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ABSTRACT

Deep Networks have been known to have extraordinary generalization abilities,
via mechanisms that aren’t yet well understood. It is also known that upon shuf-
fling labels in the training data to varying degrees, Deep Networks, trained with
standard methods, can still achieve perfect or high accuracy on this corrupted
training data. This phenomenon is called memorization, and typically comes at
the cost of poorer generalization to true labels. Recent work has demonstrated,
surprisingly, that such networks retain significantly better latent generalization
abilities, which can be recovered via simple probes on their layer-wise representa-
tions. However, the origin and dynamics over training of this latent generalization
is not well understood. Here, we track the training dynamics, empirically, and find
that latent generalization abilities largely peak early in training, with model gen-
eralization, suggesting a common origin for both. However, while model gener-
alization degrades steeply over training thereafter, latent generalization falls more
modestly & plateaus at a higher level over epochs of training. Next, we design
a new linear probe, in contrast with the quadratic probe used in prior work, and
demonstrate that it has superior generalization performance in comparison to the
quadratic probe, in most cases. Importantly, using the linear probe, we devise a
way to transfer the latent generalization present in last-layer representations to the
model by directly modifying the model weights. This immediately endows such
models with improved generalization, i.e. without additional training. Finally, we
use the linear probe to design initializations for Deep Networks, which, in many
cases, turn out to be memorization-resistant, without using regularization. That is,
Deep Networks with such initializations tend to evade memorization of corrupted
labels, which is often accompanied by better generalization, when used with stan-
dard training methods alone. Our findings provide a more detailed account of the
rich dynamics of latent generalization during memorization, and demonstrate the
means to leverage this understanding to directly transfer this generalization to the
model & design better model-weight initializations in the memorization regime.

1 INTRODUCTION

Overparameterized Deep Neural Networks have seen widespread deployment in many fields, due to
their remarkable generalization abilities. However, we still don’t have a clear understanding of the
mechanisms underlying their ability to generalize so well to unseen data. It has also been shown
(Zhang et al., 2017; 2021)) that overparameterized Deep Networks are capable of achieving high or
even perfect training accuracy on datasets, wherein a subset of training data have their labels ran-
domly shuffled. Such models typically have poor generalization performance, i.e. poorer accuracy
on test data with correct labels — a phenomenon that has been called memorization. It is known
(Arpit et al.| |2017) that during training, models trained with such corrupted datasets exhibit better
generalization during the initial phases of training; however generalization progressively deteriorates
as training accuracy improves subsequently.

A recent study (Ketha & Ramaswamy, 2025) has shown that while Deep Networks trained on
datasets having corrupted labels tend to exhibit poor generalization, their intermediate layer rep-
resentations retain a surprising degree of latent generalization ability. This ability can be recovered
from such trained networks by using a simple probe — Minimum Angle Subspace Classifier (MASC)
— that leverages the subspace geometry of the corrupted training dataset representations, to this end.



Under review as a conference paper at ICLR 2026

Their findings suggest that generalizable features are present in the layer-wise representations of
such networks, even when the model fails to utilize them sufficiently. However, the origin and evo-
lution of this latent generalization ability during training is not well understood. It has also not been
clear, if this latent generalization can be harnessed to directly improve the model’s generalization.
More generally, it has not been known if the inductive bias manifested by the structure of Deep
Networks and standard training methods, is, in principle, sufficient to resist memorization in favor
of generalization, e.g. by simply choosing an appropriate model initialization. Indeed, existing
techniques that resist memorization in the label noise setting typically either use regularization (e.g.
Arpit et al.| (2017); [Liu et al.| (2020)) or altogether different training paradigms (e.g. Jiang et al.
(2018);|Han et al.|(2018)), to this end. Here, we address these questions.

Our main contributions are listed below.

* For models trained on standard datasets with various degrees of label corruption, we char-
acterize the evolution of the latent ability to generalize over training using MASC (Ketha &
Ramaswamy, [2025). We find that as the model exhibits a peak in its test accuracy early in
training (Arpit et al., 2017), the MASC test accuracy at all layers also tend to largely peak
concurrently with that of the model, albeit at different levels. Following this, the evolution
of test accuracies between the model & MASC diverge, with the model showing a marked
decline in test accuracies over further epochs of training. In contrast, the MASC test ac-
curacies decline more modestly & tend to plateau higher, which manifests in the improved
generalization ability at the end of training, as reported in (Ketha & Ramaswamy), 2025)).

* We observe that MASC is a non-linear classifier; and in particular, prove that it is a
quadratic classifier. This brings up the possibility that the improved generalization perfor-
mance of the probe (i.e. MASC) is attributable to the effectiveness of the quadratic nature
of the probe itself and may not easily be decodable, e.g. by a linear probe. To address this
point, we introduce a simple linear alternative — Vector Linear Probe Intermediate-layer
Classifier (VeLPIC). Surprisingly, we find that VeLPIC almost always achieves superior
latent generalization performance in comparison to MASC, especially for higher corrup-
tion degrees. This establishes that latent generalization during memorization is linearly
decodable from layerwise representations.

* By leveraging the linear probe (VeLPIC), we devise a way to directly modify the pre-
softmax weights of such Deep Networks, that immediately transfers to the model, the la-
tent generalization performance of VeLPIC (as applied to the last layer). Notably, this is
without requiring additional training. This demonstrates that latent generalization present
in layerwise representations can be transferred directly to enhance model generalization of
Deep Network models, in the memorization regime.

* Using the linear probe (VeLPIC), we propose an initialization strategy for Deep Networks.
When used with standard training (without any explicit regularization), we find that this
initialization steers the models away from memorization and towards improved generaliza-
tion, in many cases.

Our experimental setup is detailed in the Appendix Section

2 RELATED WORK

In influential work, (Zhang et al., 2017;|2021)) showed that Deep Networks can achieve perfect train-
ing accuracy even with randomly shuffled labels, accompanied by poor generalization. In follow-up
work, (Arpit et al., |2017) find that in the memorization regime, networks learn simple patterns first
during training. Their work provides a detailed account of the the early dynamics of training. More
recently, (Ketha & Ramaswamyl, 2025)) in fact show that in spite of the fall in model generalization
later on in training, the layerwise representations of the model retain significant latent generalization
ability. (Arpit et al., 2017) also show that regularization can help models resist memorization in the
label noise case.

Analyzing intermediate representations in Deep Networks has been previously explored using
kernel-PCA (Montavon et al., [2011) and linear classifier probes (Alain & Bengio} [2018). Notably,
(Alain & Bengio| 2018)) state that they deliberately did not probe Deep Networks in the memoriza-
tion setting since they thought that such probes would inevitably overfit. On the contrary, (Ketha
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& Ramaswamyl, [2025) demonstrate that probes on Deep Networks in the memorization setting,
can have enhanced generalization. (Stephenson et al., [2021]) show evidence suggesting that mem-
orization occurs in the later layers. |L1 et al.|(2020) show that in the memorization regime, there is
substantial deviation from initial weights.

Several training paradigms have been proposed to enhance generalization performance when learn-
ing from corrupted datasets. For example, MentorNet (Jiang et al.| [2018) introduces a framework
wherein a mentor network guides the learning process of a student network by guiding the student
model to focus on likely clean labels. Likewise, Co-Teaching (Han et al.,[2018]) trained two peer net-
works simultaneously, each selecting small-loss examples to update its counterpart. Early-Learning
Regularization (ELR) (Liu et al.,2020) augmented the training objective with a regularization term,
towards this end.

Saxe et al.| (2013) offer theoretical explanations on generalization for deep linear networks and
Lampinen & Ganguli|(2018) offer theoretical explanations in the memorization regime. Methodolo-
gies such as Canonical Correlation Analysis (Raghu et al.,[2017; Morcos et al., 2018)) and Centered
Kernel Alignment (Kornblith et al., |2019) have been used to characterize training dynamics and
network similarity. Representational geometry and structural metrics provide further insights into
learned representation properties (Chung et al.,|2016; \Cohen et al., [2020; |Sussillo & Abbott, 2009;
Farrell et al.|2019; [Bakry et al., 2015} [Cayco-Gajic & Silver, 2019} |Yosinski et al., [2014).

3 TRAINING DYNAMICS OF LATENT GENERALIZATION USING MASC

Ketha & Ramaswamy| (2025)) investigate the organization of class-conditional subspaces using the
training data at various layers of Deep Networks.

These subspaces are estimated via Principal Components Analysis (PCA), specifically, ensuring that
they pass through the origin. To probe the layerwise geometry without relying on subsequent layers,
they propose a new probe — the Minimum Angle Subspace Classifier (MASC). For a given test input,
MASC projects the layer output onto each class-specific subspace, and computes the angles between
the original and projected vectors, for each subspace. The label predicted by MASC corresponds
to the class whose subspace yields the projected vector with the smallest such angle. We provide a
detailed summary of the working of MASC in the Appendix Section[A.2}

As shown in Ketha & Ramaswamy| (2025)), for models trained with corrupted labels, there exists at
least one layer where MASC exhibits better generalization than the corresponding trained model.
However, the origin & evolution of this latent generalization across training isn’t well understood.

Here, we empirically study the behavior of latent generalization, as manifested by MASC, during
training. MASC testing accuracy during training for MLP trained on MNIST, CNN trained on
Fashion-MNIST and AlexNet trained on Tiny ImageNet are shown in Figure[I] Results with 0% and
100% corruption degrees as well as the results for additional models i.e. MLP trained on CIFAR-10,
CNN trained on MNIST, CNN trained on CIFAR-10 for various corruption degrees are presented in
Figure[5]and Figure[6] respectively in the Appendix Section

Our findings indicate the presence of two distinct phases in the training process, separated by the
point at which the model achieves peak test accuracy. For various non-zero degrees of corruption, in
most cases (except those with 100% degrees of corruption), the MASC test accuracy largely follows
the rise in the model’s test accuracy up to this peak. However, beyond the peak, while the model’s
test accuracy declines significantly, the drop in MASC accuracy is less steep and plateaus at a higher
level over the epochs.

For non-zero corruption degrees (except those with 100% corruption), in most cases, for MLP,
MASC accuracy on later layers performed better than MASC accuracy on early layers, whereas for
CNNs MASC accuracy on early layers performed better.

Our results represent progress in clarifying the origin & evolution of latent generalization by MASC,
during training. In particular, given that model generalization & latent generalization show a concur-
rent initial rise, it suggests the possibility of common mechanisms that drive both in the early phases
of training. The subsequent divergence between model generalization & latent generalization is an
intriguing phenomenon, whose mechanisms merit future investigation.
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Figure 1: Minimum Angle Subspace Classifier (MASC) test accuracy over epochs of training for
multiple models/datasets, where test data is projected onto class-specific subspaces constructed at
each epoch from corrupted training data with the indicated label corruption degree. The plots display
MASC accuracy across different layers of the network. For reference, the evolution of test accuracy
of the corresponding model (blue dotted line) over epochs of training is also shown. FC denotes
fully connected layers with ReLU activation, and Flat refers to the flatten layer without ReLU.

4  NON-LINEARITY OF MASC

Classically (Alain & Bengio, 2018)), linear probes have been used to probe layers of Deep Networks.
However, (Ketha & Ramaswamy, 2025) do not not use the standard linear probe from (Alain &
Bengio, 2018)). Below, we prove that MASC (Ketha & Ramaswamy, [2025)) is in fact a classifier that
is quadratic in the layerwise output of the layer that it is applied to.

Proposition 1. MASC is a quadratic classifier.

Proof. Let x; denote the output of the layer [ of the Deep Network when it is given input x. Let
Ps, D5, .., Dy, bea basisﬂ of the subspace S, corresponding to class c. Let j be the projection of
x; on S.. We have

wi = (z1-pT) P + ... + (T - P) P, (1)
Now, MASC on layer [ predicts the label of x as

arg max(z; - oy) = arg max((z; p5) .+ (w0 pR)?) (2)

which is quadratic in ;. This establishes that MASC is a quadratic classifier. O

'which is typically estimated via PCA, where k is the number of principal components.
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5 VECTOR LINEAR PROBE INTERMEDIATE-LAYER CLASSIFIER (VELPIC):
A NEW LINEAR PROBE

Given that MASC is inherently a non-linear classifier as proved above, a natural question is if its
extraordinary ability to decode generalization from hidden representations of memorized networks
is a consequence of its non-linearity. Put differently, it raises the question of whether the latent
generalization reported in (Ketha & Ramaswamy), [2025) is linearly decodable — with comparable
performance — from the layerwise representations of the network.

To build a linear probe analogous to MASC, we sought to retain the same broad idea, namely deter-
mine an instance of a mathematical object per class and measure closeness of the layerwise output of
an incoming datapoint to these objects with the prediction corresponding to the class whose object
was closest in this sense. In contrast to (Alain & Bengio, 2018)), where parameters of their linear
probe are learned iteratively by minimizing a cross-entropy loss, we seek to determine the linear
probe parameters directly via the geometry of the class-conditional training data. We choose to sim-
ply use a vector as this mathematical object and measure closeness in the angle sense. We call this
probe, the Vector Linear Probe Intermediate-layer Classifier (VeLPIC). As we discuss subsequently,
we find, surprisingly, that this choice is significantly more effective than MASC, in most cases. Sec-
ondly, we show that we can use the parameters of the probe as applied to the last layer, to modify
the model weights to immediately confer the corresponding generalization to the model.

We now discuss how the vector corresponding to each class in VeLPIC is constructed. Each class
vector is determined using only the top principal component from PCA run on augmentecﬂ class-
conditional corrupted training data. However, the first principal component can manifest in two
opposite directions (i.e. the vector or its negative). This is important her because incoming data
vectors can be “close” to this class vector, even though their angles are obtuse and closer to 180°.
VeLPIC resolves this directional issue by aligning the class vector based on the sign of the projection
of the training data mean; if the mean of the training data projected on this principal component is
negative, the direction of the principal component is flipped to obtain the class vector; otherwise, it
is retained as is.

Algorithm 1 Vector Linear Probe Intermediate-layer Classifier (VeLPIC)

Input: Principal component vectors {P,,, }*_,, projection training means {75, }2/_,, layer [ output

xy, class labels {C,,, }M_,

Output: Predicted label y(x;)
1: foreachclassm=1,...,M do
2 if T;,, < 0 then
3 Vi — —Pm
4 else

5: Vi < Pm

6

7

8

end if
: end for
: foreachclassm =1,..., M do
9:  xyy, < Projection of x; onto V,,
10: end for
11: y(my) < C; where j = argmax,,, Tim
12: Return: y(x;)

Formally, for a given test data point x, let ; denote its activation at layer [ obtained in the forward
pass of z through the Deep Network until the output of layer I. For layer [, let {P,,}}_, be the top
principal component vectors, one each per class, of the class-conditional corrupted training data and
{T,}M_, be its corresponding| projection means, where M is the number of classes. Let {V,,, }M/_;
be unit vectors representing VeLPIC class vectors. VeLPIC uses { Vm}%:1 to predict the label of x;
based on its maximum projection among these class Vectorﬂ as outlined in Algorithm

>We augment class training data points with their negative, so as to obtain a 1-D subspace, rather than a 1-D
affine space, along the lines of the subspace construction procedure for MASC.

30Observe that this isn’t an issue with MASC, since it is a quadratic classifier.

*i.e. T; is the mean of projecting training data points on P;.

>This is equivalent to minimum angle to the VeLPIC class vectors.
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5.1 TRAINING DYNAMICS OF THE LINEAR PROBE

Here, we examine if a linear probe (i.e. VeLPIC) can decode latent generalization with performance
comparable to MASC. To this end, we tracked the performance of VeLPIC, during training.

VeLPIC test accuracy during training for MLP-MNIST, CNN-Fashion-MNIST and AlexNet-Tiny
ImageNet are shown in Figure ] Results with 0% and 100% corruption degrees as well as the
results with additional models are shown in Figure[7]and [8] respectively in Appendix Section[C]
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Figure 2: Vector Linear Probe Intermediate-layer Classifier (VeLPIC) test accuracy during training
of the network, where test data is projected onto class vectors constructed at each epoch from training
data with the indicated label corruption degrees. The plots display VeLPIC accuracy across different
layers of the network for various model-dataset combinations. For reference, the test accuracy of
the models (blue dotted line) over epochs of training is also shown. FC denotes fully connected
layers with Re LU activation, and Flat refers to the flatten layer without ReLU.

Unexpectedly, not only does VeLPIC not perform worse than MASC, we find indeed that VeLPIC
almost always significantly outperforms MASC, especially with higher corruption degrees. In fact,
for representations from many layers, VeLPIC is able to extract significantly better latent general-
ization performance than MASC and our results show that, for these layers, VeLPIC’s performance
plateaus at significantly higher levels than MASC. The difference between VeLPIC test accuracy
and MASC test accuracy are shown in Figure[9] [T0]& [IT]in the Appendix Section[C.T}

6 TRANSFERRING LATENT GENERALIZATION TO MODEL GENERALIZATION

Here, we ask if the latent generalization in models that memorize, can be directly transferred to the
model, in order to immediately improve its generalization. To this end, it turns out that the class
vectors of VeLPIC applied to the last layer can be directly substituted in the pre-softmax layer of the
model as an intervention that transfers VeLPIC’s generalization performance to the model, without
further training. We elaborate below on how this is so.
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Consider a model whose last layer (i.e. the layer preceding the pre-softmax layer) consists of d
units. Let v; € RY be the VeLPIC class vector for class j. The new pre-softmax weight matrix

W pre-softmax € RM >4 is constructed as:
T
Wpre—soflmax - ([vl vy 'U]W]) (3)
This weight matrix W sofimax Teplaces the original pre-softmax weights, and all biases are set

to zero. It is straightforward to see that this substitution results in the model making the same
predictions as VeLPIC applied to the last layer.

During model training, we replace the pre-softmax weights with VeLPIC vectors, as indicated above
and evaluate the model’s performance on the test dataset at each epoch. Figure [3| presents these
results for MLP-MNIST, CNN-Fashion-MNIST, and AlexNet-Tiny ImageNet. Additional results,
including models with 0% and 100% corruption levels, and other model-dataset pairs are presented
in Figure[T2)and Figure 3] respectively in the Appendix Section|[D]

Model: Standard ~ —— Model: Weight transfer using VeLPIC
MLP-MNIST CNN-Fashion-MNIST AlexNet-Tiny ImageNet
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Figure 3: Model test accuracy when the weight intervention is applied to the epoch in question
during training. The test accuracy of the model with standard training without weight intervention
(blue dotted line) is overlaid for comparison.

We observe that the weight intervention that replaces pre-softmax weights with the VeLPIC vectors
leads to an immediate & significant improvement in generalization performance in every epoch of
the latter phase of training, matching that of the linear probe, & notably without any further training.
This establishes that the latent generalization in memorized models can be directly harnessed to
enhance their test performance, even in the presence of label noise.

7 MEMORIZATION-RESISTANT INITIALIZATIONS

It is thought (Stephenson et al.,[2021)) that avoidinlarge-scale memorization of training data could
play a key role in causing Deep Networks to generalize well. An important question, therefore, is

%1t has also been suggested(Feldman & Zhangl [2020) that some memorization could help with generaliza-
tion, when the data distribution is long-tailed.
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whether we can make Deep Networks avoid memorization even in the corrupted labels setting we
study here, and if doing so can improve their generalization performance.

Here, leveraging the linear probe that we built, we explored a new initialization strategy for Deep
Networks that tends to avoid memorizing training data. Specifically, we start with a random ini-
tialization of all weights, and construct last layer VeLPIC class vectors for the randomly-initialized
network. We then substitute these class vectors onto the pre-softmax weights, as outlined in the pre-
vious section. The rest of the model remains randomly initialized. Standard training with gradient
clipping & reducecﬂ learning rate by factor of 10 is performed using the corrupted training dataset
for 100 epochs.

For MLP-MNIST, MLP-CIFAR10, CNN-MNIST and CNN-Fashion-MNIST, we track & report the
model’s training accuracy on corrupted labels and test accuracy on true labels across training epochs
for varying corruption degrees, in Figure[d] where we also overlay (dotted lines) the dynamics of the
test accuracy of the model with standard traininﬂ on standard initialization. In Appendix Section
[E2] we also present training dynamics of the model over epochs of training, separately for the
subset of training data whose labels were flipped during the corruption process, and for the subset
of training data points whose labels remain uncorrupted.

Corrupted training accuracy (%) Test accuracy (%)

MLP - MNIST
3

MLP - CIFAR-10
g

CNN - MNIST
g

CNN - Fashion-MNIST

Epoch Epoch

Figure 4: Model train accuracy with corrupted labels and model test accuracy with true labels during
training when intervention is performed at random initialization and standard training is performed
thereafter with gradient clipping. The standard training model (dotted), trained without gradient
clipping, with a 10x higher learning rate, and without intervention, is overlaid for comparison.

We find that, for most models, this initialization strategy is effective in causing the model to resist
memorization, i.e. the model refrains from correctly learning a large fraction of corrupted training
labels. For MLPs, this act of resisting memorization is also accompanied by significantly better gen-
eralization over epochs of training, in comparison to standard training with standard initializations.
For CNNs, this resistance to memorization is accompanied by generalization performance compa-
rable to standard training with standard initialization. Strikingly, for many of these models, there is
little degradation in generalization performance near the initial epochs, unlike what we observe with
generalization in models with standard initializations.

"than ones mentioned in the Appendix Section@
8The models were trained without gradient clipping, using the learning rate specified in the Appendix Sec-

tion El



Under review as a conference paper at ICLR 2026

To our knowledge, this is the first report of an initialization strategy being effective in resisting
memorization. As such, we believe that understanding the mechanisms underlying the effectiveness
of these initializations represents an important and promising direction for future investigation.

We also conduct experiments using standard training without applying gradient clipping or reducing
the learning rate. These results are sometimes brittle, in that their generalization performance in
some cases suddenly drops to chance level. Furthermore, in some cases, these initializations are not
effective in resisting memorization (Appendix Section[E.3). In the case of standard training only, we
also perform intervention experiments by modifying the pre-softmax weights at the 10th and 40th
epochs; the corresponding results are reported in the Appendix. Additionally, the Appendix presents
a comparison of best-layer MASC accuracy, best-layer VeLPIC accuracy, and models trained with
memorization-resistant initialization across different corruption levels.

8 DISCUSSION

The notion of memorization, where Deep Networks are able to perfectly learn noisy data at the
expense of generalization has posed a challenge to traditional notions of generalization from Sta-
tistical Learning Theory (Zhang et al., 2017} |2021). Recent work (Ketha & Ramaswamy), [2025)
demonstrating improved latent generalization in such models is an interesting new development in
our understanding of memorization and the nature of representations that drive it. Our goal here
was to take a deeper dive into this phenomenon, to investigate the origin and dynamics of latent
generalization. While the dynamics of memorization and generalization early in training have seen
detailed empirical investigation (Arpit et al., [2017), the phenomenon of fall in model generaliza-
tion in the later phase of training is more poorly understood. We showed that early-on in training,
latent generalization and the model’s generalization closely follow each other, suggesting common
mechanisms that contribute to both. However, later in training, there is a divergence, with the model
retaining significant latent generalization ability, while sacrificing overt model generalization to a
greater degree. After showing that MASC (Ketha & Ramaswamyl, 2025)) is a quadratic classifier, we
built a new linear probe (VeLPIC) and found, unexpectedly, that it has better latent generalization
performance in comparison to MASC, in most cases. Indeed, while (Ketha & Ramaswamyl, [2025])
show that MASC applied to at least one layer outperforms the model at the end of training, with
respect to generalization, with VeLPIC, we find that, in most cases, all layers’ latent generalization
outperform model generalization. This implies that the latent generalization effect during memo-
rization is more pronounced and more widely present among layer representations than previously
reported in (Ketha & Ramaswamyl, 2025)). We were also interested in examining if the latent gener-
alization could readily be translated to model generalization by directly modifying model weights.
We utilized the linear probe to derive a new set of model pre-softmax weights to make this so. Fi-
nally, we leveraged this understanding to create new kinds of initializations for Deep Networks and
show that they resist memorization in favor of generalization, in many cases. These results point
to the possibility of the existence of a different part of the loss landscape that is more effective in
avoiding memorization, and as such, merits more detailed investigation.

This work brings up multiple new directions for investigation. While we have made some progress,
the detailed mechanisms governing latent generalization during memorization remain to be inves-
tigated. It is also an open question, whether there exist other probes that can extract better latent
generalization from layerwise representations, in comparison to MASC and VeLPIC. Next, it is
unclear if latent generalization from representations of layers other than the last layer can be trans-
ferred towards model generalization. This can be useful to do, in cases where early or middle
layers exhibit better latent generalization than the last layer. Also, it is worth examining, if the
memorization-resistant initializations proposed here can be further refined. It remains to be exam-
ined why these initializations are extraordinarily effective in fending off memorization, especially in
the latter epochs of training. More generally, in light of these results, whether an understanding of
generalization in the memorization regime can inform a better understanding of generalization for
models trained with uncorrupted labels is a worthwhile direction for future investigation.

In closing, our results highlight the rich role of representations in driving generalization during
memorization, how their understanding can be utilized to directly improve model generalization and
in order to design memorization-resistant initializations for Deep Networks, in the memorization
regime.
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A EXPERIMENTAL SETUP

We demonstrate results for the same set of models and datasets as presented in (Ketha & Ra-
maswamy, 2025). Specifically, we use Multi-Layer Perceptrons (MLPs) trained on the MNIST
(Deng, [2012)) and CIFAR-10 (Krizhevsky, [2009) datasets; Convolutional Neural Networks (CNNs)
trained on MNIST, Fashion-MNIST (Xiao et al.l [2017)), and CIFAR-10; and AlexNet (Krizhevsky
et al.| 2012) trained on Tiny ImageNet dataset (Moustafa, [2017).

Each model was trained under two distinct schemes: (i) using training data with true labels, referred
to as “generalized models,” and (ii) using training data with labels randomly shuffled to varying
degrees (referred to as “memorized models” |[Zhang et al.| (2021). Similar to |Ketha & Ramaswamy
(2025)), we train the aforementioned models using corruption degrees of 0%, 20% , 40%, 60%, 80%,
and 100%. Training with a corruption degree c implies that, with probability c, the label of a training
datapoint is changed with a randomly selected label drawn uniformly from the set of possible classes.
This may result in the label remaining same after the change as well. All models were trained either
until achieving high training accuracy (99% or 100%) or for a maximum of 500 epochs, whichever
occurred first.

To study the dynamics of the training process, we conducted the experiments on model checkpoints
saved at various stages of training. Specifically, we began with the randomly initialized model
(corresponding to epoch 0), followed by checkpoints saved at every second epoch up to the 20th
epoch. Beyond epoch 20, results are shown at intervals of five epochs for the MLP and CNN
models, and at intervals of ten epochs for the AlexNet model. The reported results are averaged
over three independent training runs, with shaded regions in the plots indicating the range across
instances. We have used 99% as the percentage of variance explained by the principal components
that form the class-specific subspaces used by MASC, similar to experiments conducted in Ketha &
Ramaswamy|(2025)).

The experiments were conducted on servers and workstations equipped with NVIDIA GeForce RTX
3080, RTX 3090, Tesla V100, and Tesla A100 GPUs. The server runs on Rocky Linux 8.10 (Green
Obsidian), while the workstation uses Ubuntu 20.04.3 LTS. Memory requirements varied depending
on the specific experiments and models. All model implementations were developed in Python using
the PyTorch library, with torch.manual_seed set to 42 to ensure reproducibility. Accuracy served as
the primary evaluation metric throughout this work.

A.1 MODEL ARCHITECTURES AND TRAINING DETAILS

MLP Model. The MLP architecture consists of four hidden layers with 128, 512, 2048, and 2048
units, respectively. Each layer is followed by a ReLU activation, and a softmax layer is used
for classification. Models were trained SGD |Qian| (1999) with a learning rate of 1 x 10~3 and
momentum 0.9. A batch size of 32 was used across all experiments. Input dataset was normalized
by dividing pixel values by 255.

CNN Model. The CNN modeﬂ is composed of three convolutional blocks, each containing two
convolutional layers followed by a max pooling layer. The convolutional layers use 16, 32, and 64
filters, respectively, with kernel size 3 x 3 and stride 1. The max pooling layers have a kernel size
of 2 x 2 and stride 1. These blocks are followed by three fully connected layers with 250 units
each. ReLU activation is used after all layers except pooling, and softmax is used at the output
for classification. The CNN was trained using Adam optimizer Kingmal (2014)) with a learning rate
of 0.0002. For MNIST and Fashion-MNIST, a batch size of 32 was used, while for CIFAR-10, a
batch size of 128 was used. Input data was normalized by subtracting the mean and dividing by the
standard deviation of each channel.

A.2 MINIMUM ANGLE SUBSPACE CLASSIFIER

We summarize below the Minimum Angle Subspace Classifier (MASC) from (Ketha & Ra-
maswamy, [2025)), in order to keep the exposition here largely self-contained.

The convolution network were implemented following the design principals outlined in (Tran et al.,[2022).

12



Under review as a conference paper at ICLR 2026

For a given Deep Network, MASC leverages the class-specific geometric structure of network’s
latent representations. For an input data point x, let its activation vector at layer [ be denoted by x;.
The objective is to classify x; by leveraging a set of class-conditional subspaces, {5 k}szl , estimated
from a training dataset D = {(x;,y;)}7,. To predict the class label y(x;), MASC Algorithm
(reproduced verbatim from (Ketha & Ramaswamyl [2025)), assigns @; to the class whose training
subspace forms the smallest angle with it.

The class-conditional subspaces {Sj}X_, are estimated from the training dataset D =
{(zi,y;)}™ |, where each z; € R? is paired with a label y; € {Cx}X_,. For a given layer [,
these subspaces are constructed following Algorithms [3| and |4] (reproduced verbatim from (Ketha
& Ramaswamy, 2025)). In practice, each subspace Sy is represented by its principal components,
which provide a compact basis for capturing the underlying class-conditional structure.

Algorithm 2 Minimum Angle Subspace Classifier (MASC) (reproduced verbatim from (Ketha &
Ramaswamyl, 2025)))

1: Input: Training subspaces {S;}+_,, layer output data point x; from layer [ when input x is
passed through the network and classes {Cj }~_;.
Output: MASC prediction class label y(x;) according to layer [ .
for each class C}, do
xy, <— compute the projection of x; onto subspace Si.
Compute the angle 6(x;, x;) between x; and @
end for
Assign the label y(a;) = C}, where k = arg ming, 6(x;, k)

AR AN S ol

Algorithm 3 Subspaces Estimator for MASC
(reproduced verbatim from (Ketha & Ramaswamy), 2025))

1: Input: Training dataset D{(z;, y;)}!™, € R? x R, where each z; € R? and y; € {C).}X_, are

input-label pairs, neural network, and layer .

Output: Subspaces {Sj } =, for classes K and given layer /.

Dy=¢

for each input pair (x;, y;) in D do
Pass x; through the network layers to obtain the output of layer /, denoted as x; € R,
Di=D; U {33[}

end for

Estimated subspaces {Si }#_, +— PCA-Based Subspace Estimation(D;)

Return: Subspaces {S; }< |

R A A S

Algorithm 4 PCA-Based Subspace Estimation
(reproduced verbatim from (Ketha & Ramaswamyl, [2025))

1: Input: Layer output D; = {(z4, ;) }™,, where z; € R!4 and y; € {C } X ,.
2: Output: Subspaces { Sy}, for classes K.
3: Dnew — Dl
4: for each data point x; in D; do
5: Drew ¢ Drpew U {—:Bl}
6
7
8

: end for
: for each class C}, in Ck do
: Extract the subset of data Dyew , = {1 | y; = k}

9:  Apply PCA to Dyey, 1, to calculate the PCA components
10:  The span of the PCA components defines the subspace S,
11: end for
12: Return: Subspaces { Sy},

13
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B TRAINING DYNAMICS OF LATENT GENERALIZATION USING MASC

MASC testing accuracy during training for MLP trained on MNIST, CNN trained on Fashion-
MNIST and AlexNet trained on Tiny ImageNet with 0% and 100% corruption degrees are shown in
Figure 5] In the absence of label corruption, the MASC accuracy of the final fully connected lay-
ers (MLP-FC4 (2048 units) and CNN-FC3 (250 units)) closely matched the corresponding model
test accuracies. Interestingly, in certain cases, such as AlexNet trained on Tiny ImageNet (FC1 and
FC2, each with 4096 units) and MLP-CIFAR-10 (FC3 with 2048 units), the MASC accuracy even
surpassed the model’s test accuracy. Results with additional models i.e. MLP trained on CIFAR-10,
CNN trained on MNIST, CNN trained on CIFAR-10 for various corruption degrees are shown in

Figure 6]

MLP-FC3 (2048)/ CNN-FC2 (250)/ AlexNet-FC2 (4096)
—— MLP-FC4 (2048)/ CNN-FC3 (250)

MLP-FC1 (128)/ CNN-Flat (576)/ AlexNet-Flat (256)
—— MLP-FC2 (512)/ CNN-FC1 (250)/ AlexNet-FC1 (4096)
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Figure 5: Minimum Angle Subspace Classifier (MASC) Test accuracy for 0% and 100% corruption
degrees during training of the network, where test data is projected onto class-specific subspaces
constructed from training data with the indicated label corruption degrees. The plots display MASC
accuracy across different layers of the network for various model-dataset combinations. For refer-
ence, the test accuracy of the models (dotted line) is also shown. Each row corresponds to a specific
corruption degree, while columns represent different models, as labeled. FC denotes fully connected
layers with ReLU activation, and Flat refers to the flatten layer without ReLU.

C TRAINING DYNAMICS OF THE LINEAR PROBE: VELPIC

A linear probe — VeLPIC — test accuracy during training for MLP-MNIST, CNN-Fashion-MNIST
and AlexNet-Tiny ImageNet with 0% and 100% corruption degrees are shown in Figure[7] Results
with additional models i.e. MLP-CIFAR-10, CNN-MNIST, CNN-CIFAR-10 for various corruption
degrees are shown in Figure

C.1 DIFFERENCE BETWEEN VELPIC AND MASC

Here, we present the difference between test accuracy of VeLPIC and MASC during training and
for different layer of the networks. For MLP-MNIST, CNN-Fashion-MNIST and AlexNet-Tiny
ImageNet, these results are shown in Figure [9] and Figure [I0] Results with additional models i.e.
MLP-CIFAR-10, CNN-MNIST, CNN-CIFAR-10 for various corruption degrees are shown in Fig-

ure[T1]

D TRANSFERRING LATENT GENERALIZATION TO MODEL GENERALIZATION

For MLP-MNIST, CNN-Fashion-MNIST and AlexNet-Tiny ImageNet with 0% and 100% corrup-
tion degrees, model test accuracy during training when we replace the pre-softmax weights with
VeLPIC vectors are shown in Figure[T2] Results with additional models i.e. MLP-CIFAR-10, CNN-
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Figure 6: MASC accuracy during training of the network, where test data is projected onto class-
specific subspaces constructed from training data with the indicated label corruption degrees. The
plots display MASC accuracy across different layers of the network for various model-dataset com-
binations. For reference, the test accuracy of the models (dotted line) is also shown. Each row
corresponds to a specific corruption degree, while columns represent different models, as labeled.
FC denotes fully connected layers with Re LU activation, and Flat refers to the flatten layer without
ReLU.

MNIST, CNN-CIFAR-10 for various corruption degrees are shown in Figure [T3] Model corrupted
training accuracy for all models-dataset-corruption are plotted in Figure [T4]and Figure[T3]
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Figure 7: Vector Linear Probe Intermediate-layer Classifier (VeLPIC) test accuracy for 0% and
100% corruption degrees during training of the network, where test data is projected onto class
vectors constructed at each epoch from training data with the indicated label corruption degrees.
The plots display VeLPIC accuracy across different layers of the network for various model—dataset
combinations. For reference, the test accuracy of the models (blue dotted line) over epochs of
training is also shown. FC denotes fully connected layers with Re LU activation, and Flat refers to
the flatten layer without ReLU.

E MEMORIZATION-RESISTANT INITIALIZATIONS

E.1 STANDARD RESULTS

In Figure [T6] we conducted standard training on the corrupted datasets without any interventions
and see results consistent with those reported in |Arpit et al.| (2017).

E.2 RESULTS OF FLIPPED AND UN-FLIPPED ACCURACIES

We here present training dynamics of the model over epochs of training, separately for the subset
of training data whose labels were flipped during the corruption process (flipped accuracy), and for
the subset of training data points whose labels remain uncorrupted (unflipped accuracy). We present
results for models where the intervention is applied by replacing the pre-softmax layer weights with
VeLPIC class vectors at random initialization (see Figure[17).

For memorization-resistant initialization (Figure[I7), we find that the training accuracy on flipped
labels remains low, while the accuracy on unflipped (i.e. true labels) labels is typically high. This
suggests that this initialization has a tendency to resist memorization.

E.3 MEMORIZATION-RESISTANT INITIALIZATIONS: WITH STANDARD TRAINING ONLY

Here, we show the results of memorization-resistant initializations with standard training only.
Specifically, we begin with random weight initialization and construct last-layer VeLPIC class vec-
tors for the randomly initialized network. These vectors are then substituted into the pre-softmax
weights, while the rest of the model remains randomly initialized. The network is then trained on
the corrupted dataset for 100 epochs using standard training.

Model’s training accuracy on corrupted labels and test accuracy on true labels when intervention
is performed at random initialization across training epochs for MLP-MNIST, CNN-MNIST and
CNN-Fashion-MNIST are shown in Figure

For additional models and varying corruption degrees, model’s training accuracy on corrupted la-
bels and test accuracy on true labels when intervention is performed at random initialization across
training epochs are shown in Figure
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Figure 8: Vector Linear Probe Intermediate-layer Classifier (VeLPIC) test accuracy during training
of the network, where test data is projected onto class vectors constructed at each epoch from training
data with the indicated label corruption degrees. The plots display VeLPIC accuracy across different
layers of the network for various model-dataset combinations. For reference, the test accuracy of
the models (blue dotted line) over epochs of training is also shown. FC denotes fully connected
layers with Re LU activation, and Flat refers to the flatten layer without ReLU.

E.3.1 COMPARISON RESULTS
Comparison of model’s test accuracy for various corruption degrees are shown in Figure 20| The

model at the 100th epoch was used for comparison; if unavailable due to earlier training termination,
the final trained model was used instead. For comparison, we use the best-layer MASC test accuracy
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Figure 9: Difference in test accuracy (VeLPIC Accuracy - MASC Accuracy) during training of the
network, where test data is projected onto class vectors constructed at each epoch from training data
with the indicated label corruption degrees. The plots display difference in accuracy across different
layers of the network for various model-dataset combinations. For reference, the test accuracy of
the models (blue dotted line) over epochs of training is also shown, which would be 0.

(with subspaces capturing 99% variance), the best-layer VeLPIC test accuracy, and the test accuracy
after applying the intervention at random initialization. For models with the intervention, two values
are reported: the test accuracy at the 100th epoch and the maximum test accuracy achieved during
training.

E.3.2 EXPERIMENT RESULTS WITH WEIGHT INTERVENTION AT 10TH EPOCH

Here, we present results of weight intervention applied at 10th epoch. The model is training with
corrupted data for the first 10 epochs using standard training. The intervention is performed at 10th
epoch by replacing the pre-softmax weights with VeLPIC vectors (last layer). Standard training
is performed for the next 90 epochs using corrupted training data. Model’s training accuracy on
corrupted labels and test accuracy on true labels when intervention is performed at 10th epoch across
training epochs for varying corruption degrees are shown in Figure 21]

Briefly, we find that the intervention seems to switch the training dynamics to a regime where it
resists memorization, following the intervention, which is accompanied by better model generaliza-
tion. Also, the generalization dynamics in these cases appears to be less brittle and is effective in
some models where the initializations did not demonstrate effectiveness.

E.3.3 EXPERIMENT RESULTS WITH WEIGHT INTERVENTION AT 40TH EPOCH

Similarly to the previous section, here we present results of the weight intervention. The interven-
tion is performed at 40th epoch. The model is training with corrupted data for the first 40 epochs
using standard training. The intervention is performed at 40th epoch by replacing the pre-softmax
weights with VeLPIC vectors (last layer). Standard training is performed for the next 60 epochs us-
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Figure 10: Difference in test accuracy (VeLPIC Accuracy - MASC Accuracy) during training of the
network, where test data is projected onto class vectors constructed at each epoch from training data
with the indicated label corruption degrees. The plots display difference in accuracy across different
layers of the network for various model-dataset combinations. For reference, the test accuracy of
the models (blue dotted line) over epochs of training is also shown, which would be 0.

ing corrupted training data. Model’s training accuracy on corrupted labels and test accuracy on true
labels when intervention is performed at 40th epoch across training epochs for varying corruption
degrees are shown in Figure 22}

E.3.4 RESULTS OF FLIPPED AND UN-FLIPPED ACCURACIES

We here present training dynamics of the model over epochs of training, separately for the subset
of training data whose labels were flipped during the corruption process (flipped accuracy), and
for the subset of training data points whose labels remain uncorrupted (unflipped accuracy). We
present the above results for different models when interventions is applied at three points where the
pre-softmax layer weights are replaced with the VeLPIC class vectors: at random initialization (see
Figure[23), at the 10th epoch (Figure 24), and at the 40th epoch (Figure 25).
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Figure 11: Difference in test accuracy (VeLPIC Accuracy - MASC Accuracy) during training of the
network, where test data is projected onto class vectors constructed at each epoch from training data
with the indicated label corruption degrees. The plots display difference in accuracy across different
layers of the network for various model-dataset combinations. For reference, the test accuracy of
the models (blue dotted line) over epochs of training is also shown, which would be 0.
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Figure 12: Comparing model test accuracy with VeLPIC transferred accuracy when the weight
intervention is applied to the model at the epoch in question during training for corruption degrees
0% and 100%. The test accuracy of the model with standard training without weight intervention
(blue dotted line) is overlaid for comparison.
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Figure 13: Comparing model test accuracy with VeLPIC transferred accuracy when the weight
intervention is applied to the epoch in question during training. The test accuracy of the model with
standard training without weight intervention (blue dotted line) is overlaid for comparison.
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Figure 14: Model train accuracy on corrupted dataset when the VeLPIC weight intervention is ap-
plied to pre-softmax weights at the epoch in question during training. The training accuracy on
corrupted dataset of the model with standard training without weight intervention (blue dotted line)
is overlaid for comparison. Observe that, except for 100% corruption degree, the transferred training
accuracy tends to saturate at a level largely consistent with the fraction of true training labels in the

corrupted dataset.
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Figure 15: Model train accuracy on corrupted dataset when the VeLPIC weight intervention is ap-
plied to pre-softmax weights at the epoch in question during training. The training accuracy on
corrupted dataset of the model with standard training without weight intervention (blue dotted line)
is overlaid for comparison.
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Figure 16: Model’s train accuracy with corrupted labels (dash) and test accuracy with true labels
(dotted) for different corruptions over the epochs when model is trained on corrupted labels without

any intervention. This is consistent with corresponding results reported in (Arpit et al., 2017).
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Figure 17: We track separately accuracies on the part of the training data whose labels were changed
(“flipped”) and unchanged (“unflipped”) for the memorization-resistant initializations. Observe that
with this initialization, the model training accuracy on flipped labels tends to remain low, whereas
model accuracy on unflipped (i.e. true labels) is often quite high. This suggests that the initializa-
tion has a tendency to resist memorization. The results are plotted across epochs and for different
corruption degrees.
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Figure 18: Model train accuracy with corrupted labels and model test accuracy with true labels
during training when intervention is performed at random initialization and standard training is per-
formed thereafter. A model with random initialization is loaded. Model weights of the pre-softmax
layer were replaced with the VeLPIC class vectors. The model with standard training (dotted) with-
out intervention is overlaid for comparison.
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Figure 19: Model train accuracy with corrupted labels and model test accuracy with true labels
during training when intervention is performed at random initialization and standard training is per-
formed thereafter. A model with random initialization is loaded. Model weights of the pre-softmax
layer were replaced with the VeLPIC class vectors. The model with standard training (dotted) with-
out intervention is overlaid for comparison. The results with AlexNet-Tiny ImageNet are shown
with only 1 run.
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Figure 20: Comparison of model’s test accuracy the best-layer MASC test accuracy (with subspaces
capturing 99% variance), the best-layer VeLPIC test accuracy, and the test accuracy after applying
the intervention at random initialization. For models with the intervention, two values are reported:
the test accuracy at the 100th epoch and the maximum test accuracy achieved during training. The
error bars indicate the variation observed across three independent runs.
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Figure 21: Model train accuracy with corrupted labels and model test accuracy with true labels
during training when intervention is performed at 10th epoch and standard training is performed
thereafter for 90 epochs. A model is trained using standard training with corrupted dataset is loaded.
Model weights of the pre-softmax layer were replaced with the VeLPIC class vectors and trained for
90 epochs. The model with standard training (dotted) without intervention is overlaid for compari-
son.
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Figure 22: Model train accuracy with corrupted labels and model test accuracy with true labels
during training when intervention is performed at 40th epoch and standard training is performed
thereafter for 60 epochs. A model is trained using standard training with corrupted dataset is loaded.
Model weights of the pre-softmax layer were replaced with the VeLPIC class vectors and trained for
60 epochs. The model with standard training (dotted) without intervention is overlaid for compari-
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Figure 23: We track separately accuracies on the part of the training data whose labels were changed
(“flipped”) and unchanged (“unflipped”) for the memorization-resistant initializations. Observe that
with this initialization, the model training accuracy on flipped labels tends to remain low, whereas
model accuracy on unflipped (i.e. true labels) is often quite high. This suggests that the initializa-
tion has a tendency to resist memorization. The results are plotted across epochs and for different
corruption degrees.
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Figure 24: We track separately accuracies on the part of the training data whose labels were changed
(“flipped”) and unchanged (“unflipped”) for the weight initializations performed at 10th epoch. The
results are plotted across epochs and for different corruption degrees.
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Figure 25: We track separately accuracies on the part of the training data whose labels were changed
(“flipped”) and unchanged (“unflipped”) for the weight initializations performed at 40th epoch. The
results are plotted across epochs and for different corruption degrees.
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