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Abstract

Deploying reinforcement learning (RL) in real-world systems often requires satisfying strict
safety constraints during both training and deployment, which simple reward shaping typ-
ically fails to enforce. Existing constrained RL algorithms frequently face several major
challenges, including instabilities during training and overly conservative policies. To over-
come these limitations, we propose CSAC-LB (Constrained Soft Actor-Critic with Log
Barrier), a model-free, sample-efficient, off-policy algorithm that requires no pre-training.
CSAC-LB integrates a linear smoothed log barrier function into the actor’s objective, pro-
viding a numerically stable, non-vanishing gradient that enables the agent to quickly recover
from unsafe states while avoiding the instability of traditional interior-point methods. To
further enhance safety and mitigate the underestimation of constraint violations, we em-
ploy a pessimistic double-critic architecture for the cost function, taking the maximum of
two cost Q-networks to conservatively guide the policy. Through extensive experiments
on challenging constrained control tasks, we demonstrate that CSAC-LB significantly out-
performs baselines by consistently achieving high returns while strictly adhering to safety
constraints. Our results establish CSAC-LB as a robust and stable solution for applying RL
to safety-critical domains.
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1 Introduction

In traditional Reinforcement Learning (RL) (Sutton & Barto, 1998) formulations, rewards are usually the
only metric of performance. However, in many real-world applications, the performance of an algorithm
is not necessarily measured by a single objective. For example, in the context of an autonomous driving
task, the agent must drive as quickly as possible while still adhering to traffic rules and avoiding collisions.
Designing a reward function that considers all individual cases can be challenging. Reward engineering,
which involves tuning the weights of different reward components, may also lead to a suboptimal solution.
In the context of deep reinforcement learning, where neural networks are used as function approximators,
it is often not feasible to apply conventional constrained optimization methods due to the large number of
parameters to be optimized.

If no prior knowledge is available, constraint violation is unavoidable during training as the RL agent must
visit the unsafe states of the environment to gradually learn a safe policy. A fundamental challenge is
to predict the boundary of the safe region using a neural network, since neural networks typically cannot
extrapolate well to unseen data (Barnard & Wessels, 1992). To predict this safe margin, the agent must
first see some samples from the unfeasible set. However, dramatically violating constraints is also generally
undesirable, as this may cause severe damage to the system being optimized. This means an RL agent must
avoid extensive constraint violations and learn efficiently from as few violations as possible.

Considering these challenges, existing approaches often require limiting assumptions, such as a known sub-
optimal recovery policy (Thananjeyan et al., 2021; Banerjee et al., 2024) or prior knowledge of the system
dynamics (Liu et al., 2025; Luo & Ma, 2021). This restricts generalization and requires domain expertise.
The challenge is particularly critical in tasks where the optimal policy lies on the boundary of the safe
region. Success in these tasks hinges directly on the agent’s ability to explore the safe margin efficiently.
This requirement, however, reveals a common weakness in existing algorithms (Achiam, 2021) as found in
Marchesini et al. (2022), which often fail to strike the necessary balance, resulting in policies that are either
too reckless and unsafe or too conservative and suboptimal.

Motivated by the above, we propose CSAC-LB, which applies a linear smoothed log barrier function (Ker-
vadec et al., 2019) to the Soft Actor-Critic (SAC) algorithm (Haarnoja et al., 2018) augmented by a safety
critic (Srinivasan et al., 2020). It serves as a general-purpose method that can handle various types of cost
functions without requiring any additional information or pre-training. Being an off-policy algorithm, it can
leverage data collected previously for efficient learning. The goal of this algorithm is to effectively explore the
safe margin of a given problem during training and to learn a well-performing policy for future deployment
in real-world tasks. Crucially, the smoothed log barrier provides a stable, non-vanishing gradient even in
unsafe states, enabling the agent to recover quickly from constraint violations and to explore the boundary
between safe and unsafe regions without suffering from numerical instability or vanishing gradients. This
facilitates more effective and targeted exploration, allowing the agent to learn the true constraint boundary
with fewer violations and greater sample efficiency than prior methods. This distinguishes it from other
works that aim for zero constraint violations during training.

Our contributions are the following:

• We propose a new actor objective that integrates a linear smoothed log barrier function. This
function provides a stable, non-vanishing gradient signal even when the policy is in an unsafe state,
allowing for rapid recovery without the numerical issues of standard log barriers or the gradient
saturation of clipping methods. This enables effective exploration along the constraint margin,
which is critical for learning in tasks where optimal policies lie near the feasibility boundary.

• To combat the critical problem of cost underestimation by the critic network, we employ a pessimistic
double-critic architecture for the cost function. By taking the maximum of the two cost Q-values,
we ensure a conservative estimate of constraint violations, leading to more reliable and safer policies.

• We provide a theoretical analysis of CSAC-LB, establishing a bound on its suboptimality and guaran-
teeing bounded constraint violation. Through extensive experiments on ten challenging benchmark
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tasks, we demonstrate that CSAC-LB consistently outperforms state-of-the-art baselines, achieving
a superior balance of high returns, strict constraint satisfaction, and stable convergence.

2 Related Work

Many prior works have been proposed for addressing the safety of reinforcement learning using various
approaches. The reviews by García & Fernández (2015), Dulac-Arnold et al. (2021), and Ma et al. (2022)
provide a comprehensive overview.

One direction which has been explored for solving constrained RL problems is safe policy search. Constrained
Policy Optimization (CPO) (Achiam et al., 2017) is the first general-purpose approach that solves constrained
reinforcement learning using a trust-region method and is able to provide certain theoretical guarantees.
Polymenakos et al. (2019) extend safe policy search by augmenting it with a Gaussian Process model for
risk estimation. Other approaches leverage cost or safety critics to guide the policy. For instance, Ha
et al. (2020) extend SAC (Haarnoja et al., 2018) with a cost function and optimize the constrained problem
by introducing a Lagrange-multiplier. However, this method suffers in terms of training robustness when
constraint violations occur only rarely during training on the task. Building on this idea, the method
by Srinivasan et al. (2020) learns to predict the cumulative constraint violations and update the policy
accordingly. Further improvements are presented by Yang et al. (2021) where a distributional safety critic is
combined with the CVaR metric. By changing the percentile of this CVaR metric, the sensitivity to risk can
also be changed accordingly. The work presented by Ying et al. (2022) also uses CVaR as the metric, but
in conjunction with the on-policy method Proximal Policy Optimization (PPO) (Schulman et al., 2017) as
the RL algorithm. In a separate line of inquiry, Lyapunov functions are also widely applied to constrained
RL problems (Chow et al., 2018; 2019). By projecting policy parameters onto the feasible solutions from
linearized Lyapunov constraints during the policy update, these methods can be applied to any policy
gradient method, such as DDPG (Lillicrap et al., 2016) or PPO.

Another line of work is close to Model Predictive Control (MPC) (Rawlings et al., 2017). Model-based
approaches, such as (Berkenkamp et al., 2017; Cheng et al., 2019), use a dynamics model to certify the
safety of the system. These approaches usually assume that the dynamics model is calibrated and the
constraints are known. This, however, limits the general applicability of the algorithms. A framework
for learning barrier certificates (Ames et al., 2019) and the policy iteratively, achieving zero training-time
constraint violations in an empirical analysis, is presented by Luo & Ma (2021). The work by Pereira et al.
(2020) combines stochastic barrier functions with safe trajectory optimization and is able to recover the
optimal policy under certain conditions. As et al. (2022) improve data efficiency in constrained RL by using
a Bayesian World model. Huang et al. (2024) learns a world model for training and planning, leading to a
higher data-efficiency.

Close to our work is the application of interior-point methods to PPO (Zeng & Zhang, 2018; Liu et al., 2020).
However, these methods are on-policy methods and have numerical stability issues due to the log barrier
function. To the best of our knowledge, we are the first to propose a numerically stable, off-policy interior-
point algorithm. By integrating a novel linear smoothed log barrier with the highly sample-efficient SAC
framework, our work, CSAC-LB, addresses the critical challenges of both training instability and sample
efficiency in constrained reinforcement learning.

3 Background

3.1 Constrained Markov Decision Processes

A Markov Decision Process (MDP) provides the mathematical foundation for sequential decision-making. It
is formally defined as a tuple (S,A, P,R, γ), where S is the state space, A is the action space, P : S×A×S →
[0, 1] is the state transition probability function, R : S × A → R is the reward function and γ ∈ [0, 1) is the
discount factor.

An agent interacts with the environment by following a policy π : S → P(A), which maps states to a
probability distribution over actions. The primary goal in reinforcement learning is to find an optimal policy
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where the expected cumulative discounted reward, given by

JR(π) = E
(st,at)∼π

[ ∞∑
t=0

γtR(st, at)
]
, (3.1)

is maximized.

A Constrained Markov Decision Process (CMDP) (Eitan, 1999) extends the MDP framework by augmenting
the MDP tuple with a set of cost functions, {C1, . . . , Cm}, where Ci : S × A → R, i = 1, . . . ,m, maps a
given state-action pair to the constraint violation penalty. For each cost function, we define an expected
cumulative discounted cost as

JCi
(π) = E

(st,at)∼π

[ ∞∑
t=0

γtCi(st, at)
]
. (3.2)

The objective in a CMDP is to find a policy that maximizes the expected return (3.1) while ensuring that
each expected cost (3.2) remains below a predefined threshold di. Let Π denote the set of all possible policies,
then this leads to the following constrained optimization problem:

maximize
π∈Π

JR(π)

subject to JCi
(π) ≤ di, i = 1, . . . ,m.

(3.3)

3.2 SAC-Lagrangian

The Lagrange Multiplier Method The Lagrange multiplier method is a standard technique for solving
constrained optimization problems (Bertsekas, 1982). Let f, g : Rn → R be real valued functions on Rn, a
general constrained optimization problem, often called the primal problem, can be written as:

maximize
x∈Rn

f(x)

subject to g(x) ≤ 0.
(3.4)

This problem can be transformed into an unconstrained optimization by introducing the Lagrangian function:

L(x, λ) = f(x)− λg(x),

where λ ≥ 0 is the Lagrange multiplier. The original problem (3.4) is then transformed to solving the
following saddle-point (or max-min) problem, known as the Lagrangian dual problem:

maximize
x∈Rn

infλ≥0 L(x, λ). (3.5)

SAC-Lagrangian SAC-Lagrangian (SAC-Lag) (Ha et al., 2020) applies the Lagrange multiplier frame-
work to solve constrained Markov Decision Processes (CMDPs) within the Soft Actor-Critic (SAC)
paradigm (Haarnoja et al., 2018). The goal is to find a policy π that maximizes the entropy-regularized
return while ensuring the expected cumulative cost does not exceed a predefined limit d. This forms the
primal optimization problem for the policy:

maximize
π∈Π

E
(st,at)∼π

T∑
t=0

[
γtR(st, at) + αH(π(st))

]
︸ ︷︷ ︸

f(π)

subject to E
(st,at)∼π

T∑
t=0

[
γtC(at, st)

]
− d︸ ︷︷ ︸

g(π)

≤ 0,
(3.6)

where H : P(A)→ R is the entropy function, and C : S ×A → R is the cost function.
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Following the dual formulation in (3.5), we can construct the Lagrangian and solve the saddle-point problem

maximize
π∈Π

infλ≥0 L(π, λ).

Since this problem has no analytical solution, SAC-Lag employs an actor-critic architecture and solves it
using dual gradient descent. The architecture consists of an actor network π(s;ϕ), a reward Q-network
Qr(s, a; θr), and a cost Q-network Qc(s, a; θc), where the parameters θr and θc are updated by minimizing
the respective TD-errors. The policy parameters ϕ and the Lagrange multiplier λ are updated iteratively
using samples from a replay buffer D. The multiplier λ is adjusted via gradient descent on the dual objective

Jd(λ) = E(st,at)∼D

[
λ(d−Qc(st, at))

]
.

This update increases λ when the expected cost Qc exceeds the limit d, thereby increasing the penalty for
constraint violations in the policy’s objective. The actor πϕ is then updated to maximize the Lagrangian,
which corresponds to minimizing the actor loss:

J(ϕ) = Est∼D

[
α log π(st;ϕ)−Qr(st, π(st;ϕ)) + λQc(st, π(st;ϕ)

]
. (3.7)

4 Approach

4.1 Log Barrier Method

The log barrier method provides an alternative to Lagrange multipliers for handling inequality constraints
like those in (3.4). It works by augmenting the objective with a barrier function that is only defined on the
feasible set, i.e., goes to infinity when approaching the feasible set boundary from the interior, given by

ψ(x) = − 1
µ

log(−x), (4.1)

where µ > 0 is a parameter that controls the steepness of the barrier. The constrained problem (3.4) is then
approximated by the unconstrained problem

maximize
x∈Rn

f(x)− ψ(g(x)) = f(x) + 1
µ log(−g(x)).

The barrier term is negligible when the solution is far from the constraint boundary (g(x) ≪ 0) but ap-
proaches −∞ as the boundary is neared (g(x)→ 0−), effectively preventing the optimizer from leaving the
feasible set. The key advantage is that it replaces the non-differentiable hard constraint with a smooth,
differentiable penalty.

4.2 Linear Smoothed Log Barrier Function

A critical limitation of the standard log barrier (4.1) is that it is undefined for points not in the interior
of the feasible set, e.g. consider the problem (3.4), the barrier function ψ(g(x)) is undefined for x ∈ Rn

with g(x) ≥ 0. This poses a significant challenge in deep reinforcement learning, where: 1. Gradient-based
optimizers may temporarily step into the infeasible region during an update. 2. The policy network is often
randomly initialized, resulting in an unsafe policy at the start of training.

Directly clipping the cost (define g(x) = 0 if g(x) > 0) would cause gradient saturation and prevent the agent
from learning to escape unsafe regions. To address this, we adopt the linear smoothed log barrier function
proposed by Kervadec et al. (2019), defined as:

ψ̃(x) =
{
− 1

µ log(−x) if x ≤ − 1
µ2

µx− 1
µ log( 1

µ2 ) + 1
µ otherwise.

(4.2)

As shown in Fig. 1, the function (4.2) is continuous and differentiable everywhere. It preserves the logarithmic
barrier within the feasible region but transitions to a linear penalty for constraint violations. This allows
meaningful gradients to flow even from unsafe states, guiding the policy back towards feasibility without
numerical instability.
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Figure 1: Comparison of different barrier functions and their derivatives. The left figure shows the penalty
value, while the corresponding gradient is shown in the right figure. The standard log barrier is numerically
unstable for non-negative constraint values (x ≥ 0). Clipping the input (or gradient) solves this but results in
a vanishing gradient for unsafe states (x > 0), halting learning. Our proposed smoothed barrier remains well-
defined and provides a stable, non-zero gradient, enabling the policy to recover from constraint violations.
The barrier parameter is set to µ = 2.0 for visualization.

4.3 CSAC-LB

Our method, CSAC-LB, integrates the linear smoothed log barrier (4.2) into the SAC framework to solve the
constrained RL problem (3.6). Although the smoothed log barrier function provides a mechanism for learning
a safe policy, its effectiveness relies on the cost critic accurately estimating the policy’s expected constraint
violations. If the cost critic underestimates the policy’s cost, recovery from an unsafe policy can be slow
and unreliable. van Hasselt et al. (2016) identified an overestimation bias in Q-learning and proposed taking
the minimum across multiple Q-networks to mitigate it. A similar issue arises in the constrained setting;
during actor optimization, there is a bias that can lead to an underestimation of constraint violations. This
is critical for the policy update, as it may hinder the agent’s ability to recover from unsafe policies.

To address this problem, our architecture employs twin Q-networks for both the reward and cost critics. For
the reward critic, we follow the standard practice from Double DQN of taking the minimum of the Q-values
to reduce overestimation. For the cost critic, however, underestimation is the primary concern, as it could
lead the agent to select unsafe actions. Therefore, to ensure a conservative and pessimistic estimate of the
expected cumulative cost, we take the maximum of the two cost Q-values. While other methods (Ji et al.,
2024) may use a single cost critic, our double-critic approach for costs is designed to explicitly mitigate the
underestimation of costs.

A further challenge in RL is that the cost critic can become overly conservative due to biases in replay data
and the approximation errors. To add flexibility and prevent the non-zero gradients of the barrier function
from causing suboptimal reward-seeking, we introduce a tunable offset δ ≥ 0 (where δ = 1 is used for all the
experiments in this paper). Our final barrier function, ψ̃, is applied to the output of the cost critic when
training the actor, i.e.,

ψ̃(Qc(s, a)) = ψ̃(max
i=1,2

Qc,i(s, a)− d− δ). (4.3)

The combination of the fast-acting log barrier penalty and the pessimistic cost estimation provides a strong,
immediate corrective signal when approaching or exceeding constraint boundaries. This allows CSAC-LB
to recover from unsafe states more rapidly and reliably than methods relying on slower-adapting Lagrange
multipliers or optimistic cost estimates. The complete procedure is detailed in Algorithm. 1.
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The critic networks Qr and Qc are trained by minimizing their respective mean-squared TD errors, where
the actor loss is given by replacing the last term in (3.7) for SAC-Lagrangian, i.e.,

J(ϕ) = Est∼D

[
α log π(st;ϕ)−Qr(st, π(st;ϕ)) + ψ̃(Qc(st, π(st;ϕ)))

]
. (4.4)

4.4 Theoretical Analysis: Safety and Performance Guarantees

Our theoretical analysis provides two key guarantees for the CSAC-LB algorithm: a guarantee on the
satisfaction of the safety constraints and a bound on the suboptimality of the final policy’s performance. A
detailed proof can be found in the Appendix. A.4.
Theorem 1 (Suboptimality Guarantee). Let p∗ be the optimal point of the reinforcement learning problem
under CMDP given by (3.3), i.e.,

p∗ = inf
π∈Π
{−JR(π) | JCi(π)− di ≤ 0, i = 1, . . . ,m}, (4.5)

where JR(π) is the expected return given by (3.1) and JCi(π) is the expected cumulative cost for the i-th
constraint, given by (3.2). We also assume that the reward and cost functions R(s, a), C(s, a) are bounded.
Let π∗ be the optimal policy found by CSAC-LB, i.e.,

π∗ = argmin
π∈Π

(
−JR(π) +

m∑
i=1

ψ̃(JCi(π)− di − δi)
)
, (4.6)

where the function ψ̃ is the linear smoothed log barrier (4.2), and δi ≥ 0 is the offset for the i-th constraint.
If the constrained problem (3.3) is strictly feasible, (i.e., ∃π ∈ Π such that JCi

(π) < di for all i = 1, . . . ,m)
and the functions −JR(π), JCi

(π) are convex, then the suboptimality bound of the solution π∗ is given by

−JR(π∗)− p∗ ≤ m

µ
,

where m is the number of constraints and µ > 0 is the barrier parameter.
Theorem 2 (Bounded Constraint Violation). Let π∗ be the optimal policy found by CSAC-LB, given by
(4.6), with some hyperparameter µ for the barrier function (4.2). Suppose the reward and cost functions are
bounded and the original constrained reinforcement learning problem (3.3) is strictly feasible, we then have

lim
µ→∞

JCi
(π∗) ≤ di + δi

for all i = 1, . . . ,m, i.e., the constraint violation JCi
(π∗)− di is at most δi as µ→∞.

Theorem 1 shows that CSAC-LB is a formal approximation of the true constrained problem, with a subop-
timality gap of m/µ that can be controlled. This reveals the fundamental trade-off of the barrier parameter
µ: a larger µ reduces the theoretical performance gap by creating a steeper penalty landscape, but such
sharp penalties can destabilize the neural network’s optimization process as shown in Fig. 7. When the
barrier parameter µ is set to be too large, the agent may struggle with exploring the boundary area and
consequently learn a conservative policy. We provide an empirical analysis in our ablation study in Sec. A.2.
It is important to note that the convexity assumption required by our formal guarantees is generally not
met in deep reinforcement learning. However, as our empirical results demonstrate (see Fig. 4), CSAC-LB
still learns robustly safe and high-performing policies in practice. Theorem 2 explains the role of the offset
δ when µ → ∞. In practice, while adjusting δ is functionally similar to changing the cost limit d, its true
utility comes from its interaction with the shape of our smoothed barrier function. By shifting the barrier’s
steep logarithmic region from d to d+δ, it creates a “soft” linear penalty zone for minor constraint violations.
This is particularly beneficial when the cost limit is very strict (e.g., d = 0), as it prevents the immediate,
harsh penalty at the boundary and thus smooths the training process.
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5 Experiments

5.1 Experiment Setup

Environment To evaluate the generalization of our algorithm CSAC-LB and the other baselines, we
conduct experiments in 10 tasks introduced by Luo & Ma (2021) and Ji et al. (2023). These high-risk,
high-reward tasks cover a wide spectrum ranging from 2D navigation task to continuous control tasks and
from simple pendulum Tilt task to high-dimensional humanoid locomotion task with speed limits. All tasks
are depicted in the Fig. 2. Notably, there are four tasks derived from Pendulum and Inverted Pendulum. A
detailed introduction can be found in the Appendix. A.1.

Figure 2: Visualization of the experimental environments. The environments include Pendulum and
Inverted Pendulum, with two distinct tasks for each as defined in Luo & Ma (2021)

Baseline We evaluate CSAC-LB against fix prominent baseline methods, chosen to represent different
approaches to constrained reinforcement learning: 1) SAC with Reward Shaping, a standard SAC imple-
mentation (Haarnoja et al., 2018) where a penalty term is subtracted from the environment reward upon
constraint violation (i.e. the modified reward function R̃(s, a) = R(s, a) − penalty factor · C(s, a), where
R(s,a) is the true reward function from the environments). The setup follows the methodology from Luo
& Ma (2021). 2) SAC-Lagrangian (SAC-Lag), an off-policy algorithm that extends SAC using the La-
grangian method to handle constraints (Achiam, 2021), as detailed in Section 3.2. 3) Worst-Case SAC
(WCSAC), an extension of SAC-Lagrangian that incorporates the Conditional Value-at-Risk (CVaR) of
the cost distribution as its risk measure (Yang et al., 2021). 4) CPO, a widely-cited on-policy algorithm
that enforces constraints using trust region optimization, providing strong theoretical guarantees (Achiam
et al., 2017). 5) APPO, a variation of PPO with Lagrangian method by augmenting the policy loss with a
quadratic deviation term (Dai et al., 2023). Recognizing that the performance of SAC with reward shaping
and WCSAC is highly sensitive to their respective penalty factors and risk levels, we conducted a hyper-
parameter search to ensure a fair and robust comparison. Based on this search (summarized in Fig. 4), we
selected optimal values of 6 for the SAC penalty factor and 0.5 for the WCSAC risk level. For clarity in
our results, we refer to these tuned baselines as SAC-6 and WCSAC-0.5, respectively. All algorithms were
re-implemented and trained with the same hyperparameters, as detailed in Table. 2.

5.2 Experiment Results

Comparison with Baselines Fig. 3 depicts the learning curves of the performance and constraint satis-
faction of all algorithms across environments. We set a challenging cost limit of d = 0 for the simpler tasks
(shown in the upper row) to test numerical stability, and d = 25 for the more complex locomotion tasks (in
the lower row). The results show that CSAC-LB consistently achieves high returns while adhering to the
specified safety constraints across all environments. For example, in the Walker2d and Ant tasks, CSAC-
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Figure 3: Training performance and safety over time. The top and bottom panels show the episodic
return and cost of constraint violations, respectively, versus training steps. Solid lines represent the mean
evaluation performance across 5 independent random seeds, while the shaded regions denote one standard
deviation. The dashed horizontal line in the cost plot indicates the cost limit for the task.
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Figure 4: Aggregate performance and safety analysis across all environments. (Left) Normalized
average return. The performance of each algorithm is scaled such that our method (CSAC-LB) scores 1 and
the conservative baseline (WCSAC-0.5) scores 0, highlighting relative improvement. (Right) Distribution
of constraint satisfaction. Evaluation runs are categorized into discrete safety levels based on their final
cumulative cost. The bars show the number of environments for each algorithm that fall into each category.
Both plots show results averaged over the final 5 evaluation episodes across 5 independent random seeds.

LB achieves approximately 24% and 150% higher final returns, respectively, than the next best-performing
safe baseline, SAC. In contrast, other methods demonstrate clear limitations. SAC-Lag often achieves high
returns but at the cost of significant constraint violations, with average costs reaching up to 700 in the
locomotion tasks. WCSAC and SAC generally remain safe but yield substantially lower returns. Moreover,
WCSAC fails to learn safe policies in the Ant and HalfCheetah environments. CPO consistently underper-
formed, exhibiting extremely conservative policy in locomotion tasks. However, we do note a performance
degradation for CSAC-LB in the final stages of the PendulumTilt task and CSAC-LB is no longer among
the best-performing safe policies. We hypothesize this occurs because once the policy converges, the entropy
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bonus from SAC can encourage unnecessary exploration near the boundary, leading to minor violations and
a subsequent over-correction by the barrier function. As we discuss in Appendix A.3, this can be mitigated
by adjusting the offset parameter δ to prevent the convergence. We further conduct a statistics of the over-
all performance of different algorithms as shown in Fig. 4. The left panel presents the normalized average
return, which is scaled to highlight the performance improvement over a conservative but suboptimal base-
line (WCSAC-0.5). The results show that despite scoring at 1.32, SAC-Lag severely violates constraints.
Whereas, other methods, such as the SAC variants, achieve significantly lower relative scores of 0.75 at their
highest, 25% less than our methods. All APPO, WCSAC and CPO runs performed poorly. The right panel
provides the corresponding safety analysis, showing the distribution of constraint satisfaction across the ten
environments. CSAC-LB demonstrates a high degree of reliability, successfully solving 9 out of 10 tasks
with safe policies. In only one task (Inverted PendulumMove) did it produce a slightly unsafe policy, with
a minor constraint violation of 0.6. In contrast, the high performance of SAC-Lag is shown to be at a cost,
as it results in unsafe policies in 7 out of the 10 environments. While SAC variants are predominantly safe,
their low scores in the left panel confirm that this safety comes at a significant performance cost.
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Figure 5: Evolution of learned policies for different algorithms on the SafeAntVelocity task. Each
point represents the return and cost of a single evaluation episode, with color indicating training progress
(from blue/early to red/late). The black dashed line indicates the cost limit d, while the crosses mark the
Pareto front. The plot illustrates that our method, CSAC-LB, learns to safely explore the regime around
the cost limit while efficiently converging towards high-return and safe solutions. The baseline methods
showcase clear failure modes: SAC-Lag and WCSAC are unsafe, frequently breaching the cost limit, while
SAC-6 learns an overly safe yet conservative policy.

Analysis of Exploration Behavior To provide a qualitative understanding of the advantage of CSAC-LB
in terms of exploration, Fig. 5 visualizes the training behaviors of different algorithms on the SafeAntVeloc-
ity task. Each point represents the return and cost of a policy during an evaluation episode, with its color
indicating the training step at which the evaluation took place. Initially, CSAC-LB adopts a conservative
policy, operating well within the safe margin to achieve a return of approximately 1000. As training pro-
gresses, it briefly explores beyond the cost limit of d = 25, a behavior enabled by the stable linear penalty
of our smoothed barrier, which allows the agent to find higher-reward states without destabilizing. In the
final training stages, its policies converge to the constraint boundary, with most later-stage policies (red
points) clustering near the cost limit. By precisely exploring this boundary, CSAC-LB successfully pushes
the Pareto-optimal frontier, achieving a high final return of approximately 3000 while satisfying the safety
constraint. The baseline methods, in contrast, exhibit less effective strategies. SAC-Lag and WCSAC display
a high variance in their exploration; their evaluation points are scattered across the plot and different colored
points all mix up together, indicating a failure to converge to a stable policy. Critically, numerous later-stage
policies (red points) significantly exceed the safety limit, demonstrating unreliable constraint satisfaction.
Conversely, SAC-6 represents the opposite extreme: it is overly conservative. While it quickly learns a safe
policy, it fails to explore the space near the boundary, causing it to prematurely converge to a suboptimal
return of around 2000. Overall, CSAC-LB achieves a good balance between safety and performance. This
success is attributed to our smoothed log barrier design, which permits the agent to effectively explore the
crucial region near the constraint boundary. Compared to the baseline algorithms, CSAC-LB allows for
gathering more information from the crucial region near the constraint boundary.
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Approximation Errors of Cost Critic To validate our design choice of using a twin cost critic network,
we performed an ablation study on the number of cost critics (N) used in our architecture. The results,
presented in Fig. 6, highlight the critical issue of the critic network’s value estimation accuracy and its effects.
We use SafeCarCircle1-v0 task with its cost limit d = 0. This creates extra challenges for the cost critics.
The single critic network (N = 1) fails to maintain safety, consistently showing high episodic costs. This can
be attributed to the value underestimation. The left panel shows the single critic predicting large negative
Q-values, a clear approximation error given that episodic costs are always non-negative. This leads the
policy to incorrectly evaluate dangerous states as safe, resulting in the observed constraint violations. The
introduction of a second critic (N = 2) and taking the maximum of their Q-values rectifies this issue. This
approach introduces a pessimistic bias that effectively counteracts the underestimation tendency, stabilizing
the cost estimate at a value greater than 0, mostly, and leading to safe behaviour in the end. While using
more critics (N = 3, 4) also ensures safety, these configurations become overly pessimistic and prevent the
agent from discovering higher-reward policies, causing their final returns to be significantly lower than the
N = 2 case. Therefore, we conclude that using two cost critics provides the best balance: it introduces
sufficient pessimism to ensure stable and safe learning while avoiding the overly conservative behaviour with
more critics.
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Figure 6: Training curves of different number of cost critic networks Qc in SafeCarCircle1-v0
task. The left panel shows the minimum Q-value predicted by the target cost critic(s) during batch updates,
while the middle and right panels show the corresponding episodic returns and costs. Notably, the single
critic configuration demonstrates significant underestimation. Despite only non-negative costs occurring in
the environment, it predicts negative Q-values. This flawed estimation leads the agent to perceive unsafe
actions as safe, resulting in poor constraint satisfaction.

6 Limitations

While CSAC-LB demonstrates robust performance, it is important to acknowledge its limitations. The
scope of our evaluation was conducted entirely in simulation; deploying CSAC-LB in real-world systems
would require addressing additional challenges, such as the sim-to-real gap. Our formal guarantees on
suboptimality and constraint satisfaction rely on idealized assumptions, including convexity, which do not
hold in the general deep RL setting. Thus, the theory serves as valuable guidance for the algorithm’s design,
while its practical effectiveness is confirmed by our empirical results.

7 Conclusion

In this work, we introduced Constrained Soft Actor-Critic with Log Barrier (CSAC-LB), a novel off-policy
algorithm designed to overcome the critical challenges of training instability and sample inefficiency in safe
reinforcement learning. Our approach successfully integrates a linear smoothed log barrier function into
the actor’s objective. This core innovation provides a numerically stable gradient signal that allows the
agent to learn effectively from constraint violations, enabling rapid and reliable recovery from unsafe states
without the oscillations seen in Lagrangian methods or the gradient issues of traditional barriers. To further
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improve its safety, CSAC-LB employs a pessimistic double-critic architecture for the cost function, which
provides a conservative estimate of expected costs and robustly prevents the policy from exploiting critic
underestimation errors. These design choices are supported by a theoretical analysis that provides guarantees
on the policy’s suboptimality and constraint violation.

Our extensive empirical evaluation across ten diverse and challenging benchmark tasks demonstrated the
clear superiority of CSAC-LB. The algorithm consistently achieved a superior balance of high returns and
strict constraint satisfaction, succeeding where other prominent methods failed, all while avoiding the need
for pre-training, reward shaping, or a learned dynamics model. While baselines either violated constraints
in pursuit of high rewards or settled for overly conservative, suboptimal policies, CSAC-LB learned to
proficiently and safely explore the crucial boundary of the feasible region. This allowed it to discover policies
that are both high-performing and safe, highlighting the effectiveness of its design.

The robust performance and stable learning dynamics of CSAC-LB establish it as a powerful and practical
solution for CMDPs. Future work could proceed along several avenues. One direction is to enhance the
core algorithm by exploring adaptive mechanisms for the barrier’s parameters (µ, δ) or by integrating more
advanced critic representations to tackle complex, high-dimensional problems. A second, broader direction
is to extend our approach to more complex problem domains, such as real-world applications, multi-agent
systems, environments with time-varying constraints, or problems involving stochastic safety specifications.
Overall, CSAC-LB provides a reliable framework for developing intelligent agents that can operate effectively
and safely in safety-critical domains.
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A Appendix

A.1 Environment Descriptions

This evaluation uses a diverse set of reinforcement learning environments designed to test different aspects
of algorithm performance and safety.

Low-dimensional Tasks

These four tasks are based on classic control problems (Luo & Ma, 2021), but are modified to create high-risk,
high-reward scenarios where the agent must operate near a safety boundary to succeed.

Upright Based on Pendulum, the agent must keep the pole perfectly upright. The reward is maximized
by minimizing the tilt angle, while a safety constraint prevents the pole from falling.

Tilt Also based on Pendulum, this task requires the agent to balance the pole at a large, specific tilt angle,
making exploration near the safety boundary necessary for high rewards.

Move Based on CartPole, the agent is rewarded for moving the cart far from its starting point while
keeping the pole nearly vertical and within tight safety bounds.

Swing Also based on CartPole, the agent is rewarded for swinging the pole to a large angle, requiring it
to manage its position while avoiding falling.

Safety-Gymnasium Benchmark

These tasks are from the standard Safety-Gymnasium benchmark (Ji et al., 2023), testing navigation and
locomotion under explicit safety constraints.

CarCircle-v1 A car-like robot must navigate a circular path. The reward encourages the agent to drive
as fast as possible and be as close as possible to the circle, while a cost is incurred for crossing the track
boundaries.

Velocity-Constrained Locomotion Tasks This suite of environments (Hopper, Walker2D, HalfCheetah,
Ant, Humanoid) features common MuJoCo agents with a shared objective. In each task, the agent is
rewarded for maximizing its forward velocity while being constrained by a safety limit set to 50% of the
velocity achieved by vanilla PPO in the original task.

A.2 Ablation Study

To evaluate the sensitivity of CSAC-LB to its key hyperparameters, we conduct an ablation study on the
barrier parameter µ and the offset δ. The results, presented in Fig. 7, show the training performance
across different hyperparameter settings in two representative environments: the numerically challenging
SafeCarCircle1-v0 and the complex locomotion task SafetyHopperVelocity-v1.

In CarCircle task, CSAC-LB demonstrates high robustness. While larger values of µ (e.g., 10) introduce
minor training fluctuations, the final performance remains consistent across all tested values. This suggests
that for tasks with simpler dynamics, the exact steepness of the barrier is less critical. The offset δ shows
a more significant effect. Although most values yield similar outcomes, setting δ = 3.0 leads to a notable
improvement in the final return (from approximately 10 with our default settings to 17) while maintaining
zero cost. This highlights the utility of δ in creating a "soft" linear penalty zone around the constraint
boundary, preventing the policy from becoming overly conservative, especially when the cost limit is strict
(d = 0 in this case).

Conversely, the HopperVelocity task is more sensitive to the choice of µ. As shown, lower values (µ = 3, 4)
achieve a high return of approximately 1500. However, increasing µ to 6 or 10 causes a significant performance
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Figure 7: Ablation study on the barrier parameter µ and offset δ. Training curves for episodic return
and cost are shown for SafeCarCircle1-v0 and SafetyHopperVelocity-v1. The dashed horizontal line in the
cost plots indicates the cost limit d. The results highlight the fundamental trade-off of the barrier parameter
µ: while the algorithm is broadly robust, excessively large values can destabilize training in complex tasks
like Hopper. The offset δ provides a mechanism for fine-tuning, improving performance in the strict CarCircle
task without compromising safety.

drop to around 600. This aligns with the trade-off identified in our theoretical analysis (Theorem 1): a large
µ creates a steep penalty landscape that, while theoretically optimal, can destabilize the neural network’s
optimization process in complex control tasks, leading to a suboptimal policy. Notably, all tested µ values
successfully keep the cost below or very near the limit (d = 25). The algorithm is largely robust to the choice
of δ in this environment, with all settings converging to a similar high-performance, safe policy.

Overall, this study demonstrates the general robustness of CSAC-LB. It suggests that µ = 4 provides a good
balance between theoretical optimality and practical stability, while δ can be used as an effective parameter
for fine-tuning performance, particularly in tasks with very strict constraints.

A.3 Failure Case Analysis

In our main results (Fig. 3), we identified a late-stage performance degradation for CSAC-LB in the Pendu-
lumTilt task. Figure 8 provides a deeper analysis of this behavior and demonstrates how the offset parameter
δ serves as an effective remedy.

The issue stems from a subtle interaction between SAC’s automatic entropy tuning and the sharp constraint
boundary enforced by our log barrier. With the default δ = 1, the policy quickly converges to a near-
optimal, low-entropy state. As shown in the left panel of Fig. 8, this causes the policy’s entropy to drop
below SAC’s fixed target entropy. Consequently, the automatic tuning mechanism dramatically increases
the temperature parameter α to encourage more exploration. This forced, stochastic behavior near a strict
constraint boundary inevitably leads to constraint violations (right panel), which are then heavily penalized
by the barrier function. This penalty, in turn, causes the policy to become overly conservative, leading to
the observed collapse in performance (middle panel).

This analysis provides a clear guide for practitioners on managing this behavior. The most direct solution
is to increase the offset parameter δ (e.g., to 2 or 3), which creates a wider “buffer zone” around the true
constraint limit d. This allows the policy to maintain a slightly higher entropy without triggering the harshest
region of the logarithmic penalty, causing the temperature α to remain stable and averting the performance
collapse. An alternative, more advanced approach is to manually lower the target entropy for SAC, which
directly reduces the pressure for forced exploration that causes the issue. While these tuning strategies are
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effective, exploring fully automated methods for managing this trade-off is a promising direction for future
work.
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Figure 8: Analysis of the performance degradation in SafePendulumTilt-v0 and its mitigation
using the offset δ. The figure displays the evolution of the SAC entropy coefficient α (left), episodic return
(middle), and cost (right) for different values of the offset parameter δ. With the default δ = 1, the policy
converges successfully but then degrades as the entropy coefficient rises to enforce exploration, leading to
increased costs. Increasing δ to 2 or 3 stabilizes the training by creating a larger buffer around the constraint
boundary, preventing this late-stage collapse and maintaining a high-performing, safe policy.

A.4 Proof of Theorem 1

Proof. The Lagrangian for the constrained problem (3.3) is given by

L(π, λ) = −JR(π) +
m∑

i=1
λi(JCi

(π)− di), (A.1)

where λ = (λ1, . . . , λm) ∈ Rm
+ is the Lagrange multiplier. The corresponding dual function is then

g(λ) = inf
π∈Π

L(π, λ). (A.2)

Since the policy π∗ given by (4.6) is the optimal policy found by CSAC-LB via solving an unconstrained
problem, the first-order optimality condition requires the gradient of the objective to be zero, i.e.,

−∇JR(π∗) +
m∑

i=1
ψ̃′(JCi

(π∗)− di − δi)∇JCi
(π∗) = 0. (A.3)

We can then construct a Lagrange multiplier λ∗ that is dual feasible by setting each of its component as:

λ∗
i = ψ̃′(JCi

(π∗)− di − δi) i = 1, . . . ,m. (A.4)

(We have λ∗ ⪰ 0 since the derivative ψ̃′ is always nonnegative.) Substituting (A.4) into (A.1), and then
taking the first derivative with respect to π for L(π, λ∗), we have

∇πL(π, λ∗) = −∇JR(π) +
m∑

i=1
ψ̃′(JCi(π∗)− di − δi)∇JCi(π).

By the optimality condition (A.3), it follows immediately that ∇πL(π∗, λ∗) = 0. Since the Lagrangian is
convex by our assumption, this implies that π∗ minimizes the Lagrangian L(π, λ∗) for this specific choice of
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λ∗ given by (A.4). We can therefore evaluate the dual function (A.2) at λ∗:

g(λ∗) = inf
π
L(π, λ∗) = L(π∗, λ∗)

= −JR(π∗) +
m∑

i=1
λ∗

i (JCi(π∗)− di)

= −JR(π∗) +
m∑

i=1
ψ̃′(JCi(π∗)− di − δi)(JCi(π∗)− di). (A.5)

Notice that by weak duality, the primal optimal value p∗ is bounded by the dual function, i.e., p∗ ≥ g(λ∗).
Together with (A.5), we have the following suboptimality gap:

−JR(π∗)− p∗ ≤ −
m∑

i=1
ψ̃′(JCi

(π∗)− di − δi)(JCi
(π∗)− di). (A.6)

Now we need to find a uniform upper bound for the summation on the right-hand side of (A.6). Let
xi = JCi(π∗)− di, i = 1, . . . ,m. We then need to bound the term

h(xi) = −ψ̃′(xi − δi)xi.

• Case 1: Logarithmic Region. Suppose xi − δi ≤ −1/µ2, by (4.2), we have

ψ̃′(xi − δi) = −1/(µ(xi − δi)).

Then h(xi) can be expressed as:

h(xi) = −xi

(
−1

µ(xi − δi)

)
= xi

µ(xi − δi)
= 1
µ

(
1 + δi

xi − δi

)
.

Since δi ≥ 0 and the denominator xi − δi is negative and non-zero, we have δi

xi−δi
≤ 0. Hence, we

conclude that
h(xi) ≤

1
µ
.

• Case 2: Linear Region. Suppose xi − δi > −1/µ2, by (4.2), we have

ψ̃′(xi − δi) = µ.

Then h(xi) can be expressed as:
h(xi) = −µxi.

Recall that xi > δi − 1/µ2 by our assumption, and hence, we have

h(xi) = −µxi < −µ
(
δi −

1
µ2

)
= 1
µ
− δiµ ≤

1
µ
.

In both cases, each individual term in the summation of (A.6) is bounded above by 1/µ. We can therefore
bound the entire sum as

−
m∑

i=1
ψ̃′(JCi

(π∗)− di − δi)(JCi
(π∗)− di) ≤

m∑
i=1

1
µ

= m

µ
. (A.7)

Substituting (A.7) back into (A.6), we conclude that

−JR(π∗)− p∗ ≤ m

µ
, (A.8)

which ends the proof.

This result shows that the suboptimality of the solution is proportional to the number of constraints m
and inversely proportional to the barrier parameter µ. The gap can therefore be made arbitrarily small by
choosing a sufficiently large µ.

19



Published in Transactions on Machine Learning Research (11/2025)

A.5 Proof of Theorem 2

Proof. According to the expression of the linear smoothed log barrier function (4.2), we have ψ̃ → ψ as
µ→∞ (where ψ is the original log barrier function given by (4.1)). Let I− : R→ R ∪ {∞} be the indicator
function for the nonpositive reals, given by

I−(x) =
{

0 x ≤ 0
∞ x > 0,

we have ψ → I− as µ → ∞ (Nesterov & Nemirovskii, 1994; Boyd & Vandenberghe, 2004). Then it follows
that ψ̃ → I− as µ→∞, and hence, the optimization problem corresponding to (4.6), given by

minimize
π∈Π

−JR(π) +
∑m

i=1 ψ̃(JCi
(π)− di − δi), (A.9)

converges to
minimize

π∈Π
−JR(π)

subject to JCi
(π) ≤ di + δi, i = 1, . . . ,m

(A.10)

as µ→∞. Recall that π∗ is defined as the optimal point of the problem (A.9) for some µ, and let π∗
∞ be the

optimal point of the problem (A.10). The optimal point π∗
∞ exists since the problem (A.10) is a relaxation of

the original constrained reinforcement learning problem (3.3), whose optimal point exists by our assumption.
Then it follows from the discussion above that we have π∗ → π∗

∞ as µ→∞. Since the policy π∗
∞ satisfies

JCi
(π∗

∞) ≤ di + δi

for all i = 1, . . . ,m, and JCi(π∗)→ JCi(π∗
∞) as π∗ → π∗

∞, we conclude that

lim
µ→∞

JCi(π∗) ≤ di + δi

for all i = 1, . . . ,m, which ends the proof.
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Table 1: Environments Overview

Environment Base / Agent Observations Actions

Upright Pendulum 3 1
Tilt Pendulum 3 1
Move CartPole 4 2
Swing CartPole 4 2

CarCircle-v1 Car 24 2
Hopper-Velocity-v1 Hopper 11 3
Walker2D-Velocity-v1 Walker2D 17 6
HalfCheetah-Velocity-v1 HalfCheetah 17 6
Ant-Velocity-v1 Ant 105 8
Humanoid-Velocity-v1 Humanoid 348 17

Table 2: Hyperparameter Configuration

Hyperparameter Value

Common Parameters
Batch Size 256
Network Architecture [256, 256]
Discount Factor (γ) 0.99
Random Steps 100
Learning Rate 1× 10−3

Actor Update Frequency 1
Critic Update Frequency 1
Polyak Update Factor 0.005
Initial Temperature 1.0
Normalize Reward Yes

CSAC-LB Parameters
Offset 1.0
Log Barrier Factor 4.0

WCSAC Parameter
Damp Scale 10

CPO Parameters
GAE Lambda (λ) 0.95
Line Search Max Iterations 15
CG Max Steps 15
Normalize Advantage Yes
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Algorithm 1 Constrained Soft Actor-Critic with Log Barriers (CSAC-LB)
1: Initialize: Actor parameters π.
2: Initialize: Twin reward critic parameters θr,1, θr,2.
3: Initialize: Twin cost critic parameters θc,1, θc,2.
4: Initialize: Target networks with θ′

r,i ← θr,i and θ′
c,i ← θc,i for i = 1, 2.

5: Initialize: Empty replay buffer D.
6: Hyperparameters: Cost limit d, offset δ, barrier factor µ, discount γ, entropy coef. α, target update

rate τ , learning rates λπ, λQ.
7: for each episode do
8: for each environment step do
9: Select action from policy: at ∼ ππ(·|st).

10: Execute at, observe reward rt, cost ct, and next state st+1.
11: Store transition (st, at, rt, ct, st+1) in D.
12: Sample a minibatch of transitions B = {(s, a, r, c, s′)} from D.

{— Critic Updates —}
With target policy actions a′ ∼ ππ(·|s′):
Compute the reward target (using clipped double-Q):

13: yr ← r + γ
(

mini=1,2 Q
′
θ′

r,i
(s′, a′)− α log ππ(a′|s′)

)
.

Compute the cost target (using pessimistic double-Q):
14: yc ← c+ γ

(
maxi=1,2 Q

′
θ′

c,i
(s′, a′)

)
.

Update reward critics by one step of gradient descent on the MSE loss:
15: L(θr,i) = E(s,a)∼B

[
(Qθr,i

(s, a)− yr)2] for i = 1, 2.
Update cost critics by one step of gradient descent on the MSE loss:

16: L(θc,i) = E(s,a)∼B
[
(Qθc,i(s, a)− yc)2] for i = 1, 2.

{— Actor Update —}
For actions from the current policy apolicy ∼ ππ(·|s):

17: Compute pessimistic cost Q-value: Qmax
c (s, apolicy) = maxi=1,2 Qθc,i

(s, apolicy).
18: Compute the log barrier penalty: P (s, apolicy) = ψ̃(Qmax

c (s, apolicy)− d− δ).
Update actor by one step of gradient descent on the objective:

19: J(π) = Es∼B,a∼ππ

[
−mini=1,2 Qθr,i(s, a) + α log ππ(a|s) + P (s, a)

]
.

{— Target Network Updates —}
Update all target networks using Polyak averaging:

20: θ′
r,i ← τθr,i + (1− τ)θ′

r,i for i = 1, 2.
21: θ′

c,i ← τθc,i + (1− τ)θ′
c,i for i = 1, 2.

22: end for
23: end for
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