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Human activities are inherently complex, and even
simple household tasks involve numerous object interac-
tions. To better understand these activities, it is crucial
to model their interactions with the environment captured
through dynamic changes. The recent availability of af-
fordable head-mounted cameras and egocentric data of-
fers a more accessible and efficient means to understand
dynamic human-object interactions in 3D environments.
However, most existing methods for human activity model-
ing either focus on reconstructing 3D models of hand-object
or human-scene interactions or on mapping 3D scenes, ne-
glecting dynamic interactions with objects. The few existing
solutions often require inputs from multiple sources, includ-
ing multi-camera setups, depth-sensing cameras, or kines-
thetic sensors. To this end, we introduce EgoGaussian,
the first method capable of simultaneously reconstructing
3D scenes and dynamically tracking 3D object motion from
RGB egocentric input alone. We leverage the uniquely dis-
crete nature of Gaussian Splatting and segment dynamic
interactions from the background. Our approach employs
a clip-level online learning pipeline that leverages the dy-
namic nature of human activities, allowing us to reconstruct
the temporal evolution of the scene in chronological order
and track rigid object motion. Additionally, our method
automatically segments object and background Gaussians,
providing explicit 3D representations for both static scenes
and dynamic objects. EgoGaussian shows significant im-
provements in terms of both dynamic object and background
reconstruction quality compared to the state-of-the-art. We
also qualitatively demonstrate the high quality of the recon-
structed models.

1. Introduction

Human activities are inherently complex and performing
simple household tasks involves numerous interactions with
objects. For example, making a coffee in the morning in-

it under the coffee machine, pressing a button for the pre-
ferred type of coffee, and adding milk or sugar. Even this
seemingly simple task includes various object interactions
and movements. To better understand human activities and
behaviors, it is important to be able to model these dynamic
interactions with the environment. The recent availability
of affordable head-mounted cameras [43, 54] and egocen-
tric data [11, 19, 20, 37] offers a more accessible and effi-
cient means to understand dynamic human-object interac-
tions in 3D environments. Toward this goal, we tackle the
challenging task of reconstructing 3D scenes and dynamic
interactions of objects from RGB egocentric videos.

Most existing methods for modeling human-object inter-
actions either focus on reconstructing 3D hand-object [16,
32, 61, 70] or human-scene interaction models [1, 25, 27,
31, 72, 76] or on mapping 3D scenes [57]. These ap-
proaches often neglect dynamic interactions with objects,
resulting in static representations with motion-induced arti-
facts, commonly known as the “ghost effect”. The few ex-
isting solutions often require inputs from multiple sources,
including multi-camera setups [36], depth-sensing cameras
[62], or kinesthetic sensors [24]. While these methods
achieve 3D reconstruction, they do not consider changes
caused by interactions and thus fail to capture the dynamics
depicted in egocentric videos.

In this paper, we go beyond prior works to tackle the
task of dynamic scene reconstruction from RGB egocen-
tric videos. Our proposed method EgoGaussian simulta-
neously reconstructs 3D scenes and dynamically tracks 3D
object motions within them. Our key insight is that the
uniquely discrete nature of Gaussian Splatting makes it es-
pecially suitable for spatial segmentation, allowing objects
to be trained separately from the background. Given that
human activities involve continuous motion over time, we
identify critical contact points in time and distinguish dy-
namic interactions from static captures that only contain
camera movements. We propose a clip-level online learning
pipeline that leverages the dynamic nature of human activi-



ties, allowing us to reconstruct the temporal evolution of the
scene in chronological order and track rigid object motion.

To reconstruct the dynamic scenes from an egocentric
video, EgoGaussian first obtains hand-object segmentation
using an off-the-shelf method and derives camera poses
through structure-from-motion. By leveraging the natural
trajectories of interactions, we partition the input video into
static and dynamic clips. The static clips are used to re-
construct the background scenes and initialize the shapes of
the object that will be interacted with. Subsequently, we
refine the object’s shapes and track their motion through
the dynamic clips. We empirically show that EgoGaus-
sian achieves better reconstruction of dynamic scenes than
the state-of-the-art. We quantitatively evaluate our method
on two in-the-wild egocentric video datasets following the
evaluation protocol for novel-view synthesis. We also qual-
itatively demonstrate the high quality of the reconstructed
scenes and the tracked object shapes and their motion.

Our main contributions can be summarized as follows:

* We present a novel method that accurately reconstructs
3D scenes and dynamic object motion within them from
RGB egocentric videos.

* We leverage the dynamic nature of interactions that con-
sist of transitions between static and dynamic phases,
which facilitates the reconstruction of the static scenes,
the object shapes, and the tracking of their motion.

* Through both qualitative and quantitative evaluation, we
demonstrate that our method outperforms previous ap-
proaches and provides better 4D reconstruction that cap-
tures the dynamic object interactions.

Video results and code are publicly available at https:

//zdwww.github.io/egogs.github.io/

2. Related Work

Hand-Object Segmentation. Many works have studied
hand-object interaction in egocentric vision from different
aspects. One significant area of focus is segmentation,
specifically obtaining image segmentation masks of hands
and the objects they hold. Ren et al. [48] proposed a
motion-based approach to robustly segment both hand and
object using optical flow and domain-specific cues from
egocentric video.

Concurrent with the emergence of deep neural networks-
based hand-object segmentation is the scaling-up of egocen-
tric data that includes pixel-level annotations and involves
diverse daily activities [11, 12, 19]. VISOR[13] annotates
videos from EPIC-KITCHENS][ 11, 12] dataset and provides
masks for 67k hand-object relations covering 36 hours of
videos. EgoHOS [74] further introduces the notion of a
dense contact boundary to explicitly model the interaction
and a context-aware compositional data augmentation tech-
nique to generate semantically consistent hand-object seg-
mentation on out-of-distribution egocentric videos. Cheng

et al. [9] produces a rich, unified 2D output of interaction by
converting predicted bounding boxes to segments with Seg-
ment Anything (SAM) [29]. Our method takes egocentric
videos with hand-object segmentation masks as input and
creates dynamic 3D models.

Hand-Object Reconstruction. Another highly related di-
rection is to reconstruct the hand-object interaction, featur-
ing 3D pose estimation for hands and objects. Recent works
often jointly reconstruct hands and objects to favor physi-
cally plausible interactions [16, 32, 61, 70, 71, 78]. These
approaches can be grouped into two categories. One as-
sumes a known 3D object model and fits that model into
2D image [6, 10, 32, 56, 67]. For example, RHO [6] adapts
an optimization-based approach that’s able to reconstruct
hands and objects from single images in the wild, by lever-
aging 2D image cues and 3D contact priors to provide con-
straints.

Recent works eliminate the need for a known 3D model
and directly reconstruct 3d object shapes from the in-
put [16, 47, 71]. However, they either require multiview in-
put [47], specific hand-object interaction supervision [71],
or can only reconstruct simple object shapes [16]. Cur-
rent shape-agnostic methods struggle in in-the-wild scenar-
ios [16, 78]. In contrast, our method does not require prior
knowledge and obtains 3D object shapes through differen-
tiable 3D Gaussian-based rendering.

Static Scene Modeling. In the past few years, the domain
of static scene modeling has garnered considerable atten-
tion. Mildenhall et al. [40] introduce the groundbreak-
ing Neural Radiance Fields (NeRF), which utilizes a large
Multilayer Perceptron (MLP) to represent 3D scenes and
renders via volume rendering technique. However, their
method queries the MLP at hundreds of points for each
ray, resulting in slow training and rendering speed. Ad-
ditionally, the original NeRF’s performance can diminish
in scenes with highly dynamic elements due to its static,
volumetric nature. Therefore, some subsequent works have
tried to enhance the quality by (1) mitigating existing prob-
lems, such as aliasing [3, 4, 8] and reflection [23, 58] (2)
incorporating image processing [38, 41] (3) employing per-
image transient latent codes [39, 52], and (4) introducing
supervision of expected depth with point clouds [14, 65].
There also exist some other follow-up works aiming to
improve the speed, for example, by caching precomputed
MLP results [26, 73], employing well-designed data struc-
tures [7, 55], removing the neural network [18], or utiliz-
ing multi-resolution hash encoding [42]. Yet, most of these
methods still use ray marching, which involves sampling
millions of points and slows down real-time rendering.
Recently, Kerbl et al. [28] propose a different approach
in the modeling and rendering of complex static 3D scenes
- 3D Gaussian Splatting (3DGS). They model static scenes
with Gaussians whose position, opacity, shape, and color
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Figure 1. EgoGaussian Pipeline. Given an egocentric video input, our framework first estimates camera poses via structure-from-motion
and obtains hand-object segmentation masks using an off-the-shelf approach. We also partition the video input into static and dynamic
clips in the preprocessing step. The static clips are used to reconstruct the background scenes and initialize the shapes of the object that

will be interacted with. Subsequently, we refine the object’s shapes and track their motion through the dynamic clips.

are learned through a differentiable splatting-based ren-
derer, achieving real-time rendering speed.

Dynamic Scene Modeling. Motivated by the success of
NeRF [40] in static scene modeling, numerous studies have
adopted neural representations to model dynamic scenes.
One strategy to extend 3D into 4D scenes is by using time
stamps as an additional conditioning factor. [2, 64]. An-
other set of ’dynamic NeRF’ works [5, 17, 49, 53, 59]
involves employing 4D space-time grid-based representa-
tions. Representing the 3D scene at a certain timestamp
as a canonical space and then explicitly modeling deforma-
tion fields to warp 3D points into the canonical space is a
common strategy as well [15, 34, 44, 46]. Another strat-
egy is to combine the two approaches, using a conditional
neural volume together with a deformation field [30, 45].
Howeyver, these methods all suffer from the same issues as
static NeRFs, in that they require raymarching and despite
advances in performance, still are not sufficiently fast for
real-time rendering.

Similarly, many dynamic extensions to 3D Gaussian
splatting were also proposed [35, 36, 63, 68]. The most
common approach is to learn for every timestep a set of
deformations for each Gaussians. This can be done explic-
itly, or implicitly using a deformation which is evaluated for
each Gaussian. This results in substantially faster training
and rendering speed, with comparable levels of rendering
quality. Although these methods result in decent quality
renders, upon closer inspection all of them result in notice-
ably blurrier results than are possible with static reconstruc-
tions, especially when strong motion is involved.

3. Methodology

Figure 1 summarizes our method, EgoGaussian, for dy-
namic scene reconstruction from RGB egocentric videos.
Our central idea is to identify dynamic objects and train
them separately from the background. To do so, we de-
velop a framework that fully integrates the dynamic char-
acteristics of object interactions by temporally segmenting
the video into static and dynamic clips and applying existing
hand-object interaction modeling techniques to achieve 2D
spatial distinction. Specifically, EgoGaussian first obtains
camera poses and hand-object segmentation masks and the
segmentation masks are further used to partition the videos
into static and dynamic clips (Sec. 3.2). The static clips are
used to initialize the static background and object shapes
(Sec. 3.3), while the dynamic clips are used to track object
motion and gradually refine their shapes (Sec. 3.4).

3.1. Preliminary: 3D Gaussian Splatting

We use 3D Gaussian Splatting (3D-GS) as our modeling
structure because it provides an explicit 3D scene represen-
tation with a set of point-cloud-like 3D Gaussians. Each
Gaussian is characterized by a position (mean) p, a covari-
ance matrix X, an opacity, and color features c. The Gaus-
sians are defined using the standard multivariate Gaussian
distribution G(x) = e~ 2 (=W 27 (x=#) providing a flex-
ible optimization framework and a compact 3D scene rep-
resentation.

3D Gaussian Splatting utilizes a differentiable point-
based a-blending rendering to compute the color C' of pixel
Xp. Specifically, it adapts a typical neural point-based ap-



proach and blends N ordered points overlapping the pixel:
C(xp) = Dien Cilii H;;ll (1 — a;), where o is calcu-
lated by evaluating a 2D Gaussian with covariance X2, pro-
jected from the 3D Gaussian, and then multiplied with its
opacity; and c; is the color of each Gaussian. The original
3D-GS implementation treats color as a directional appear-
ance component represented via spherical harmonics (SH).
For simplicity, we disable the view-dependent color by set-
ting the maximum SH degree to 0.

3.2. Data Preprocessing

As pointed out by previous work [21], 3D-GS tends to over-
fit to training views and generate excessive floaters when
there are scene inconsistencies among 3D views. In order
to eliminate such inconsistencies, our idea is to identify any
objects that move at all in the scene and separate them from
the static background. In this preprocessing step, we adopt
an initialisation method similar to other 3D-GS approaches
and process the input to separate dynamic contents from
static ones.

Initialisation for 3D-GS. Following existing 3D-GS meth-
ods, we first use COLMAP [50, 51] to estimate camera
poses. COLMAP’s SfM also creates a sparse point cloud
corresponding to the camera poses estimated, and we use
them as an initialization for 3D Gaussian Splatting. For ego-
centric dataset where camera poses are available, e.g., EPIC
Fields [57] provides estimated camera poses for EPIC-
KITCHENS [11], we employ them directly.

Separation of Dynamic and Static. To separate dynamic
and static information in 2D frames, we use off-the-shelf
approaches to obtain segmentation masks of hand-object
interaction. Specifically, we use EgoHOS [74] to gener-
ate hand masks and Track-Anything model [66] for object
masks and human body masks. Furthermore, these masks
are dilated by 2 pixels for better robustness. The onset
and offset frames of each hand-object interaction are esti-
mated throughout the video. We then partition the egocen-
tric video along the temporal axis into static and dynamic
clips according to the onset and offset of interactions.

3.3. Static Reconstruction

Given a static video clip, our goal is to obtain a 3D recon-
struction that distinguishes between the static background
and dynamic objects involved in interactions within the dy-
namic clips. We begin by training a static representation of
the scene and then identify dynamic objects using informa-
tion extracted from the adjacent dynamic clips.

Initial Static Reconstruction. We have a set of 1" obser-
vations/frames from the static clip S = {I, Mbody,t,ét\
t =1,...,T} asinput, where I, is an input RGB egocentric
frame, Mgy, is the binary hand/body segmentation mask
where pixel value = 0 represents body part and pixel value
= 1 is for rest of the frame, and 6; is the corresponding

camera parameters for frame . We follow a similar opti-
mization pipeline as the original 3DGS [28], including both
pruning and densification but use a masked version of the
loss function:

L= (1 - )\)['1 (Iinputa Irender) + /\ﬁD-SSIM (Iinpula Irender) )

with the gradients zeroed out according to the mask Mpqqy.
Similar to SuGaR [22], after around 30K iterations, we ap-
pend an additional entropy loss on the opacity a of Gaus-
sians, i.e.
Eentropya = -« IOg(Oé) - (1 - Ol) IOg(l - Ol),
as a way to enforce Gaussians to be either fully transpar-
ent or completely opaque and train for another 10K iter-
ations while disabling pruning and densification. Instead,
we prune the transparent Gaussians once at the end of this
phase of training. This produces a set of 3D Gaussians G re-
constructing the scene captured by this static clip, which in-
cludes both the static background and any objects that might
move during dynamic portions of the video.
Dynamic Object Identification. To identify the set of
Gaussians associated with dynamic objects, we extract in-
teraction information from nearby dynamic clips and aim to
generate masks for objects that have moved or will move.
We automatically generate such masks by selecting a ran-
dom point from the object mask during interaction within
the dynamic clips and using it as a prompt for the Track-
Anything model [66]. The initial static reconstruction from
the previous step allows us to lift 2D masks to a dense 3D re-
construction of the scene, and conversely, project 3D Gaus-
sian points to 2D. Experimental results show that object
masks from just N static frames adjacent to the dynamic
clips are sufficient to obtain reliable 3D segmentation of
the object. For example, consider a static clip S with T'
frames immediately preceding a dynamic clip where an ob-
ject is moved by the camera wearer. We obtain segmenta-
tion masks for the object in the last NV frames of this static
clip, i.e., {Mopj,7—n, - .. Moy, 7}, where a pixel value of
= 1 indicates the targeted object and = 0 represents the rest
of the frame. We set N = 5 in our experiments.

Similar to Gaussian Grouping [69], though more stream-
line, an additional trainable parameter of label [ is then
attached to each Gaussian and initialized to a very small
value. This label can then be rendered similar to the RGB
value as: L(x,) = Yo n Lo H;;ll (1 — ;). This pro-
duces a segmentation L, upon which we can apply a binary
cross entropy loss using the object masks Mp;:

»CBCEZ = — [Mobj -In (O'(Lr)) + (1 - Mobj) -In (1 — U(Lr))}

where o(X) = lﬂ% is the sigmoid activation function.
Training the 3D Gaussians with respect to this loss func-

tion while freezing all parameters except for [ allows us to
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Figure 2. Dynamic Object Modeling Pipeline. We use a sequential pipeline with regularization from previous frames, allowing us to

estimate object poses and iteratively refine their shapes simultaneously.

separate the Gaussians into object G, and background Gy,
based on thresholding [ and such 3D segmentation can be
used to render targeted object masks from more viewpoints.
More details and graphical illustration are in the Supp.

3.4. Dynamic Reconstruction

Given the reconstructed background G, and the initial ob-
ject Gopj using the static clips, we refine the object shapes,
track their motion through the dynamic clips and update the
background with new information revealed by the move-
ment of the dynamic objects.
Object Pose Estimation. We use the set of object Gaus-
sians Gop; as an initial estimate of the object appearance and
estimate its pose for every k-th frame in the dynamic clip.
Specifically, we estimate for a targeted frame f; a corre-
sponding relative pose P; from a previous state at f;_j. We
further decompose the pose P, into a 3D translation vec-
tor 7; and a rotation matrix R;. Unlike previous dynamic
3D-GS methods [36, 63], EgoGaussian applies one set of
transformation parameters to the whole collection of object
Gaussians Gp; as a whole, treating it as a single rigid object.
We optimize the rotation R; using the 6D continuous
rotation representation R, proposed by [77]. To ensure the
transformation is rigid, an estimated 3 x 3 rotation matrix
must be R; € SO(3). Hence for each target frame f;, we
apply the estimated translation and rotation parameters to
the 3D center of each Gaussian:

Xgobj,t = XG()bj,t—k : g(Rt) +ts,

where Xg,. , is the 3D coordinates of object Gaussians
Gobj,¢ at time ¢ and Xg,,. ,_, at time t — k. g(-) is a func-
tion defined in [77] that transforms the 6D representation

of rotation to a standard 3 x 3 rotation matrix. Such ob-
ject rotation is also applied to the anisotropic covariance of
each 3D Gaussian to regularize its alignment with the object
surface:

¥ = RERT = (R,R)SST(R:R)7,

where the covariance matrix Y is decomposed into the scal-
ing vector S and the Gaussian’s rotation matrix R con-
structed from quaternion.

Object Shape Refinement. In order to better recon-
struct the shape of the object, we apply a silhouette loss
onto the computed alpha value using the following equa-
tion: A(xp) = > o H;;ll (1 — o), which effectively
equates the RGB rendering equation without color.
Dynamic Object Reconstruction. Our final dynamic ob-
ject reconstruction loss is then:

Cobj = l:l (Iobja Irender,gobj) + )\52 (Mobja Arender,gobj) )

where I is cropped from Iiyp,e with the object segmenta-
tion mask Mopj. Lrenger,G,,; 18 rendered from Gobj SO it con-
tains the object only and black background. Aenger,G,, 18
the rendered alpha. We experimentally observe that 0.5 is
a suitable A value. Additionally, we lower the learning rate
on the Gaussians parameters, such as position and color, by
a factor of 10 to prioritize the learning of object poses.

As we optimize the time-dependent pose parameters 7
and f{t one frame at a time, the Gaussians can easily over-
fit to the current frame. To address this, we train not only
on the current frame, instead for every training iteration we
train either on the current frame or a random previous frame
with a probability of 0.5.



Static Scene Update. The static scene Gy, is reconstructed
from the static clips, where parts of the background are ob-
scured by objects that interact within the dynamic clips. To
utilize the visible information from the dynamic clips, we
retrain Gy with the dynamic objects masked out.
Combination of Static Scene and Dynamic Objects. As a
final step, we combine the object model Gy with the full
background model Gy,. In practice, we note that at this
stage, there are often floaters belonging to the background
that obscure parts of the object. To eliminate these, we per-
form a final fine-tuning stage using all training frames and
Gaussians. As we focus here on optimizing how the back-
ground and dynamic object interact and fit with each other,
we again freeze the estimated per-frame object pose. This
produces then the full scene reconstruction, including per-
frame data of the object pose.

Training details. During the Gaussian splatting optimiza-
tion process, the opacity is frequently set to zero in order to
prune floaters. However, this would produce a very noisy
signal for the pose optimization. As such, we instead alter-
nate between optimizing the rigid object pose, and densify-
ing/pruning the Gaussians. We first train for 4k iterations on
every dynamic frame, optimizing the object poses without
pruning or densification. We then freeze the object poses,
and train another 4k iterations to better incorporate visual
information with the estimated object poses, and finally
train another 4k iterations optimizing the poses without den-
sification or pruning. For all 12k iterations, all Gaussian
parameters such as color and position are continuously opti-
mized. After iterating through the whole dynamic clip with
M frames, we obtain a coarse object pose for each frame
P ={T;,Ry|t =1,..., M}. Finally, we perform one final
round of joint training using all frames, with 6k iterations
of pose estimation, 6k iterations of pruning/densifications,
and finally another 6k iterations of pose estimation. This
ensures that our object model is more equally fit onto all
frames, rather than focused on the last seen ones.

4. Experiments

We compare our method with existing baselines for dy-
namic scene reconstruction where the goal is to reconstruct
both static 3D scenes and dynamic objects from RGB ego-
centric videos. To quantitatively assess the quality of the
reconstructed 4D scene, we follow the evaluation protocol
of the novel view synthesis task using two different egocen-
tric video datasets. We then present qualitative results of
the reconstructed dynamics and conduct ablation studies on
two key aspects of the proposed method.

4.1. Novel View Synthesis

Datasets. We evaluate our method on two commonly used
egocentric video datasets HOI4D and EPIC-KITCHENS.

HOI4D [33] is a large-scale egocentric video dataset
of human-object interactions consisting of 20 second-long
videos. From this dataset, we randomly select 4 videos
involving rigidly moving objects. Among these, 2 videos
contain mostly translations, while the other 2 include both
translations and rotations. Compared to the original dataset,
we downsample the image resolution to one-quarter of its
original size, resulting in a resolution of 480 x 270 pixels.
Each video has a framerate of 15 FPS.

EPIC-KITCHENS [11] is a large-scale dataset featuring
in-the-wild egocentric videos of human-object interactions
in native kitchen environments. We again randomly select 4
video clips involving rigidly moving objects. Of these clips,
2 contain mostly translations, while the other 2 include both
translations and rotations. Similar to the HOI4D dataset, we
also downsample the image resolution to 455 x 256. The
average length of these clips is 10.43 seconds with 60 FPS.

Evaluation protocol. For each video, we train using every
second frame and evaluate on the rest. Although we are still
able to correctly track and even reconstruct the moving ob-
ject with fewer training frames (i.e. frames with larger step
size), the rapid motion that comes with egocentric videos
means that neither our method nor any baselines are able
to properly reconstruct the background. We show examples
with different step sizes in the Supp.

Metrics. To assess the performance of our model, we use
the peak signal-to-noise ratio (PSNR), the structural sim-
ilarity index (SSIM)[60], and the VGG-based perceptual
similarity metric LPIPS [75]. As we aim to reconstruct the
background and object without the actor, we mask out the
arm and body of any actors within the scene when comput-
ing these metrics and only evaluate the quality of the object
and background reconstruction.

Baselines. We compare our method with two state-of-the-
art dynamic 3D-GS-based methods, Deformable 3DGS [68]
and 4DGS [63], both of which apply deformation fields
to model monocular dynamic scenes. However, both ap-
proaches are unable to properly utilize masks of image re-
gions which should not be modeled, in this case the body
of the camera wearer. To ensure a fair comparison, in addi-
tion to using the publicly available implementations of the
compared methods, we modify them to support masking out
gradients on the segmented human body, similar to our ap-
proach.

Results. Table 1 and Figure 3 compares our method with
existing dynamic 3D-GS methods and their modified ver-
sions. We observe that EgoGaussian consistently outper-
forms existing methods across all evaluation metrics on two
datasets, while the two SOTA methods perform compara-
bly. Though the integration of gradient masks increases
their performance, our method still achieves superior results
across all evaluations in dynamic frames.



HOI4D Epic-Kitchen

Method Static Dynamic Static Dynamic
SSIM 4 PSNR 4 LPIPS | SSIM 4 PSNR 4 LPIPS | SSIM 4 PSNR 4 LPIPS | SSIM 4 PSNR 1 LPIPS |
4DGS [63] 088 2533 0.13 089 2534 0.13 084 2684 020 0.79 2254 024
4DGS w/o hands 0.94 2869 0.08 094 2733 010 087 2890 0.16 0.80 23.13 0.23
Def-3DGS [68] 090 2585 011 090 2571  0.12 0.86 2735 0.18 0.81 2315 022
Def-3DGS w/o hands  0.94  28.09  0.08 094 2692 010 0.8 2763 0.17 082 2327 021
Ours 096 3099 0.08 095 3033 0.09 085 2833 0.19 0.88 2834 0.17

Table 1. Comparison with SOTA dynamic Gaussian Splatting methods. We evaluate our method and two other SOTA baselines along
with their modified versions with hands excluded from modeling on the HOI4D and EK datasets. The best and second best results are
bolded and ifalicized respectively. We show the evaluation results on static and dynamic frames separately.

GT Ours

4DGS w/o hands Def-3DGS w/o hands

4DGS [63]

Def-3DGS [68]

EK Scenel HOI Scene4 HOI Scene3 HOI Scene2 HOI Scenel

EK Scene2

Figure 3. Qualitative comparison with SOTA. We show reconstructions produced by our method and SOTA baselines (4DGS [63] and
Deformable 3DGS [68]) along with their modified versions from both HOI4D and EPIC-KITCHENS. Our reconstruction achieves greater
accuracy, whereas baseline approaches fail to handle dynamic interactions even when hands are excluded during training.

4.2. Dynamic modeling pose P, from ¢ — k to t. As seen in Table 2, although PSNR
drops, we are still nonetheless able to produce an accurate
reconstruction. Note that the metrics are computed only on

the dynamic object itself.

Figure 4 shows the estimated object trajectories and novel
views rendered from arbitrary viewpoints. Demonstration
videos and more visualizations are included in the Supp.

4.3. Ablation study Without full scene fine-tuning. We show the necessity of

fine-tuning the static background and dynamic object as de-

Estimate poses with larger time gap. We show that our
chronological pose estimation schema is also able to model
the dynamic object with larger time gaps k, by training on
every 6 frames instead of every 2 frames. We can then es-
timate the state of object at each timestamp ¢ through inter-
polation of transformation matrix constructed from relative

scribed in Section 3.4 jointly by comparing how our method
performs when the background and object are only trained
in isolation without fine-tuning on all frames or on the com-
bined scene. As can be seen in Table 3 without full scene
fine-tuning, quality drops significantly. This is partially due
to 3D-GS being unable to distinguish between transparency



HOI4D
Method Static

Dynamic

Epic-Kitchen
Static Dynamic

SSIM 1 PSNR 1 LPIPS | SSIM 1 PSNR 1 LPIPS | SSIM 1 PSNR 1 LPIPS | SSIM 1 PSNR 1 LPIPS |

With Original Step Size 0.98  31.82  0.03 098 29.79
With Larger Step Size  0.98  28.61  0.03 0.98 2835

0.04 097 2887 0.05 097 3133 0.05
0.03 094 2401 0.06 092 26.68  0.08

Table 2. Ablation study of step size over the object on object reconstruction.

HOI4D
Method Static

Dynamic

Epic-Kitchen
Static Dynamic

SSIM 1 PSNR 1 LPIPS | SSIM 1 PSNR 1 LPIPS + SSIM 1 PSNR 1 LPIPS | SSIM 4 PSNR 1 LPIPS |

With Fine-tuning  0.96  31.52  0.07 095 30.29
Without Fine-tuning 0.87 2390  0.15 0.86  23.03

0.09 094 3422 0.10 0.88 2830 0.17
0.17 0.78 2158 0.24 079 21.04 024

Table 3. Ablation study of full scene fine tuning.

Figure 4. More qualitative results of the reconstructed dynamic
scenes. The left figure shows the object trajectory inferred from
interpolated object poses. The right figure shows the rendering
from arbitrary viewpoints.

Figure 5. Example of black artifacts

and blackness. By jointly training both object and back-
ground, we eliminate this uncertainty and such black arti-
facts. We show examples of this in Figure 5.

5. Conclusion and Discussion

We introduced EgoGaussian, a novel egocentric reconstruc-
tion method that is able to reconstruct rigid objects along
with accompanying motion from egocentric data. We show
significant improvements in terms of both dynamic ob-
ject and background reconstruction quality compared to the

state-of-the-art.

Although our method is able to well reconstruct rapid,
rigid object motion, there are still a number of important
limitations. As we require labels for both onset and offset
of objects motion, as well as object masks, we require sev-
eral additional offline data-preprocessing steps. Our method
fundamentally relies on multiview-stereo data in order to
reconstruct the scene geometry. As such, our method can
encounter overfitting if the datasets have limited viewpoint
coverage or lack features that can be tracked across time or
view (e.g. uniformly textured walls). We utilize pixel-wise
gradients to estimate per-frame object motion. As such, if
the object goes out of frame, or there is too much motion be-
tween two frames, our method can lose track of the object
entirely. The frame-by-frame dynamic object modelling re-
quires significantly longer training compared to most previ-
ous dynamic 3D-GS-based methods.

Both motion labels and mask segmentations are paral-
lel avenues of ongoing research, and as improvements are
made, can easily be integrated into our pipeline. Similarly,
as our method fundamentally trains using static or rigid sets
of Gaussians, future improvements in sparse 3D Gaussian
reconstruction could also be integrated into our pipeline.
Although pixel-wise gradients prove to be sufficient in our
setting, non-local methods of supervision such as optical
flow would be an interesting avenue of research in order
to improve robustness for large motions or when objects
move out of frame. Such forms of supervision could also
be utilized in order to estimate per-frame object pose more
rapidly, allowing for reduced training time.
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