
Published as a workshop paper at AI4Mat 2024

A REINFORCEMENT LEARNING PIPELINE FOR BAND
GAP-DIRECTED CRYSTAL GENERATION

Prashant Govindarajan∗1,3, Mathieu Reymond1,4, Santiago Miret2, Antoine Clavaud1,3,
Mariano Phielipp2, Sarath Chandar1,3
1Mila, 2Intel, 3Polytechnique Montréal, 4Université de Montréal

ABSTRACT

Property-driven AI-automated material discovery presents unique challenges ow-
ing to the complex nature of the chemical structural space and computationally
expensive simulations. For crystalline solids, the band gap is an important prop-
erty for designing semiconductors and batteries. However, optimizing crystals for
a target band gap is difficult and not well-explored. Reinforcement learning (RL)
shows promise towards optimizing crystals, as it can freely explore the chemi-
cal space. However, it relies on regular band gap evaluations, which can only be
accurately computed through expensive Density Functional Theory (DFT) simula-
tions. In this study, we propose an active learning-inspired pipeline that combines
RL and DFT simulations for optimizing crystal compositions given a target band
gap. The pipeline includes an RL policy for predicting atom types and a band gap
network that is fine-tuned with DFT data. Preliminary results indicate the need for
furthering the state-of-the-art to address the inherent challenges of the problem.

1 INTRODUCTION

Discovering new materials with desired properties is a long and cumbersome process even with
accurate simulations and sufficient computational resources. The computational materials design
process often involves optimization in the exponentially large chemical space amidst complex
atomic simulations for computing energies and properties. Recently, there has been a lot of
enthusiasm to discover novel organic and inorganic materials for various industrial applications
using machine learning (Miret et al., 2024; Duval et al., 2023; Musielewicz et al., 2022). Crystals
are of particular interest due to their distinct properties that are useful in modern electronics,
optics, photovoltaics, and nanotechnology (Govindarajan et al., 2024). Crystals are characterized
by ordered and periodic arrangement of atoms in the 3D space governed by symmetry groups.
One of the useful properties of solid-state crystals is the band gap, which is the energy difference
between the lowest unoccupied and highest occupied electronic states. It relates to the conductivity
of the material, with conductors having zero band gap, insulators having a value greater than 5 eV,
and semiconductors in the intermediate range. The band gap is generally estimated using density
functional theory (DFT) simulations. However, accurate estimation of the band gap is difficult and
time-consuming even for simple crystal systems (Perdew, 1985). Most recent studies that focused
on crystal discovery do not optimize for this property.

From a reinforcement learning (RL) perspective, learning a crystal generation policy with a
fully online feedback scheme for band gap optimization is implausible considering the high
computation times of DFT. Meanwhile, offline learning (i.e., learning on a static dataset of samples
and properties) was explored by Govindarajan et al. (2024), which highlighted the advantages and
shortcomings of a fully offline approach for energy and band gap optimization. This study aims to
extend the work by incorporating DFT simulations in an online RL training pipeline such that the
number of DFT calls is reduced. We implement Deep Q Networks (DQN) (Mnih et al., 2015) with
a pretrained neural network reward function that acts as a proxy for the band gap output of DFT.
Calls to DFT are made at a fixed frequency, allowing fine-tuning of the reward model after every
successful DFT simulation. The pipeline also includes structure relaxation by a state-of-the-art
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machine learning interatomic potential (MLIP) model prior to simulation (Deng et al., 2023).
Overall, through simple experiments, we demonstrate the performance of an online RL approach
for band gap-conditioned crystal generation and highlight the challenges for future work.

2 METHODS

We adapt the formulation by Govindarajan et al. (2024) for the RL problem and environment. It fol-
lows an MDP M = ⟨S,A, T , R, γ⟩, where S is the state space, A is the action space, T (s′|s,a) :
S × S ×A → [0, 1] is the environment transition probability function, R(s,a) : S ×A → R is the
reward function, and γ ∈ [0, 1] is the discount factor. The state space consists of empty, partially
or fully filled multigraphs (G(V,E)) of crystal structures. The action space A consists of atomic
elements from which the agent assigns an atom at a given site in a crystal. For simplicity, our exper-
iments are limited to optimizing actions for a single crystal skeleton (appendix A.2 and A.3) with
10 atoms. The action space consists of 21 elements (appendix A.3) in the periodic table that do not
include transition metals, lanthanides, actinides, and rare elements whose presence results in inaccu-
rate and slow DFT calculations. Hence, |A| = 21, |S| = 1021. For all our experiments, intermediate
rewards are zero, and the final reward aims to minimize the distance between the crystal’s estimated
band gap p and the target band gap p̂. Additionally, it penalizes DFT failures and crystals with more
than 5 atom types, as these are unlikely to result in successful DFT computations.

r(sN ) =

{
−1 if more than 5 unique elements (or) DFT fails
exp(−(p− p̂)2) otherwise

(1)

The objective of this RL problem is to learn a policy πθ to generate optimal crystals (i.e., terminal
state sN ) with high rewards, i.e., band gap value closer to the target. The estimated band gap p for a
given crystal could either be obtained from a computationally cheaper and less accurate ML model
fine-tuned for band gap prediction, or DFT simulation. For the former, we fine-tuned a pre-trained
CHGNet model (Deng et al., 2023) by replacing the final layers with a network that predicts the band
gap. We used the MP-20 dataset for fine-tuning (a subset of the Materials Project database containing
crystals with less than 20 atoms, previously used by Xie et al. (2022)). For all our experiments, we
choose a target of p̂ = 1.12 eV, which is the band gap of Silicon at room temperature (Klimm, 2014).
Our pipeline consists of four components: 1) RL policy learning (DQN), 2) structure relaxation
using MLIP, 3) DFT simulation, and 4) reward model fine-tuning. In our experiments, we aim to
see if the online agent converges to an optimal solution with a parameterized reward model that
is dynamically trained in the loop based on DFT outputs. The pipeline is illustrated in fig. 1a.
We use Quantum Espresso v7.1 (Giannozzi et al., 2009), an open-source software suite for DFT
calculations, with PBE functional (Perdew et al., 1996) and CUDA support. Prior to simulation, we
relax the generated crystal using CHGNet (Deng et al., 2023), a state-of-the-art MLIP for crystal
energies and forces with the FIRE (Bitzek et al., 2006) optimizer.

3 EXPERIMENTS

EXPERIMENT Reward Initial Policy

Exp. 1 MLP Random
Exp. 2 DFT Random
Exp. 3 MLP & DFT Random
Exp. 4 MLP & DFT Pretrained

Table 1: Online DQN experiments for band gap opti-
mization.

To assess the importance of DFT compu-
tations in the RL pipeline, we design a
set of 4 different experiments. Our first
online RL experiment deals with training
DQN to optimize the composition of a sin-
gle crystal skeleton for the band gap, which
is fully based on an MLP model with no
DFT involved. In our second experiment,
we train another online DQN model with
purely DFT-based rewards. This experi-
ment involves querying DFT after every
episode and is hence extremely slow. Our
next experiments fine-tune MLP-BG, the MLP model that predicts the band gap with values ob-
tained from DFT simulations. While training the RL algorithm, we query DFT at a given frequency
of once in 30 episodes, and a successful simulation allows the reward model to be fine-tuned in a
supervised manner. For the third experiment, the initial policy is a freshly initialized graph neural
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Figure 1: (a) Online RL pipeline with DFT in the loop for automated material design. The policy
generates a composition given a crystal skeleton, which is evaluated by a band gap model dynami-
cally trained with DFT outputs. (b) Learning curve for experiments 1 (blue) and 2 (red). With a fully
MLP-based reward model, the agent learns the optimal policy given sufficient episodes. The trend
is observable in the ongoing experiment 2 (fully DFT-based), but is extremely time-consuming.

network and the exploration scheme follows the first two experiments. For the fourth experiment,
we use a pre-trained initial policy obtained from the first experiment. We fine-tune MLP-BG by
taking 10 stochastic gradient steps against a mean-squared error (MSE) loss objective on a single
sample with a reasonably higher learning rate.

3.1 RESULTS

We first discuss the experiments without reward fine-tuning. In experiment 1, we show that by
training a DQN model with a fully MLP-based reward model, it is possible to reach an optimal
policy (fig. 1b), thereby the desired band gap of 1.12 eV. Note that we do not explicitly ensure
the validity or stability of the generated crystals for this experiment, and they are not relaxed
during policy learning. In experiment 2, where the rewards are purely based on DFT calculations,
the learning curve shows a similar trend, i.e. increasing rewards with more training. For this
experiment, we relax the crystal structure with CHGNet prior to DFT simulation. However, since
the computation times of rewards were orders of magnitudes higher, training the model for 1 million
steps was impractical. While each episode demands a DFT calculation, many failed (table 2)
resulting in a reward of -1. Nevertheless, there were close to 4000 successful DFT calls.

For the third experiment, the agent gets rewards from both MLP-BG and DFT, while the for-
mer is fine-tuned with values obtained from the latter. This is a very hard problem for the agent for
two main reasons. First, the reward model is dynamic and this might lead to instability. Secondly,
the policy can converge to a suboptimal version, leading to the same/similar output crystals that
prevent both the improvement of the policy and the reward model, and thereby lead to wastage of
DFT computations. Moreover, since most of the band gap values obtained from DFT have lower
magnitudes or zero, rigorously fine-tuning the reward model with these samples resulted in the
policy producing crystals of lower (near-zero) band gaps, which is an undesired behavior given
our target is 1.12 eV. This is evident from the learning curves and band gap plots shown in fig. 2
– with more training, the MLP’s band gap converges to less than 0.5 eV and does not improve
from there. The band gaps obtained from DFT during training is highly noisy, with only a small
fraction of simulations resulting in a band gap of close to 1.12 eV. Similar results are also observed
in experiment 4, where we start training with a policy pretrained with MLP-based rewards in
experiment 1. This indicates that starting with an MLP-optimal policy does not mitigate the issues
and challenges discussed above.
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(a) Learning curve for experiments 3 (blue, red),
i.e., random initial policy and experiment 4 (or-
ange, green), i.e., pretrained initial policy. They
appear to converge to a suboptimal policy.

(b) MLP-predicted band gap plot for experiments
3 and 4. In all models, the band gap appears to
converge to a value of less than 1.

(c) DFT-estimated band gap plot for experiments
3 and 4. In all models, the DFT outputs appear to
be highly noisy and have lower values.

(d) Fine-tuning loss curve for the band gap model
(i.e., which is used in reward calculation). The
curves do not show a clear trend of decreasing
loss.

Figure 2: Results from experiments 3 and 4. They have two models with a different learning rate for
fine-tuning the band gap model – 0.001 (less rigorous, orange) and 0.005 (more rigorous, green).

EXPERIMENT % DFT Calls % DFT Success Band Gap Avg. Simulation Time (s)

Exp. 1 0 N/A N/A N/A
Exp. 2∗ 100 21.21 0.046 40.54
Exp. 3(1) 3.33 38.68 0.162 51.02
Exp. 4(1) 3.33 9.01 0.176 64.77

Table 2: Insights from online RL experiments – 1) % of DFT calls made, 2) % successful DFT
simulations, 3) average DFT-computed band gap of the last 100 successful DFT simulations, and 4)
average DFT simulation time. The models seldom generate materials with band gaps close to the
target, indicating the need to improve the pipeline further (∗ – ongoing, (1) – lr reward = 0.001).

4 DISCUSSION AND CONCLUSION

In automated material design, considering the difficulty of using offline RL approaches and the
impracticality of fully DFT-based online approaches, we emphasize the need for a middle ground
that uses both machine learning property predictors and DFT. In this work, we attempt to address the
band gap optimization problem by integrating RL and DFT simulations – the agent receives rewards
from both a machine learning model and DFT simulations. We highlight the issues in training a
DFT-in-the-loop pipeline that is open for future work. First, we rely on an MLIP for crystal structure
relaxation. Relaxing with DFT could significantly reduce the noisy nature of band gap calculations.
However, DFT relaxation increases simulation time by manifold and is infeasible for large-scale
training. Second, further investigation is required to determine the appropriate way to fine-tune the
reward model such that the learning is stabilized and the policy does not converge to a suboptimal
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solution. Finally, the pipeline must be scalable in terms of learning from large datasets. We also do
not consider diversity as a factor for performance which is important in scientific discovery, because
it cannot be characterized with deterministic RL policies. In conclusion, we expect our pipeline
to be modular in terms of substituting RL and fine-tuning components with other approaches like
language and generative models, and more accurate DFT simulations.
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A APPENDIX

A.1 COMPUTE

We used NVIDIA A100-SXM4-80GB GPUs for training models and performing DFT simulations.
For faster data loading, we used 64 CPUs.

A.2 GRAPH REPRESENTATION

Following Xie & Grossman (2018), we use multigraphs to represent crystals in 3 dimensions. In
multigraphs, a pair of nodes can be connected by more than one edge. In graph G = (V,E) with
nodes (atoms) V = {v0, · · · , vN−1} and edges, E = {euv,(c1,c2,c3)|0 ≤ u ≤ N − 1, 0 ≤ v ≤
N − 1, c1, c2, c3 ∈ Z, u, v ∈ V }, euv,(c1,c2,c3) is a edge from atom u to atom v in a unit cell
translated by the vector c1l1 + c2l2 + c3l3. Following Govindarajan et al. (2024), we define a
crystal skeleton as that with all the structural information (e.g. lattice parameters L, coordinates
of atomic sites X , space group, and graph connectivity) but with hidden/masked atomic elements.
This formulation makes it easier for the RL agent to focus on optimizing only the composition in the
discrete chemical space, thereby simplifying the search problem. Likewise, we also use MEGNet
architecture, which is a GNN suitable for materials and molecules (Chen et al., 2019).

Figure 3: Crystal Skeleton

A.3 EXPERIMENTAL DETAILS

For all our experiments, we attempt to determine the atomic composition of a single crystal skeleton.
This skeleton is obtained from an existing crystal in the validation set of MP-20 (ID: mp-1114693).
It contains 10 atoms, and has the chemical formula Rb3ScF6. The space group is 225, and is hence
cubic. The original band gap is 6.2281, making it an insulator. The action space consists of 21
elements in the vocabulary – Li, Na, K, Rb, Be, Ca, Mg, Sr, H, C, N, O, P, S, Se, F, Cl, Br, He, Ne,
Kr.

A.4 DQN HYPERPARAMETERS

• Q-Network: MEGNeT (Chen et al., 2019) architecture that predicts Q-values for all actions
given a state.

• Discount factor: 0.99

• Target update frequency: 1000 (steps)

• Batch size: 64

• ϵstart (initial exploration rate): 1.0 for Exp 1, 2, and 3. 0.2 for Exp. 4.

• ϵmin (minimum exploration rate): 0.001

• Decay method: Exponential (rate: 10−5)

• Replay buffer size: 200,000
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Figure 4: Rb3ScF6 crystal structure.

A.5 DFT SETTINGS (QUANTUM ESPERESSO)

DFT single-point SCF calculations were performed using the open-source Quantum Espresso v7.1
(Giannozzi et al., 2009). Our simulation protocol was uniform for all experiments that involve DFT.
We obtained solid-state pseudopotentials (SSSP) version 1.3.0 (Prandini et al., 2018). We used
(3,3,3) k-points and David diagonalization method. Simulations were performed for at most 200
iterations. We acknowledge that our DFT setup for calculating band gaps, while being simpler and
comparatively faster, is far less accurate than other methods (e.g. B3LYP functional (Lee et al.,
1988) and GW (Aryasetiawan & Gunnarsson, 1998)).

A.6 BAND GAP MODEL (MLP-BG)

For training a band gap model, we used a state-of-the-art crystal graph neural network (CHGNet),
proposed by Deng et al. (2023) with initial pre-trained weights for force/energy estimation. We per-
formed supervised learning for 1000 epochs with the training set of the MP-20 dataset and evaluated
it against the validation set. We also evaluate the model’s performance in predicting the band gap
values from Quantum Espresso (QE). We notice that the validation loss reaches a stable value fairly
soon, indicating overfitting. This is reflected while assessing the scatter plots in fig. 6. Moreover,
the band gaps from QE are not always close to those from the MP-20 dataset, and this leads to worse
performance when compared with QE band gaps. However, at this point, we do not perform any
other experiments to further reduce the generalization error.
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Figure 5: Training curves of band gap prediction model.

(a) % Comparing band gap predictions from the trained CHGNet
model with ground truth values from MP-20 validation set.

(b) Comparing band gap predictions from the trained CHGNet
model with Quantum Espresso simulation outputs for MP-20 vali-
dation set.

Figure 6: Examining the predictive performance of the trained band gap model.

9


	Introduction
	Methods
	Experiments
	Results

	Discussion and Conclusion
	Appendix
	Compute
	Graph Representation
	Experimental Details
	DQN Hyperparameters
	DFT Settings (Quantum Esperesso)
	Band Gap Model (MLP-BG)


