark.67

2 Related Work68

Many recent works have established that lack of generalization is a systemic issue in the domain deep69

reinforcement learning and popular algorithms tend to overfit to the environment, resulting in models70

which seem merely to memorize surface-level details of the environment rather than generalizable71

skills [Rajeswaran et al., 2017, Justesen et al., 2018, Grigsby and Qi, 2020, Raileanu and Rocktäschel,72
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2020]. Existing solutions to the generalization problem include L2 regularization, dropout, data73

augmentation, selective noise augmentation, and batch normalization [Igl et al., 2019a, Cobbe et al.,74

2019, Igl et al., 2019b, Hu et al., 2021]. As established in Cobbe et al. [2019], Procgen is a testing75

suite which uses procedural content generation to benchmark generalization to greater effect than76

traditional benchmarks, and became popular with recent works forwarding generalization in deep77

reinforcement learning [Igl et al., 2020, Wang et al., 2020, Raileanu and Fergus, 2021, Mazoure78

et al., 2021]. As discussed in Raileanu and Fergus [2021], sharing features between policy and79

value functions can lead to overfitting, harming the model’s ability to generalize to new, unseen80

environments. In contrast to the previous methods, Raileanu and Fergus [2021] Cobbe et al. [2021]81

make use of fully disconnected policy and value functions. This provides greater generalization and82

sample efficiency than earlier counterparts, as indicated by state-of-the-art performance on nearly83

all Procgen environments. However, this performance comes at the cost of a greater number of84

parameters than previous approches requiring more computing power. In addition, certain Procgen85

environments requires specific hyperparameters to produce reported performance. Our method86

provides results consistent with those in [Raileanu and Fergus, 2021] with fewer parameters and87

reducing the need for hyperparameter tuning.88

Literatures exploring the potential of attention mechanisms in neural networks have found success89

across a wide array of domains, including natural language processing and vision, both as part of90

convolutional layers and as stand-alone layers [Iqbal and Sha, 2019, Hu, 2019, Ramachandran et al.,91

2019]. Attention has been proven as an useful paradigm in the domain of natural language processing,92

seeing wide usage in NLP tasks such as sentiment classification, relation classification, and text93

summarization [Qin et al., 2017, Lei et al., 2018, Hu, 2019]. Attention has also been utilized in vision94

models to great success, yielding strong performance while requiring less computing power and fewer95

input parameters, with self-attention and dual attention models being used in pursuits such as image96

classification and scene segmentation [Fu et al., 2019, Bello et al., 2019, Ramachandran et al., 2019].97

The use of attention mechanisms in the domain of deep reinforcement learning, however, is less98

prevalent. The closest similar works involve variations of A2C with a shared attention mechanism99

[Iqbal and Sha, 2019, Barati and Chen, 2019]. However, our work differs by combining the attention100

mechanism with a partially split policy and value function model which is designed to prevent101

overfitting and achieve generalization.102

3 Attention-based Partially Decoupled Actor-Critic103

In Attention-based Partially Decoupled Actor-Critic (APDAC), we modify the traditional shared104

representation of the actor-critic model by partially separating the policy and the value function105

followed by a shared component. Each of the partially separated policy and value sub-networks are106

enhanced with the inclusion of multiple attention modules.107

3.1 Partial Decoupling of Policy and Value function108

Decoupling of the policy and the value function is crucial to overcome the problem of overfitting,109

which is the main drawback of a shared representation [Raileanu and Fergus, 2021]. However, simply110

employing two explicitly separate network has serious inherent drawbacks due to the dependency of111

the policy function approximation on the gradient of the value function. Cobbe et al. [2021] shows112

that, such straightforward method of using two separate networks for policy and value functions113

brings a performance decrease when compared to the shared network architecture. To address this114

issue, works which utilize the separate network model to optimize policy and value functions often115

use an auxiliary value or advantage head in the policy network. This auxiliary head provides a helpful116

gradient to the separate policy network to learn better task-relevant policy representation, whereas117

the separate value network optimizes the value function which plays the original role of the critic.118

Moreover, the two network models bring in additional number of hyperparameters such as the update119

frequency of the policy network, update frequency of the value network, coefficient for the advantage120

loss.121

We leverage the hierarchical representation of image features to design our network. Generally,122

the low-level features include minor details such as lines, edges, dots, and curves, whereas the123

high-level features are composed of multiple low-level features. Based on this, we hypothesize124

that, although the high-level features responsible for accurate estimation of the policy and value125
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function may differ, the low-level features which constitute the high-level features are almost similar126

for both. The performance of generalization in RL increases with the number of convolutional127

layers. Thus, it has become customary to use very deep networks specially while learning directly128

from image observation. Deep convolutional neural networks (CNN) are capable of learning the129

feature representations hierarchically using a sequence of convolutional and pooling layers. Initial130

convolutional layers in a neural network learn the filters to capture low-level features while the131

later layers in the pipeline learn to identify larger objects and shapes. So, we propose to bifurcate132

the network at the convolutional layer level instead of merely separating the policy and the value133

head as in the case of a fully shared network. This helps to decouple the high-level feature learning134

for policy and value on top of the same feature learned by the shared network. Thus, our network135

comprises three parts, the part of the network shared between policy and value parameterized by136

θ, the part dedicated to policy learning parameterized by φπ, and another part dedicated to value137

function approximation which is parameterized by φv . The overall network is trained all together to138

optimize the following objective:139

JAPDAC(θ, φπ, φv) = Jπ(θ, φπ)− αvLV (θ, φv) + αsSπ(θ, φπ) (1)

where Jπ(θ, φπ) is the policy gradient objective, LV (θ, φv) is the value loss, Sπ(θ, φπ) is an entropy140

bonus that enables efficient exploration, and αv and αs are the coefficients denoting relative weight141

of the corresponding terms. We optimize the same clipped surrogate policy objective as used in142

PPO[Schulman et al., 2017]:143

Jπ(θ, φπ) = Êt
[
min

(
rt(θ, φπ)Ât, clip(rt(θ, φπ), 1− ε, 1 + ε)Ât

)]
(2)

where rt(θ, φπ) =
π(θ,φπ)(at|st)
π(θ,φπ)old

(at|st) , and Ât is the estimation of the advantage function at timestep144

t. The only difference is that the parameters φπ are not affected by the value loss LV while the145

parameters θ are. The value loss LV is a squared error loss and defined as follows:146

LV (θ, φv) = Êt
[
Vθ,φv (st)− V̂ targt

]
(3)

where V̂ targt is the value function target.147

We argue that the additional overhead introduced by the reliance of the policy optimization on value148

gradient, increased number of hyperparameters, and higher memory footprint in case of separate149

network architecture can be overcome by a single network architecture which partially separates the150

policy and the value. At the same time, our experimental results show that this partial separation151

prevents the model from being trapped into the common pitfalls of the fully shared network.152

3.2 Relevant Feature Learning using Attention153

To ensure maximum separation between the features learned by the partially separated policy and value154

sub-networks, we propose to incorporate individual attention mechanisms within the corresponding155

blocks of the network. Attention has been shown as an effective means to learn high quality and156

meaningful representation. A good number of attention mechanisms have evolved depending on the157

type of feature domain they focus on. We propose to use attention modules similar to Squeeze and158

Excitation (SE) network that explicitly models the inter-dependencies between the channels of its159

convolutional features. The Squeeze and Excitation block leverages global information to put relative160

importance to the useful features compared to the less useful ones. The SE block in the later layers of161

a deep network enables distinct feature learning in a highly class-specific manner while in the initial162

layers it learns in a class-agnostic manner. This characteristic of the SE block has made it a suitable163

choice for our task, where we need to learn distinct features relevant to policy and value. Thus, we164

propose to deploy the SE block only in the split value and policy section of the network.165

Our architecture incorporates the SE block in almost the same fashion as SENet for the Residual166

Blocks; however, we add extra SE attention block for the convolutional layers outside of the Residual167

block (See Section ?? for details). To utilize global information beyond the local receptive field of168
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filters, the squeeze operation in the attention block first encodes a channel descriptor z ∈ RC by169

global average pooling. Each element of z is defined as:170

zc = Fsq(uc) =
1

H ×W

H∑
i=1

W∑
j=1

uc(i, j), (4)

where uc ∈ RH×W and U = [u1, u2, ..., uc] denotes the convolved feature output produced by171

the previous convolutional layer. In the next phase, the excitation operation attempts to capture172

channel-wise nonlinear dependencies based on the channel-descriptor z. The excitation operation is173

realized by two fully-connected (FC) layers around the non-linearity:174

s = Fex(z,W ) = σ(g(z,W )) = σ(W2δ(W1z)), (5)

where σ refers to the sigmoid activation function, δ refers to the ReLU function, W1 ∈ RC
r ×C , and175

W2 ∈ RC×Cr ; r denotes the reduction ratio parameter between the two FC layers. Finally, the input176

feature map U is rescaled as follows using the learned activation s:177

x̄c = Fscale(uc, sc) = scuc, (6)

where X̄ = [x̄1, x̄2, ..., x̄c]. This way, a set of channel weight is learned to recalibrate the channel178

response. Thus, the attention block on the policy and value branch enables attented feature learning179

specific to the policy and value functions respectively. From our experiment, it is also evident that the180

attention mechanism coupled with the contribution of Section 3.1 helps to attain the same level of181

decoupling as the method with two separate network.182

4 Experiments and Results183

We evaluate our proposed architecture on the complete Procgen benchmark presented in Cobbe et al.184

[2020], which consists of 16 distinct environments with procedurally generated levels. The availability185

of highly diverse procedurally generated levels across a wide variety of game environments has186

motivated us to choose Procgen as our testbed. Procgen prodives a difficulty setting to tune the187

difficulty of an environment’s level generation, which can be set to either "easy" or "hard". We188

experiment with the easy mode of difficulty for 25 million total timesteps as per the recommendation189

of Cobbe et al. [2020]. We train the model on 200 levels and test on the full distribution of the levels.190

4.1 Network Architecture191

Following previous works involving Procgen, we chose IMPALA’s deeper residual CNN architecture192

as our backbone citepcobbe2020procgen[Cobbe et al., 2021][Raileanu and Fergus, 2021]. Although193

this is a relatively large model, it strikes a good balance between the performance on the highly194

diverse environment and the required computational power [Cobbe et al., 2020]. This particular195

IMPALA CNN architecture has 15 convolutional layers divided into three groups [Espeholt et al.,196

2018]. Each group has a similar configuration like Conv - Pooling - Residual Block - Residual Block197

where in turns each residual block includes two Conv layer. APDAC shares the first two blocks (10198

convolutional layers) of the IMPALA CNN, then branches out for the third block. Thus, APDAC199

employs five separate convolutional layers each for policy and value function in order to learn features200

distinctly. Finally, it incorporates one attention unit per residual block along with one at the very201

beginning of the separation and another just following the first convolutional block.202

We implement APDAC on top of the implementation of IDAAC Raileanu and Fergus [2021]. We203

also used the same PPO code used in Raileanu and Fergus [2021] which is actually built using the204

PyTorch implementation of Kostrikov [2018]. When training PPO and IDAAC, whenever applicable,205

we followed the same hyperparameter setup from Raileanu and Fergus [2021]. The only difference206

is that we reduced the number of mini batch size to minimize computational cost. IDAAC trials207

were run using the best hyperparameters for each individual Procgen environment as established in208

Raileanu and Fergus [2021].209
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Figure 2: Test performance of PPO, IDAAC, and APDAC over 8 Procgen environments. Mean and
standard deviation are calculated over 10 trials, each with a different seed.

4.2 Comparative Analysis210

In our experiments, we compare the performance our approach, APDAC, with the representatives211

from two other network topologies. PPO serves as a representative of the models with fully shared212

policy and value networks, whereas IDAAC represents those having separate policy and value net-213

work[Schulman et al., 2017][Raileanu and Fergus, 2021]. In addition to decoupling the optimization214

of the policy and value function using two fully separate networks, IDAAC also uses a discriminator215

loss function to decrease the dependency on the instance specific aspects of the environment which216

are irrelevant to learning good policy. Figure 2 shows the rolling mean test score averaged over ten217

trials for each of the eight environments from the Procgen benchmark. The rolling standard deviation218

between these trials is calculated as well, with confidence intervals bounding one standard devation219

above and below each curve. In these results, APDAC sees significant gains in the performance220

compared to the shared network approach shown as PPO. Furthermore, it performs similarly, and in221

some cases even better, than the existing state-of-the-art, IDAAC, and does so with fewer required222

parameters. As such, we conclude that APDAC succeeds as an efficient and performative compromise223

between the two existing topologies.224

4.3 Ablation225

To evaluate the contribution of each proposed component we further experiment with an ablated226

version of our proposed approach, which eliminates all attention blocks. Thus, this network includes227

only the partially seperated policy and value representation and do not incorporate the contribution228

mentioned in Section 3.2. We denote this model as Partially Decoupled Actor-Critic (PDAC). To229

determine the difference in performance brought by this ablation, we compare the results achieved230

by PPO, APDAC, and the ablation, PDAC, across the entire Procgen benchmark, via the same231

experimental setup as before. Figure 3 shows the ablation results from three example environments,232

in which we see APDAC performing better, to an extent, than PDAC. Indeed, it is clear from the233

comparison with PPO that APDAC’s main performance gain comes from the partial separation of234

policy and value network. As such, sharing the initial part of the network doesn’t harm performance,235

and in fact reduces the number of parameters as compared to the network architecture with two236

separate networks.237
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Figure 3: Ablation study for PPO, PDAC, and APDAC on the test distribution for three Procgen
environments. Mean and standard deviation are calculated over 10 trials, each with a different seed.

5 Conclusion238

In this work, we discuss a current systemic issue in deep RL regarding lack of performant generaliza-239

tion. There is an asymmetry in the information required to train the policy and value functions. Thus,240

fully shared policy and value networks are prone to overfitting, harming generalization. However,241

the policy approximation requires gradients from the value function to learn the optimal policy, so a242

performant model cannot completely isolate the two. Our solution, APDAC, addresses these issues in243

an efficient way by partially decoupling the policy and value networks while also adding attention244

mechanisms to each sub-network in order to efficiently identify relevant important features. Our245

approach contrasts with current methods in the partial separation of its networks and keeping the num-246

ber of convolutional layers lower than its fully separate counterpart. Our results demonstrate similar247

benefits of a fully decoupled approach while reducing the overall parameters and computational cost.248

We argue that such a compromise is a promising way forward in the pursuit of generalization in deep249

RL on the grounds of both performance and efficiency. The low performance gains between APDAC250

and the ablation can be considered as a limitation to this work, however, attention as it relates to the251

field of deep RL is still a growing field of study, and our work proves that there is an opportunity for252

the inclusion of attention to achieve generalization. A hopeful future direction is to investigate more253

beneficial structures for the attention mechanism.254
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Figure 4: Testing performance for PPO, IDAAC, and APDAC across the entire Procgen benchmark.
Mean and standard deviation are calculated over 10 trials, each with a different seed.

10


	Introduction
	Related Work
	Attention-based Partially Decoupled Actor-Critic
	Partial Decoupling of Policy and Value function
	Relevant Feature Learning using Attention

	Experiments and Results
	Network Architecture
	Comparative Analysis
	Ablation

	Conclusion
	Appendix

