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Abstract

Multiple Sequence Alignment (MSA) plays a piv-
otal role in unveiling the evolutionary trajectories
of protein families. The accuracy of protein struc-
ture predictions is often compromised for protein
sequences that lack sufficient homologous infor-
mation to construct high-quality MSA. Although
various methods have been proposed to gener-
ate virtual MSA under these conditions, they fall
short in comprehensively capturing the intricate
co-evolutionary patterns within MSA or require
guidance from external oracle models. Here we
introduce MSAGPT, a novel approach to prompt
protein structure predictions via MSA generative
pre-training in the low-MSA regime. MSAGPT
employs a simple yet effective 2D evolutionary
positional encoding scheme to model the complex
evolutionary patterns. Endowed by this, its flexi-
ble 1D MSA decoding framework facilitates zero-
or few-shot learning. Moreover, we demonstrate
that leveraging the feedback from AlphaFold2 can
further enhance the model’s capacity via Rejec-
tive Fine-tuning (RFT) and Reinforcement Learn-
ing from AF2 Feedback (RLAF). Extensive ex-
periments confirm the efficacy of MSAGPT in
generating faithful virtual MSA to enhance the
structure prediction accuracy (up to +8.5% TM-
Score on few-shot scenarios). The transfer learn-
ing capabilities also highlight its great potential
for facilitating other protein tasks.

1. Introduction

The advent of deep learning has significantly propelled
progress across various scientific domains, exemplified by
breakthroughs such as AlphaFold series (Abramson et al.,
2024; Jumper et al., 2021) for accurate biomolecular in-
teraction predictions, AlphaGeometry (Trinh et al., 2024)
for intricate geometry and mathematical reasoning to
name a few. Among these, AlphaFold2 (AF2) represents a
landmark within structural biology, achieving an in silico
precision of approximately 90% atomic accuracy that rivals
wet lab experiments on protein structure predictions (PSP).
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(b) Overall performance comparisons on three
natural MSA-scarce benchmark.

Figure 1. (a) The illustration of MSA and (b) performance
comparisons between MSAGPT and advanced baselines.

The remarkable success of AF2 can be attributed to its inno-
vative use of co-evolutionary information supported by the
Multiple Sequence Alignment (MSA). MSA aggregates ho-
mologous sequences from vast databases, providing a com-
prehensive overview of evolutionary trajectories, which is
critical for accurately predicting protein structures (Abram-
son et al., 2024; Jumper et al., 2021; Baek et al., 2021).
An illustrative example in Figure 1(a) showcases that the
correlations analysis among amino acids (AAs) sites could
reveal contacts or conservative regions in the folding struc-
ture. Unfortunately, not all proteins possess a rich set of
homologous counterparts. Statistical investigations reveal
that approximately 20% of metagenomic proteins (Pearson,
2013) and around 11% of proteins from eukaryotic and viral
origins (Perdigdo et al., 2015) are classified as "orphan" pro-
teins. This presents a significant challenge for MSA-search
algorithms in constructing high-quality MSA, consequently
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impeding the performance of PSP models (Jumper et al.,
2021).

Drawing on the impressive capabilities of large lan-
guage models endowed either by the autoencoding (De-
vlin et al., 2018) or the autoregressive language modeling
regime (Bubeck et al., 2023; Touvron et al., 2023), protein
language models (PLMs) have been developed to unveil the
evolutionary patterns and sequence characteristics intrinsic
to protein structures. Specifically, generative PLMs (Ni-
jkamp et al., 2023; Chen et al., 2024; Ferruz et al., 2022),
trained on vast protein databases (Suzek et al., 2007; Berman
et al., 2000; Steinegger et al., 2019b; Steinegger & Sod-
ing, 2018) have achieved unparalleled success in generating
novel proteins with desired structural properties. These
achievements underscore the efficacy of language models
in identifying evolutionary patterns within individual pro-
tein sequences. Inspired by this, subsequent works (Rao
et al., 2021; Zhang et al., 2021) attempt to further integrate
MSA as the input or by directly generating virtual yet in-
formative MSA (Truong Jr & Bepler, 2024; Zhang et al.,
2023b;a) to provide additional evolutionary insights. These
approaches usually adopt customized attentions that merely
allow attention aggregated among specific directions, such
as axial attention (Ho et al., 2019), for separately analyzing
the row- and column-wise co-evolutionary patterns in MSA.
However, these attention mechanisms usually have low effi-
ciency in capturing the evolutionary information in MSA,
or even fail to adequately capture intricate co-evolutionary
dynamics. Taking Figure 1(a) as an example, it is imperative
to concurrently analyze the pairwise or high-order relation-
ships of amino acid sites across all homologs to deduce
the structural constraints influencing the folding structures,
which may not achieved by customized attention. The lim-
ited capacity may result in compromised performance on
the task that highly resorts to co-evolutionary information.

Built upon the insights mentioned above, we introduce
MSAGPT, a simple yet effective framework that prompts
protein structure prediction via MSA generative pre-training.
This method facilitates de novo MSA generation, aiding in
protein structure prediction in scenarios with limited MSA
available. MSAGPT is characterized by its unique features:

¢ 2D Evolutionary Positional Encoding. We employ an
innovative dual-axis positional encoding scheme that cap-
tures column- and row-wise co-evolutionary information
concurrently. This method provides a comprehensive under-
standing of complex evolutionary relationships with high
efficacy. enhancing the model’s generative capabilities.

e 1D Zero-/Few-Shot MSA Decoding. With 2D positional
encoding, MSAGPT re-formalizes MSA generation as a
one-dimensional sequence generation task, optimized by
the simple next-token-prediction objective. This enables
MSAGPT to conduct zero- or few-shot MSA generation

under a flexible in-context learning framework.

e Learning from AlphaFold2 Feedback. MSAGPT further
utilizes feedback from AlphaFold2 to reduce hallucinations
during MSA generation. This approach ensures the gen-
eration of reliable and informative MSA, thus enhancing
protein structure prediction.

Extensive experiments conducted on three benchmarks,
CAMEO (Haas et al., 2018), CASP, and PDB (Berman
et al., 2000), demonstrate the superior capacity of MSAGPT
in generating high-quality MSA. Notably, MSAGPT outper-
forms existing MSA generation models on both zero- and
few-shot scenarios. Impressively, AF2 with virtual MSA
generated by MSAGPT significantly improves the structure
prediction accuracy than that with natural MSA on cases
with limited homologous information. Moreover, the subse-
quent Rejective Fine-tuning (RFT) and learning from AF2
feedback (RLAF) stage further enhance the model’s ability
to generate informative and faithful MSA, outperforming
the original MSAGPT by a large margin, as shown in Fig-
ure 1(b). Additionally, we demonstrate that virtual MSA
can also benefit other tasks. We expect MSAGPT to become
integral in supplementing protein-related tasks requiring
critical evolutionary information from MSA. The code, data,
and scripts are available here.

2. Related work

Protein Structure Prediction. Proteins are fundamental
to the various biological processes that sustain, grow, and
protect living organisms. Groundbreaking deep learning ap-
proaches, such as AlphaFold series (Abramson et al., 2024;
Jumper et al., 2021) and RoseTTAFold (Baek et al., 2021),
have been developed to predict the folding structures based
on their sequences. These methods have achieved compa-
rable structure prediction accuracy to conventional wet-lab
experiments. The success of these cutting-edge methods
largely rely on the utilization of MSA, which are retrieved
through search algorithms (Zhang et al., 2020; Zheng et al.,
2024; Johnson et al., 2010; Steinegger & Soding, 2017)
against vast databases (Suzek et al., 2007; Berman et al.,
2000; Steinegger et al., 2019b; Steinegger & Soding, 2018).
However, challenges arise with “orphan” protein sequences,
which lack sufficient homologous sequences for accurate
structure prediction. Single-sequence PSP methods (Lin
et al., 2023; Chen et al., 2024; Wu et al., 2022; Chowdhury
et al., 2022) are designed to infer folding structures directly
from the query protein sequences. Despite these advance-
ments, the accuracy of predictions from single-sequence
methodologies generally falls short of those derived from
MSA-based algorithms.

Protein Language Models. Protein Language Models
(PLMs) have emerged as a groundbreaking development
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Figure 2. The overall framework of prompting protein structure predictions via MSA generation. Left: The challenge faced by
conventional search algorithms on protein with scarce homologous sequences, resulting in suboptimal alignments. Middle-to-Right:
MSAGPT generates informative and high-quality MSA for such challenging queries, presenting a promising approach to overcoming
these limitations. [M] denotes the sequence separator. [S], [E] are the special tokens to represent the start or end of MSA generation.

in computational biology. A family of models including
ESM (Lin et al., 2023; Rives et al., 2021), etc (Elnaggar
et al., 2021), are trained on single sequences, towards under-
standing protein structural features. MSA Transformer (Rao
et al., 2021) further incorporates MSA as the input, achiev-
ing better performance than these single sequence models,
underscoring the importance of utilizing the evolutionary in-
formation from MSA (Frazer et al., 2021; Chen et al., 2023;
Sturmfels et al., 2020). As for protein design, PLMs includ-
ing ProGen (Nijkamp et al., 2023; Madani et al., 2023) and
ProtGPT2 (Ferruz et al., 2022), endowed by the autoregres-
sive training regime, enable the generation of diverse and
realistic protein sequences. To enhance MSA generation,
MSA-Augmentor (Zhang et al., 2023b) and PoET (Truong Jr
& Bepler, 2024) employ the seqs2seqs pre-training, which
adopts the sequential axial attention mechanism to capture
the evolutionary data across and within the input sequences,
both horizontally and vertically. EvoGen (Zhang et al.,
2023a), serving as the meta generative model, aims at pro-
ducing virtual MSA for enhancing protein structure pre-
dictions. However, it highly resorts to external structural
prediction models to optimize its performance.

2.1. Aligning with Human Preferences

Aligning language models with human preferences has
been shown to be effective in improving generation qual-
ity (Bubeck et al., 2023; Rafailov et al., 2023; Schulman
et al., 2017; Team et al., 2023). Learning from human feed-
back based on pre-trained models is a common approach in
achieving this alignment. Existing methods typically em-
ploy supervised fine-tuning using human-annotated datasets
or reinforcement learning from human feedback pipelines.
Reinforcement algorithms such as Proximal Preference Op-
timization (Schulman et al., 2017) (PPO) and Direct Prefer-

ence Optimization (Rafailov et al., 2023) (DPO) are com-
monly used in these pipelines. Inspired by these, we utilize
the feedback from AlphaFold?2 to further enhance the gen-
eration capability of the pre-trained model, which helps
mitigate hallucinations and enables the model to generate
accurate and reliable MSA.

3. Preliminary

Definition 3.1. Multiple Sequence Alignment (MSA).
Given the query protein sequence @ € AL where A
denotes the set of alphabetic symbols used to represent the
20 basic amino acids and L represents the number of amino
acids per sequence, the MSA M € ANXL of Q is com-
prised of N homogeneous protein sequences, which can
be obtained either by searching over protein databases or
generating with MSA generation methods.

Problem 1. Prompting Protein Structure Prediction by
MSA Generation. Given ) with initial MSA M, €
A™*L as the prompt, where n = 0 indicates the zero-shot
MSA generation and n > 0 signifies the few-shot MSA
generation, we target at learning a function f to generate
virtual MSA M, € A™* L based on @ and My, such that
the structure prediction accuracy based on the augmented
MSA My € A tm)xL gionificantly surpasses that based
on the initial MSA Mjpi,

Maug = f(Qu Mnit)a
]Iacc(Q, Maug) > Hacc(Qa Minit)

where the I, is prediction accuracy comparing the predic-
tion result of AF2 and the ground truth.

In this paper, we mainly focus on improving the structure
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prediction accuracy in the low-MSA regime, i.e., the cases
that lack a sufficient number of homologous sequences.

4. Methodology

Given a query sequence and its retrieved natural MSA, we
aim to comprehensively understand the co-evolutionary pat-
terns in MSA, such that we can generate informative virtual
MSA for prompting protein structure prediction in the low-
MSA regime. Conceptually, the co-evolutionary informa-
tion is analogous to the covariance matrix in mathematics,
depicting the correlations among amino acids by compar-
ing pairwise or high-order correlations among amino acid
sites in MSA, as depicted in Figure 1(a). To achieve this
goal, MSAGPT contains two key adoptions, distinguishing
it from existing MSA-based PLMs that rely on customized
attentions (Jumper et al., 2021; Rao et al., 2021; Zhang
et al., 2023b; Truong Jr & Bepler, 2024): 2D Evolutionary
Positional Encoding. Introduces an adaptive dual-axis posi-
tional encoding scheme that captures column- and row-wise
co-evolutionary information concurrently. And 1D Zero-
/Few-Shot MSA Decoding. Re-formalizes MSA generation
as a one-dimensional sequence generation task based on the
proposed 2D positional encoding scheme, which enables
MSAGPT to conduct zero- or few-shot context learning
MSA generation framework. The overall framework is il-
lustrated in Figure 2.

4.1. 2D Evolutionary Positional Encoding

Vanilla transformers typically use 1D positional embeddings
to incorporate absolute and relative positional information
of tokens. However, when dealing with MSA, which rep-
resents stacked homologs, the structure is different. Each
row of MSA corresponds to a distinct protein sequence,
while each column represents the evolutionary trajectories
of a specific amino acids (AAs) site. To effectively capture
the evolutionary patterns, recent approaches (Jumper et al.,
2021; Rao et al., 2021; Zhang et al., 2023b) have employed
decoupled axial attentions, which are designed to capture
explicit co-evolutionary information along the rows (pro-
tein sequences) and columns (AAs sites). However, these
methods often suffer from low efficiency in capturing the
information dynamics or fail to capture the evolutionary
information adequately.

In light of this, we introduce a novel two-dimensional evo-
lutionary positional encoding scheme, illustrated in Fig-
ure 2. Given an MSA M € AN*L we define a 2D
positional id matrix P € N2X¥XL where the first posi-
tional id Py € NN *L indicates the column position, i.e.,
Pyli, ] ={0,1,---, L}, and the second positional id Py in-
dicates the row position, i.e., P [j,-] = {0,1,--- , N}. The
two positional ids are projected into two vectors added to the
input token embeddings. We utilize the Rotary Positional

Axis Attention Framework N i MSAGPT <N
Row-wise Attn Column-wise Attn 2D Evolutionary Position Enhanced Attn b
FaPyPw|  [FAPYPW] = )
-> W FAPYPW LKAYGH
t : Ph012345 012345
LKAYGH LKAYGH ' PL0o00000 111111
K Copad CGkPA?

Information Flow to G : | ‘

Figure 3. Comparisons among the axial attention (exemplified
by (Rao et al., 2021)) and the one in MSAGPT in a single layer.
Here we focus on the information aggregated to the AA “G”.
The 2D evolutionary position enhanced attention shows higher
efficiency than the decoupled axial attentions with one-step aggre-
gation to attain sufficient information.

Encoding (RoPE) (Su et al., 2024) technique, specifically
adapting its two-dimensional variant' to suit our 2D posi-
tional encoding requirements.

Comparison with Axial Attentions. Considering the 2D
positional id (Py, P), the self-attention among AAs («, ()
meets the following unit patterns, as illustrated in Figure 3:

o P = Poﬁ & Pp # Plﬁ . Indicates o and 3 reside in
the same site across different protein sequences, such as
the AA pair (A, K) and (P, G), enabling column-wise self-
attention that highlights evolutionary patterns conserved
across sequences. e P # P(? & P = Plﬁ. Suggests
« and S are positioned in the same protein sequence but
at different sites, such as the AA pair (A, P) and (K, G),
facilitating row-wise self-attention that captures sequence-
specific features.

o Pgt # Pg & Py # PiB . Denotes o and (3 lack explicit
correlation, such as the AA pair (A, G) and (P, K), may
be serving as anchor nodes for complex co-evolutionary
information diffusion.

Conceptually, the 2D positional encoding encapsulates the
explicit row- and column-wise self-attention patterns with
high efficacy. Moreover, it allows unrestricted information
diffusion, that is, enabling any two amino acids to attend to
one another. Such a framework facilitates unveiling complex
co-evolutionary patterns, such as high-order correlations
among AAs, that customized self-attentions might overlook.

4.2. 1D Zero-/Few-Shot MSA Decoding

Leveraging the 2D evolutionary positional encoding, we fur-
ther release the stacked MSA decoding task into the scalable
1D sequence generation framework, without compromising
the integrity of co-evolutionary information. Specifically,
we convert the MSA M € AL into the flatted 1D se-
quence M/ € A™NL_ Similarly, the 2D positional id
matrix P € N2XN XL jg reshaped into a flattened format,

'https://kexue.fm/archives/8397
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P/ € N'*2xNL This allows the model to conduct a simple
auto-regressive generation process, as illustrated in Figure 2.

Discussions. Admittedly, introducing 2D positional en-
coding introduces higher time complexity in comparison
to conventional customized attention mechanisms (from
O(N?L) + O(NL?) to O(N%L?)). However, it is worth
noting that the original stacked nature of MSA poses chal-
lenges for integrating it with acceleration techniques used in
large language models, such as Flash Attention (Dao et al.,
2022; Dao, 2023). The 1D decoding framework, conversely,
can be easily scaled to accommodate in-context learning
frameworks, such as retrieval augmented generation, to fur-
ther enhance the model’s generation capability and expand
its application range. From a practical standpoint, the high
parallelism of the 1D decoding framework demonstrates su-
perior inference speed, benefiting from techniques like Flash
Attention and KV-cache, while incurring negligible memory
overhead compared to customized attention mechanisms.
For further details, please refer to Appendix Section C.4.

S. The Training Pipeline of MSAGPT

The training pipeline involves three successive stages: Stage
1: MSA Generative Pre-Training to obtain the base MSA
generation model; Stage 2: Rejective Fine-tuning (RFT)
to instruct the base model with high-quality MSAs via AF2
annotations, which can reduce generation hallucinations ;
Stage 3: Reinforcement Learning from AlphaFold2 Feed-
back (RLAF) to further enhance RFT model’s capabilities
based on the feedback of AF2. (See Appendix Section C for
training details.)

5.1. Stage 1: MSA Generative Pre-Training

Pre-Training Dataset. We utilize the Uniclust30 MSA
dataset from OpenProteinSet (Ahdritz et al., 2024), which
is processed through an all-against-all search on Uni-
clust30 (Mirdita et al., 2017) using HHblits (Steinegger
et al., 2019a). This results in approximately 16 million
MSAs

Pre-training Objective. We adapt the language modeling
objective (Radford et al., 2019) to the MSA generation task.
The cross-entropy loss for modeling the intrinsic distribution
of MSA M/ € AYNL ig defined as:

NxL

Lee =Eps | Y —logp(M!|MZ,,0) ()

1=0

where M/ € AN is 1D flatted version of the input MSA
and @ is the learned parameter.

5.2. Stage 2: Rejective Fine-tuning (RFT)

Noted that the pre-trained dataset inevitably contains noisy
co-evolutionary patterns, such as large portions of deletions
and insertions, which may mislead the base model to yield
hallucinated cases, i.e., the linguistically reasonable but
intrinsically unfaithful MSA. Thus we select highly-quality
MSAs to further fine-tune the base model via a rejective
sampling procedure based on the AF2-annotation.

RFT Dataset. We collect 120,780 protein sequences
with structures from Protein Data Bank (PDB) (Berman
et al., 2000). For the sequence (), we search its MSA

M e AN*E from UniClust30 (Mirdita et al., 2017) with
HHblits (Steinegger et al., 2019a). Then we sample several
MSA subsets m = {mj,ma,...,m;} with replacement,

where m; € A% and n < N. To assure the information
density of the sampled data, we filter out the MSA with
depth N fewer than [n x i/2]. Subsequently, we employ
AF?2 to score the sampled subset using the structure predic-
tion accuracy I,..(Q, m;). Then the RFT dataset Dggr is
defined as:

Drer = {(Q, mi)|(Tace(Q, mi)) > 010

(Lace(Q. 1) — Luce(@, ) > 62 @

where [,..(Q, —) indicates the prediction accuracy without
using MSAs. Practically, we set the sampling number 7 =
10, the depth of each sampled MSA subset n = 16, §; =
0.9, and A = 0.2, which results in Dgrgr of approximately
60k samples. The base model is fine-tuned on Dgrpr with
the same pre-training objective.

5.3. Stage 3: Reinforcement Learning from AlphaFold2
Feedback (RLAF)

We further employ AF2 as the reward model to perform
the Reinforcement Learning with AF2 Feedback (RLAF)
using Direct Preference Optimization (Rafailov et al., 2023)
(DPO) to further guide the RFT model to decode meaningful
structure-related MSA patterns that align with the preference
of AF2.

RLAF Preference Dataset.  For each query @) from
the PDB, we use the RFT model to generate its MSA
M € AN*L in zero-shot manner. Then, we also sample

several MSA subsets m = {m;,mag,...,m;} and obtain
K

the preference dataset Dppo = {Q(k)7 m® ml(k)} as
k=1
follows,

Dppo = {(Q7 Mw, m])' (Hacc(Q,mw) - Hacc(Qaml)) > 93}
(3)

where we set the 3 = 0.3, rendering the number of prefer-
ence data Dppp = 11k.

RLAF Training Objective. The adapted DPO loss is
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Table 1. The performance of structure prediction on three benchmarked datasets. avg. Depth represents the average depth of searched
MSA across all query sequences. Compared with the base model, the RFT and DPO models achieve higher TM-Score while with lower

pLDDT values.
CAMEO CASP PDB
(avg. Depth = 8.5) (avg. Depth = 4.6) (avg. Depth = 2.6)
Model | Zero-Shot | Few-Shot | Zero-Shot | Few-Shot | Zero-Shot | Few-Shot
[pLDDT TM | pLDDT TM | pLDDT TM |pLDDT TM | pLDDT TM | pLDDT T™M
AF2MSA | 638 554 | 774 714 | 440 32,6 | 542 441 | 552 456 | 61.0 523
MSA-Aug. | 67.7 592 | 774 721 | 56.8 366 | 634 463 | 619 498 | 66.0 553
EvoGen 66.1 603 | 78.6 753 | 482 384 | 551 485 | 57.6 495 | 628 554
MSAGPT | 70.8 614 | 80.8 752 | 59.0 39.8 | 654 510 | 68.6 534 | 71.3 59.6
+ RFT 68.0 605 | 798 764 | 56.8 402 | 640 536 | 66.8 534 | 703 60.1
+DPO 689 62.7| 802 767 | 542 437 | 627 57.0 | 645 53.6 | 680 59.7
+#3.1) #2.4)] +#22) +1.4)] +2.2) (+5.3)| (+2.0) (+8.9)| (+6.7) (+3.8)] (+5.3) (+4.7)
defined as: For MSA generation baselines, we compare MSAGPT,
(ma]Q) its RFT-version and its DPO-version with two advanced
Loro = E(Q,my,mi)eDopo [— log o <B log % MSA generation algorithms: MSA-Augmentor (Zhang
rer (4)  etal., 2023b), which utilizes a sequences-to-sequences pre-
—Blog 6 ((m‘ “%)) )} training architecture incorporating an encoder and a decoder
Trref (172

where g and 7 are initialized by the RFT model and 7r¢

is frozen while 7y is optimized. During the RLAF training
phase, we found that merely using the DPO loss led to
training instability. Thus we also adopt the pre-training loss
L for the chosen answer m,, as a regularization term with
the coefficient factor A in the total loss to mitigate this issue.
The total loss L = Lppo + ALcg, A = 0.1. Another critical
coefficient 8, which measures the penalty intensity of DPO
for incorrect answers is set to 5 = 0.1.

6. Experiments

6.1. Setup

Benchmarked Dataset. We employ the datasets
from CAMEO (Haas et al., 2018), CASP14&15, and
PDB (Berman et al., 2000), which are esteemed bench-
marks in protein structure analysis spanning a diverse array
of biological protein families. For each protein sequence,
we search its MSA on UniClust30 database (Mirdita et al.,
2017) using HHblits (Steinegger et al., 2019a). Given our
focus on addressing the challenge presented by cases with
limited MSA information, we build the benchmark to rep-
resent the real-world MSA-scarce conditions. More specif-
ically, we identify 200 protein sequences with the number
of searched MSA fewer than 20 (8 from cameo, 13 from
CASP14&15, 179 from PDB). All MSA of sequences from
the test set are removed from the pre-train dataset (see Ap-
pendix Figure 9 for details).

Baselines. To assess the performance of MSAGPT, we
adopt AF2 as the benchmark MSA-based PSP algorithm.

based on the axial attention (Rao et al., 2021); and Evo-
Gen (Zhang et al., 2023a), which employs a meta genera-
tive model framework with customized attention, leverag-
ing guidance from AF?2 to refine its MSA generation. As
PoET (Truong Jr & Bepler, 2024) is designed for mutational
scanning tasks, we don’t take it as the baseline. Additionally,
we include the reference model AF2 MSA, which utilizes
all the searched natural MSA for prediction.

MSA Generation Pipeline. Given that MSAGPT can
perform flexible zero- or few-shot MSA generation to ac-
commodate different levels of available evolutionary in-
formation, we define two generation settings to evaluate
models’ performances under varying conditions:

Zero-Shot Generation. MSA generation is conducted using
only the query sequence as input, emphasizing the model’s
ability to infer necessary evolutionary patterns without addi-
tional contexts.

Few-Shot Generation. All the searched natural MSA are
viewed as the prompt to inform the few-shot MSA gener-
ation process. Then the generated MSA, combined with
the initial prompts, serves as augmented data for structure
predictions.

Evaluation Metric. We employ TM-Score, a widely-
used metric for assessing the structural similarity between
predicted structures and ground truth, and pLDDT, a per-
residue measure of local confidence, as metrics. All metrics
are scaled from 0O to 100 (See Appendix Section D for de-
tails).
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6.2. MSAGPT’s Virtual MSAs Reflect the
Co-evolutionary Information

Table 1 showcases the comparative results in three datasets
across different baselines. Notably, AF2 MSA, which relies
solely on the limited searched MSA without incorporat-
ing virtual MSA, exhibits the worst performance. Predic-
tions enhanced with MSA generated by MSA-Augmentor
or EvoGen surpass the performance of AF2 MSA. This
underscores the critical role of high-quality MSA in enhanc-
ing the accuracy of cutting-edge PSP algorithms. Overall,
MSAGPT surpasses other advanced baselines by a large
margin, achieving +1.4% improvement on CAMEO, +8.5%
on CASP, and +4.7% on PDB, as measured by TM-Score.
This significant improvement demonstrates not only the
superior accuracy and effectiveness of MSAGPT but also
its robustness in handling cases with noisy or low-quality
MSA. Compared with the base model, the RFT and DPO
models achieve higher TM-Score but with lower pPLDDT
values. This discrepancy might arise from the presence of
highly confident (according to pLDDT) but lower-scored de-
coys (according to TM-Score), as observed in (Zhang et al.,
2023a), indicating that aligning with the preference dataset,
which is filtered based on TM-Score, makes the model more
inclined to generate truly informative MSA rather than hal-
lucinated ones. Statistically, MSAGPT effectively improves
the prediction accuracy for 91.0% and 88.9% of protein
sequences with limited MSA when compared to AF2 MSA
on Zero-Shot and Few-shot scenarios, respectively. This
significant finding highlights the potential of our MSAGPT
framework to uncover and leverage co-evolutionary patterns
within bio-sequences.

6.3. Rethinking the MSA Selection Strategy

We further study the effect of different depths of virtual
MSA, as shown in Figure 4(a). We observe a trend where
the relative improvement in structure prediction accuracy de-
creases as the depth of virtual MSA increases. The accuracy
based on MSA with 64 MSA sequences even underperforms
those based on only 16 or 32 sequences. We hypothesize
that increasing the number of virtual MSA beyond a certain
threshold may introduce a dilution effect, where the density
of valuable co-evolutionary signals is compromised by the
inclusion of the hallucinated generation noise. To alleviate
this, we explore MSA selection strategies for filtering out
low-quality, noise-inducing sequences while retaining those
that contribute positively to the accuracy of structure predic-
tions, as illustrated in Figure 4(b) (See Appendix Section E
for details).

1D Sequence Similarity or Diversity Measure. We first
arrange MSA by their similarity to the query sequence in
descending order. The results reveal that prioritizing MSA
based on their high similarity to the query, termed as static

—o— Zero-Shot
Few-Shot

AF2MSA 8 16 32 64

(a) Effects of MSA Depths

- N/A
STA-SIM

—e— STA-DIV

—e— DYN-SIM

—— DYN-DIV
TRIM

—e— pTM
pLDDT
™

4 8 12 16 20 24 28 32

(b) Effects of Selection Methods

Figure 4. The effect of different MSA depths and selection meth-
ods. The X-axis indicates the different MSA depths. The Y-
axis represents the TM-Score. The dashed line denotes the non-
selection baseline.

Table 2. Performance comparison between non-selection and
pLDDT-selection models.

| CAMEO | CASP | PDB

Model

| ™ | ™™ | ™
MSAGPT-DPO 76.7 57.0 | 59.7
+ pLDDT Selection | 77.5 57.6 | 60.5

similarity (STA-SIM), does not improve prediction accuracy
compared to the non-selection approach (N/A). On the con-
trary, the static diversity (STA-DIV) strategy, which favors
MSA with lower similarity rankings, slightly outperforms
the baseline, highlighting the importance of sequence di-
versity in enhancing MSA quality. Moreover, we employ
the dynamic approach, initially selecting the most (or least)
similar MSA to the query sequence and progressively incor-
porating additional MSA based on their average similarity
to the cumulatively selected set, termed as dynamic simi-
larity (DYN-SIM) and dynamic diversity (DYN-DIV). The
results further confirm the advantage of fostering diversity
within MSA rather than selecting only the sequences with
high similarities to the query sequence. We also inspect the
effectiveness of the widely-adopted MSA trimming (TRIM)
strategy (Zhang et al., 2023a), which yields a similar TM-
Score to the non-selection baseline, undermining its efficacy
in selecting MSA with high quality.

3D Structure Affinity Measure. We assume that the gen-
erated sequence with high quality should exhibit structural
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Table 3. Performance comparison between with or without virtual
MSA generated by MSAGPT on four protein tasks. ACC is short
for Accuracy.

| CtP | SsP | LocP | MIB
| ACC | ACC | ACC | ACC
w/o Virtual MSA| 11.6 | 66.5 | 58.3 | 57.5

Model

w/ Virtual MSA | 13.1 | 69.0 | 564 | 60.3

congruity with the query sequence, thereby emitting strong
co-evolutionary signals. To validate this, we rank sequences
within MSA by their predicted tertiary structures according
to the pTM, a predicted TM score (Jumper et al., 2021),
pLDDT, and TM-Score, from highest to lowest. These
approaches, especially when guided by the pLDDT score,
consistently select high-quality MSA, evidenced by the en-
hanced TM-Score. We compare the non-selection methods
(N/A) and pLDDT selection methods on the three bench-
marked datasets on few-shot generation scenarios in Table 2.
This confirms our hypothesis that structural similarity plays
a crucial role in effective MSA selections.

6.4. Transfer Learning of MSAGPT

Since protein structures largely dictate their functions, the
virtual MSA, enhancing structure prediction, should simi-
larly benefit other protein tasks. To validate this, we focus
on two protein structural tasks: Contact Prediction (CtP)
and Secondary Structural Prediction (SsP) and two protein
functional tasks: Localization Prediction (LocP) and Metal
Ion Binding (MIB) (Chen et al., 2024). We sample 1,000
sequences from each benchmark and conduct 5-fold cross-
validation (See Appendix Section D.2 for details). Results.

Table 3 demonstrate that incorporating MSA from MSAGPT
consistently surpasses merely using the single sequence on
most tasks. However, it achieves inferior performance on
the LocP task, which agrees with the observation (Li et al.,
2024) that protein language models may not present scaling
behavior on several protein functional or property prediction
tasks. Nevertheless, the results show the great potential of
MSAGPT to contribute to a wider range of protein-related
tasks with generated MSA. We are motivated to explore
additional transfer tasks to assess MSAGPT’s utility across
various domains further.

6.5. Ablation Study

To understand the effect of various positional encoding
strategies on capturing co-evolutionary patterns, we design
four model variants: 1D_gpt: Adopts the standard GPT
positional encoding; 1D_2nd: Utilizes only the second-
dimensional of the 2D evolutionary positional encoding
mechanism; 1D_1st: Utilizes the first-dimensional posi-

22’—‘

1D-gpt

1D-2nd  1D-1st
Model Variants

2D-full

Figure 5. Ablation study with positional encoding variants.

tional encoding; 2D_full: Implements the 2D evolutionary
positional encoding mechanism (See Appendix Section D
for details).

Results. Figure 5 showcases the TM-score distribution
across different model variants. The 1D_gpt exhibits the
lowest performance, attributed to its simplistic approach
of treating the MSA as a concatenation of homologous
sequences, thereby failing to discern any co-evolutionary
patterns. Both the 1D_1st and 1D_2nd demonstrate sig-
nificant improvement over 1D_gpt, by explicitly encoding
column- or row-wise relationships within the MSA, respec-
tively. Notably, the performance of 1D_1st is better than
that of 1D_2nd, suggesting that column-wise covariance
patterns play a more crucial role in structural predictions
than row-wise patterns. This aligns with the understand-
ing that the permutation of sequence order does not alter
the covariance information among residue sites (Rao et al.,
2021). Remarkably, the 2D_full variant, which incorporates
the proposed 2D evolutionary positional encoding, outper-
forms all other models, which underscores its effectiveness
in capturing the intricate evolutionary information present
in MSA.

7. Conclusion

This paper introduces MSAGPT, a novel approach that
prompts protein structure prediction via MSA generative
pre-training, to enable accurate protein structure predictions
in situations where co-evolutionary information is scarce.
To meticulously characterize the co-evolutionary patterns
within MSA, MSAGPT designs two innovative techniques:
the 2D Evolutionary Positional Encoding scheme and the
1D Zero-/Few-Shot MSA Decoding mechanisms. The post-
alignment learning from AlphaFold2 feedback further en-
hances the quality of MSA generation. Empirical experi-
ments conducted on a variety of benchmarks have demon-
strated MSAGPT’s robustness and effectiveness. In the
future, we plan to apply MSAGPT to broader areas, partic-
ularly for tasks that heavily rely on co-evolutionary infor-
mation, and investigate the limits claimed in the Appendix
Section A.
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A. Limitations

In this section, we discuss some limitations that should be resolved in future work.

Scaling behavior of MSAGPT. While we have showcased the effectiveness of MSAGPT in generating informative virtual
MSA, it is important to note that our pre-training was conducted with a model containing 2.8 billion parameters. The
performance and behavior of MSAGPT , when scaled concerning dataset size, model size, and total compute resources,
remain unknown.

General scenarios with sufficient homologs. The primary objective of this paper is to improve the accuracy of protein
structure prediction in cases where there is a scarcity of homologous sequences. However, whether we can further enhance
the accuracy in scenarios where there are already sufficient MSA available, augmented by virtual MSA, remains an open
question.

Transfer Learning on a wide range of tasks. While we have demonstrated the transferability of MSAGPT on several
tasks, including protein structure prediction and protein function prediction, its performance on a broader range of tasks
remains an open question. The ability of a model to transfer its learned knowledge and adapt to new tasks is a critical aspect
of transfer learning. While MSAGPT has shown promising results on the tasks it was evaluated on, it is important to assess
its performance on a more diverse set of tasks spanning various domains and problem types.

B. Border Impact

The aim of this paper is to improve the accuracy of protein structure prediction in cases with limited homologous sequences.
The generated MSA also shows great potential to transfer to other protein-related tasks. By leveraging the information
encoded in the generated MSAs, it is possible to enhance the performance of various protein-related tasks beyond structure
prediction. However, the generative MSA may be misused to contaminate the high-quality nature MSA databases. Thus, it
is necessary to train a classifier to distinguish the real and MSAGPT-generated MSA according to the intrinsic features.

C. Training Settings and Hyper-parameter Studies.

The overall training pipeline is illustrated in Figure 6.

C.1. Pre-Training

To obtain high-quality MSA, we first screen out clusters with sequence lengths from 25 to 2000, and only retain sequences
with the minimum identity of 30% and the largest proportion of gap tokens no more than 10%. The clusters with more
than 10 sequences are left. We randomly shuffle the sequences in the MSA to avoid injecting the order bias. Regarding the
backbone of MSAGPT, we employ the standard transformer decoder framework (Radford et al., 2019; Brown et al., 2020)
and train the model with 2.8 billion parameters owning 36 layers, 2560 embedding size, and 40 attention heads. We employ
batches of 48 MSAs with each MSA containing 12,288 residues. We follow BF16 mixed-precision pre-training strategy. We
use AdamW (Loshchilov & Hutter, 2018) as our optimizer with 31 = 0.9, 83 = 0.95, eps = 10~% and a learning rate of
1.2 x 10~*. We use a cosine learning rate schedule, with a warmup of the first 2.5% steps, and decay the final learning rate
down to 10% of the peak learning rate. We use a weight decay of 0.1 and gradient clipping of 1.0 without dropout. For
the tokenization of the protein data, we use the residue-level tokenizer which is adopted in several PLMs (Lin et al., 2023;
Chen et al., 2024; Nijkamp et al., 2023). To save the GPU memory and accelerate the pre-training process, we substitute
the standard self-attention module with the Flash Attention-v1 (Dao et al., 2022) in each layer. All models are trained on
24 A800 GPUs for 254k updates, consuming about 150 billion tokens. This process consumes approximately 150 billion
tokens, requiring around 2.7 x 10'® floating point operations (FLOPs).

Statistics of Pre-trained Dataset Figure 7 illustrates the length and depth distribution of the pre-training dataset.

C.2. RFT

We fine-tune the base model using the pre-training cross-entropy loss on Dggr with training only one epoch. Specifically,
we adopt the same experimental settings as that used in the pre-training stage, except for the learning rate of 1.0 x 10~° by
default. Following the pre-training phase, the model undergoes a rejective fine-tuning process, which is more energy-efficient.
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Figure 6. The overall training pipeline and the illustration of preference dataset construction process for SFT and DPO learning
stages.

Table 4. Performance comparison between different relative improvement threshold 6> values.
Threshold62 | 0 | 02 | 05

MSAGPT+RFT| 61.2 | 62.5 | 61.3

This stage is executed on 8 x A800 GPUs for a single epoch for about two days.

RFT Dataset Filtering Threshold When curating the RFT dataset, we first sample multiple MSA subsets for each protein
structure, and select high-quality MSA subsets based on the following criteria: (1) the absolute structure prediction accuracy
using the MSA subset, as measured by TM-score, should be larger than 6;, and (2) the relative improvement of the prediction
accuracy after using the MSA subset, as compared to single sequence prediction, should be larger than 65. We set 6, = 0.9,
and experiment with different 6, values, as shown in table 4. The RFT model trained with dataset filtered by 63 = 0.2 yields
the best result, indicating that the relative information gain provided by MSA is a valuable indicator for curating high quality
datasets for RFT. Moreover, #> = 0.5 results in a 20% decrease in dataset size, leading to inferior RFT model performance,
highlighting the necessity of an intricate balance between data quality and data volumn.

C.3. RLAF

We fine-tune the RFT model using the DPO algorithm on Dppo with training only one epoch. Specifically, we adopt the
batch size of 1 with each MSA subset containing a maximum of 16,384 residues. We also use AdamW (Loshchilov &
Hutter, 2018) with the learning rate of 1.0 x 10~ by default. We linearly warmup the learning rate from 0 to 1.0 x 10~
over the first 0.1% steps. This stage is also executed on 8 x A800 GPUs for a single epoch for about one day

Table 5. Performance comparison between different data source and filtering threshold values.
Data Source | nature(0.2) | nature(0.3) | generated(0.3) | nature(0.3)+generated(0.4)
MSAGPT+ RLAF | 62.6 | 64.5 | 63.5 | 62.7
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Figure 7. The length and depth distribution of the pre-training dataset.

Table 6. The paired Student’s t-test between MSAGPT and other baselines on three benchmarks based on the TM-Score, where the
p-value less than 0.05 indicates the result is said to be statistically significant.

CAMEO CASP PDB
(avg. Depth = 8.5) (avg. Depth = 4.6) (avg. Depth = 2.6)

Model

| Zero-Shot | Few-Shot | Zero-Shot | Few-Shot | Zero-Shot | Few-Shot
AF2 MSA |0.014 0.023 0.008 0.007 Se-7 8e-9
MSA-Aug. [0.023 0.014 0.044 0.015 6e-6 le-7
EvoGen 0.038 0.027 0.067 0.016 le-8 1le-9
MSAGPT | - | - | - | - | - | -

RLAF Dataset. We conducted experiments with different data sources and filtering thresholds #3—defined as the minimum
relative improvement of the good case over the bad case in DPO data pairs—for the RLAF dataset, as detailed in Table 5.
Utilizing only natural MSA subsets sampled from PDB, we found that higher 63 values lead to improved model performance,
suggesting a correlation between the disparity within data pairs and DPO effectiveness. Interestingly, the quality of MSA
subsets generated by the RFT model surpasses that of natural MSA subsets at a 5 of 0.2. However, the performance declines
when natural MSAs are mixed with generated MSAs, compared to using a single data source during training. This indicates
that maintaining distribution homogeneity is crucial for effective DPO alignment.

C4. Inference Efficiency

Generally, it’s vital to consider not just the immediate resource consumption during pre-training and post-alignment, but
also the long-term utilization of these models. Once pre-trained, MSAGPT demonstrates significant efficiency, capable of
generating protein sequences with up to 100,000 amino acids in under 8 hours. This efficiency underscores the model’s
value, especially when amortized over its application lifespan and subsequent fine-tunings for specific tasks.

Regarding the scalability of the MSAGPT. We present the inference time with different total lengths (measured by protein
sequence length multiply the number of generated sequences.), as shown in Figure 8.

The result showcases MSAGPT’s ability to generate substantial sequence lengths within practical time frames, thus affirming
its scalability and efficiency.
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Generation Time vs. Total Token Length
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Figure 8. The correlation between total token length (the protein sequence length multiplied by the number of generated MSAs) and
the inference time (minutes). In most cases (total token length < 20K), the generation time of MSAGPT is lower than the AF2 search
pipeline requiring more than 30 minutes. The result shows MSAGPT can generate substantial sequence lengths within practical time, thus
affirming its scalability and efficiency.
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Figure 9. The distribution of MSA depth of benchmarked datasets.

15



MSAGPT

Table 7. The results of 5-fold cross-validation performance between with or without virtual MSA generated by MSAGPT on four
protein-related tasks.

|1|2|3|4|5|AVG
Model

Top ACC ACC ACC ACC -

(L/5)

w/o Virtual MSA (CtP) 11.4 143 10.7 9.9 11.8 11.6
w/ Virtual MSA (CtP) 14.1 13.7 13.4 11.8 12.3 13.1

w/o Virtual MSA (SsP) 67.7 65.8 64.0 68.9 66.2 66.5
w/ Virtual MSA (SsP) 70.5 67.8 67.5 70.5 69.0 69.0

w/o Virtual MSA (LocP) | 56.0 64.5 48.0 59.0 57.0 58.3
w/ Virtual MSA (LocP) | 47.0 58.5 535 64.0 59.0 56.4

w/o Virtual MSA (MIB) | 58.0 53.5 49.5 59.0 67.5 57.5
w/ Virtual MSA (MIB) | 61.5 57.0 63.0 53.0 67.0 60.3

D. Experimental Settings
D.1. Evaluation details.

We employ TM-Score, a widely-used metric for assessing the structural similarity between predicted structures and ground
truth, and The predicted local distance difference test (pLDDT), a per-residue measure of local confidence. All metrics
are scaled from 0 to 100, with higher scores indicating higher confidence and usually a more accurate prediction. where 1
indicates a perfect match between two structures. Each run across 3 independent runs. For each run, we adopt the different
temperatures (T € {0.8, 1.0}) along with different nucleus sampling factors (P € {0.8, 1.0}), experimenting with varying
the number of generated MSAs in 8, 16, 32, and 64. The final performance is determined by first identifying the predicted
structure with the highest accuracy across these different depths, and then averaging the results across the test set.

D.2. Setup of Transferability of MSAGPT to Other Tasks.

We utilized the MSA Transformer (Rao et al., 2021) as the backbone model with the task-specific heads. We finetune MSA
transformer with the head with Ir = 3e — 5 and batchsize = 16 on all experiments. All the task benchmarks are obtained
following the pipeline in (Chen et al., 2024). For each task, we sample 1000 protein sequences with the corresponding
labels. Then we use MSAGPT-DPO to generate 32 virtual MSAs with the generation strategy T=0.8 and P=0.8. Both setups
are trained briefly (for one epoch) for 5-fold cross-validation as shown in Table 7, and we report the average performance.

D.3. Setup of Ablation Study

Experiments are conducted based on models with 150 million parameter size encompassing 30 layers, 20 attention heads,
640 embedding dimensions. These models are trained across approximately 30 billion tokens, amounting to around 40k
training steps, maintaining consistency in hyper-parameter settings with MSAGPT, except for variations in the positional
encoding mechanism. The efficacy of each variant is assessed through zero-shot MSA generation on the CASP test set.

E. Selection Strategy Details and pLDDT Evaluation

To evaluate the effectiveness of different selection strategies, we extracted 4, 8, 12, 16, 24, and 32 sequences from 48
zero-shot generated MSA for each method and computed the median TM-scores (Figure 4(b)) and pLDDT scores (Figure 10)
across 33 test cases. The strategies are detailed below.

Static Similarity / Static Diversity Strategy: We select the top-k generated MSA with the highest / lowest sequence identity
to the query sequence. Sequence identity is determined by the percentage of identical residues between the two sequences.

Dynamic Similarity / Static Diversity Strategy: Starting with the MSA most / least similar to the query sequence, we
sequentially incorporate MSA into the selected set based on the highest or lowest average sequence identity with all
sequences already included, until reaching a total of k MSA.
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Figure 10. The pLDDT curves across different selection methods. Dashed red line represents using all generated sequences of a given
depth. Solid lines represent selecting a subset of a given depth from 48 generated sequences with a specific strategy. The curves are
smoothed using the Exponential Moving Average with alpha=0.3.

Trimming Strategy: Suggested by EvoGen, this method filters out MSA with less than 50% coverage or sequence identity
to the query sequence above 90% or below 20%. Subsequently, it iteratively selects the MSA with the closest sequence
identity to the query and an average sequence identity below 90% with all the chosen MSA.

pTM / pLDDT / TM Score Strategy: For each generated MSA, we remove the gaps and predict its structure using AF2.
The structures are then ranked based on the pTM score (as reported by AF2), the pLDDT score (as reported by AF2), or the
TM score compared to the query sequence’s ground truth structure (calculated by US Align), and the MSA corresponding to
the top-k structures for each metric are selected accordingly.

F. Protein Structure Prediction Analysis compared with natural MSA

We present a detailed visual comparison of protein structures predicted by AlphaFold2 (AF2) utilizing MSA augmented by
MSAGPT, against those predicted with natural MSA. This comparison, as depicted in Figure 12, highlights the remarkable
capability of MSAGPTin enhancing the accuracy of structure predictions to levels that closely rival, and in some cases
surpass, those based on naturally derived MSA.

We delve into a visualized analysis of protein structures predicted using AlphaFold2 (AF2) with MSA augmented by our
proposed model (MSAGPT), alongside those augmented by EvoGen and MSA-Augmenter. This comparison, visualized
in Figure 11, encompasses a spectrum of proteins, ranging from short sequences with relatively simple structures, like
7mnv_B, to long sequences with complex configurations, such as 7tdv_B. It includes proteins characterized by multiple beta
sheets, exemplified by 7ywg_B, as well as those rich in alpha helices, such as 7tdv_B. Across these diverse cases, MSAGPT
significantly surpasses both EvoGen and MSA-Augmenter, improving the TM score to a maximum of 0.9.

By detailed examination, we observe that while the MSA augmented by the baseline models assist AF2 in accurately
predicting local structures and folds, they fall short in aligning the global composition and orientation with the ground truth
structure, which is effectively addressed by MSA generated by MSAGPT. The local structures, which are generally more
discernible from the spatial arrangements of adjacent amino acids, contrast with the global structures whose prediction
relies heavily on comprehensively understanding the co-evolutionary information within MSA. These co-evolutionary
patterns, indicating proximity in three-dimensional space through simultaneous mutations at multiple positions, are crucial
for accurate global structure prediction. These findings underscore MSAGPT’s impressive capability to comprehensively
capture and utilize co-evolutionary information, thereby significantly enhancing the accuracy of protein structure predictions.
More visualization cases about the predictions based on MSA generated by MSAGPT and the predictions based on the
natural MSA are illustrated in Appendix F.

G. Protein Structure Prediction Improvement after DPO

Figure 13 represents the comparison before and after the DPO training, depicting notable enhancements in structure
prediction accuracy. Figure 14 and 15 provide an in-depth analysis of the generated MSA for each case. Specifically,
residues 43, 53, 71-79, 105-111, 122, 132 and 157-166 in the MSA of 7wme_A, along with residues 22-27, 53, and 73 in
the MSA of 7sxb_A, display distinct characteristics pre- and post-DPO training.
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TM-Score = 95.6 TM-Score =29.4 TM-Score =22.5

Figure 11. Visualization of improved structure prediction compared with baseline models. : Ground truth; Pink: Predictions based
on MSA generated by MSAGPT; Blue: Predictions from MSA generated by EvoGen; Green: Predictions utilizing MSA generated by
MSA-Augmenter.
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7vrb_A

TM-Score = 55.8
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Figure 12. Visualization of improved structure prediction compared with nature MSA : Ground truth; Pink: Predictions based on
MSA generated by MSAGPT; Blue: Predictions from MSA generated by natural MSA.
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TM-Score = 46.6 TM-Score = 78.9

Figure 13. Visualization of improved structure prediction after DPO. : Ground truth; Blue: Predictions based on MSA
generated by MSAGPT; Pink: Predictions based on MSA generated by MSAGPT-DPO.;
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Figure 14. Residue Distribution of Generated MSA for 7wme_A. The red box indicates natural MSA used as prompts during generation.
The blue box indicates generated MSA. Residues are colored using the clustal scheme by Jalview.
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Figure 15. Residue Distribution of Generated MSA for 7sxb_A. The red box indicates natural MSA used as prompts during generation.
The blue box indicates generated MSA. Residues are colored using the clustal scheme by Jalview.
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