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Figure 1: NFL-BA enhances tracking and mapping in neural rendering-based SLAM (e.g.,
MonoGS [23]) by explicitly modeling dynamic near-field lighting, with applications in endoscopy.

Abstract
Simultaneous Localization and Mapping (SLAM) systems typically assume static,
distant illumination; however, many real-world scenarios, such as endoscopy, sub-
terranean robotics, and search & rescue in collapsed environments, require agents
to operate with a co-located light and camera in the absence of external lighting. In
such cases, dynamic near-field lighting introduces strong, view-dependent shading
that significantly degrades SLAM performance. We introduce Near-Field Lighting
Bundle Adjustment Loss (NFL-BA) which explicitly models near-field lighting as a
part of Bundle Adjustment loss and enables better performance for scenes captured
with dynamic lighting. NFL-BA can be integrated into neural rendering-based
SLAM systems with implicit or explicit scene representations. Our evaluations
mainly focus on endoscopy procedure where SLAM can enable autonomous navi-
gation, guidance to unsurveyed regions, blindspot detections, and 3D visualizations,
which can significantly improve patient outcomes and endoscopy experience for
both physicians and patients. Replacing Photometric Bundle Adjustment loss of
SLAM systems with NFL-BA leads to significant improvement in camera track-
ing, 37% for MonoGS and 14% for EndoGS, and leads to state-of-the-art camera
tracking and mapping performance on the C3VD colonoscopy dataset. Further
evaluation on indoor scenes captured with phone camera with flashlight turned on,
also demonstrate significant improvement in SLAM performance due to NFL-BA.

1 Introduction
Simultaneous Localization and Mapping (SLAM) enables autonomous agents to build a spatial map of
an unknown environment while estimating their own poses within it, with wide-ranging applications
in robotics, computer vision, autonomous vehicles, and scientific imaging. Most SLAM systems
[38, 34, 6, 59, 62, 57, 49, 19, 27, 15] assume an autonomous agent navigating an environment with
distant, static illumination, e.g., a self-driving car in the streets, and they optimize a Photometric
Bundle Adjustment loss where they minimize an error between the captured image and the re-rendered
image using estimated 3D scene and camera poses.
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Figure 2: MonoGS performance under (1) distant static lighting and (2) dynamic near-field
lighting from a co-located flashlight. Standard photometric BA performs well under static lighting
but fails under dynamic lighting, degrading both trajectory and map quality. NFL-BA restores
performance under dynamic lighting, matching the quality of the static-light setup.

However, many scientific and safety-critical applications demand that autonomous agents operate
in environments devoid of external illumination, relying instead on self-mounted light sources. For
example, in endoscopy procedures, a slender flexible tube with a co-located light and camera is used
to inspect internal organs such as the airway and the colon [8, 46, 33, 22, 51, 16]. Accurate trajectory
estimation is crucial for reliably guiding instruments to areas of interest, mapping anomalies, and
avoiding tissue damage during navigation. In subterranean search-and-rescue or collapsed-building
inspection, robots rely on onboard lamps to explore unstable voids; slight errors in pose estimation
can accumulate into large drift, leading to misaligned maps, missed victims, or costly back-tracking.

Despite the prevalence of these use cases, current SLAM systems perform poorly under such
conditions (see Fig. 2). This performance drop is primarily due to the effects of dynamic near-field
lighting, where the only illumination is co-located with the camera and moves with it. Dynamic
near-field lighting causes different points of the surface to receive different intensities of light at each
time step, depending on the distance and orientation of the point to the camera, introducing strong,
view-dependent shading. These lighting artifacts significantly impair both feature-based and direct
(photometric) tracking, resulting in substantial failures in mapping accuracy and pose estimation.

To alleviate these issues, we propose a new Bundle Adjustment loss that accounts for dynamic
near-field lighting. Our key intuition is that the shading effect of the captured image can provide
valuable information about the relative distance and orientation between the surface and the camera.
With this, we formulate a Near-Field Lighting Bundle Adjustment loss, NFL-BA, where we optimize
the surface geometry and the camera parameters such that the rendered image has shading variations
that match the relative distance and orientation between the surface and the camera. Our NFL-BA
loss can be applied to any neural rendering-based SLAM algorithm, i.e., with neural implicit and
explicit 3D Gaussian scene representation.

In this paper, we specifically focus on demonstrating how NFL-BA can improve the performance
of existing SLAM systems for 3D reconstruction and localization from endoscopy videos. SLAM
can enable autonomous navigation through internal organs and guide physicians to unsurveyed
regions to improve physicians’ situational awareness by providing 3D visualizations, and can help
measure organ shapes. We evaluated NFL-BA with two state-of-the-art 3DGS-based SLAM systems,
general-purpose MonoGS [23] and endoscopy-specific EndoGSLAM [46], and one neural implicit
SLAM, NICE-SLAM [59], by replacing their Photometric Bundle Adjustment loss with NFL-BA
loss. We observe that the NFL-BA loss improves the performance of all SLAM algorithms on average
when using ground-truth or estimated depth maps on the C3VD colonoscopy dataset. For example,
NFL-BA significantly improves MonoGS by reducing camera tracking error by 37% (3.48 to 2.18
mm) and camera mapping error by 38% (1.59 to 0.99 mm) when initialized by PPSNet depth[35].

Additionally, we also demonstrate the effectiveness of NFL-BA on indoor rooms captured with a
moving co-located light and camera without any external light source, mimicking agent navigation
during search & rescue and covert military operations. By replacing incorporating our NFL-BA loss,
we see an average improvement of ∼35% in pose estimation across all scenes.

2 Related Works
Dense SLAM and Bundle Adjustment. Early SLAM pipelines focused on sparse feature matching
for pose estimation and mapping [30, 5, 43, 10]. With advancements in neural scene representations
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several proposed SLAM frameworks [59, 61] generate dense, pixel-level that yield more detailed and
robust reconstructions. More recently, 3D Gaussian surface methods have demonstrated real-time
rendering with high-fidelity mapping[19, 27, 49, 15, 9, 53].

These dense SLAM approaches all rely on a core Bundle Adjustment step. Bundle Adjustment
(BA) alternatively optimizes camera parameters and surface geometry by minimizing errors across
multiple frames. Traditional geometric BA aligns detected 2D feature points to their 3D counterparts
by minimizing reprojection error, assuming static lighting and Lambertian surfaces [13]. Although
effective in controlled environments, it struggles in complex or low-texture scenes. Photometric BA
(Photo-BA) [1] incorporates pixel intensities into the optimization process, minimizing photometric
re-projection errors and proving advantageous in environments where feature matching fails [10].
However, Photo-BA does not exploit the correspondence cues provided by dynamic or near-field
lighting where image intensities vary across frames.

Near-field Lighting models. Near-field lighting has been leveraged for 3D reconstruction tasks like
monocular depth and surface normal estimation [35, 58] and Photometric Stereo [21]. Some of these
approaches [35, 20] use a near-field lighting representation as input to a CNN along with captured
images for predicting surface normal and geometry. In the context of Endoscopy, LightDepth [37]
and PPSNet [35] demonstrated the effectiveness of near-field lighting to enhance depth estimation.
LightNeus [2] exploited the inverse-square law for light decay to improve endoscopic surface
reconstruction, however with known camera parameters and pre-operative 3D CT scan.

It has never, however, been used for Simultaneous Localization & Mapping (SLAM) problems, let
alone in combination with neural rendering methods. To this end, we propose a Bundle Adjustment
Loss with Near-Field Lighting (NFL-BA), considering the most commonly available single co-located
camera & light in the endoscope or other autonomous agents.

Dynamic Lighting in SLAM. Visual SLAM performance often degrades under illumination changes
such as exposure shifts, specularities, and varying color temperature. Early photometric calibration
methods jointly optimize camera intrinsics, exposure, and scene depths to normalize brightness
variations in real time [10] while probabilistic SLAMs with unscented filtering further stabilizes
pose estimates under uncertain lighting conditions [26]. More recently, learning-based matchers
[42, 55] adapt descriptors to cope with complex lighting variations. None of these methods, however,
explicitly model near-field lighting geometry to handle this co-located light setting.

SLAM in endoscopy. Early works [40, 11] demonstrated the feasibility of applying SLAM in
such environments by addressing dynamic lighting and tissue deformation. Researchers have often
used a mixture of supervised learning on synthetic and self-supervised learning on real endoscopy
datasets for tailoring SLAM frameworks to endoscopy with complex camera motion [25, 56, 47] and
developed novel endoscopy SLAM frameworks [36, 29, 17]. However these techniques often struggle
with challenging sequences from both synthetic and clinical data. Recently, neural rendering-based
methods [39, 22, 46, 51, 12, 14] have proved especially effective in generating high-quality details
and modeling textureless regions with a large number of Gaussians. In this work, we adopt neural
rendering approaches and explicitly model the near-field lighting effects, alleviating dynamic lighting
challenges and improving performance.

3 Background
In this section, we review the general framework of neural rendering-based SLAM. We represent
the camera at time t by its extrinsics Pt = [Rt, Tt] ∈ SE(3) and known intrinsics K, yielding the
projection πt = KPt. We assume the camera intrinsic K to be the same for all frames and known or
calibrated ahead of time. Pixels are denoted p and 3D camera-space points by x.

In neural rendering, scene parameters Θ, whether in the form of neural networks or primitives, encode
visual and geometric information, such as colors ci and occupancy αi. Given Θ and Pt, we can get
the color Ĉ(·) and the depth D̂(·) of a pixel p from a frame at time t as follows [28, 19]:

Ĉ(p) =
∑
i∈N

ciαiΠ
i−1
j=1(1− αj) , D̂(p) =

∑
i∈N

ziαiΠ
i−1
j=1(1− αj) (1)

where N denotes the group of samples for a pixel p, with αi representing the occupancy of the i-th
sample, and zi denotes its distance from the camera center.

To optimize Pt and Θ, dense SLAM methods typically use rendering loss Lren , reducing the
rendering errors between the rendered and captured images [59, 23, 49] and, if estimated or ground
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truth depth maps are available, an additional depth loss Lgeo can be added [44]. Typically, these
losses take the form of Lp norm as follows with variations with Mt as a pixel-wise mask:

Lren = ∥Mt ⊙ (Ĉ − C)∥p, Lgeo = ∥Mt ⊙ (D̂ −D)∥p (2)

Bundle adjustment optimizes both Pt and Θ using the following combined loss:

Photo-BA: min
∑
t∈W

λrenLren(Ĉ, C;Mt) + λgeoLgeo(D̂,D;Mt) (3)

where W denotes the set of frames used for the bundle adjustment and the hyperparameters λren and
λgeo are the loss weights. Additionally, the objective function can include any other regularization
terms, such as artifact suppressing [27] or opacity regularization [60].

During the Mapping stage, both Θ and Pt are optimized over a set of keyframes. The exact algorithm
for keyframe selection, keyframe update and optimization strategies for tracking and mapping phase
vary between different SLAM approaches and their specific objectives.

Implicit Neural Representations. Neural field-based SLAM methods [41, 59, 45, 62, 38] uses a set
of neural networks F (x, d; Θ) → (ci, σi), optimized to estimate the color ci and the volume density
σi for an input 3D coordinate x and the view direction d. The the occupancy can be calculated from
the volume density σi and the distance between adjacent samples δi as αi = 1− exp(−σiδi).

3D Gaussian Splatting. For 3D Gaussian Splatting [19] SLAM methods, the scene is represented by
a set of Gaussians with mean µi, covariance Σi in world space, color ci, and opacity αi. The shape
parameters and occupancy αi of the splatted 2D Gaussians are computed as follows:

µ̄i
t = πtµ

i, Σ̄i
t = JtRtΣ

iRT
t J

T
t , αi = αi exp(−1

2
(p− µ̄i

t)
⊤(Σ̄i

t

)−1
(p− µ̄i

t)) (4)

where Jt is the Jacobian of the projection πt, p denotes a pixel coordinate, and µ̄i
t, Σ̄

i
t are the splatted

mean and covariance of Gaussian Gi in pixel space.

4 Near-Field Light Bundle Adjustment

Co-located light 
and camera Incoming Radiance


Surface Normals

Figure 3: Illustration of our key idea. As the co-
located light and camera, moves through the scene,
different 3D Gaussians on the surface receive dif-
ferent intensities of light (red arrow), dependent on
the relative distance and orientation between the
3D Gaussian and the camera.

We introduce a novel Near-Field Lighting based
Bundle Adjustment loss, NFL-BA, that inte-
grates near-field lighting with neural-rendering
3D scene representations to improve perfor-
mance of existing SLAM systems on images
captured with dynamic lighting co-located with
the camera. Our proposed NFL-BA can replace
commonly used Photometric Bundle adjustment
loss, defined in Eq. 3, within neural-rendering
based SLAM framework. Photo-BA typically
optimizes scene appearance parameter as RGB
color, which is suffient when the illumination on
each scene point remains the constant throughout the capture. However, for scenes with a dynamic
light co-located with a moving camera, the illumination received at each point varies per frame as the
camera and the light moves through the scene. In this setting, the illumination received at each point
depends on the relative distance and orientation between the point and the camera, as conceptualized
in Fig. 3. Thus continuing to model scene appearance as simple RGB color is inaccurate for dynamic
near-field lighting as it doesn’t separate effects of illumination due to camera movement from the
intrinsic view-independent color of the scene, i.e. albedo.

Our goal is to explicitly model surface appearance as albedo and separate near-field lighting effects
from it. To accurately model dynamic lighting we then represent near-field illumination effects with
camera pose and scene geometry. In sec. 4.1 we describe our image formation model using neural
rendering framework that will decompose the surface appearance into albedo and incoming lighting,
which will be further represented as a function of scene geometry and camera pose. Then in sec. 4.2,
we will use this image formation to create the Near-Field Bundle Adjustment loss and show how it
can be easily integrated into neural rendering based SLAM framework.
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Figure 4: Image Formation Validation. We show that C3VD images captured with a real endoscope conform
to our co-located light-camera and zero attenuation β image formation model, as indicated by very low per-pixel
scale-invariant MSE between the original image and the reconstructed image with masked-out specular regions.

4.1 Image Formation with Near-Field Lighting
We consider an image-formation model under near-field lighting for a single image following previous
works [18, 35]. Each pixel p and the corresponding three-dimensional point xp in the camera space
receives different light intensities and directions, characterized by the light source to surface direction
Ld(·) and attenuation term La(·), as follows:

Ld(xp) =
xp − xL

∥xp − xL∥
, La(xp) =

(Ld(xp)
⊤f)β

∥xp − xL∥2
, (5)

where xL is the location of the light source, f is the forward (optical axis) vector. β is an angular
attenuation coefficient, and will be discussed in sec. 4.2.

Assuming a diffuse reflectance model, which has proven effective for depth estimation in endoscopic
scenes [35], we can approximate the rendered image at each pixel Ĉ(·) as:

PPS(xp) = La(xp) · (Ld(xp)
⊤n(xp)), Ĉ(p) = ρ(xp)PPS(xp) , (6)

where ρ(·) and n(·) are albedo and normal at position xp of pixel p respectively. PPS(·) is a
per-pixel shading term. Note that existing approaches that uses this near-field light image formation
model [18, 35] uses pixel-based representation to predict depth map or surface geometry from images
captured from a single viewpoint only. In this paper, we extend the Near-Field Image Formation
model beyond single-view pixel-based representation to multi-view 3D representation.

Our key insight is that the standard volumetric rendering equation can be modified to incorporate
the near-field lighting model described in eq. 6, while keeping the overall SLAM pipeline intact. In
our framework, we reinterpret the direct color (ci in eq. 3) as the product of the albedo ρ(·) and the
shading term PPS(·), which models dynamic near-field lighting. Note that both albedo and shading
is defined directly on the 3D neural representations, i.e. neural radiance field or 3D gaussians, and
not in pixel-space. This leads to the modified rendering equation under near-field lighting:

Ĉpps(p) =
∑
i∈N

ρ(xi)PPS(xi)αiΠ
i−1
j=1(1− αj) (7)

Note that eq. 6 represents a special case of eq. 7 where a single sample is considered and the
occupancy αi equals one. Our image formation model assumes diffuse reflectance and no angular
attenutation, to reduce the complexity of the modeling. While it is easy to extend the image formation
model to handle specular reflectance and angular attenutation of lighting, this leads to additional
parameters that needs to be optimized during the Bundle Adjustment.

Angular attenuation. Following previous works [21, 35], we simplify the near-field light image
formation model by setting the attenuation coefficient β in eq. 5 to zero. This effectively ignores the
directional fall-off component, reducing the light attenuation term to a simple inverse-square fall-off
La(xp) = 1/∥xp − xL∥2. This simplification is justified because the angular attenuation in settings
like endoscopy is often negligible compared to the inverse square law attenuation, and estimating
β accurately can be challenging due to variations in endoscope designs. In future work, we plan
determine the optimal value of β for different systems and incorporate the light direction vector ret
for more accurate modeling which can further improve camera rotation during Bundle Adjustment.

Empirical validation of our image-formation model on colonoscopy image. Fig. 4 provides an
example colonoscopy image from the C3VD dataset [3], showing the accuracy of the near-light field
model (Eq. 6) with β of 0. Albedo was estimated by converting each RGB image to HSV color
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space, setting the value channel to 1 across all pixels, then converting the modified image back to
RGB space. This standardizes pixel intensity variations, approximating a reflectance map where
illumination effects are minimized, but does not strictly represent ground truth albedo. As shown, the
image formulation model is sufficient to represent endoscopic scenes with low reconstruction errors.

4.2 Near-Field Light Bundle Adjustment Loss
Next, we will re-define the Photometric Bundle Adjustment loss of eq. 3 using the near-field lighting
based image formation model defined in eq . 7 expressed as follows:

NFL-BA: min
∑
t∈W

λrenLren(Ĉpps, C;Mt) + λgeoLgeo(D̂,D;Mt) (8)

where Ĉpps denotes the rendered image with near-field lighting-incorporated volumetric rendering
equation (Eq. 7). This reformulation seamlessly integrates near-field lighting cues into the neural
rendering framework without altering the rest of the SLAM framework. Since our formulation
is confined solely to the rendering process, and thus to the bundle adjustment, we do not modify
or replace any other SLAM components for fair comparison. This design choice enables easier
integration with existing neural rendering-based SLAM methods.

Choice of image space in optimization. Note that many settings, and especially endoscopy, frames
are stored in standard sRGB color space, whereas our near-field shading term PPS(·) is computed in
a linear space. To ensure consistency, we apply an inverse gamma correction of γ = 2.2 to the sRGB
images before computing PPS, or equivalently, gamma-correct the linear PPS output by γ = 1/2.2
when rendering back to sRGB. This step aligns the lighting model with the true photometric intensities
and prevents bias from the nonlinear sRGB transfer function.

Normal calculation during Bundle Adjustment. To calculate the normals n(·) from neural fields,
we utilize the direction of the gradient of the occupancy with respect to the spatial coordinates as
follows [4]: n(xi) = −∇σ(xi)/∥∇σ(xi)∥. For Gaussian Splatting, we use the shortest axis of each
Gaussian as its normal, following [52, 7, 48]. In both cases, we ensure the computed normal is
oriented towards the camera by enforcing n(x)⊤Ld(x) to be positive. Otherwise, we flip the normals
by multiplying them by -1 for stability.

5 Evaluation
Table 1: Quantitative Evaluation on the C3VD [3]
dataset with oracle depth map. Replacing
Photometric BA with NFL-BA significantly im-

proves tracking quality of two state-of-the-art 3D
Gaussian SLAMs, MonoGS [23] and EndoGS [60],
and one neural implicit SLAM, NICE-SLAM [59].

Tracking Mapping

Method BA ATEt (mm)↓ ATEr (◦)↓ Chamfer (mm)↓
NICE-SLAM, Photo 4.16 2.68 1.95
CVPR’22 NFL 2.88 2.81 1.70
EndoGSLAM, Photo 1.93 1.81 0.85
MICCAI’24 NFL 2.04 1.13 0.97

MonoGS, Photo 2.90 1.11 1.16
CVPR’24 NFL 1.60 1.49 0.79

Our proposed method is a plug-in approach
that can be applied to any existing neural-
rendering-based SLAM framework. We first
test our method on endoscopy videos using
one neural implicit SLAM, NICE-SLAM [59],
as well as two existing 3DGS-SLAM frame-
works: the general-purpose MonoGS [27] and
the endoscopy-specific EndoGSLAM [46]. In
each case, we replace the standard Photometric
Bundle Adjustment loss (3) with our proposed
equation NFL-BA loss (8). Additionally, we
also test MonoGS [27] on self-captured indoor
scenes with a co-located light and camera.

5.1 Evaluation Setting
Datasets. We evaluate our method on three datasets that reflect different challenges in handling
near-field dynamic lighting: (1) a phantom endoscopy dataset, (2) a clinical endoscopy dataset, and
(3) a dataset of indoor scenes captured with phone camera with flashlight turned on.

C3VD. The C3VD dataset [3] (CC BY-NC-SA 4.0) was created using a phantom colon with syn-
thetic materials to simulate realistic tissue geometry. Colon10K. To test generalization in real-
world clinical endoscopy settings, we evaluate on Colon10K [24], a large-scale video dataset
without depth or pose supervision. Videos are sampled from actual The endoscopy video was
captured by a surgeon who performs different endoscopy procedures on the phantom colon with
a real endoscope capturing RGB images coupled with corresponding depth maps. We focus
on 8 sequences ranging from 70 to 800 frames from different regions of the colon, for more
details, please see supplementary. We evalute using both ground truth and predicted depths.
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Table 2: Quantitative evaluation on the C3VD [3] dataset using depth maps estimated by SOTA
techniques, PPSNet [35] and DA-Hybrid [50, 32]. Replacing Photometric BA with NFL-BA
significantly improves tracking for both MonoGS [23] and EndoGSLAM [46], and mapping and
rendering quality for MonoGS [23]. Note that SOTA performance for each of the tracking, mapping,
and rendering metrics is observed when NFL-BA is used.

Tracking Mapping Rendering

Method Depth BA ATEt (mm)↓ ATEr
◦↓ Chamfer (mm) ↓ LPIPS ↓

PPS-Net Photo 3.03 1.73 1.23 0.39
EndoGSLAM [46] PPS-Net NFL 2.62 1.24 1.25 0.39
MICCAI’24 DA-Hybrid Photo 6.67 2.26 2.12 0.43

DA-Hybrid NFL 3.91 1.58 2.39 0.42

PPS-Net Photo 3.48 1.70 1.59 0.56
MonoGS [23] PPS-Net NFL 2.18 1.65 0.99 0.53
CVPR’24 DA-Hybrid Photo 4.63 1.69 1.34 0.52

DA-Hybrid NFL 2.35 1.14 1.13 0.52
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Figure 5: Camera tracking improvement over En-
doGSLAM [46]. Replacing the Photo-BA loss (in blue)
with NFL-BA loss (in red) significantly improves camera
tracking for different depth initialization. Average tracking
error ATEt for each sequence is reported in the inset. (zoom
for details)

procedures and are typically around
300-600 frames. This setting is signifi-
cantly more challenging than the phan-
tom setting, since frames may contain
motion blur, specular highlights, and
fluid occlusions. Sequences are uni-
formly sampled and fisheye corrected.

Self-Captured Indoor Scenes. To
study the role of near-field lighting
in a controlled non-clinical setting,
we capture a dataset of four indoor
scenes (Guitars, Porch, Pool, and
Stairs) using an iPhone 15 Pro. Scenes
include objects with varied geome-
try and reflectance (diffuse, specu-
lar), imaged under dynamic motion.
Scenes are captured using a co-located
point light source mounted to cam-
era. Ground-truth camera trajectories
were recorded via motion capture, but
no reference point clouds are avail-
able; hence, we report only trajectory
error (ATEt) and perceptual quality
(LPIPS), omitting Chamfer distance.
Details and additional visualizations
are included in the supplementary.

Metrics. For evaluation, we basically followed other neural rendering SLAM algorithms [23, 46]. For
tracking performance, we measure the root mean square error of the Absolute Trajectory Error (ATE)
for both translation and rotation across all frames. Translation error ATEt is in millimeters (mm) for
the endoscopy scenes and meters (m) for the in-door scenes. And rotation error ATEr is in degrees. To
assess the mapping quality, we use the Chamfer distance from ground truth point clouds to the nearest
points in the estimated point clouds [47], for more details please see supplementary. In addition,
we evaluate rendering quality using the Learned Perceptual Image Patch Similarity (LPIPS) [54].
We note that for many endoscopic SLAM applications, tracking and mapping accuracies are more
important than photorealism of the rendered images, unlike many indoor or outdoor scenes.

Computational costs We trained all models on a single NVIDIA RTX A6000 GPU. The per-scene
optimization takes ∼1 FPS. For more information on runtime speed, please see supplementary
materials.
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Figure 6: Camera tracking improvement over MonoGS [23]. Replacing the Photo BA loss (in blue)
with NFL-BA loss (in red) significantly improves camera tracking for different depth initialization.
Average tracking error ATEt for each sequence is reported in the inset.
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Figure 7: Reconstructed point clouds using MonoGS [23] show that NFL-BA improves coverage
and density while reducing scatter compared to Photometric BA, as measured by Chamfer distance.
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Figure 8: Results on real endoscopy from Colon10k dataset. On Sequences 3 and 4 with PPSNet
depth, NFL-BA improves MonoGS tracking and mapping, yielding more coherent, elongated colon
structures, while EndoGSLAM fails under sudden camera motion.

5.2 Evaluation on C3VD Endoscopy Data
Because NFL-BA is designed as a drop-in replacement for photometric bundle adjustment, we only
adjusted the two associated loss weights; all other hyperparameters remain identical between the
Photo-BA and NFL-BA experiments. Please see supplemental for detailed hyperparameter settings.

SLAM with oracle depth map. In Tab. 1 we replace Photometric Bundle Adjustment loss with
NFL-BA loss for depth is initialized with ground-truth or oracle. NFL-BA significantly improves
camera localization (ATEt) and mapping for NICE-SLAM and MonoGS, and only camera rotation
(ATEr) for EndoGSLAM. EndoGSLAM was specifically designed for synthetic data with an oracle
depth map, and we will show later that for estimated depth maps or real endoscopy videos, it performs
significantly worse than MonoGS Ground-truth depths are never available during endoscopy, and the
majority of endoscopes hardly have any depth sensors.

SLAM with predicted depth map. Under realistic conditions with estimated depths, NFL-BA’s
impact is even more pronounced. In Tab. 2 we replace Photometric BA loss with NFL-BA loss for
MonoGS [23] and EndoGSLAM [46] for depth maps we use PPSNet [35], a state-of-the-art monocular
depth estimation algorithm for endoscopy, and fine-turned general-purpose depth estimator, which
we will call it as DA-Hybrid - DepthAnything[50] with DINOv2 encoder [32]. NFL-BA significantly
improves camera localization (ATEt) and camera rotation (ATEr) for both MonoGS [23] and
EndoGSLAM [46] while producing similar rendering quality. For example, camera localization for
MonoGS is improved by 37% for PPSNet and 49% for DA-Hybrid depth initialization. Mapping
accuracy of MonoGS also improves by 37% for PPSNet and 16% for DA-Hybrid depth maps. Overall,
these results demonstrate that NFL-BA can compensate for noisy depth estimation and improves
performance. Across all four metrics, for tracking, mapping, and rendering, the SOTA performance
on the C3VD dataset is in fact achieved when NFL-BA loss is used in the SLAM framework.

5.3 Evaluation on Real Endoscopy Data
We show results on real endoscopy sequence from Colon10k sequence 3 and 4 in Fig. 8. En-
doGSLAM fails to construct any real structure, with many disconnected regions along a spiral
trajectory. EndoGSLAM assumes constant velocity and is not robust to the sudden motion common
in endoscopy procedures, which is significantly more in real data than C3VD. This results extremely
poor or failed reconstructions.

Sequence 4. This pull-back “down-the-barrel” sequence exposes a clear cylindrical lumen. With
Photo-BA, MonoGS captures the overall shape but produces a broken segment due to trajectory drift.
NFL-BA corrects this, yielding a continuous “hollow-center” reconstruction. Minor artifacts from
extreme specular highlights remain (green points), as detailed in the supplement.

Sequence 3. In the extended traversal, both Photo-BA and NFL-BA recover the colon’s general
geometry, but NFL-BA produces a longer, tighter model with less point scatter. It also better preserves
interior ridges (interactive point clouds in the supplement).

5.4 Evaluation on Indoor Scene
To validate NFL-BA in a non-medical setting, we evaluate on four indoor scenes. Table 3 shows
that replacing standard Photometric BA with NFL-BA yields substantial reductions in ATEt across
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Figure 9: Results on indoor scenes captured with co-located flashlight and phone camera.
Qualitative comparison on two self-captured indoor scenes using MonoGS with standard Photo-BA
versus NFL-BA. (left) Estimated camera trajectories overlaid on ground truth. (center) Per-frame
tracking error relative to ground truth. (right) Example re-rendered views, illustrating the sharper,
more accurate reconstructions enabled by NFL-BA.

Table 3: Quantitative results on four self-captured indoor scenes under dynamic lighting, comparing
MonoGS with standard Photo-BA versus NFL-BA. For each scene, the best of each metric is bold.

Guitars Porch Pool Stairs

BA ATEt (m)↓ LPIPS ↓ ATEt (m)↓ LPIPS ↓ ATEt (m)↓ LPIPS ↓ ATEt (m)↓ LPIPS ↓
Photo 0.30 0.39 0.50 0.49 0.41 0.46 0.36 0.40
NFL 0.18 0.37 0.35 0.50 0.30 0.44 0.20 0.31

all scenes: from 0.30m to 0.18m (40%) in Guitar, 0.50m to 0.35m (30%) in Outdoor, 0.41m to
0.30m (27%) in Pool, and 0.36m to 0.20m (44%) in Stair. On average, NFL-BA reduces tracking
error by ∼35%, demonstrating that near-field shading cues greatly enhance pose estimation even in
richly textured, well-lit indoor environments. While LPIPS remains largely comparable, with slight
improvements in Guitars and Stairs and minor variations in Porch and Pool, the primary benefit of
NFL-BA is clear in trajectory accuracy (see Fig. 9).

6 Conclusions

In this paper, we presented a novel bundle adjustment loss that explicitly models dynamic near-
field lighting by incorporating light intensity fall-off based on the relative distance and orientation
between the surface and the co-located light and camera. This formulation is especially effective for
endoscopic scenes, where traditional geometric or photometric bundle adjustment losses struggle
under dynamic near-field lighting conditions on textureless surfaces. We demonstrated the general
applicability of our approach by integrating it into three different neural rendering-based SLAM
methods, improving performance on a challenging endoscopy dataset and indoor scenes captured
with a phone camera with a flashlight turned on.

Limitations. While our new formulation for SLAM effectively represents scenes with co-located and
dynamic lighting environments, it is currently limited in handling specular reflections, sub-surface
scattering, and inter-reflections. Incorporating a more complex image formulation is beyond the
scope of the current work, and addressing these remains a promising direction for future research.
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Supplementary Materials

Overview of Appendices

Our appendices contain the following additional details:

• Appendix A: Dataset Processing and Collection
• Appendix B: Implementation Details and Computational Costs
• Appendix C: Point Clouds and Metrics
• Appendix D: Long Sequence Validation
• Appendix E: Evaluation of Center-Crop Baseline
• Appendix F: Lighting model and Angular Attenuation
• Appendix G: Results on Endoscopy Datasets

A Dataset Processing and Collection

C3VD. We test our method on a subset of 8 videos with at least one video from each section of the
colon, with varying camera motion, and anomalies. We choose these 8 videos from the test split of
PPSNet to avoid any bias when the SLAM is initialized with PPSNet predicted depth map. The names
of the sequences are as follows: cecum_t1_a, cecum_t2_a, cecum_t3_a, sigmoid_t3_a, desc_t4_a_p2,
trans_t2_a, trans_t3_a, and trans_t4_a.

All images were cropped to remove any artifacts resulting from fish-eye correction then downscale and
crop the images. Specifically, we resize each image to have a height of 384 pixels while maintaining
the aspect ratio, then crop the central region to obtain a 384×384 pixel image.

Colon10k. Since Colon10K provides no ground-truth depths, we compute per-frame estimates with
PPSNet. Each image is center-cropped and uniformly resized to 384 × 384 px to match our SLAM
input requirements.

Indoor Self Captures. We recorded four indoor scenes using an iPhone 15 with LiDAR, capturing
synchronized RGB (1440 × 1920 px) and depth (256 × 192 px) streams. Raw RGB frames are
downscaled to 256 × 192 px to align with the depth map resolution. Depth maps are stored as 16-bit
values up to 10 m. We logged camera poses via Apple’s ARKit framework, code for our custom
capture app and preprocessing scripts will be released alongside the dataset.

B Implementation Details and Computational Costs

As mentioned in the main paper, we ran all models on a single NVIDIA RTX A6000 GPU. The
per-scene optimization takes approximately 1 FPS. We found that NFL-BA only reduces the fps
runtime by a small amount on the C3VD dataset.

NICE-SLAM. Since the scene is encoded using neural networks, we extract normals from the
occupancy grid, as described in Sec. 4.2 to calculate the shading term. NICE-SLAM requires a
well-defined bounding box which we obtained from the ground truth point clouds (see appendix C).
We also used the default loss weights of NICE-SLAM, setting λren to 0.5 during tracking and 0.2
during mapping, and λgeo to 1 in both phases.

EndoGSLAM. The main difference is the weight map Mt in the bundle adjustment loss (Eq. 3) to
exclude over-exposed pixels that can arise in endoscopy-specific lighting conditions. Furthermore,
given that the shading term PPS(·) is sensitive to depth scales, we rescaled the depth maps so that
their maximum values are approximately 5. Notably, scaling the depth maps did not improve baseline
performance (when using PPS depth maps, the average ATEt went from 3.03 to 3.38). We used the
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Table 4: Runtime: We evaluate the frames per second (FPS) for all methods on the C3VD dataset.

Method Depth Photo-BA NFL-BA

NICE-SLAM Oracle ≪ 1 ≪ 1
PPSNet ≪ 1 ≪ 1

EndoGSLAM
Oracle 1.79 1.35
PPSNet 1.53 1.22

DPT-Hybrid 1.20 0.90

MonoGS
Oracle 1.38 1.09
PPSNet 1.06 0.93

DPT-Hybrid 0.99 0.83

default loss weights of EndoGSLAM, λren; λgeo, set to 0.5 and 1 during tracking and 1 and 1 during
mapping, respectively.

MonoGS. To integrate our method, we treat the Gaussian color features as albedo features and
multiply them with the shading term before rasterization, and then we use the rendered output colors
for bundle adjustment. For all input depths, we set λren and λgeo to 0.8 and 0.5, respectively.

C Point Clouds and Metrics

Chamfer Distances. Since ground truth point clouds are unavailable for C3VD, we generate them
by unprojecting 2D images into 3D space with the correct camera configuration and the oracle depth
maps, provided in the C3VD dataset. For neural fields-based SLAM, we use the vertices of the
output meshes as the estimated point clouds, while for Gaussian Splatting-based SLAMs, we use the
Gaussian positions. For point cloud alignment, we use Coherent Point Drift [31] and the Chamfer
distances are also in millimeters.

Coloring Point Clouds. We use extracted point clouds from 3D Gaussian positions for visualization.
For colors, we directly use Gaussian color features.

D Long Sequence Validation

To evaluate NFL-BA’s performance on longer sequence, we test our method on a longer screening
video for C3VD, specifically c0_full_t2_v2, which spans over 4,000 frames with ground-truth poses,
allowing us to measure cumulative drift. In the main paper, we only evaluate on registered videos
with ground truth depth, not screening videos. We show how NFL-BA performs relative to Photo-BA
using the MonoGS backbone in Table 5.

NFL-BA matches Photometric BA on short sequences and increasingly outperforms it as trajectory
length grows. As a plug-and-play bundle-adjustment loss, NFL-BA enhances long-term robustness
under dynamic near-field lighting.

Table 5: ATE_T (cm) on c0_full_t2_v2 at varying lengths. NFL-BA matches or beats Photo-BA on
short sequences and shows long-term stability.

BA 500 frames 1,000 frames 2,000 frames 4,000 frames
Photo 2.599 1.937 8.459 14.790
NFL 2.422 2.254 5.742 11.368

E Evaluation of Center-Crop Baseline

We compared MonoGS Photo-BA optimized on only the central 75% and 50% of each frame against
full-frame MonoGS + NFL-BA on two sequences, measuring translational ATE (ATET ), Chamfer
distance (CD), and reconstructed point count in Table 6.
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Although center-cropping improves camera tracking performance (ATE_T) of MonoGS and gets
close to NFL-BA, it results in significantly worse reconstruction in terms of quality (CD) and density
(number of points). This is because for camera localization, not all pixels are essential, and focusing
only on central pixels can eliminate near-field lighting effects. In contrast, for reconstruction, all
pixels matter. This highlights the need for a principled mechanism for handling dynamic near-field
lighting, as proposed by NFL-BA.

Table 6: Center-cropping improves trajectory error but reduces map density, while full-frame NFL-BA
maintains both accuracy and dense reconstructions.

Method trans_t3_a desc_t4_p2
ATET CD Points ATET CD Points

MonoGS + NFL-BA 0.26 0.60 28,196 0.13 0.67 8,879
MonoGS (full frame) 0.31 0.76 7,095 0.25 0.76 6,398
MonoGS (75% center) 0.35 1.06 5,761 0.13 0.97 4,329
MonoGS (50% center) 0.40 2.82 1,865 0.15 1.56 2,100

F Lighting Model and Angular Attenuation

We clarify that NFL-BA models only diffuse reflectance and direct illumination, ignoring specular and
subsurface effects. Explicitly modeling these introduces non-differentiable and highly non-convex
terms, remaining an open challenge.

To mitigate specular highlights, we apply an intensity mask discarding pixels above 0.9 grayscale
intensity. This handles most artifacts but cannot correct reflective surfaces beyond the mask. While
effective on matte datasets (C3VD, in-the-wild), degradation occurs on Colon10K with more specular
highlights. Future work will address specular reflections under dynamic lighting.

Regarding angular attenuation, β = 0 is justified for tightly collimated endoscopic LEDs, we must
validated this for non endoscopy scenes. Using NFL-BA on the MonoGS backbone, we validate
various β values on two indoor sequences as seen in Table 7

β = 0 provides competitive mean accuracy and low variance. Non-zero values may yield small gains
but introduce instability. Given minimal benefit versus tuning cost, we retain β = 0, and plan to
explore learning β as a per-scene parameter in future work.

Table 7: Ablation of the angular-attenuation coefficient β on two indoor sequences, reporting
translational ATE and LPIPS.

Scene Metric β=0.00 β=0.25 β=0.50 β=0.75 β=1.00

Guitars ATE_T 0.17±0.01 0.17±0.003 0.16±0.006 0.17±0.006 0.17±0.011
LPIPS 0.36±0.02 0.37±0.006 0.40±0.030 0.36±0.017 0.36±0.020

Porch ATE_T 0.33±0.16 0.25±0.013 0.27±0.045 0.36±0.158 0.22±0.012
LPIPS 0.50±0.03 0.53±0.008 0.48±0.005 0.51±0.035 0.49±0.010

G Results on Endoscopy Datasets

For all experiments for each of the slam systems, we report the median of three runs for all tables and
figures. We have included per-sequence metrics for the median run below. Additionally, we include
point clouds for EndoGSLAM in Figure 10, more can be found on our project page.
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Figure 10: EndoGSLAM Point cloud results for 2 sequences: cecum_t1_a_under_review (top) and
desc_t4_a_p2_under_review (bottom).

Table 8: Results for sequence cecum_t1_a_under_review
Method Depth BA ATEt (mm)↓ ATEr(◦)↓ Chamfer (mm)↓

NICE-SLAM
Oracle Photo 2.65 2.82 0.08

NFL 1.39 2.81 0.15

PPS-Net Photo 10.14 2.71 0.51
NFL 4.14 2.75 0.19

EndoGSLAM

Oracle Photo 1.39 0.24 0.12
NFL 0.91 0.31 0.16

PPS-Net Photo 2.79 0.60 0.30
NFL 2.93 0.70 0.35

DA-Hybrid Photo 2.64 0.08 0.04
NFL 8.44 2.42 1.21

MonoGS

Oracle Photo 1.16 0.39 1.56
NFL 1.22 0.35 0.95

PPS-Net Photo 2.30 0.65 1.19
NFL 2.45 0.76 1.04

DA-Hybrid Photo 5.44 0.30 1.64
NFL 1.09 0.40 1.65
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Table 9: Results for sequence cecum_t2_a_under_review
Method Depth BA ATEt (mm)↓ ATEr(◦)↓ Chamfer (mm)↓

NICE-SLAM
Oracle Photo 8.13 2.19 0.49

NFL 1.15 2.82 0.11

PPS-Net Photo 1.11 2.13 0.11
NFL 7.98 2.82 0.50

EndoGSLAM

Oracle Photo 2.32 1.06 0.53
NFL 6.75 2.79 1.40

PPS-Net Photo 4.55 1.18 0.59
NFL 4.55 2.82 1.41

DA-Hybrid Photo 5.66 0.89 0.45
NFL 9.47 2.25 1.13

MonoGS

Oracle Photo 4.04 0.34 1.47
NFL 6.84 0.48 1.24

PPS-Net Photo 6.72 2.71 1.74
NFL 6.52 2.73 1.70

DA-Hybrid Photo 5.20 0.66 2.18
NFL 4.26 0.32 1.35

Table 10: Results for sequence cecum_t3_a_under_review
Method Depth BA ATEt (mm)↓ ATEr(◦)↓ Chamfer (mm)↓

NICE-SLAM
Oracle Photo 3.46 2.82 0.11

NFL 3.42 2.82 0.07

PPS-Net Photo 2.80 2.64 0.17
NFL 3.83 2.59 0.14

EndoGSLAM

Oracle Photo 0.75 0.15 0.08
NFL 0.74 0.27 0.14

PPS-Net Photo 0.79 0.16 0.08
NFL 2.18 0.22 0.11

DA-Hybrid Photo 1.45 0.62 0.31
NFL 1.52 0.18 0.09

MonoGS

Oracle Photo 0.36 0.16 1.23
NFL 0.87 0.31 0.62

PPS-Net Photo 1.07 0.17 1.12
NFL 1.24 0.14 0.81

DA-Hybrid Photo 1.06 0.33 0.95
NFL 1.16 0.30 0.93
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Table 11: Results for sequence desc_t4_a_p2_under_review
Method Depth BA ATEt (mm)↓ ATEr(◦)↓ Chamfer (mm)↓

NICE-SLAM
Oracle Photo 15.90 2.65 0.59

NFL 8.88 2.75 0.50

PPS-Net Photo 0.87 2.80 0.10
NFL 0.68 2.80 0.10

EndoGSLAM

Oracle Photo 0.36 0.56 0.28
NFL 0.26 0.94 0.47

PPS-Net Photo 0.48 0.58 0.29
NFL 1.00 0.83 0.42

DA-Hybrid Photo 0.45 1.16 0.58
NFL 1.80 2.81 1.40

MonoGS

Oracle Photo 0.25 1.05 0.76
NFL 0.13 0.98 0.67

PPS-Net Photo 0.49 1.78 0.77
NFL 0.61 1.67 0.70

DA-Hybrid Photo 0.69 2.63 0.80
NFL 0.20 0.97 0.77

Table 12: Results for sequence sigmoid_t3_a_under_review
Method Depth BA ATEt (mm)↓ ATEr(◦)↓ Chamfer (mm)↓

NICE-SLAM
Oracle Photo 1.04 2.47 0.05

NFL 0.84 2.83 0.05

PPS-Net Photo 9.47 2.79 0.28
NFL 6.60 2.55 0.35

EndoGSLAM

Oracle Photo 4.81 1.14 0.57
NFL 4.11 2.69 1.35

PPS-Net Photo 3.13 1.40 0.70
NFL 9.82 2.56 1.29

DA-Hybrid Photo 8.51 2.36 1.18
NFL 8.15 2.80 1.41

MonoGS

Oracle Photo 1.44 0.46 1.17
NFL 1.19 2.33 0.67

PPS-Net Photo 1.20 1.53 4.63
NFL 1.22 2.22 0.89

DA-Hybrid Photo 6.88 2.18 1.42
NFL 1.10 0.67 1.33
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Table 13: Results for sequence trans_t2_a_under_review
Method Depth BA ATEt (mm)↓ ATEr(◦)↓ Chamfer (mm)↓

NICE-SLAM
Oracle Photo 0.77 2.83 0.05

NFL 0.94 2.80 0.05

PPS-Net Photo 9.18 2.82 0.26
NFL 9.85 2.81 0.31

EndoGSLAM

Oracle Photo 4.21 1.80 0.90
NFL 0.49 2.82 1.41

PPS-Net Photo 10.05 1.66 0.84
NFL 0.90 1.46 0.73

DA-Hybrid Photo 9.14 2.77 1.39
NFL 14.59 2.18 1.10

MonoGS

Oracle Photo 14.38 1.42 1.49
NFL 1.51 2.72 0.97

PPS-Net Photo 14.64 1.91 1.52
NFL 3.08 1.02 1.09

DA-Hybrid Photo 15.18 2.12 1.68
NFL 9.51 1.41 1.45

Table 14: Results for sequence trans_t3_a_under_review
Method Depth BA ATEt (mm)↓ ATEr(◦)↓ Chamfer (mm)↓

NICE-SLAM
Oracle Photo 0.97 2.81 0.15

NFL 6.26 2.79 0.68

PPS-Net Photo 3.78 2.80 0.22
NFL 1.12 2.65 0.13

EndoGSLAM

Oracle Photo 0.17 2.70 1.35
NFL 0.20 2.70 1.35

PPS-Net Photo 0.30 2.80 1.40
NFL 0.50 2.81 1.41

DA-Hybrid Photo 0.46 2.81 1.41
NFL 0.33 2.74 1.37

MonoGS

Oracle Photo 0.31 2.67 0.76
NFL 0.26 2.66 0.60

PPS-Net Photo 0.33 2.79 0.89
NFL 0.61 2.83 0.82

DA-Hybrid Photo 0.29 2.81 0.91
NFL 0.38 2.71 0.71
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Table 15: Results for sequence trans_t4_a_under_review
Method Depth BA ATEt (mm)↓ ATEr(◦)↓ Chamfer (mm)↓

NICE-SLAM
Oracle Photo 0.39 2.81 0.05

NFL 0.23 2.83 0.05

PPS-Net Photo 7.26 2.77 0.14
NFL 7.88 2.73 0.23

EndoGSLAM

Oracle Photo 2.64 1.47 0.74
NFL 1.99 2.02 1.01

PPS-Net Photo 2.02 1.73 0.86
NFL 2.58 1.78 0.89

DA-Hybrid Photo 2.99 2.08 1.04
NFL 10.67 2.72 1.37

MonoGS

Oracle Photo 1.23 2.41 0.83
NFL 0.76 2.06 0.62

PPS-Net Photo 1.12 2.10 0.89
NFL 1.70 1.80 0.86

DA-Hybrid Photo 2.30 2.46 1.10
NFL 1.14 2.36 0.85
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Yes, they are.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: In Sec. 6, we discuss limitations.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.

23



• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: Our paper does not present formal theorems or proofs; it focuses on an
engineering loss formulation validated empirically. We include the equations necessay to
formulate and justify our loos function but no explicit proof is needed.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We will put that information in the supplementary due to the page limits.
Guidelines: We provide full algorithmic details (loss terms, hyperparameters, depth prepro-
cessing), dataset splits (C3VD sequences, indoor scenes) in the summplemental material.

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
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• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We are willing to make captured data and code publicly available once
accepted.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
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Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: They are described in Sec. 5.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Due to page limits, we will provide those in the supplementary.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: It is included in Sec. 5.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).
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9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our work conforms with the NeurIPS Code of ethics.

Guidelines: Our work involves algorithmic development and non-sensitive imaging data; no
ethical issues beyond standard academic practice. All endoscopy data are publicly available
and properly referenced.

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: They are described in Sec. 1.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: There are no high-risk pretrained models or sensitive datasets requiring special
access controls.

Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cited all the datasets and included license if possible.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [No]
Justification: We intend to release our code and captured data upon acceptance, but structured
documentation (e.g., README, data schema) is not yet provided; this will be included with
the release.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
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Justification: No human participants or crowdsourced annotations were involved.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing or research with human subjects.
We only used publicly available data that already passed IRB approvals.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Large language models were not used for any part of the methodology
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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