
Transition Matching:
Scalable and Flexible Generative Modeling

Neta Shaul∗,1,† Uriel Singer∗,2 Itai Gat2 Yaron Lipman2

1Weizmann Institute of Science, 2FAIR at Meta,
†Work done during internship at Meta FAIR, ∗Joint first author

Abstract

Diffusion and flow matching models have significantly advanced media generation,
yet their design space is well-explored, somewhat limiting further improvements.
Concurrently, autoregressive (AR) models, particularly those generating contin-
uous tokens, have emerged as a promising direction for unifying text and media
generation. This paper introduces Transition Matching (TM), a novel discrete-time,
continuous-state generative paradigm that unifies and advances both diffusion/flow
models and continuous AR generation. TM decomposes complex generation tasks
into simpler Markov transitions, allowing for expressive non-deterministic probabil-
ity transition kernels and arbitrary non-continuous supervision processes, thereby
unlocking new flexible design avenues. We explore these choices through three
TM variants: (i) Difference Transition Matching (DTM), which generalizes flow
matching to discrete-time by directly learning transition probabilities, yielding
state-of-the-art image quality and text adherence as well as improved sampling
efficiency. (ii) Autoregressive Transition Matching (ARTM) and (iii) Full History
Transition Matching (FHTM) are partially and fully causal models, respectively,
that generalize continuous AR methods. They achieve continuous causal AR gener-
ation quality comparable to non-causal approaches and potentially enable seamless
integration with existing AR text generation techniques. Notably, FHTM is the first
fully causal model to match or surpass the performance of flow-based methods
on text-to-image task in continuous domains. We demonstrate these contributions
through a rigorous large-scale comparison of TM variants and relevant baselines,
maintaining a fixed architecture, training data, and hyperparameters.

1 Introduction
Recent progress in diffusion models and flow matching has significantly advanced media generation
(images, video, audio), achieving state-of-the-art results [31, 24, 34, 4]. However, the design space
of these methods has been extensively investigated [43, 20, 30, 40, 7], potentially limiting further
significant improvements with current modeling approaches. An alternative direction focuses on
autoregressive (AR) models to unify text and media generation. Earlier approaches generated media
as sequences of discrete tokens either in raster order [37, 54, 6]; or in random order [3]. Further
advancement was shown by switching to continuous token generation [25, 47], while also improving
performance at scale [10].

This paper introduces Transition Matching (TM), a general discrete-time continuous-state generation
paradigm that unifies diffusion/flow models and continuous AR generation. TM aims to advance
both paradigms and create new state-of-the-art generative models. Similar to diffusion/flow models,
TM breaks down complex generation tasks into a series of simpler Markov transitions. However,
unlike diffusion/flow, TM allows for expressive non-deterministic probability transition kernels and
arbitrary non-continuous supervision processes, offering new and flexible design choices.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

FM MAR FHTM (Ours) DTM (Ours)

“A portrait of a metal statue of a pharaoh wearing steampunk glasses and a leather jacket over a white t-shirt that
has a drawing of a space shuttle on it.”

“A solitary figure shrouded in mists peers up from the cobble stone street at the imposing and dark gothic
buildings surrounding it. an old-fashioned lamp shines nearby. oil painting.”

Figure 1: Transition Matching methods (FHTM and DTM) compared to baselines (FM and MAR)
under a fixed architecture, dataset and training hyper-parameters.

We explore these design choices and present three TM variants:

(i) Difference Transition Matching (DTM): A generalization of flow matching to discrete time, DTM
directly learns the transition probabilities of consecutive states in the linear (Cond-OT) process instead
of just its expectation. This straightforward approach yields a state-of-the-art generation model with
improved image quality and text adherence, as well as significantly faster sampling.

(ii) Autoregressive Transition Matching (ARTM) and (iii) Full History Transition Matching (FHTM):
These partially and fully causal models (respectively) generalize continuous AR models by incor-
porating a multi-step generation process guided by discontinuous supervising processes. ARTM
and FHTM achieve continuous causal AR generation quality comparable to non-causal methods.
Importantly, their causal nature allows for seamless integration with existing AR text generation
methods. FHTM is the first fully causal model to match or surpass the performance of flow-based
methods in continuous domains.

In summary, our contributions are:

1. Formulating transition matching: simplified and generalized discrete-time generative models
based on matching transition kernels.

2. Identifying and exploring key design choices, specifically the supervision process, kernel
parameterization, and modeling paradigm.

3. Introducing DTM, which improves upon state-of-the-art flow matching in image quality,
prompt alignment, and sampling speed.

4. Introducing ARTM and FHTM: partially and fully causal AR models (resp.) that match
non-AR generation quality and state-of-the-art prompt alignment.

5. Presenting a fair, large-scale comparison of the different TM variants and relevant baselines
using a fixed architecture, data, and training hyper-parameters.

2

2 Transition Matching

We start by describing the framework of Transition Matching (TM), which can be seen as a simplified
and general discrete time formulation for diffusion/flow models. Then, we focus on several, unex-
plored TM design choices and instantiations that goes beyond diffusion/flow models. In particular:
we consider more powerful transition kernels and/or discontinuous noise-to-data processes. In the
experiments section we show these choices lead to state-of-the-art image generation methods.

2.1 General framework

Notation We use capital letters X,Y, Z,A,B to denote random variables (RVs) and lower-case letter
x, y, z, a, b to denote their particular states. One exception is time t where we abuse notation a bit and
use it to denote both particular times and a RV. All our variables and states reside in euclidean spaces
x ∈ Rd. The probability density function (PDF) of a random variable Y is denoted pY (x). For RVs
Xt (and only for them) we use the simpler PDF notation pt(xt). We use the standard notations for
joints pX,Y (x, y) and conditional densities pX|Y (x|y) densities. We denote [T] = {0, 1, . . . , T}.
Problem definition Given a training set of i.i.d. samples from an unknown target distribution pT ,
and some easy to sample source distribution p0. Our goal is to learn a Markov Process, defined
by a probability transition kernel pθt+1|t(xt+1|xt), where t ∈ [T − 1] taking us from X0 ∼ p0 to
XT ∼ pT . That is, we define a series of random variables (Xt)t∈[T] such that X0 ∼ p0 and

Xt+1 ∼ pθt+1|t(·|Xt) for all t ∈ [T − 1] then XT ∼ pT . (1)

XT X0, . . . , XT−1

Figure 2: Supervising process.

Supervising process Training such a Markov process is done with
the help of a supervising process, which is a stochastic process
(X0, X1, . . . , XT) defined given data samples XT using a condi-
tional process q0,...,T−1|T , i.e.,

q0,...,T (x0, . . . , xT) = q0,...,T−1|T (x0, . . . , xT−1|xT)pT (xT), (2)

and q0,...,T denotes the joint probability of the supervising process (Xt)t∈T . The only constraint on
the conditional process is that its marginal at time t = 0 is the easy to sample distribution p0, i.e.,

q0 = p0. (3)

Note that this definition is very general and allows, for example, arbitrary non-continuous processes,
and indeed we utilize such a process below. Transition matching engages with the supervising process
(Xt)t∈T by sampling pairs of consecutive states (Xt, Xt+1) ∼ qt,t+1, t ∈ [T − 1].

Loss The model pθt+1|t is trained to transition between consecutive states Xt → Xt+1 in the sense
of equation 1 by regressing qt+1|t defined from the supervising process q. This motivates the loss
utilizing a distance/divergence D between distributions

L(θ) = Et,Xt
D
(
qt+1|t(·|Xt), p

θ
t+1|t(·|Xt)

)
, (4)

where t is sampled uniformly from [T − 1]. However, this loss requires evaluating qt+1|t which is
usually hard to compute. Therefore, to make the training tractable we require that the distance D has
an empirical form, i.e., can be expressed as an expectation of an empirical one-sample loss D̂ over
target samples. We define the loss

L(θ) = Et,Xt

D in empirical form︷ ︸︸ ︷
EXt+1

D̂(Xt+1, p
θ
t+1|t(·|Xt)) = Et,Xt,Xt+1

D̂
(
Xt+1, p

θ
t+1|t(·|Xt)

)
, (5)

where (Xt, Xt+1) are sampled from the joint qt,t+1 with the help of equation 2, namely, first sample
data XT ∼ pT and then (Xt, Xt+1) ∼ qt,t+1|T (·|XT). Notably, equation 5 can be used to learn
arbitrary transition kernels, in contrast to e.g., Gaussian kernels used in discrete time diffusion models
or deterministic kernels used in flow matching. The particular choice of the cost D depends on the
modeling paradigm chosen for the transition kernel pθt+1|t, and discussed later.

3

Algorithm 1 Transition Matching Training

Require: pT ▷ Data
Require: qt,Y |T ▷ Process
Require: T ▷ Number of TM steps

1: while not converged do
2: Sample t ∼ U([T−1]), XT ∼ pT
3: Sample (Xt, Y) ∼ qt,Y |T (·|XT)

4: L(θ)← D̂(Y, pθY |t(·|Xt))

5: θ ← θ − γ∇θL ▷ Optimization step
6: end while
7: return θ

Algorithm 2 Transition Matching Sampling

Require: p0 ▷ Source distribution
Require: pθY |t ▷ Trained model
Require: qt+1|t,Y ▷ Parametrization
Require: T ▷ Number of TM steps

1: Sample X0 ∼ p0
2: for t = 0 to T − 1 do
3: Sample Y ∼ pθY |t(·|Xt)

4: Sample Xt+1 ∼ qt+1|t,Y (·|Xt, Y)
5: end for
6: return XT

Kernel parameterizations The first and natural option to parameterize pθt+1|t is to regress qt+1|t
directly as is done in equation 5. This turns out to be a good modeling choice in certain cases.
However, in some cases one can use other parameterizations that turn out to be beneficial, as is also
done for flow and diffusion models. To do that in the general case, we use the law of total probability
applied to the conditional probabilities qt+1|t with some latent RV Y :

qt+1|t(xt+1|xt) =

∫
qt+1|t,Y (xt+1|xt, y)qY |t(y|xt)dy, (6)

where qY |t is the posterior distribution of Y given Xt = xt and qt+1|t,Y is easy to sample (often a
deterministic function of Xt and Y). Then the posterior of Y is set as the new target of the learning
process instead of the transition kernel. That is, instead of the loss in equation 5 we consider

L(θ) = Et,Xt,Y D̂
(
Y, pθY |t(·|Xt)

)
. (7)

Similarly, during training, sampling from the joint (Xt, Y) ∼ qt,Y , is accomplished by first sampling
data XT and then (Xt, Y) ∼ qt,Y |T (·|Xt). Once the posterior pθY |t is trained, sampling from the
transition pθt+1|t during inference is done with the help of equation 6. To summarize, in cases we want
to use non-trivial kernel parameterization, i.e., Y ̸= Xt+1, we sample from qt+1|t,Y (in sampling)
and qt,Y |T (in training). See Algorithms 1 and 2 the training and sampling pseudocodes.

Kernel modeling Once a desirable Y is identified, the remaining part is to choose a generative
model for the kernel pθY |t. Importantly, one of the key advantages in TM comes from choosing
expressive kernels that result in more elaborate transition kernels than used previously. A kernel
modeling is set by a choice of a probability model for pθY |t and a loss to learn it. We denote the
probability model choice by B|A, where A denotes the condition and B the target. For example,
Y |Xt will denote a model that predicts a sample of Y given a sample of Xt. We will also use
more elaborate probability models, such as autoregressive models. To this end, consider the state Y
reshaped into individual tokens Y = (Y 1, . . . , Y n), and then Y i|

(
Y <i, Xt

)
means that our model

samples the token Y i given previous tokens of Y , Y <i = (Y 1, . . . , Y i−1), and Xt.

All our models are learned with flow matching (FM) loss. For completeness, we provide the key
components of flow matching formulated generically to learn to sample from B|A. Individual states
of A and B are denoted a and b, respectively. Flow matching models pθB|A via a velocity field uθ

s(b|a)
that is used to sample from pθB|A(·|a) by solving the Ordinary Differential Equation (ODE)

dBs

ds
= uθ

s(Bs|a) (8)

initializing with a sample B0 ∼ N (0, I) (the standard normal distribution) and solving until s = 1. In
turn, B1 is the desired sample, i.e., B1 ∼ pθB|A(·|a). The loss D, used to train FM, has an empirical
form and minimizes the difference between qB|A and pθB|A,

D̂
(
B, pθB|A(·|a)

)
= Es,B0

∥∥uθ
s(Bs|a)− (B −B0)

∥∥2 , (9)

where s is sampled uniformly in [0, 1], B0 ∼ N (0, I), B ∼ qB|A(·|a), and Bs = (1− s)B0 + sB.

4

We summarize the key design choices in Transition Matching:

TM design:
Supervising process Parametrization Modeling

q Y B|A

2.2 Transition Matching made practical
The key contribution of this paper is identifying previously unexplored design choices in the TM
framework that results in effective generative models. We focus on two TM variants: Difference
Transition Matching (DTM), and Autoregressive Transition Matching (ARTM/FHTM).

Difference Transition Matching Our first instance of TM makes the following choices:

DTM:
Supervising process Parametrization Modeling

Xt linear Y = XT −X0 B = Y |A = (t,Xt)

As the supervising process q we use the standard linear process (a.k.a., Conditional Optimal Trans-
port), defined by

Xt =

(
1− t

T

)
X0 +

t

T
XT , t ∈ [T], (10)

where X0 ∼ p0 = N (0, I) and XT ∼ pT . This is the same process used in [27, 28]. For the kernel
parameterization Y we will use the difference latent (see Figure 3, left),

Y = XT −X0. (11)
During training, sampling qt,Y |T (·|XT) (i.e., given XT) is done by sampling X0, and using 10 and
11 to compute Xt, Y . Using the definition in 10 and rearranging gives

Xt+1 = Xt +
1

T
Y, (12)

Figure 3: Difference prediction given Xt (left) and
flow matching velocity ut(Xt) (right).

and this equation can be used to sample from
qt+1|t,Y (·|Xt, Y) during inference. See Figure
4 for an illustration of a sampled path from this
supervising process. We learn to sample from
the posterior pθY |t ≈ qY |t using flow matching
with A = (t,Xt) and B = Y . This means we
learn a velocity field uθ

s(y|t, xt) and train it with
Algorithm 1 and the CFM loss in equation 9.
Note that in this case one can also learn a continuous time t ∈ [0, T] which allows more flexible
sampling.

Figure 4: DTM path
sampled with eq. 12.

The last remaining component is choosing the architecture for uθ
s. Let

x = (x1, . . . , xn) be a reshaped state to n tokens. For example, each xi can
represent a patch in an image x. Next, note that in each transition step we
need to sample Y ∼ pθY |t(·|Xt) by approximating the solution of the ODE
in equation 8. Therefore, to keep the sampling process efficient, we follow
[25] and use a small head gθ that generates all tokens in a batch and is fed
with latents from a large backbone fθ. Our velocity model is defined as

uθ
s(y|t, xt) =

[
gθs,t(y

1, h1
t), . . . , g

θ
s,t(y

n, hn
t)
]
, (13)

where hi
t is the i-th output token of the backbone, i.e., [h1

t , h
2
t , . . . , h

n
t] = fθ

t (xt). See Figure 5
(DTM) for an illustration of this architecture. One limitation of this architecture worth mentioning is
that in each transition step, each token yi is generated independently, which limits the power of this
kernel. We discuss this in the experiments section but nevertheless demonstrate that DTM with this
architecture still leads to state-of-the-art image generation model.

Connection to flow matching Although flow matching [27, 28, 1] is a deterministic process while
DTM samples from a stochastic transition kernel in each step, a connection between the two is
revealed by noting that the expectation of a DTM step coincides with Flow Matching Euler step, i.e.,

E [Y |Xt = x] = E [XT −X0|Xt = x] = ut(x), (14)

5

DTM ARTM FHTM

Figure 5: Architectures of the methods suggested in the paper. Backbone (orange) is the main
network (transformer); head (green) is a small network (2% backbone parameters); blue tokens use
full attention, gray tokens are causal; ui

s is the output velocity.

which is exactly the marginal velocity in flow matching, see Figure 3. In fact, as T → ∞ (or
equivalently, steps are getting smaller), DTM is becoming more and more deterministic, converging
to FM with Euler step, providing a novel and unexpected elementary proof (i.e., without the continuity
equation) for FM marginal velocity. In Appendix C we prove
Theorem 1. (informal) As the number of steps increases, T →∞, DTM converges to Euler step FM,

Xt+k ≈ xt +
k

T
E [XT −X0|Xt = xt] ,

as k/T → 0, where Xℓ, ∀ℓ > t is defined by Algorithm 2 with a optimally trained pθY |t.

We attribute the empirical success of DTM over flow matching to its more elaborate kernel.

Autoregressive Transition Matching Our second instance of TM is geared towards incorporating
state-of-the-art media generation in autoregressive models, and utilizes the following choices:

ARTM:
Supervising process Parametrization Modeling

Xt independent linear Y = Xt+1 B = Y i |A = (t,Xt, X
<i
t+1)

In this case we use a novel supervising process we call independent linear process, defined by

Xt =

(
1− t

T

)
X0,t +

t

T
XT , t ∈ [T], (15)

where X0,t ∼ N (0, I), t ∈ [T] are all i.i.d. samples. Sampling qt,t+1|T (·|XT) is done by sampling
X0,t and X0,t+1 and using 15. Although the independent linear process has the same marginals qt as
the linear process in equation 10, it enjoys better regularity of the conditional qt+1|t(·|xt), see Figure
6 for an illustration, and as demonstrated later in experiments is key for building state-of-the-art
Autoregressive image generation models.

Figure 6: Linear process (left) and independent
linear process (right) showing possible Xt+1

given a sample Xt. The independent process
has much wider support for Xt+1 given Xt.

For the transition kernel we use an Autoregressive
(AR) model with the choice of Y = Xt+1. As
before, we let a state written as series of tokens
x = (x1, . . . , xn) and write the target kernel qt+1|t
using the probability chain rule (as usual in AR
modeling),

qt+1|t(Xt+1|Xt) =

n∏
i=1

qit+1|t(X
i
t+1|Xt, X

<i
t+1),

where X<1
t+1 is the empty state. We will learn to

sample from qit+1|t using FM with A = (t,Xt, X
<i
t+1) and B = Xi

t+1. That is, we learn a velocity
field uθ

s(y
i|t, xt, x

<i
t+1) trained with the CFM loss in equation 9. This method builds upon the initial

idea [25] that uses such AR modeling to map in a single transition step from X0 to XT using diffusion,
and in that sense ARTM is a generalization of that method. Lastly the architecture for uθ

s is based on
a similar construction to DTM with a few, rather minor changes. Using the same notation for the
head gθ and backbone fθ models we define

uθ
s(y

i|t, xt, x
<i
t+1) = gθs,t(y

i, hi
t+1), (16)

with hi
t+1 = fθ

t (xt, x
<i
t+1). Figure 5 (ARTM) shows an illustration of this architecture.

6

Full-History ARTM We consider a variant of ARTM that allows full "teacher-forcing" training and
consequently provides a good candidate to be incorporated into multimodal AR model.

FHTM:
Supervising process Parametrization Modeling

X≤t independent linear Y = Xt+1 B = Y i |A = (X0, . . . , Xt, X
<i
t+1)

The idea is to use the full history of states, namely considering the kernel

qt+1|0,...,t(Xt+1|X0, . . . , Xt) =

n∏
i=1

qit+1|0,...,t(X
i
t+1|X0, . . . , Xt, X

<i
t+1), (17)

and train an FM sampler from qit+1|0,...,t with the choices A = (X0, . . . , Xt, X
<i
t+1) (no need to add

time t due to the full state sequence) and B = Xi
t+1. The architecture of the velocity us is defined by

uθ
s(y

i|x0, . . . , xt, x
<i
t+1) = gθs(y

i, hi
t+1), (18)

with hi
t+1 = fθ(x0, . . . , xt, x

<i
t+1) and we take f to be fully causal. See Figure 5 (FHTM).

3 Related work

Diffusion and flows We draw the connection to previous works from the perspective of transition
matching. Diffusion models [41, 16, 42, 21] can be seen as an instance of TM by choosing D in the
loss (5) to be the KL divergence, derived in diffusion literature as the variational lower bound [22].
The popular ϵ-prediction [16] in transition matching formulation is achieved by the design choices

ϵ-prediction:
Supervising process Parametrization Modeling

Xt = σtX0 + αtXT Y = X0 Y |Xt ∼ N
(
Y | ϵθt (Xt), w

2
t I
)

where (σt, αt) is the scheduler, and non-zero wt reproduces the sampling algorithm in [16], while
taking the limit wt → 0 yields the sampling of [42]. Similarly, x-prediction [21] is achieved by the
parametrization Y = XT . In contrast to these work, our TM instantiations use more expressive kernel
modeling. Relation to flow matching[27, 28, 1] is discussed in Section 2.2. Generator matching
[17] generalizes diffusion and flow models to general continuous time Markov process modeled
with arbitrary generators, while we focus on discrete time Markov processes. Another line of works
adopted supervision processes that transition between different resolutions; [19] used flow matching
with a particular coupling between different resolution as the kernel modeling; [56] implemented a
similar scheme but allowed the FM to be dependent on the previous states (frames) in an AR manner.
Denoising Diffusion GANs [50] uses x-prediction parametrization Y = XT and utilize a GAN [12]
model as the transition kernel. In a concurrent work, [57] proposes a similar parameterization to DTM
(Y = XT −X0) however uses a backbone-only architecture consequently making transition sampling
computationally very expensive and sub-par in generation quality compared to the backbone-head
architecture.

Autoregressive image generation Early progress in text-to-image generation was achieved using
autoregressive models over discrete latent spaces [37, 8, 54], with recent advances [46, 44, 14]
claiming to surpass flow-based approaches. A complementary line of work explores autoregressive
modeling directly in continuous space [25, 47], demonstrating some advantages over discrete methods.
In [10] this direction is scaled further, achieving SOTA results. In our experiments we compare these
models in controlled setting and show that our autoregressive transition matching variants improves
upon these models and achieves SOTA text-to-image performance with a fully causal architecture.
Lastly, DART-AR [13] uses a supervising process similar to the independent linear process 15 with
an autoregressive backbone however utilizing a Gaussian transition kernel per patch in contrast to an
FM head used in our case.

7

FM MAR FHTM (Ours) DTM (Ours) FM MAR FHTM (Ours) DTM (Ours)

“A richly textured oil painting of a young badger delicately sniffing a yellow rose next to a tree trunk. A small
waterfall can be seen in the background.”

“a robot holding a sign with "Let’s PAINT!" written on it”

“The Statue of Liberty with the face of an owl” “a blue airplane taxiing on a runway with the sun behind it”

“a racoon holding a shiny red apple over its head” “A green sign that says "Very Deep Learning" and is at the edge of the Grand Canyon.”

Figure 7: Samples comparison of our DTM, FHTM vs. FM, and MAR; Images were generated on
similar DiT models trained for 1M iterations.

4 Experiments

We evaluate the performance of our Transition Matching (TM) variants—Difference TM (DTM),
with T = 32 TM steps, Autoregressive TM (ARTM-2,3) with T = 2, 3 (resp.), and Full History
TM (FHTM-2,3) with T = 2, 3 (resp.) — on the text-to-image generation task. In Appendix B we
provide training and sampling pseudocodes of the three variants in Algorithms 3-8, and python code
for training in Figures 25,26, and 27. Our baselines include flow matching (FM) [9], continuous-
token autoregressive (AR) and masked AR (MAR) [25], and discrete-token AR [54] and MAR [3].
For continuous-token MAR we include two baselines: the original truncated Gaussian scheduler
version [25], and the cosine scheduler used by Fluid (MAR-Fluid) [10].

Datasets and metrics Training dataset is a collection of 350M licensed Shutterstock image-caption
pairs. Images are of 256 × 256 × 3 resolution and captions span 1–128 tokens embedded with
the CLIP tokenizer [35]. Consistent with prior work [38], for continuous state space, the images
are embedded using the SDXL-VAE [33] into a 32 × 32 × 4 latent space, and subsequently all
model training are done within this latent space. For discrete state space, images are tokenized with
Chameleon-VQVAE [2]. Evaluation datasets are PartiPrompts [54] and MS-COCO [26] text/image
benchmarks. And the reported metrics are: CLIPScore [15], that emphasize prompt alignment;
Aesthetics [39] and DeQA Score [53] that focus on image quality; PickScore [23], ImageReward [51],
and UnifiedReward [49] which are human preference-based and consider both image quality and text
adherence. Lastly, we report results on the GenEval [11] and T2I-CompBench [18] benchmarks.

Architecture and optimization All experiments are performed with the same 1.7B parameters DiT
backbone (fθ) [32], excluding a single case in which we compare to a standard LLM architecture [48,
29]. Methods that require a small flow head (gθ), replace the final linear layer with a 40M parameters
MLP [25]. Text conditioning is embedded through a Flan-UL2 encoder [45] and injected via cross
attention layers, or as prefix in the single case of the LLM architecture. Finally, the models are
trained for 500K iterations with a 2048 batch size. Precise details are in Appendix A.1. We aim to
facilitate a fair and useful comparison between methods in large scale by fixing the training data,
using the same size architectures with identical backbone (excluding the LLM architecture that use
standard transformer backbone), and same optimization hyper-parameters. To this end, we restrict
our comparison to baselines which we re-implemented.

4.1 Main results: Text-to-image generation

Our main evaluation results are reported in Tables 1 and 8 (in Appendix) on the DiT architecture.
We find that DTM outperforms all baselines, and yields the best results across all metrics except
the CLIPScore, where on the PartiPrompts benchmark it is a runner-up to MAR and our ARTM-3
and FHTM-3. On the MS-COCO benchmark, the discrete-state space models achieve the highest
CLIPScore but lag behind on all other metrics, as well as on the GenEval benchmark. DTM

8

shows a considerable gain in text adherence over the baseline FM and sets a new SOTA on the
text-to-image task. Next, our AR kernels with 3 TM steps: ARTM-3 and FHTM-3, demonstrate a
significant improvement compared to the AR baseline, see comparison of samples in Figure 15 in
the Appendix. When compared to MAR, ARTM-3 and FHTM-3 have comparable CLIPScore, but
improve considerably on all other image quality metrics, where this is also noticeable qualitatively
in Figure 7 and Figures 11-14 in the Appendix. GenEval and T2I-Compbench results are reported
in Tables 2 and 9 (resp.) showing that overall DTM is leading with FHTM-3/ARTM-3 and MAR
closely follows. To our knowledge, FHTM is the first fully causal model to match FM performance
on text-to-image task in continuous domain, with improved text alignment.

Table 1: Evaluation of TM vs. baselines on PartiPrompts. † Inference with activation caching. NFE∗

counts only backbone model evaluation (fθ). LLM and DiT have comparable number of parameters.
Attention Kernel Arch NFE∗ CLIPScore ↑ PickScore ↑ ImageReward ↑ UnifiedReward ↑ Aesthetic ↑ DeQA Score ↑

Baseline
Full

MAR-discrete DiT 256 26.8 20.7 0.14 4.31 5.15 2.48

MAR DiT 256 27.0 20.7 0.33 4.26 4.95 2.36

MAR-Fluid DiT 256 26.0 20.5 0.07 3.82 4.74 2.36

FM DiT 256 26.0 21.0 0.23 4.78 5.29 2.55

TM DTM DiT 32 26.8 21.2 0.53 5.12 5.42 2.65

Baseline

Causal

AR-discrete† DiT 256 26.7 20.4 −0.01 3.74 4.81 2.38

AR† DiT 256 24.9 20.1 −0.43 3.41 4.50 2.27

TM

ARTM−2† DiT 2× 256 26.8 20.8 0.29 4.49 5.03 2.37

FHTM−2† DiT 2× 256 26.8 20.8 0.30 4.59 5.13 2.44

ARTM−3† DiT 3× 256 27.0 20.9 0.38 4.77 5.21 2.53

FHTM−3† DiT 3× 256 27.0 20.9 0.31 4.77 5.15 2.44

FHTM−3† LLM 3× 256 27.0 21.0 0.43 5.02 5.30 2.54

Table 2: Evaluation of TM versus baselines on GenEval; same settings as Table 1.
Attention Kernel Arch NFE∗ Overall ↑ Single-object ↑ Two-objects ↑ Counting ↑ Colors ↑ Position ↑ Color Attribute ↑

Baseline
Full

MAR-discrete DiT 256 0.44 0.86 0.43 0.37 0.66 0.13 0.29

MAR DiT 256 0.52 0.98 0.56 0.43 0.73 0.11 0.38

MAR-Fluid DiT 256 0.44 0.90 0.33 0.37 0.76 0.12 0.28

FM DiT 256 0.47 0.91 0.52 0.27 0.71 0.12 0.34

TM DTM DiT 32 0.54 0.93 0.58 0.35 0.79 0.20 0.46

Baseline

Causal

AR-discrete† DiT 256 0.41 0.96 0.40 0.33 0.60 0.07 0.19

AR† DiT 256 0.34 0.86 0.26 0.15 0.63 0.06 0.15

TM

ARTM−2† DiT 2× 256 0.49 0.95 0.51 0.39 0.79 0.11 0.27

FHTM−2† DiT 2× 256 0.48 0.96 0.48 0.25 0.78 0.09 0.37

ARTM−3† DiT 3× 256 0.51 0.95 0.54 0.41 0.79 0.16 0.28

FHTM−3† DiT 3× 256 0.52 0.98 0.54 0.44 0.74 0.16 0.34

FHTM−3† LLM 3× 256 0.49 0.94 0.55 0.37 0.69 0.17 0.29

Table 3: Global ranking of TM and baselines on the
benchmarks PartiPrompts, MS-COCO, GenEval,
andT2I-CompBench; same settings as Table 1.

Attention Kernel Arch NFE∗ Global rank ↓

Baseline Full

MAR-discrete DiT 256 200
MAR DiT 256 127
MAR-Fluid DiT 256 220
FM DiT 256 179

TM DTM DiT 32 58

Baseline

Causal

AR-discrete† DiT 256 245
AR† DiT 256 321

TM

ARTM−2† DiT 2× 256 184
FHTM−2† DiT 2× 256 185
ARTM−3† DiT 3× 256 130
FHTM−3† DiT 3× 256 130
FHTM−3† LLM 3× 256 99

Image generation with causal model Beyond
improving prompt alignment and image quality
in text-to-image task, a central goal of recent re-
search [58, 55] is to develop multimodal models
also capable of reasoning about images. This
direction aligns naturally with our approach, as
the fully causal FHTM variant enables seamless
integration with large-language models (LLM)
standard architecture, training, and inference al-
gorithms. As a first step toward this goal, we
demonstrate in Table 1 and 8 that FHTM, im-
plemented with an LLM architecture replacing
2D with 1D positional encoding and input the
text condition only at the first layer, can match
and even surpass the performance of approximately the same size DiT architecture. Furthermore,
it matches or improve upon all baselines across all metrics. Further implementation details are in
Appendix A.1.

9

Global ranking As part of our main effort to empirically validate the Transition Matching framework,
we trained 6 variants: DTM, ARTM-2/3, FHTM-2/3, and FHTM-3 (LLM) and 6 baselines: FM,
MAR, MAR-Fluid, MAR-discrete, AR, AR-discrete. All models were evaluated on four benchmarks:
PartiPrompts, GenEval, MS-COCO, and T2I-CompBench (Tables 1–9). In total, we considered 12
models and 27 metrics per model. To derive a single measure of overall performance, we assigned
each model a rank from 1 (best) to 12 (worst) per metric and summed them across all benchmarks.
Table 3 reports the global rank, where DTM substantially outperforms all other TM variants and
baselines, followed by FHTM, ARTM, and MAR.

4.2 Evaluations

Table 4: FM and DTM sampling
times.

Kernel time (sec) CLIPScore PickScore
FM 10.8 26.0 21.0

DTM 1.6 26.8 21.1

Sampling efficiency One important benefit in the DTM variant
is its sampling efficiency compared to flow matching. In Table
10 we report CLIPScore and PickScore for DTM and FM for
different numbers of backbone and head steps while in Table 11
we log the corresponding forward times. Notably, the number
of backbone forwards in DTM sampling can be reduced con-
siderably without sacrificing generation quality. Table 4 presents the superior sampling efficiency of
DTM over FM: DTM achieves state-of-the-art results with only 16 backbone forwards, leading to an
almost 7-fold speedup compared to FM, which requires 128 backbone forwards for optimal quality in
this case. In contrast to DTM, ARTM/FHTM do not offer any speed-up, in fact they require backbone
forwards equal to the number of transition steps times the number of image tokens, as specified in
Tables 1,2,8; Figure 8 reports CLIPScore and PickScore for different number of head forwards which
demonstrates that this number can be reduced up to 4 with some limited reduction in performance for
ARTM/FHTM sampling.

Dependent vs. independent linear process To highlight the impact of the supervising process, we
compare the linear process (10), where X0 is sampled once for all t ∈ [T], with the independent
linear process (15), where X0,t is sampled for each t ∈ [T] independently, on our autoregressive
kernels: ARTM-3 and FHTM-3. The models are trained for 100K iterations and CLIPScore and
PickScore are evaluated every 10K iterations. As shown in Figure 9, the independent linear process
is far superior to the linear process on these kernels, see further discussion in Appendix A.4.

DTM Kernel expressiveness The DTM kernel (see equation 13) generates each token yi of dimension
2× 2× 4, corresponding to an image patch, independently in each transition step. This architecture
choice is done mainly for performance reasons to allow efficient transitions. In Figure 10 we compare
performance using a higher dimension yi, corresponding to a 2× 8× 4 patches. As can be seen in
these graphs, performance improves for this larger patch kernel for low number of transition steps
(1-4 steps) and surprisingly stays almost constant for very low number of head step, up to even a
single step. The fact that performance does not improve for larger number of transition steps can
be partially explained with Theorem 1 that shows that larger number of steps result in a simpler
transition kernel (which in the limit coincides with flow matching).

5 Conclusions

We introduce Transition Matching (TM), a novel generative paradigm that unifies and generalizes
diffusion, flow and continuous autoregressive models. We investigate three instances of TM: DTM,
which surpasses state-of-the-art flow matching in image quality and text alignment; and the causal
ARTM and fully causal FHTM that achieve generation quality comparable to non-causal methods.
The improved performance of ARTM/FHTM comes at the price of a higher sampling cost, i.e., NFE
counts are proportional to the number of transition steps, see e.g., in Table 1. DTM, in contrast,
requires less backbone forwards and leads to significant speed-up over flow matching sampling, see
e.g., Table 4. Future research directions include improving the training and/or sampling via different
time schedulers and distillation, as well as incorporating FHTM in a multimodal system. Our work
does not introduce additional societal risks beyond those related to existing image generative models.

10

References
[1] Michael S Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic

interpolants. arXiv preprint arXiv:2209.15571, 2022.

[2] Chameleon-Team. Chameleon: Mixed-modal early-fusion foundation models, 2025.

[3] Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and gledhhnddinerbdcilnulnfjWilliam T. Freeman.
Maskgit: Masked generative image transformer, 2022.

[4] Yushen Chen, Zhikang Niu, Ziyang Ma, Keqi Deng, Chunhui Wang, Jian Zhao, Kai Yu, and
Xie Chen. F5-tts: A fairytaler that fakes fluent and faithful speech with flow matching. arXiv
preprint arXiv:2410.06885, 2024.

[5] Mostafa Dehghani, Basil Mustafa, Josip Djolonga, Jonathan Heek, Matthias Minderer, Mathilde
Caron, Andreas Steiner, Joan Puigcerver, Robert Geirhos, Ibrahim Alabdulmohsin, Avital Oliver,
Piotr Padlewski, Alexey Gritsenko, Mario Lučić, and Neil Houlsby. Patch n’ pack: Navit, a
vision transformer for any aspect ratio and resolution, 2023.

[6] Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, and Ilya
Sutskever. Jukebox: A generative model for music, 2020.

[7] Prafulla Dhariwal and Alex Nichol. Diffusion models beat gans on image synthesis, 2021.

[8] Ming Ding, Zhuoyi Yang, Wenyi Hong, Wendi Zheng, Chang Zhou, Da Yin, Junyang Lin,
Xu Zou, Zhou Shao, Hongxia Yang, and Jie Tang. Cogview: Mastering text-to-image generation
via transformers, 2021.

[9] Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini,
Yam Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, Dustin Podell, Tim Dockhorn, Zion
English, Kyle Lacey, Alex Goodwin, Yannik Marek, and Robin Rombach. Scaling rectified
flow transformers for high-resolution image synthesis, 2024.

[10] Lijie Fan, Tianhong Li, Siyang Qin, Yuanzhen Li, Chen Sun, Michael Rubinstein, Deqing Sun,
Kaiming He, and Yonglong Tian. Fluid: Scaling autoregressive text-to-image generative models
with continuous tokens, 2024.

[11] Dhruba Ghosh, Hanna Hajishirzi, and Ludwig Schmidt. Geneval: An object-focused framework
for evaluating text-to-image alignment, 2023.

[12] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks, 2014.

[13] Jiatao Gu, Yuyang Wang, Yizhe Zhang, Qihang Zhang, Dinghuai Zhang, Navdeep Jaitly,
Josh Susskind, and Shuangfei Zhai. Dart: Denoising autoregressive transformer for scalable
text-to-image generation, 2025.

[14] Jian Han, Jinlai Liu, Yi Jiang, Bin Yan, Yuqi Zhang, Zehuan Yuan, Bingyue Peng, and Xiaobing
Liu. Infinity: Scaling bitwise autoregressive modeling for high-resolution image synthesis,
2024.

[15] Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A
reference-free evaluation metric for image captioning, 2022.

[16] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models, 2020.

[17] Peter Holderrieth, Marton Havasi, Jason Yim, Neta Shaul, Itai Gat, Tommi Jaakkola, Brian
Karrer, Ricky T. Q. Chen, and Yaron Lipman. Generator matching: Generative modeling with
arbitrary markov processes, 2025.

[18] Kaiyi Huang, Chengqi Duan, Kaiyue Sun, Enze Xie, Zhenguo Li, and Xihui Liu. T2i-
compbench++: An enhanced and comprehensive benchmark for compositional text-to-image
generation, 2025.

11

[19] Yang Jin, Zhicheng Sun, Ningyuan Li, Kun Xu, Kun Xu, Hao Jiang, Nan Zhuang, Quzhe
Huang, Yang Song, Yadong Mu, and Zhouchen Lin. Pyramidal flow matching for efficient
video generative modeling, 2025.

[20] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space
of diffusion-based generative models. Advances in neural information processing systems,
35:26565–26577, 2022.

[21] Diederik P. Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models,
2023.

[22] Diederik P Kingma, Max Welling, et al. Auto-encoding variational bayes, 2013.

[23] Yuval Kirstain, Adam Polyak, Uriel Singer, Shahbuland Matiana, Joe Penna, and Omer Levy.
Pick-a-pic: An open dataset of user preferences for text-to-image generation, 2023.

[24] Black Forest Labs. Flux. https://github.com/black-forest-labs/flux, 2024.

[25] Tianhong Li, Yonglong Tian, He Li, Mingyang Deng, and Kaiming He. Autoregressive image
generation without vector quantization. Advances in Neural Information Processing Systems,
37:56424–56445, 2024.

[26] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays,
Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Microsoft coco: Common
objects in context, 2015.

[27] Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow
matching for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

[28] Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate
and transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022.

[29] Llama 3 Team Meta. The llama 3 herd of models, 2024.

[30] Alex Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models, 2021.

[31] Patrick, Robin Rombach, and Björn Ommer. Taming transformers for high-resolution image
synthesis, 2021.

[32] William Peebles and Saining Xie. Scalable diffusion models with transformers, 2023.

[33] Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
synthesis, 2023.

[34] A Polyak, A Zohar, A Brown, A Tjandra, A Sinha, A Lee, A Vyas, B Shi, CY Ma,
CY Chuang, et al. Movie gen: A cast of media foundation models, 2025. URL https://arxiv.
org/abs/2410.13720, page 51.

[35] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning transferable visual models from natural language supervision, 2021.

[36] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer, 2023.

[37] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark
Chen, and Ilya Sutskever. Zero-shot text-to-image generation, 2021.

[38] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer.
High-resolution image synthesis with latent diffusion models, 2022.

12

https://github.com/black-forest-labs/flux

[39] Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman,
Mehdi Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, Patrick
Schramowski, Srivatsa Kundurthy, Katherine Crowson, Ludwig Schmidt, Robert Kaczmarczyk,
and Jenia Jitsev. Laion-5b: An open large-scale dataset for training next generation image-text
models, 2022.

[40] Neta Shaul, Ricky T. Q. Chen, Maximilian Nickel, Matt Le, and Yaron Lipman. On kinetic
optimal probability paths for generative models, 2023.

[41] Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep
unsupervised learning using nonequilibrium thermodynamics, 2015.

[42] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models, 2022.

[43] Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generative modeling through stochastic differential equations, 2021.

[44] Peize Sun, Yi Jiang, Shoufa Chen, Shilong Zhang, Bingyue Peng, Ping Luo, and Zehuan Yuan.
Autoregressive model beats diffusion: Llama for scalable image generation, 2024.

[45] Yi Tay, Mostafa Dehghani, Vinh Q Tran, Xavier Garcia, Jason Wei, Xuezhi Wang, Hyung Won
Chung, Siamak Shakeri, Dara Bahri, Tal Schuster, et al. Ul2: Unifying language learning
paradigms. arXiv preprint arXiv:2205.05131, 2022.

[46] Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregressive
modeling: Scalable image generation via next-scale prediction, 2024.

[47] Michael Tschannen, Cian Eastwood, and Fabian Mentzer. Givt: Generative infinite-vocabulary
transformers, 2024.

[48] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2023.

[49] Yibin Wang, Yuhang Zang, Hao Li, Cheng Jin, and Jiaqi Wang. Unified reward model for
multimodal understanding and generation, 2025.

[50] Zhisheng Xiao, Karsten Kreis, and Arash Vahdat. Tackling the generative learning trilemma
with denoising diffusion gans, 2022.

[51] Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao
Dong. Imagereward: Learning and evaluating human preferences for text-to-image generation,
2023.

[52] Yilun Xu, Mingyang Deng, Xiang Cheng, Yonglong Tian, Ziming Liu, and Tommi Jaakkola.
Restart sampling for improving generative processes. Advances in Neural Information Process-
ing Systems, 36:76806–76838, 2023.

[53] Zhiyuan You, Xin Cai, Jinjin Gu, Tianfan Xue, and Chao Dong. Teaching large language
models to regress accurate image quality scores using score distribution, 2025.

[54] Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gunjan Baid, Zirui Wang, Vijay
Vasudevan, Alexander Ku, Yinfei Yang, Burcu Karagol Ayan, Ben Hutchinson, Wei Han,
Zarana Parekh, Xin Li, Han Zhang, Jason Baldridge, and Yonghui Wu. Scaling autoregressive
models for content-rich text-to-image generation, 2022.

[55] Lili Yu, Bowen Shi, Ramakanth Pasunuru, Benjamin Muller, Olga Golovneva, Tianlu Wang,
Arun Babu, Binh Tang, Brian Karrer, Shelly Sheynin, et al. Scaling autoregressive multi-modal
models: Pretraining and instruction tuning. arXiv preprint arXiv:2309.02591, 2023.

[56] Zhihang Yuan, Yuzhang Shang, Hanling Zhang, Tongcheng Fang, Rui Xie, Bingxin Xu, Yan
Yan, Shengen Yan, Guohao Dai, and Yu Wang. E-car: Efficient continuous autoregressive image
generation via multistage modeling, 2024.

[57] Yichi Zhang, Yici Yan, Alex Schwing, and Zhizhen Zhao. Towards hierarchical rectified flow,
2025.

13

[58] Chunting Zhou, Lili Yu, Arun Babu, Kushal Tirumala, Michihiro Yasunaga, Leonid Shamis,
Jacob Kahn, Xuezhe Ma, Luke Zettlemoyer, and Omer Levy. Transfusion: Predict the next
token and diffuse images with one multi-modal model, 2024.

14

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We use licensed data, code will be potentially released at a later date, all
implementation details are provided in the main paper and appendix.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We follow the standard practice for the benchmarks and evaluations we include
in the paper.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

15

https://neurips.cc/public/EthicsGuidelines

Answer: [No]
Justification: Foundational research and not tied to particular applications, let alone deploy-
ments.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [No]
Justification: Foundational research and not tied to particular applications, let alone deploy-
ments.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]

16

A Experiments

A.1 Implementation details

DiT architecture The DiT architecture [32] uses 24 blocks of a self-attention layer followed by
cross attention layer with the text embedding [36], with a 2048 hidden dimension, 16 attention heads,
and utilize a 3D positional embedding [5]. Embedded image [33] size is 32× 32× 4 and input to the
DiT trough a patchify layer with patch size of 2 × 2 × 4. The total number of parameters is 1.7B.
Since ARTM gets as input both Xt and Xt+1, which results in a longer sequence length, for a fair
comparison across TM variations and baselines, for all other models we pad the input sequence to
double its length.

LLM architecture The LLM architecture [29] is similar to the DiT with the following differences:
(i) time injection is removed, (ii) cross attention layer is removed and text embedding is input as a
prefix (iii) it uses a simple 1D instead of 3D positional embedding. To compensate for reduction
in number of parameters, we increase the number of self-attention layers to 34, reaching 1.7B total
number of parameters (comparable to the DiT). FHTM-DiT gets X0 as input but does not take a loss
on it, while for FHTM-LLM we remove the X0 all together and instead use a single boi (begin of
image) token to save sequence length.

Flow head architecture Following [25] we use an MLP with 6 layers and a hidden dimension of
1024. to convert from the backbone hidden dimension (2048) to the MLP hidden dimension (1024)
we use a simple linear layer. Finally, we replace the time input with AdaLN[32] time injection.

Optimization The models are trained for 500K iterations, with a 2048 total batch size, 1 ∗ e−4

constant learning rate and 2K iterations warmup.

Classifier free guidance To support classifier free guidance (CFG), during training, with probability
of 0.15, we drop the text prompt and replace it with empty prompt. Following [25], during sampling,
we apply CFG to the velocity of the flow head (gθ) with a guidance scale of 6.5.

A.2 Main results: Text-to-image generation

Additional Kernels and Baselines Similar to the extension of the AR kernel to ARTM, We extend
the MAR-Fluid kernel to 2 and 3 transition steps, resulting with the MARTM−2 and MARTM−3
kernels. Furthermore, we investigate the performance of the Restart sampling algorithm [52] on the
FM kernel, were noise is added during the sampling process. We follow the authors’ suggestion and
perform 1 restart from t = 0.6 to t = 0.4, 3 restarts from t = 0.8 to t = 0.6, and an additional 3
restarts from t = 1 to t = 0.8. The sampling is performed on a base of 1000 steps, resulting with a
total of 2400 NFE. As an additional baseline, we sample the FM kernel with 2400 NFE. Results can
be found in Tables 5,6,7.

Table 5: Evaluation of MARTM and the Restart sampling algorithm baselines on PartiPrompts.
Attention Kernel Arch NFE∗ CLIPScore ↑ PickScore ↑ ImageReward ↑ UnifiedReward ↑ Aesthetic ↑ DeQAScore ↑

Baseline Full

MAR-Fluid DiT 256 26.0 20.5 0.07 3.82 4.74 2.36

MARTM−2 DiT 256 26.7 20.9 0.36 4.69 5.13 2.42

MARTM−3 DiT 256 26.4 20.9 0.25 4.48 5.11 2.49

FM DiT 256 26.0 21.0 0.23 4.78 5.29 2.55

FM DiT 2400 26.0 21.1 0.24 4.81 5.29 2.55

FM-Restart DiT 2400 26.1 21.1 0.34 4.83 5.31 2.53

Flow head NFE We ablate the number of NFE required by the flow head (gθ) to reach best
performance for each model. As shown in Figure 8, we observe the models reach saturation with
relatively low NFE, and decide to report results on Tables 1, 8 and 2 with 64 NFE for the flow head.

TM steps vs Flow head NFE for DTM We test the performance of the DTM variant as function of
TM steps and Flow head NFE. As shown in Table 10, our DTM model achieve reach saturation about

17

Table 6: Evaluation of MARTM and the Restart sampling algorithm baselines on GenEval.
Attention Kernel Arch NFE∗ Overall ↑ Single-object ↑ Two-objects ↑ Counting ↑ Colors ↑ Position ↑ Color Attribute ↑

Baseline Full

MAR-Fluid DiT 256 0.44 0.90 0.33 0.37 0.76 0.12 0.28

MARTM−2 DiT 256 0.51 0.94 0.55 0.35 0.77 0.21 0.32

MARTM−3 DiT 256 0.52 0.91 0.58 0.41 0.77 0.14 0.38

FM DiT 256 0.47 0.91 0.52 0.27 0.71 0.12 0.34

FM DiT 2400 0.47 0.91 0.51 0.25 0.72 0.14 0.36

FM-Restart DiT 2400 0.49 0.89 0.59 0.29 0.73 0.13 0.38

Table 7: Evaluation of MARTM and the Restart sampling algorithm baselines on MS-COCO.
Attention Kernel Arch NFE∗ CLIPScore ↑ PickScore ↑ ImageReward ↑ UnifiedReward ↑ Aesthetic ↑ DeQAScore ↑

Baseline Full

MAR-Fulid DiT 256 25.5 20.5 −0.11 3.94 4.86 2.38

MARTM−2 DiT 256 25.9 21.0 0.17 4.93 5.33 2.41

MARTM−3 DiT 256 25.7 20.9 0.04 4.67 5.21 2.45

FM DiT 256 25.8 21.1 0.09 5.00 5.45 2.47

FM DiT 2400 25.8 21.1 0.09 5.00 5.45 2.47

FM-Restart DiT 2400 25.8 21.1 0.15 5.11 5.48 2.44

16 TM steps and 4 Flow head steps, according to CLIPScore and PickScore. Generation time for a
single image on a single H100 GPU is provided in Table 11.

Table 8: Evaluation of TM versus baselines on MS-COCO. † Inference is done with activation
caching. NFE∗ counts only backbone model evaluation (fθ). LLM and DiT have comparable number
of parameters.

Attention Kernel Arch NFE∗ CLIPScore ↑ PickScore ↑ ImageReward ↑ UnifiedReward ↑ Aesthetic ↑ DeQAScore ↑

Baseline
Full

MAR-discrete DiT 256 26.6 20.6 0.01 4.14 5.27 2.41

MAR DiT 256 26.1 20.7 0.17 4.62 5.06 2.34

MAR-Fulid DiT 256 25.5 20.5 −0.11 3.94 4.86 2.38

FM DiT 256 25.8 21.1 0.09 5.00 5.45 2.47

TM DTM DiT 32 26.2 21.2 0.22 5.38 5.55 2.58

Baseline

Causal

AR-discrete† DiT 256 26.7 20.3 −0.06 3.83 4.93 2.34

AR† DiT 256 24.8 20.1 −0.48 3.60 4.76 2.34

TM

ARTM−2† DiT 2× 256 25.9 20.8 0.07 4.70 5.19 2.41

FHTM−2† DiT 2× 256 25.9 20.8 0.07 4.78 5.27 2.45

ARTM−3† DiT 3× 256 26.1 20.9 0.11 4.99 5.35 2.46

FHTM−3† DiT 3× 256 26.1 21.0 0.15 5.23 5.38 2.41

FHTM−3† LLM 3× 256 26.1 21.1 0.24 5.51 5.53 2.51

18

Table 9: Evaluation of TM versus baselines on T2I-CompBench; same settings as Table 8.
Attention Kernel Arch NFE∗ Color ↑ Shape ↑ Texture ↑ 2D-Spatial ↑ 3D-Spatial ↑ Numeracy ↑ Non-Spatial ↑ Complex ↑

Baseline
Full

MAR-discrete DiT 256 0.6666 0.4535 0.5316 0.1474 0.2693 0.4538 0.3090 0.3096
MAR DiT 256 0.7378 0.5174 0.6588 0.1638 0.3002 0.4962 0.3082 0.3392
MAR-Fluid DiT 256 0.6997 0.4768 0.6149 0.1454 0.2938 0.4681 0.3037 0.3289
FM DiT 256 0.6855 0.4511 0.5615 0.1372 0.2706 0.4526 0.3026 0.3138

TM DTM DiT 32 0.7316 0.4865 0.6597 0.1839 0.3113 0.5043 0.3075 0.3382

Baseline

Causal

AR-discrete† DiT 256 0.6068 0.4757 0.5958 0.1095 0.2535 0.4423 0.3098 0.3097
AR† DiT 256 0.5062 0.3669 0.5061 0.1041 0.2441 0.4210 0.2989 0.2983

TM

ARTM−2† DiT 2× 256 0.6520 0.4430 0.5870 0.1475 0.2748 0.4800 0.3074 0.3267
FHTM−2† DiT 2× 256 0.6318 0.4318 0.5730 0.1403 0.2818 0.4830 0.3058 0.3229
ARTM−3† DiT 3× 256 0.6555 0.4738 0.5842 0.1459 0.2832 0.4855 0.3062 0.3227
FHTM−3† DiT 3× 256 0.6604 0.4640 0.5839 0.1394 0.2755 0.4810 0.3066 0.3223
FHTM−3† LLM 3× 256 0.6166 0.4618 0.5945 0.1688 0.3081 0.5010 0.3079 0.3310

A.3 Sampling efficiency

Table 10: Performance of FM (c-d) and DTM (a-b) for different combinations of Head NFE and TM
steps, computed on a subset of the PartiPrompts dataset (1024 out of 1632). Color intensity increases
with higher performance.

(a) DTM CLIPScore

TM steps
1 2 4 8 16 32 64 128

H
ea

d
N

FE

1 15.8 17.0 20.4 22.8 23.2 23.2 23.0 22.8
2 16.1 18.6 24.2 26.2 26.4 26.4 26.2 26.2
4 17.9 21.1 25.4 26.7 26.8 26.7 26.5 26.5
8 18.8 21.2 25.5 26.6 26.8 26.6 26.5 26.5

16 18.9 21.3 25.5 26.7 26.8 26.6 26.5 26.4
32 19.0 21.2 25.5 26.7 26.7 26.7 26.6 26.5
64 19.0 21.3 25.4 26.7 26.8 26.6 26.4 26.5
128 18.9 21.3 25.4 26.7 26.9 26.7 26.5 26.4

(b) DTM PickScore

TM steps
1 2 4 8 16 32 64 128

H
ea

d
N

FE

1 17.6 17.8 18.6 19.4 19.6 19.7 19.6 19.6
2 17.7 18.3 19.7 20.6 20.9 21.0 21.0 21.0
4 18.1 18.8 20.0 20.8 21.1 21.1 21.1 21.1
8 18.3 18.8 20.0 20.8 21.1 21.1 21.1 21.2

16 18.3 18.8 20.0 20.9 21.1 21.1 21.1 21.1
32 18.3 18.8 20.0 20.9 21.1 21.1 21.1 21.1
64 18.3 18.8 20.0 20.9 21.1 21.1 21.1 21.1
128 18.3 18.8 20.0 20.8 21.1 21.1 21.1 21.1

(c) FM CLIPScore

Euler steps
1 2 4 8 16 32 64 128

0 15.8 16.6 19.7 23.8 25.6 25.9 25.9 26.0

(d) FM PickScore

Euler steps
1 2 4 8 16 32 64 128

0 17.9 18.0 18.7 20.0 20.8 21.0 21.0 21.0

1 2 4 8 16 32 64 128
Head NFE

19

20

21

22

23

24

25

26

27

CL
IP

Sc
or

e

ARTM 3-steps (DiT)
FHTM 3-steps (DiT)
FHTM 3-steps (LLM)

1 2 4 8 16 32 64 128
Head NFE

18.5

19.0

19.5

20.0

20.5

21.0

Pi
ck

Sc
or

e

ARTM 3-steps (DiT)
FHTM 3-steps (DiT)
FHTM 3-steps (LLM)

Figure 8: Comparison of flow head NFE vs. CLIPScore (left), and PickScore (right) computed on the
PartiPrompts dataset.

19

Table 11: DTM inference time (in seconds) for different combinations of Head NFE and TM steps on
a single H100 GPU. Color intensity increases with runtime. Note that 0 head steps refers to FM.

TM steps (84 ms/step)
1 2 4 8 16 32 64 128

H
ea

d
N

FE
(3

.5
m

s/
st

ep
) 0 0.1 0.2 0.3 0.7 1.3 2.7 5.4 10.8

1 0.1 0.2 0.4 0.7 1.4 2.8 5.6 11.2
2 0.1 0.2 0.4 0.7 1.5 2.9 5.8 11.6
4 0.1 0.2 0.4 0.8 1.6 3.1 6.3 12.5
8 0.1 0.2 0.4 0.9 1.8 3.6 7.2 14.3

16 0.1 0.3 0.6 1.1 2.2 4.5 9.0 17.9
32 0.2 0.4 0.8 1.6 3.1 6.3 12.5 25.1
64 0.3 0.6 1.2 2.5 4.9 9.9 19.7 39.4
128 0.5 1.1 2.1 4.3 8.5 17.0 34.0 68.1

A.4 Dependent vs. independent linear process

Further analysis of the generated images reveals that the AR kernels are unable to learn the linear
process, resulting in low quality image generation. We hypothesize that the AR kernels exploit the
linear relationship between Xt and Xt+1 during training, which leads the model to learn a degenerate
function and causes it to fail in inference.

MS-COCO PartiPrompts

0 20000 40000 60000 80000
Training iteration

10

12

14

16

18

20

22

24

26

CL
IP

Sc
or

e

ARTM:Dependent
ARTM:Independent
FHTM:Dependent
FHTM:Independent

0 20000 40000 60000 80000
Training iteration

12

14

16

18

20

22

24

26

CL
IP

Sc
or

e

ARTM:Dependent
ARTM:Independent
FHTM:Dependent
FHTM:Independent

0 20000 40000 60000 80000
Training iteration

17

18

19

20

Pi
ck

Sc
or

e

ARTM:Dependent
ARTM:Independent
FHTM:Dependent
FHTM:Independent

0 20000 40000 60000 80000
Training iteration

17.0

17.5

18.0

18.5

19.0

19.5

20.0

20.5

Pi
ck

Sc
or

e

ARTM:Dependent
ARTM:Independent
FHTM:Dependent
FHTM:Independent

Figure 9: Dependent linear process (10) vs. Independent linear process (15) on the AR kernels:
ARTM-3 and FHTM-3. The models are evaluated on the MS-COCO (left) and PartiPrompts (right)
with CLIPScore and PickScore every 10K training iterations across 100K iterations. Observe that on
the AR kernels trained with the independent linear process are far superior to the ones trained with
the dependent linear process.

20

A.5 DTM Kernel expressiveness

1 2 4 8 16 32 64 128
TM steps

19

20

21

22

23

24

25

26

27

CL
IP

Sc
or

e

Flow Head 2x2x4
Flow Head 2x8x4

1 2 4 8 16 32 64 128
Head NFE

23.5

24.0

24.5

25.0

25.5

26.0

26.5

CL
IP

Sc
or

e

Flow Head 2x2x4
Flow Head 2x8x4

1 2 4 8 16 32 64 128
TM steps

18.5

19.0

19.5

20.0

20.5

21.0

Pi
ck

Sc
or

e

Flow Head 2x2x4
Flow Head 2x8x4

1 2 4 8 16 32 64 128
Head NFE

19.6

19.8

20.0

20.2

20.4

20.6

20.8

21.0

21.2

Pi
ck

Sc
or

e

Flow Head 2x2x4
Flow Head 2x8x4

Figure 10: Impact of flow head patch size: 2 × 2 × 4 vs. 2 × 8 × 4, on the DTM performance,
evaluated across varying numbers of TM steps (Left, with 32 Head NFE) and variying number of
Head NFE (Right, with 32 TM steps). The metrics are CLIPScore (Top) and PickScore (Bottom)
computed on the PartiPrompts dataset. On low number of TM steps, the larger flow head patch size
shows an advantage in both metrics. On high number of TM steps, both patch sizes yield comparable
results. This aligns with Theorem 1, which predicts that for infinitesimal steps size, the entries of
Y ∈ Rd defined in equation 11 become independent.

A.6 Scheduler ablation for independent linear process

We have experimented with two transition scheduler options: uniform (as described in 15) and
"exponential", i.e., t

T ∈ {0, 0.5, 0.75, 1}. The results for ARTM and FHTM are reported in Table 12
and show almost the same performance with a slight benefit towards exponential in DiT architecture
and these are used in our main implementations.

Table 12: Comparison of uniform and exponential transition steps.

MS-COCO PartiPrompts

Kernel Arch TM Steps Scheduler CLIPScore ↑ PickScore ↑ CLIPScore ↑ PickScore ↑

ARTM DiT 3
Uniform 26.0 20.8 26.8 20.8

Exponential 26.1 20.9 27.0 20.9

FHTM DiT 3
Uniform 25.9 21.0 26.9 20.9

Exponential 26.1 21.0 27.0 20.9

FHTM LLM 3
Uniform 26.1 21.0 27.0 21.0

Exponential 26.1 21.1 27.0 21.0

21

A.7 Additional generated images comparison

FM MAR FHTM DTM

“a coffee mug floating in the sky” ”

“The Alamo with bright white clouds above it” ”

“a tornado passing over a corn field” ”

“A raccoon wearing formal clothes, wearing a tophat and holding a cane. The raccoon is holding a garbage bag.
Oil painting in the style of Rembrandt.”

“a harp with a carved eagle figure at the top”

Figure 11: Additional generated samples of FM, MAR, FHTM, and DTM with models that are
trained for 1M iterations.

22

FM MAR FHTM DTM

“A close-up photo of a wombat wearing a red backpack and raising both arms in the air. Mount Rushmore is in
the background.”

“a blue airplane taxiing on a runway with the sun behind it”

“The Statue of Liberty with the face of an owl”

“A photograph of a bird made of wheat bread and an egg.”

“a living room with a large Egyptian statue in the corner”

Figure 12: Additional generated samples of FM, MAR, FHTM, and DTM with models that are
trained for 1M iterations.

23

FM MAR FHTM DTM

“a blue wooden pyramid on top of a red plastic box”

“A bowl of soup that looks like a monster knitted out of woo”

“Portrait of a gecko wearing a train conductor’s hat and holding a flag that has a yin-yang symbol on it. Child’s
crayon drawing.”

“a dolphin in an astronaut suit”

“a moose standing over a fox”

Figure 13: Additional generated samples of FM, MAR, FHTM, and DTM with models that are
trained for 1M iterations.

24

FM MAR FHTM DTM

“a portrait of a statue of a pharaoh wearing steampunk glasses, white t-shirt and leather jacket. dslr photograph.”

“panda mad scientist”

“a futuristic city in synthwave style”

Figure 14: Additional generated samples of FM, MAR, FHTM, and DTM with models that are
trained for 1M iterations.

25

AR ARTM-2 ARTM-3

“a half-peeled banana”

“beer”

“a blue wall with a large framed watercolor painting of a mountain”

“the word ’START’ ”

Figure 15: Samples comparison of AR (left) vs. ARTM-2 (middle) vs. ARTM-3 (right) on models
trained for 500K iteration with the DiT architecture.

26

A.8 Generation process visualization

“a comic about an owl family in the forest”

“A photo of a maple leaf made of water.”

“A tornado made of sharks crashing into a skyscraper. painting in the style of watercolor.”

“A single beam of light enter the room from the ceiling. The beam of light is illuminating an easel. On the easel
there is a Rembrandt painting of a raccoon”

“the word ’START’ written in chalk on a sidewalk”

Figure 16: Generation process of FM (first row), DTM (second row), and FHTM (third row) with
models that are trained for 1M iterations. FM and DTM are visualized using a denoising estimation.
FHTM-3 is visualized with 4 intermediates per transition step.

27

“a photograph of an ostrich wearing a fedora and singing soulfully into a microphone”

“An oil painting of two rabbits in the style of American Gothic, wearing the same clothes as in the original.”

“a cloud in the shape of a teacup”

“A map of the United States with a pin on San Francisco”

“A giant cobra snake made from sushi”

Figure 17: Generation process of FM (first row), DTM (second row), and FHTM (third row) with
models that are trained for 1M iterations. FM and DTM are visualized using a denoising estimation.
FHTM-3 is visualized with 4 intermediates per transition step.

28

“a stained glass window of a panda eating bamboo”

“a cross-section view of a walnut”

“A photo of a lotus flower made of water.”

“A map of the United States made out sushi. It is on a table next to a glass of red wine.”

“a green pepper cut in half on a plate”

Figure 18: Generation process of FM (first row), DTM (second row), and FHTM (third row) with
models that are trained for 1M iterations. FM and DTM are visualized using a denoising estimation.
FHTM-3 is visualized with 4 intermediates per transition step.

29

“a cloud in the shape of a elephant”

“A photo of a teddy bear made of water.”

“a robot painted as graffiti on a brick wall. a sidewalk is in front of the wall, and grass is growing out of cracks in
the concrete.”

“a capybara”

“A television made of water that displays an image of a cityscape at night.”

Figure 19: Generation process of FM (first row), DTM (second row), and FHTM (third row) with
models that are trained for 1M iterations. FM and DTM are visualized using a denoising estimation.
FHTM-3 is visualized with 4 intermediates per transition step.

30

A.9 Classifier free guidance sensitivity

4 6 8 10 12 14
Guidance scale

22

23

24

25

26

27
CL

IP
Sc

or
e DTM (DiT)

FHTM 3-step (LLM)
FM (DiT)
AR (DiT)
AR-discrete (DiT)
MAR (DiT)
MAR-fluid (DiT)
MAR-fluid-discrete (DiT)

4 6 8 10 12 14
Guidance scale

19.50

19.75

20.00

20.25

20.50

20.75

21.00

21.25

Pi
ck

Sc
or

e

Figure 20: CLIPScore vs. CFG guidance scale (left) and PickScore vs. CFG guidance scale (right) of
DTM and FHTM variants, and the baselines: FM, AR, AR-Discrete, MAR, MAR-Fluid, MAR-Fluid-
Discrete on the PartiPrompts dataset.

31

3 4 5 6 7 8 9 10 11 12 13 14

“A raccoon wearing formal clothes, wearing a tophat and holding a cane. The raccoon is holding a garbage bag.
Oil painting in the style of Hokusai.”

“a stop sign knocked over on a sidewalk”

“a beach with a cruise ship passing by”

“a spaceship hovering over The Alamo”

“five red balls on a table”

Figure 21: Classifier free guidance sensitivity for FM (first row), DTM (second row), and FHTM
(third row) with models that are trained for 500k iterations.

32

B Training and sampling algorithms

Algorithms 1 and 2 describe and training and sampling (resp.) of transition matching for a general
supervision process, kernel parametrization, and kernel modeling. In this section, we provide training
and sampling algorithms tailored to the specific desgin choices of our three variants: (i) DTM is
described in Figure 22, (ii) ARTM is described in Figure 23, and (iii) FHTM is described in Figure 24.
Additionally, we provide Python code of a training step for each variant: (i) DTM in Figure 25, (ii)
ARTM in Figure 26, and (iii) FHTM in Figure 27.

33

Algorithm 3 DTM Training

Require: pT ▷ Data
Require: T ▷ Number of TM steps

1: while not converged do
2: Sample XT ∼ pT
3: Sample t ∼ U([T−1])

4: Sample X0 ∼ N(0, Id)
5: Xt ←

(
1− t

T

)
X0 +

t
T XT

6: Y ← XT −X0

7: ht ← fθ
t (Xt)

8: parallel for i = 1, ..., n do
9: Sample Y i

0 ∼ N(0, Id/n)
10: Sample s ∼ U([0, 1])
11: Y i

s ← (1− s)Y i
0 + sY i

12: Li(θ)←
∥∥gθs,t(Y i

s , h
i
t)−

(
Y i − Y i

0

)∥∥2
13: end for
14: L(θ)← 1

n

∑
i Li(θ)

15: θ ← θ−γ∇θL ▷ Optimization step
16: end while
17: return θ

Sample (Xt, Y) ∼ qt,Y |T (·|XT)

L(θ) ← D̂(Y, pθY |t(·|Xt))

Algorithm 4 DTM Sampling

Require: θ ▷ Trained model
Require: T ▷ Number of TM steps

1: Sample X0 ∼ N (0, Id)
2: for t = 0 to T − 1 do

3: ht ← fθ (Xt, t)
4: parallel for i = 1, ..., n do
5: Sample Y i

0 ∼ N(0, Id/n)

6: Y i ← ode_solve
(
Y i
0 , g

θ
·,t
(
·, hi

t

))
7: end for

8: Xt+1 ← Xt +
1
T Y

9: end for
10: return XT

Sample Y ∼ pθY |t(·|Xt)

Sample Xt+1 ∼ qt+1|t,Y (·|Xt, Y)

Figure 22: n is the effective sequence length after patchify layer. The parallel for operations run
simultaneously across the "sequence length" dimension of the tensor; ode_solve is any generic
ODE solver for solving equation 8.

34

Algorithm 5 ARTM Training

Require: pT ▷ Data
Require: T ▷ Number of TM steps

1: while not converged do
2: Sample XT ∼ pT
3: Sample t ∼ U([T−1])

4: Sample X0,t ∼ N(0, Id)
5: Xt ←

(
1− t

T

)
X0,t +

t
T XT

6: Sample X0,t+1 ∼ N(0, Id)
7: Xt+1 ←

(
1− t+1

T

)
X0,t+1 +

t+1
T XT

8: parallel for i = 1, ..., n do
9: hi

t+1 ← fθ
t

(
Xt, X

<i
t+1

)
10: Sample Y i

0 ∼ N(0, Id/n)
11: Sample s ∼ U([0, 1])
12: Y i

s ← (1− s)Y i
0 + sXi

t+1

13: Li(θ)←
∥∥gθs,t(Y i

s , h
i
t+1)−

(
Xi

t+1 − Y i
0

)∥∥2
14: end for
15: L(θ)← 1

n

∑
i Li(θ)

16: θ ← θ−γ∇θL ▷ Optimization step
17: end while
18: return θ

Sample (Xt, Y) ∼ qt,Y |T (·|XT)

L(θ) ← D̂(Y, pθY |t(·|Xt))

Algorithm 6 ARTM Sampling

Require: θ ▷ Trained model
Require: T ▷ Number of TM steps

1: Sample X0 ∼ N (0, Id)
2: for t = 0 to T − 1 do
3: for i = 1, ..., n do
4: hi

t+1 ← fθ
t

(
Xt, X

<i
t+1

)
5: Sample Y i

0 ∼ N(0, Id/n)

6: Xi
t+1 ← ode_solve

(
Y i
0 , g

θ
·,t
(
·, hi

t+1

))
7: end for
8: end for
9: return XT

Sample Xt+1 ∼ pθt+1|t(·|Xt)

Figure 23: n is the effective sequence length after patchify layer. The parallel for operations run
simultaneously across the "sequence length" dimension of the tensor; ode_solve is any generic
ODE solver for solving equation 8.

35

Algorithm 7 FHTM Training

Require: pT ▷ Data
Require: T ▷ Number of TM steps

1: while not converged do
2: Sample XT ∼ pT

3: parallel for t = 0, ..., T do
4: Sample X0,t ∼ N(0, Id)
5: Xt ←

(
1− t

T

)
X0,t +

t
T XT

6: end for

7: parallel for t = 0, ..., T − 1, i = 1, ..., n do
8: hi

t+1 ← fθ
t

(
X0, ..., Xt, X

<i
t+1

)
9: Sample Y i

0 ∼ N(0, Id/n)
10: Sample s ∼ U([0, 1])
11: Y i

s ← (1− s)Y i
0 + sXi

t+1

12: Li
t(θ)←

∥∥gθs(Y i
s , h

i
t+1)−

(
Xi

t+1 − Y i
0

)∥∥2
13: end for
14: L(θ)← 1

nT

∑
i,t Li

t(θ)

15: θ ← θ−γ∇θL ▷ Optimization step
16: end while
17: return θ

Sample (Xt, Y) ∼ qt,Y |T (·|XT)

L(θ) ← D̂(Y, pθY |t(·|Xt))

Algorithm 8 FHTM Sampling

Require: θ ▷ Trained model
Require: T ▷ Number of TM steps

1: Sample X0 ∼ N (0, Id)
2: for t = 0 to T − 1 do
3: for i = 1, ..., n do
4: hi

t+1 ← fθ
t

(
X0, ..., Xt, X

<i
t+1

)
5: Sample Y i

0 ∼ N(0, Id/n)

6: Xi
t+1 ← ode_solve

(
Y i
0 , g

θ
·
(
·, hi

t+1

))
7: end for
8: end for
9: return XT

Sample Xt+1 ∼ pθt+1|t(·|Xt)

Figure 24: n is the effective sequence length after patchify layer. The parallel for operations run
simultaneously across the "sequence length" dimension of the tensor; ode_solve is any generic
ODE solver for solving equation 8.

36

1 import torch
2 from torch import nn, Tensor
3 from einops import rearrange
4

5 def dtm_train_step(
6 backbone:nn.Module, # Denoted as `f^\theta`
7 head:nn.Module, # Denoted as `g^\theta`
8 X_T:Tensor, # Image from training set `X_T~p_T`
9 T:int # Number of TM steps

10 patch_size:int # Patch size
11) -> Tensor:
12 # Convert image to sequence using patchify
13 X_T = rearrange(
14 X_T,
15 "b c (h dh) (w dw) -> b (h w) (dh dw c)",
16 dh=patch_size,
17 dw=patch_size,
18)
19 bsz, seq_len = X_T.shape[:2]
20

21 # Sample time step `t~U[T-1]`
22 t = torch.randint(0, T, (bsz,))
23

24 # Sample a pair `(X_t,Y)~q_{t,Y|T}(.|X_T)``
25 X_0 = torch.randn_like(X_T)
26 X_t = (1-t/T).view(-1,1,1) * X_0 + (t/T).view(-1,1,1) * X_T
27 Y = X_T - X_0
28

29 # Backbone forward
30 h_t = backbone(X_t, t)
31

32 # Reshape sequence for head
33 h_t = h_t.view(bsz*seq_len, -1)
34 Y = Y.view(bsz*seq_len, -1)
35 t = t.repeat_interleave(seq_len)
36

37 # Flow matching loss with the head as velocity and Y as target
38 Y_0 = torch.randn_like(Y)
39 s = torch.rand(bsz*seq_len)
40 Y_s = (1-s).view(-1,1) * Y_0 + s.view(-1,1) * Y
41

42 # Head forward
43 u = head(h_t, t, Y_s, s)
44 loss = torch.nn.functional.mse_loss(u, Y - Y_0)
45

46 return loss

Figure 25: Python code for DTM training

37

1 import torch
2 from torch import nn, Tensor
3

4 def artm_train_step(
5 backbone:nn.Module, # Denoted as `f^\theta`
6 head:nn.Module, # Denoted as `g^\theta`
7 X_T:Tensor, # Image from training set `X_T~p_T`
8 T:int # Number of TM steps
9 patch_size:int # Patch size

10) -> Tensor:
11 # Convert image to sequence using patchify
12 X_T = rearrange(
13 X_T,
14 "b c (h dh) (w dw) -> b (h w) (dh dw c)",
15 dh=patch_size,
16 dw=patch_size,
17)
18 bsz, seq_len = X_T.shape[:2]
19

20 # Sample time step `t~U[T-1]`
21 t = torch.randint(0, T, (bsz,))
22

23 # Sample a pair `(X_t,Y)~q_{t,Y|T}(.|X_T)``
24 X_0_t = torch.randn_like(X_T)
25 X_t = (1-t/T).view(-1,1,1) * X_0_t + (t/T).view(-1,1,1) * X_T
26 X_0_tp1 = torch.randn_like(X_T)
27 Y = (1-(t+1)/T).view(-1,1,1) * X_0_tp1 + ((t+1)/T).view(-1,1,1) * X_T
28

29 # Backbone forward
30 output = backbone(torch.cat([X_t, Y], dim=1), t)
31 h_tp1 = output[:, seq_len-1:-1]
32

33 # Reshape sequence for head
34 h_tp1 = h_tp1.view(bsz*seq_len, -1)
35 Y = Y.view(bsz*seq_len, -1)
36 t = t.repeat_interleave(seq_len)
37

38 # Flow matching loss with the head as velocity and Y as target
39 Y_0 = torch.randn_like(Y)
40 s = torch.rand(bsz*n_tokens)
41 Y_s = (1-s).view(-1,1) * Y_0 + s.view(-1,1) * Y
42

43 # Head forward
44 u = head(h_tp1, t, Y_s, s)
45 loss = torch.nn.functional.mse_loss(u, Y - Y_0)
46

47 return loss

Figure 26: Python code for ARTM training

38

1 import torch
2 from torch import nn, Tensor
3

4 def fhtm_train_step(
5 backbone:nn.Module, # Denoted as `f^\theta`
6 head:nn.Module, # Denoted as `g^\theta`
7 X_T:Tensor, # Image from training set `X_T~p_T`
8 T:int # Number of TM steps
9 patch_size:int # Patch size

10) -> Tensor:
11 # Convert image to sequence using patchify
12 X_T = rearrange(
13 X_T,
14 "b c (h dh) (w dw) -> b (h w) (dh dw c)",
15 dh=patch_size,
16 dw=patch_size,
17)
18

19 bsz, seq_len, d = X_T.shape
20

21 # Sample a pair `(X_t,Y)~q_{t,Y|T}(.|X_T)``
22 boi = torch.zeros(bsz,1,d) # begin of image token
23 X_FH = [boi]
24 for t in range(1,T+1):
25 X_0_t = torch.randn_like(X_T)
26 X_FH.append(
27 (1-t/T) * X_0_t + t/T * X_T
28)
29 X_FH = torch.cat(X_FH, dim=1)
30 X_t = X_FH[:, :-1]
31 Y = X_FH[:, 1:]
32

33 # forward for teacher forcing
34 h_tp1 = backbone(X_t)
35

36 # Reshape sequence for head
37 h_tp1 = h_tp1.view(bsz*seq_len*T, -1)
38 Y = Y.view(bsz*seq_len*T, -1)
39

40 # Flow matching loss with the head as velocity and Y as target
41 Y_0 = torch.randn_like(Y)
42 s = torch.rand(bsz*seq_len*T)
43 Y_s = (1-s).view(-1,1) * Y_0 + s.view(-1,1) * Y
44

45 # Head forward
46 u = head(h_tp1, Y_s, s)
47 loss = torch.nn.functional.mse_loss(u, Y - Y_0)
48

49 return loss

Figure 27: Python code for FHTM training

39

C Convergence of DTM to flow matching

Here we want to prove the following fact: Assume we have a sequence of Markov chains
{X0, Xh, X2h, . . . , X1}, with an initial state X0 = x, where h = 1

T and T → ∞. For conve-
nience note that we index the Markov states with fractions ℓh, ℓ ∈ [T], and we denote the RV

Yt =
Xt+h −Xt

h
. (19)

Assume the Markov chains satisfy:

1. The function ft(x) = E [Yt|Xt = x] is Lipshcitz continuous. By Lipschitz we mean that
∥fs(y)− ft(x)∥ ≤ cL (|s− t|+ ∥x− y∥).

2. For ℓ ∈ [k] the quadratic variation satisfies, E
[
∥Yℓh∥2 |X0 = x

]
≤ c(x).

Let k = k(h) ∈ N be an integer-valued function of h such that k →∞ and 1
2 ≥ kh→ 0 as h→ 0.

We will prove that the random variable
Xkh −X0

kh
(20)

converges in mean to f0(x). That is, we want to show

Theorem 2. Considering a sequence of Markov processes {X0, Xh, X2h, . . . , X1} satisfying the
assumptions above, then

lim
h→0

E

[∥∥∥∥Xkh −X0

kh
− f0(X0)

∥∥∥∥2
∣∣∣∣∣ X0 = x

]
= 0. (21)

Proof. First,

E

[∥∥∥∥Xkh −X0

kh
− f0(X0)

∥∥∥∥2
∣∣∣∣∣ X0 = x

]
= E

∥∥∥∥∥1k
k−1∑
ℓ=0

Yℓh − f0(X0)

∥∥∥∥∥
2 ∣∣∣∣∣ X0 = x

 (22)

and if we open the squared norm we get three terms:

E
[
∥f0(X0)∥2

∣∣∣X0 = x
]
= ∥f0(x)∥2 . (23)

E

[
1

k

k−1∑
ℓ=0

Yℓh · f0(X0)

∣∣∣∣∣ X0 = x

]
= f0(x) ·

1

k

k−1∑
ℓ=0

E

[
Yℓh

∣∣∣∣∣ X0 = x

]
(24)

E

[
1

k2

k−1∑
ℓ=0

k−1∑
m=0

Yℓh · Ymh

∣∣∣∣∣ X0 = x

]
=

1

k2

k−1∑
ℓ=0

E
[
∥Yℓh∥2 |X0 = x

]
+

2

k2

k−1∑
ℓ=0

ℓ−1∑
m=0

E

[
Yℓh · Ymh

∣∣∣∣∣ X0 = x

]

We will later show that E [Yℓh|X0 = x] = f0(x) + O(kh) and for ℓ ̸= m we have
E [Yℓh · Ymh|X0 = x] = ∥f0(x)∥2 +O(kh). Plugging these we get that equation 22 equals

∥f0(x)∥2 − 2 ∥f0(x)∥2 +
k2 − k

k2
∥f0(x)∥2 +O(kh+ k−1)→ 0, (25)

40

as h → 0, where we used assumption 2 above to bound E
[
∥Yℓh∥2 |X0 = x

]
≤ c(x). Now to

conclude we show

∥E [Yℓh|X0 = x]− f0(x)∥ = ∥E [E [Yℓh|Xℓh] |X0 = x]− f0(x)∥ (26)
= ∥E [fℓh(Xℓh)|X0 = x]− f0(x)∥ (27)
= ∥E [fℓh(Xℓh)− f0(X0)|X0 = x]∥ (28)
= E [∥fℓh(Xℓh)− f0(X0)∥ |X0 = x] (29)
≤ cLE [ℓh+ ∥Xℓh −X0∥ |X0 = x] (30)

≤ cLE

[
ℓh+

ℓ−1∑
m=0

∥∥X(m+1)h −Xmh

∥∥ ∣∣∣∣X0 = x

]
(31)

≤ O(kh) + cLh

ℓ−1∑
m=0

E

[
∥Ymh∥

∣∣∣∣X0 = x

]
(32)

≤ O(kh) + cLhk
√
c(x) (33)

= O(hk). (34)

Now for m < ℓ we have

|E [Yℓh · Ymh | X0 = x]− f0(x) · E [Ymh|X0 = x]| (35)
= |E [Ymh · (Yℓh − f0(X0)) | X0 = x]| (36)
= |E [Ymh · E [Yℓh − f0(X0)|Xℓh] | X0 = x]| (37)
= |E [Ymh · (fℓh(Xℓh)− f0(X0)) | X0 = x]| (38)
≤ E [|Ymh · (fℓh(Xℓh)− f0(X0))| | X0 = x] (39)
≤ E [∥Ymh∥ ∥fℓh(Xℓh)− f0(X0)∥ | X0 = x] (40)

≤ E

∥Ymh∥ cl(kh+

ℓ−1∑
j=0

∥∥X(j+1)h −Xjh

∥∥ | X0 = x

 (41)

≤ E

∥Ymh∥ cl(kh+ h

ℓ−1∑
j=0

∥Yjh∥) | X0 = x

 (42)

≤ O(kh) + cLhE

ℓ−1∑
j=0

∥Ymh∥ ∥Yjh∥ | X0 = x

 (43)

≤ O(kh) +
cLh

2
E

ℓ−1∑
j=0

∥Ymh∥2 + ∥Yjh∥2 | X0 = x

 (44)

= O(kh). (45)

Therefore,

|E [Yℓh · Ymh | X0 = x]− f0(x) · f0(x)| (46)
≤ |E [Yℓh · Ymh | X0 = x]− f0(x) · E [Ymh|X0 = x]| (47)
+ |f0(x) · E [Ymh|X0 = x]− f0(x) · f0(x)| (48)
≤ O(kh), (49)

where we used equation 34 and equation 45, and the proof is done since kh→ 0 as h→ 0.

41

C.1 The DTM case

We note show that the DTM process satisfies the two assumptions above. We recall that the DTM
process is defined by Yt ∼ qY |t(·|Xt) where Y = X1 −X0.

First we check the Lipchitz property.

ft(x) = E [Yt|Xt = x] (50)
= E [X1 −X0|Xt = x] (51)
= ut(x) (52)

=

∫
x1 − x

1− t
p1|t(x1|x)dx1 (53)

=

∫
x1 − x

1− t

pt|1(x|x1)p1(x1)∫
pt|1(x|x′

1)p1(x
′
1)dx

′
1

dx1 (54)

which is Lipschitz for t < 1 as long as pt|1(x|x1) > 0 for all x, and is continuously differentiable in
t and x, both hold for the Gaussian kernel pt|1(x|x1) = N (x|tx1, (1− t)I).

Let us check the second property. For this end we make the realistic assumption that our data is
bounded, i.e., ∥X1∥ ≤ r for some constant r > 0. Then, consider some RV X ′

1 − X ′
0 = Yt ∼

pY |t(·|Xt). Then by definition we have that Xt+h = Xt + h(X ′
1 −X ′

0) and Xt = (1− t)X ′
0 + tX ′

1.
Therefore,

∥Xt+h∥ = ∥Xt + h(X ′
1 −X ′

0)∥ (55)

=

∥∥∥∥ (1− t− h)Xt + h(1 + t)X ′
1

(1− t)

∥∥∥∥ (56)

≤ (1− (t+ h))

(1− t)
∥Xt∥+ h

1 + t

1− t
r. (57)

We apply this to t+ h = ℓh where ℓ ∈ [k] and therefore

∥Xℓh∥ ≤
∥∥X(ℓ−1)h

∥∥+ h
1 + kh

1− kh
r (58)

≤ ∥X0∥+ kh
1 + kh

1− kh
r (59)

≤ ∥x∥+ 3r

2
= c̃(x) (60)

where we used kh ≤ 1
2 . Finally,

E
[
∥Yt∥2 |X0 = x

]
= E

[
E
[
∥Yt∥2 |Xt

]
|X0 = x

]
(61)

= E
[
E
[
∥X ′

1 −X ′
0∥

2 |Xt

]
|X0 = x

]
(62)

≤ E

[
E

[∥∥∥∥X ′
1 −

Xt − tX ′
1

(1− t)

∥∥∥∥2 |Xt

]
|X0 = x

]
(63)

≤ E

[
E

[∥∥∥∥Xt − (1 + t)X ′
1

(1− t)

∥∥∥∥2 |Xt

]
|X0 = x

]
(64)

≤ 2E

[
1

(1− t)2
∥Xt∥2 +

(1 + t)2

(1− t)2
r2|X0 = x

]
, (65)

where we used again Xt = (1− t)X ′
0 + tX ′

1. Lastly, applying this to t = ℓh ≤ kh ≤ 1
2 and using

equation 60 we get

E
[
∥Ykℓ∥2 |X0 = x

]
≤ 2

(1− t)2
c̃(x)2 + 2

(1 + t)2

(1− t)2
r2 = c(x). (66)

42

	Introduction
	Transition Matching
	General framework
	Transition Matching made practical

	Related work
	Experiments
	Main results: Text-to-image generation
	Evaluations

	Conclusions
	Experiments
	Implementation details
	Main results: Text-to-image generation
	Sampling efficiency
	Dependent vs. independent linear process
	DTM Kernel expressiveness
	Scheduler ablation for independent linear process
	Additional generated images comparison
	Generation process visualization
	Classifier free guidance sensitivity

	Training and sampling algorithms
	Convergence of DTM to flow matching
	The DTM case

