Under review as a conference paper at ICLR 2025

GNNAS-DoCK: BUDGET AWARE ALGORITHM SE-

LECTION

WITH GRAPH NEURAL NETWORKS FOR

MOLECULAR DOCKING

Anonymous authors
Paper under double-blind review

ABSTRACT

Molecular docking is a major element in drug discovery and design. It enables
the prediction of ligand-protein interactions by simulating the binding of small
molecules to proteins. Despite the availability of numerous docking algorithms,
there is no single algorithm consistently outperforms the others across a diverse
set of docking scenarios. This paper introduces GNNAS-Dock, a novel Graph
Neural Network (GNN)-based automated algorithm selection system for molecu-
lar docking in blind docking situations. GNNs are accommodated to process the
complex structural data of both ligands and proteins. They benefit from the inher-
ent graph-like properties to predict the performance of various docking algorithms
under different conditions. The present study pursues two main objectives: 1) pre-
dict the performance of each candidate docking algorithm, in terms of Root Mean
Square Deviation (RMSD), thereby identifying the most accurate method for spe-
cific scenarios; and 2) choose the best computationally efficient docking algo-
rithm for each docking case, aiming to reduce the time required for docking while
maintaining high accuracy. We validate our approach on PDBBind 2020 refined
set, which contains about 5,300 pairs of protein-ligand complexes. Our strategy
is performed across a portfolio of 6 different state-of-the-art docking algorithms.
To be specific, the candidate algorithms are DiffDock, DSDP, TankBind, GNINA,
SMINA, Qvina-W. We additionally combine p2rank with GNINA, SMINA and
Qvina-W for docking site prediction. Therefore, there are totally 9 different al-
gorithms for selection. Our algorithm selection model achieves a mean RMSD of
approximately 1.74 A, significantly improving upon the top performing docking
algorithm (DiffDock), which has a mean RMSD of 2.95 A. Moreover, when mak-
ing selection in consideration of computational efficiency, our model demonstrates
a success rate of 79.73% in achieving an RMSD below the 2 A threshold, with a
mean RMSD value of 2.75 A and an average processing time of about 29.05 sec-
onds per instance. In contrast, the remaining docking algorithms like TankBind,
though faster with a processing time of merely 0.03 seconds per instance, only
achieve an RMSD below the 2 A threshold in less than 60% of cases. These find-
ings demonstrate the capability of GNN-based algorithm selection to significantly
enhance docking performance while effectively reducing the computational time
required, balancing efficiency with precision in molecular docking.

1 INTRODUCTION

Molecular docking (Stanzione et al., [2021) is critical for identifying potential drug candidates con-
cerning computer-aided drug discovery (CADD). It has also been widely used for understanding
enzyme-substrate interactions and designing enzyme inhibitors (Rudnitskaya et al.l 2010). Devel-
oped computational strategies simulate the interaction between a small molecule, i.e. ligand, and a
protein, i.e. receptor, at the atomic level to predict the molecule’s orientation and binding affinity
toward the protein. There have been a wide range of molecular docking algorithms and tools. Initial
and traditional ones employ a search algorithm to determine the potential binding poses of ligands,
and a scoring function to evaluate these predictions (Halperin et al.l [2002). The search algorithms
come into play when exploring different poses with the aim finding an acceptable, (near-)optimal

Under review as a conference paper at ICLR 2025

one. Those predetermined search methods and scoring functions have been gradually replaced by
machine learning based techniques, offering higher generalization, flexibility and practicality. In
particular, deep learning has been taking over due it its success on almost any application domains.
Convolutional Neural Networks (CNN) have been frequently utilized due to the visual characteris-
tics of the docking components, such as replacing those traditional scoring functions (McNutt et al.}
2021). As an alternative example to the search-based approaches, SE(3)-equivariant geometric neu-
ral network has been introduced to predict potential binding sites and ligand orientations directly
(Stark et al.} 2022), without any explicit search during prediction.

However, the diversity of available algorithms presents a challenge: no single method consistently
outperforms others across all docking scenarios. This is aligned with the no free lunch theorem
(NFLT) (Wolpert & Macready, |1997), which states that no single algorithm can universally excel
across all problem instances. This aspect is also valid for docking algorithms, meaning that there
is no ultimately best docking algorithm outperforming other under the same or experimental con-
ditions. Thus, specifying the best docking algorithm for a docking scenario can offer significant
performance gains over utilizing only one algorithm for addressing all the docking tasks at hand.
Algorithm Selection (AS) (Kerschke et al., 2019) is an automated strategy to automatically accom-
modate one or more algorithms to solve a particular problem instance instead of relying on a single
one or choosing an algorithm based on personal experience.

Targeting molecular docking, the present article proposes a Graph Neural Networks (GNNs)-based
AS system, GNNAS-Dock, that utilizes structural features of ligands and proteins to predict which
docking algorithm will perform optimally under varying docking conditions. GNNs are particularly
well-suited for this task as they operate on graph data (Zhou et al.| |2020), which naturally corre-
sponds to the structural representation of molecules and proteins. Graph data consists of multiple
nodes and edges connecting them, similar to the molecular structures composed of various atoms
and the bonds between them. This structual similarity might be helpful for GNN to capture the
3D features of ligands and proteins, and predict the performance of docking algorithms on different
docking tasks accurately based on these learned features. In this research, we aim to develop two
distinct GNN-based algorithm selection models, each serving a specific purpose. The first model
is designed to select the most accurate docking method for various scenarios. It will predict the
performance of different docking methods in terms of ligand root mean square error (RMSD), and
choose the one with the best predicted performance. The second model focuses on optimizing the
efficiency of the docking process. It aims to reduce the time required to achieve accurate docking
results by evaluating both the speed and effectiveness of various algorithms. This model will set a
threshold of RMSD, typically 2 A, to determine if a docking result is considered effective. It will
then predict whether each algorithm can meet this threshold and how long it will take, allowing the
selection of the most time-efficient algorithm without sacrificing accuracy. Together, these mod-
els provide a comprehensive approach to improving both the accuracy and efficiency of molecular
docking, addressing the current challenges faced in the field.

Our contributions can be summarized as follows.

1. There is limited research on AS for molecular docking. Our proposed system, GNNAS-Dock,
is the first GNN-based AS approach considering both proteins and ligands, with distinct graph
representations.

2. Among the two suggested GNNAS-Dock variants, the accuracy model achieves an average
RMSD value of 1.74 A, outperforming all the tested docking methods, including DiffDock as
the best standalone algorithm with RMSD of 2.95 Alt also achieves a success rate of 81.8%
for docking RMSD values below the 2 A threshold and 92% below 5 A threshold, which also
demonstrate its docking accuracy. For the efficiency model, it achieves an average RMSD value
of 2.75 A, with about 79.73% of RMSD values below 2A threshold and average processing time
of 29.05 seconds per instance. The performance of efficiency model beats all the other docking
algorithms in average ligand RMSD and percentage of results below 5 A threshold. Though
DiffDock is better in terms of median RMSD and percentage of results below 2 A the efficiency
model takes much less time to run compared with DiffDock which takes an average time of 37.31
seconds to complete each docking tasks. Nevertheless, it is possible to outperform all those dock-
ing methods when an AS model is built specifically targeting any of those performance criteria.

For the reminder of the paper, a discussion on molecular docking and algorithm selection is delivered
through existing, relevant research in the Section [2| Then, the proposed system, GNNAS-Dock,

Under review as a conference paper at ICLR 2025

is introduced in Section [3] Section @] reports the computational results and analysis following a
particular experimental setup. Finally, a summary of the major findings and future research plans to
refine the work are provided in Section [5]

2 BACKGROUND

2.1 MOLECULAR DOCKING METHODS.

Molecular docking can be investigated under different categories, such as blind docking, redocking,
and crossdocking. Blind docking refers to the situation that the binding site of the protein is un-
known, requiring the docking algorithm to explore potential binding sites across the entire surface
of the protein (Hassan et al) [2017). For blind docking, various docking methods exists for pre-
dicting the binding sites and potential binding poses of ligands. All the methods follow a similar
algorithmic template. It is predicting potential binding poses and then refining these predictions
based on some evaluative criteria. The search techniques and performance metrics differ though. In
that sense, traditional docking algorithms typically rely on search methods and scoring functions to
explore the possible binding configurations of a ligand in the protein and refine them iteratively. For
instance, AutoDock Vina (Trott & Olson, |2010), a well-known docking method utilizes a stochastic
search methods combined with a empirical and knowledge-based scoring function to predict ligand
configurations. It has some variants such as SMINA (Koes et al., [2013) and QuickVina-W (Qvina-
W) (Hassan et al, 2017). SMINA extends the AutoDock Vina by adjusting the scoring function
and making it customizable. Besides, QuickVina-W enhances the original algorithm by optimizing
the search algorithm for faster performance. These methods are mature and have been validated in
many docking tasks, which make them still useful in many situations.

Recent advancements have incorporated Deep Learning (DL) into both searching and scoring steps
to enhance docking quality for blind docking. GNINA (McNutt et al.| 2021) employs Convolu-
tional Neural Networks (CNNs) to score potential poses, speeding up the evaluation process while
maintaining high accuracy. DSDP (Huang et al.| [2023) leverages 3D CNNs to predict docking sites,
then uses search and scoring functions similar to those in AutoDock Vina for the docking process.
Additionally, TankBind (Lu et al., 2022) utilizes geometric deep learning to directly predict poten-
tial binding poses of ligands. Similarly, DiffDock (Corso et al.l [2023)) employs a generative model
to dynamically simulate and rank possible binding configurations. These deep learning combined
docking methods are more efficient then traditional algorithms, but traditional methods still reach
higher accuracy in some situations, especially when combined with some docking site prediction
tool such as p2rank (Krivak & Hokszal [2018)).

2.2 ALGORITHM SELECTION.

Algorithm Selection (AS) has been commonly devised as performance prediction models, mapping
a set of hand-picked features representing the target problem instance to the performance of the
algorithms at hand, ® : X € R? — P4 € R™. Following those traditional machine learning
based AS models, deep learning has also been used, mostly to eliminate the need of those explicit
problem instance features. As an initial attempt, a Convolutional Neural Network (CNN) has been
utilized to build an AS model for solving the Boolean Satisfiability (SAT) problem Loreggia et al.
(2016).The problem instances are transformed into images by representing each character, simply
appearing in the instance files, by ASCII values representing the scales of grey. The images are
given to a CNN architecture to choose an algorithm for solving each instance. In|Kostovska et al.
(2023)), transformer architecture was used for selection algorithms targeting well-known black-box
optimization (BBOB) problems. In drug discovery, some meta-learning models (Olier et al.| 2018;
Schlender et al.| [2023)) are used for AS on quantitative structure activity relationships (QSAR).
For AS targeting docking, in the very first study (Chen et al.l [2023)), ALORS (Misir & Sebag,
2017), an algorithm recommendation system based on collaborative filtering, was accommodated to
determine the optimal search box size in AutoDock 4.2 for docking tasks involving 1428 ligands
on the Human Angiotensin-Converting Enzyme (ACE). The results show that ALORS outperforms
all the individual algorithm setups. Following that, we earlier designed more of a traditional AS
model to select the optimal docking algorithm among 6 different options for blind docking tasks
with protein-ligand complexes from the PDBBind dataset (Liu et al., [2017)), which contain more

Under review as a conference paper at ICLR 2025

than 19,000 pairs for blind docking. That work as a proof of concept demonstrated the effectiveness
of AS in blind docking.

3 METHOD: GNNAS-DOCK

The present study introduces a Graph Neural Networks (GNN) based Algorithm Selection (AS)
system for Molecular Docking (GNNAS-Dock). The goal is to automatically identify the right
docking algorithm from a candidate set for a given protein-ligand pair to deliver high quality and
robust blind docking. The process starts with the construction of distinct graphs representing ligands,
Gr, = (Vi, EL), and proteins, Gp = (Vp, Ep), due to the significant differences in their sizes and
structural complexities. Here, V and E denote vertices and edges, respectively.

Then, a predictive model leveraging stacking learning (Mohammed & Kora, [2023)) for AS is built.
In the context of our research, stacking learning involves using the output features from the first-
level GNNs as inputs to a second-level meta-model for prediction. Firstly, two GNNs are built to
process protein and ligand graphs separately to extract features learned from their structures. Given
the distinct structural complexities of proteins and ligands, it is crucial to design specific GNN
architectures for each type of graph. These architectures are specialized to efficiently process and
learn from the distinct topological and chemical properties in each graph type. After extracting
learned features from the individual GNNs for both proteins and ligands, the next step involves
integrating these features through direct concatenation. The concatenated features serve as input
to a series of dense layers which construct the second-level meta-model in the stacking learning
model. This meta-model makes final predictions for assessing the performance of each docking
algorithms, predicting not only the most accurate algorithm in terms of RMSD but also estimating
the computational efficiency for each algorithm.

In the final configuration of GNNAS-Dock, two distinct AS models are built referring to different
criteria. The first model prioritizes accuracy, which recommends the docking algorithm achieving
the lowest docking quality, which is RMSD. The overall working structure of the accuracy ori-
ented GNNAS-Dock is illustrated in Figure[I] The second model focuses more on efficiency, which
chooses the algorithm that completes the docking process fastest while achieving an acceptable bind-
ing result for a given docking scenario. This dual-model approach allows users to select the optimal
algorithm based on the specific requirements of their molecular docking tasks.

Protein | Extract
—_—
GNN
t Learned
Algorithm Feature .
Performance —. — A
Py = (Pay,) Pan) X = (X, X,)
4
Ligand Extract Meta Model
—_—
GNN

Feature
concatenation

Ligand Ligand graph

Figure 1: How accuracy oriented GNNAS-Dock operates for choosing an (near-)optimal docking
algorithm for a sample protein of PDB:1a0q along with a particular ligand.

3.1 LIGAND GRAPH

The process of representing ligands in graphs begins by transforming the SMILES format of
molecules into 3-dimensional molecular structures using the RDKit package in Python. Follow-
ing this transformation, the graph representation of molecule ligand is defined as G, = (V,, EL).
In this graph, atoms are treated as nodes v; € Vz, and chemical bonds as edges e;; € E7, between
node v; and v;.

Under review as a conference paper at ICLR 2025

Each node v; is associated with a set of features, which are represented in a feature matrix X &
R™*P ie. n denotes the number of nodes and D represents the number of features for each node.
In ligand molecules, several atomic attributes are used to represent the node features for z; € X,
including: the 3D coordinates of atom ¢; = (Z¢;, Yei, 2ci), @ one-hot encoded vector t_; for atom
type, and some chemical and physical properties of ligands such as molecular weight and total
valence. We represent these properties in a vector P From the perspective of the atomic structure of
molecules, the atom types in a molecule can be one of the following {‘C’, ‘H’, ‘O’, ‘N’, ‘F’, ‘P’, ‘S’,
‘Cl’, ‘Br’, ‘I’, ‘B’}. These features represent the feature vector x; = [Tes, Yeis Zeis onehot(t;), 15;]
for each node v; and form rows in the feature matrix X € R™*?°, Edge features are used as edge
weights in the GNNs. For edge features in our graph representation, the bond type is used since
it represents how atoms are connected. Specifically, we categorize bond types into four distinct
classes: single, double, triple, and aromatic. Besides these basic settings for nodes and edges, an
adjacency matrix A € R"*" is maintained. A;; = 1 if node v; is connected with v; or 0 otherwise.
Since the graphs are undirected, A is symmetric, i.e., A;; = Aj;.

After setting the overall graph for the ligand molecules, we need to design specific GNN architecture
to learn the graph and output new features we want to represent the ligand. Due to the simplicity of
the overall structure of ligand, simpler network could be used. Here, we mainly use three distinct
GNN architectures to learn the overall features of ligands, including Graph Convolutional Network
(GCN) (Kipf & Wellingl [2017)), Graph Attention Network (GAT) (Velickovi¢ et al., [2018), Graph
Isomorphism Network (GINE) (Hu et al., [2020). The GCN aggregates neighbor information to up-

date node features iteratively. The updating rule is: X(*+1) = & (D_% AD 2 X (Z)W(”) in which

D denotes the diagnoal degree matrix of A, A = A+ 1, and WW denotes the weight matrix at
layer I. This formula shows how the feature matrix X () at layer [is transformed to X ‘1) in the
next layer. For the choice of activation function o, we decide to use ReLU. D 2AD™ 2 repre-
sents a symmetric normalization for adjacency matrix, which ensure the balance between influences
of both highly connected and less connected nodes in the molecular graph. The GAT combine
the graph neural network with attention mechanism and it updates the graph feature for each node

v; with the formula x(lﬂ = Hk 1z (lH R (Zje/\/(')u{'} agk)W(’“) <l)) in which K rep-

resents the number of multi-head-attentions or heads, a() denotes the attention coefficients that
determine the weights of node v;’s feature x; when upd]atmg the feature z; for node v; in head
k € K. Each attention head k focus on different relationships between nodes in the graph, and
update the features according to it. The learned features will be concatenated, so the transformation
will convert the input feature matrix from R™*2® to R™*(5*™) where m is the output dimension
in the last layer for each node. By connecting the attention mechanism, the GAT could learn dif-
ferent features from ligand structures. Finally, for the GINE, it updates the feature matrix with:

xElH) = MLp® ((1 +e€)-w (l + 2 en) ReLU(e;; @ 4 a:(l))), in which e;; is the edge feature or
weight. The transformation is Comblned with a multllayer perceptron with a single hidden layer, i.e.,
MLP") = Sequential(Linear(), ReLU(), Linear()). The MLP provides an advantage over simpler
transformation functions due to its layered structure, which allows for a more complex and refined
processing of molecular features. The final output of the ligand GNN is a learned feature matrix
X; € R"** where k is the number of algorithms for selection.

3.2 PROTEIN GRAPH

In this section, we will explore how proteins are converted into graphs and processed by GNNs.
Initially, proteins are imported in 3D molecular structures from the Protein Data Bank (PDB) for-
mat, utilizing the PyMOL Python package, Once the protein structures are loaded, we proceed to
construct the graph representation Gp = (Vp, Ep) for proteins.

Compared with small-molecule ligands, proteins consist of a significantly larger number of atoms
and bonds. Representing them at the atomic level as ligand graphs poses computational challenges
for the overall model. To reduce the computational complexity of processing protein graphs, we
simplify the graph representation by using amino acids, clusters of atoms with distinct functions, to
represent each node v; € Vp. The edges e;; in the graph are represented by peptide bonds, which
connect amino acids v; and v; in the protein’s structure.

Under review as a conference paper at ICLR 2025

For the feature matrix of nodes X, the feature fog each node z; consists of the coordinates of centers
¢ = (Zei, Yeis 2ei), @ one-hot encoded vector At; identifying the amino acid from the 20 standard
amino acids available in proteins, the molecular weight of the amino acid w;, binary factors H A;
and H D; to decide whether the amino acid is a hydrogen acceptor or donor, and the meiler embed-
dings m7; including 7 distinct physicochemical features (Meiler et al.,[2001) for amino acids. These
features collectively form the feature vector x; = [Zci, Yei, Zei, onehot(A_i‘i)7 w;, HA;, HD;, mi;] €
RR3? for each node v;. For the edges, we simply use the length of peptide bonds connecting nodes
to represent edge features. In addition, for the adjacency matrix A in protein, we define 4;; = 1 if
peptide exists between node v; and v; or O otherwise. Similarly, the protein graph is undirected, so
A is symmetric, i.e., A;; = Aj;.

The GNN architecture we applied to process the protein graph derived from the graphLambda
(Mgawass & Popovl, 2024), which used a combination of GCN, GAT and GINE to learn the protein
graph features. As mentioned in ligand graph, different GNN layers have distinct advantages when
dealing with graph data. For proteins, it is important to understand both the overall structure at the
amino acid level and the detailed structure within each amino acid. Therefore, a sophisticated GNN
architecture is essential for a comprehensive analysis for protein graphs. Therefore, different combi-
nation of GNNs should be experimented to determine an effective GNN architecture for processing
protein graph data. Similar to the final output from protein graph, the output from ligand graph is
represented as X, € R"* * where k is the number of algorithms.

3.3 ACCURACY MODEL

The accuracy model within the GNNAS-Dock system integrates Graph Neural Networks (GNNs)
for both proteins and ligands into a combined training framework to predict the most accurate dock-
ing algorithm for each docking instance in terms of RMSD. The architecture includes a Protein GNN
and a Ligand GNN, which simultaneously process graph representations of protein Gp and ligand
G, respectively. The specific structures of these GNNs have been discussed in the previous sections.
They will extract some important features from the graphs automatically to represent the 3D struc-
tures of protein and ligands without defining manually. Then, a stacking ensemble learning model is
strategically designed to integrate the learned results from both the Protein GNN and Ligand GNN.
This model consolidates the distinct features extracted from each GNN into a unified feature set,
denoted as X combined = (Xprotein, X ligand)~ These combined features are then employed to train
a meta-model M to predict the performance of various docking algorithms based on the integrated
data from both the protein and ligand models. The overall learning process is conducted end-to-end,
ensuring that no manual intervention is required for tasks such as feature extraction, weight assign-
ment, or other parameter adjustments. For the meta-model, a comparatively simple architecture is
adopted, consisting of only one linear hidden layer. The input layer in the meta-model is responsible
for receiving the combined feature set that concatenates the outputs of the Protein GNN and Ligand
GNN, which have a dimension of 2 x k for k representing the feature dimension of extracted from
protein and ligand models. This linear transformation of the hidden layer expands the feature di-
mensions to 4 X k by h(z) = Wiz +by, in which W, € R4**)X(2XF) represents the weight matrix,
and b; € R**¥ is a bias vector. Then, the output layer will use the expanded features to predict the
final results by output = Wyh(z) 4 by. The final results output € R* show the predicted perfor-
mance of each algorithm. Based on the output, we could rank the performance of each algorithm,
and return the best one for solving the docking problem. The specific process of Accuracy Model in
GNNAS-Dock could be reviewed in Algorithm

Algorithm 1 GNNAS-Dock Accuracy Model Generation and Prediction

Input: Protein and Ligand graphs for training G, Gp; performance of different docking algo-
rithms in terms of a particular metric, ¥ € R™*¥; a single Protein and Ligand pair for docking,
GlL,owsGP,...; 1 is the total number docking tasks; k represents the number of docking algorithms
for selection.

1. &y :{G.,Gp} — Y /I performance prediction model

2: Yest = (YA17 ce 7YAk) <~ (PY(gLnew7anew)
3: A" =argming, Yeq

Under review as a conference paper at ICLR 2025

3.4 EFFICIENCY MODEL

In the accuracy model, only the performance of each docking algorithm is considered. However, it
is possible that some accurate models may take longer to run. Additionally, although lower RMSD
is better, binding can be viewed as successful if its RMSD is below a threshold, which is usually 2 A
(Castro-Alvarez et al.| |2017). Therefore, an efficiency model is also built for choosing the quickest
good performing algorithm under a specific performance threshold.

Two predictive models are constructed based on the features extracted from both protein and lig-
and through GNNs. One model predicts whether each docking algorithm can successfully solve a
docking problem, with outcomes categorized as 1 (”solvable”) or O ("unsolvable”). If the docking
algorithm could generate a result with RMSD lower than 2 A, it is categorized as 1; otherwise, it
will be classified as 0. Since this is a binary classification model, we changed the output layer in
the meta-model to be output = o(Wah(z) + bz) in which o denotes the sigmoid function. It will
return the probabilities of whether the docking methods could solve the docking problem. Then,
the other model is built to predict the time required for each docking algorithm to produce its re-
sult, which uses the same GNN structure as the accuracy model to extract features from protein
and ligand graphs, and same meta-model structures. These two models are trained separately since
their objectives are different. For each docking task to be handled, only those algorithms predicted
to solve the problem, i.e., categorized as 1, are considered. Among them, the algorithm with the
shortest predicted time is recommended. When there is no algorithm predicted to meet the RMSD
threshold of 2 A the algorithm predicted to be the fastest is chosen. This methodology provides a
balanced selection concerning docking quality and speed. The complete procedures are shown in
Algorithm 2]

Algorithm 2 GNNAS-Dock Efficiency Model Generation and Prediction

Input: Protein and Ligand graphs for training G, Gp; the spent execution times for the docking
algorithms T € R™**; binary success outcomes for docking algorithms S € R™**; a Protein and
Ligand pair for docking Gy, ..., Gp,...; 1 is the total number docking tasks; & represents the number
of candidate docking algorithms for selection.

1. &7 :{GL,Gp} =T // runtime prediction model
Os:{Gr,Gp} — S // binary success prediction model
Test = (TAl’ s ’TAk) — (I)T(gLne.w) anew)

Sest = (SAl P SAk) — ©S(gLnew P aneu))
if S, = 1,3j then

A* = argminy {Ta,, Vj where Sy, =1}
else

A* = argming, Teq

PRDINRRN

4 EXPERIMENTS AND RESULTS

In this study, we evaluate the performance of the GNNAS-Dock system using a selection of nine
docking algorithms. These algorithms include DiffDock, TankBind, DSDP, GNINA, SMINA,
Qvina, and combinations that integrate docking site prediction tool, such as GNINA+p2rank,
SMINA+p2rank, and Qvina+p2rank. This portfolio of algorithms is diverse since it contains both
traditional docking algorithms and some advanced methods integrating deep learning techniques.
These algorithms are all state-of-the-art docking algorithms in their own types.

The dataset employed for evaluating the algorithms is derived from the refined set of the PDBBind
database (Liu et al., 2017, which consists of approximately 5,300 pairs of protein-ligand complexes.
This dataset is highly regarded within the drug discovery community for its quality and relevance,
making it an ideal choice for rigorous testing of docking algorithms. For constructing graphs for
proteins and ligands, we utilize the Python package Graphein (Jamasb et al., |[2022).

For measuring docking performances, symmetry-corrected root mean square deviation (RMSD) is
used as the metric (Meli & Bigginl 2020), as in the recent docking approaches such as DiffDock. It
additionally takes molecular symmetry into count, providing a more accurate evaluation.

Under review as a conference paper at ICLR 2025

All experiments were conducted through the implementations in Python, on a server equipped with
2 AMD EPYC 7763 64-Core CPUs, 8 NVIDIA RTX 3090 GPUs, and 256 Gigabytes of RAM,
running Ubuntu OS version 20.04.6.

4.1 PROTEIN AND LIGAND GRAPH ARCHITECTURES

To refine the predictive capabilities of GNNAS-Dock, various combinations of graph neural network
(GNN) architectures for protein and ligand graphs are tested. As mentioned in the previous part, 3
GNN architectures are used for exploring ligand features, including GCN, GAT and GINE. For
protein, we use the combination of GCN, GAT and GINE as the graphl.amda uses different node
features for protein graphs. We split the dataset into a training and testing set with a ratio of 0.3.
Solely for having a general view on the success of each combination, the learning rate of 0.0001
with 50 epochs is used. The best architecture combination is determined based on their prediction
qualities, as reported in Table|l} Each value denotes the average docking performance in RMSD for
a specific pair of protein and ligand network architectures on the test set.

Table 1: Average docking performance in RMSD for each combination of protein (column) and
ligand (row) graph architectures.

GCN_GAT_GINE | GCN_GAT | GCN_GINE | GAT_GINE | GCN | GAT | GINE
GCN 1.879 2.015 1.862 1.849 2.238 | 1.941 | 1.908
GAT 1.833 2.108 1.970 1.888 2.311 | 1.984 | 2.007
GINE 1.883 2.198 1.858 1.903 2.300 | 1.977 | 1.940

It is evident that the combination of GCN_GAT_GINE for the protein graph and GAT for the ligand
graph achieves the lowest RMSD value, indicating the highest docking accuracy among the tested
configurations. Consequently, this specific pairing has been selected for building the GNNAS-Dock.
Additionally, it should be noted that any of these pairs outperform the overall, single best docking
algorithm of DiffDock, which is further discussed below.

4.2 COMPUTATIONAL RESULTS

The results of all the individual docking algorithms and GNNAS-Dock models on the PDBBind
dataset are reported in Table 2 When predicting potential binding poses for ligands in the protein,
each docking algorithm will generate multiple candidates for choosing. In this study, only the best-
docked result from each algorithm for each docking task will be selected for analysis.

Table 2: Descriptive statistics in terms of RMSD combined with average running time for different
docking algorithms in the test set.

Algorithm RMSD % Below Threshold
Mean Median 2A 54 Avg. Time

DiffDock 2.95 0.65 84.36 % 90.83% 37.31
DSDP 5.23 1.97 53.41% 71.26% 0.82
GNINA 9.21 2.40 46.58% 59.82% 22.11
GNINA + p2rank 3.40 1.77 53.55% 74.29% 169.76
QVina 9.00 4.41 36.32% 53.00% 13.92
QVina + p2rank 3.88 2.47 45.97% 68.30% 427.65
Smina 9.26 4.84 34.67% 51.07% 19.60
Smina + p2rank 3.90 2.63 44.80% 67.61% 171.84
TankBind 3.64 1.71 59.13% 89.04% 0.03
GNNAS-Dock (Accuracy) 1.74 0.71 81.80% 92.00% 66.85
GNNAS-Dock (Efficiency) 2.75 0.81 79.73% 91.38% 29.05
Oracle 0.67 0.47 96.07% 99.65 79.80

From the performance comparison, the Accuracy Model stands out in enhancing docking accuracy
across various metrics. It achieves the lowest mean RMSD values at 1.74 A, which is much lower

Under review as a conference paper at ICLR 2025

than each single docking algorithm. Notably, DiffDock presents a stronger median RMSD of 0.65
A, slightly better than the Accuracy Model. In terms of percentage predictions below specific RMSD
thresholds, the Accuracy Model records 81.80% below the 2 A threshold and a remarkable 92.00%
below the 5 A threshold, which shows a much greater performance than most of the docking al-
gorithms. Though DiffDock slightly outperforms the Accuracy Model at the 2 A threshold, the
Accuracy Model dominates at the 5 A threshold. These results suggest that the Accuracy Model
could effectively eliminate instances of extremely poor docking outcomes and consistently limit the
results to a more acceptable range.

Despite the success of GNNAS-Dock (Accuracy), there is a substantial variance in performance and
efficiency among the algorithms. The accuracy model, for instance, averages a runtime of 66.85
seconds per docking task. This is comparatively long, especially when aligned against some of the
faster alternatives. DiffDock as the best standalone algorithm performs inferior to GNNAS-Dock
(Accuracy), it is relatively fast, requiring 37.31 seconds on average. There are much faster algo-
rithms such as TankBind and DSDP, yet they offer lower docking quality though. TankBind stands
out remarkably, completing dockings in approximately 0.03 seconds. Given these observations,
there’s a challenge for docking algorithms to balance performance with efficiency. To address this,
GNNAS-Dock (Efficieny) is offered for both considering docking quality and runtime requirements
at the same time. From the Table @, GNNAS-Dock (Efficieny), indeed, delivers a well-balanced be-
haviour between speed and accuracy. It achieves a mean RMSD of 2.75 A and a median of 0.81 A,
with 79.73% of its dockings below the 2 A threshold and 91.38% below 5 A. These performances
all indicate reasonably accurate docking predictions that are obviously better than most of the other
single docking algorithms. Compared with DiffDock, the single docking algorithm with best per-
formance, the efficiency model has a lower mean RMSD and higher percentage of results within the
5 Athreshold. More importantly, it operates with an average time of 29.05 seconds per docking, sig-
nificantly faster than most of the other docking algorithms including DiffDock. Based on our setting
of using 2 A as the threshold for deciding the success of a docking problem, the efficiency model
reaches a compelling balance between docking accuracy and running efficiency. This makes it an
attractive option in high-throughput scenarios where quick and accurate results are more important.

5 CONCLUSIONS

This study presents a novel and robust approach called a Graph Neural networks (GNN) based Al-
gorithm Selection (AS) system for molecular docking (GNNAS-Dock). In this system, we design
two distinct models for recommending suitable docking algorithms with different criterion, i.e., ac-
curacy and efficiency. Through extensive experimentation on the PDBBind refined set, both models
demonstrate significant improvements over single docking algorithms for blind docking tasks in
terms of accuracy. The accuracy model reaches a much lower mean RMSD than all the other dock-
ing algorithms, indicating its superior precision in predicting the most accurate docking algorithm
for docking tasks. The efficiency model achieves a comparatively good performance for docking
tasks in less than half the running time of the accuracy model, showing a great balance between
accuracy and efficiency.

While GNNAS-Dock system shows significant potential in enhancing docking efficiency and accu-
racy, the built models can still be improved in terms of generalization. The overall experiment is
conducted with the PDBBind refined set, which may not fully represent the diverse range of molec-
ular interactions encountered in pharmaceutical research. To address this, future development could
focus on expanding dataset diversity by including more protein-ligand pairs, which would improve
model robustness and real-world applicability. Additionally, structural optimizations including the
adjustments for GNN architectures, could be applied to enhance GNNAS-Dock further.

REFERENCES

Alejandro Castro-Alvarez, Anna M. Costa, and Jaume Vilarrasa. The performance of several
docking programs at reproducing protein—macrolide-like crystal structures. Molecules, 22(1),
2017. ISSN 1420-3049. doi: 10.3390/molecules22010136. URL https://www.mdpi.com/
1420-3049/22/1/136.

https://www.mdpi.com/1420-3049/22/1/136
https://www.mdpi.com/1420-3049/22/1/136

Under review as a conference paper at ICLR 2025

Tianlai Chen, Xiwen Shu, Huiyuan Zhou, Floyd A Beckford, and Mustafa Misir. Algorithm
selection for protein—ligand docking: strategies and analysis on ace. Scientific Reports, 13
(1):8219, 2023. doi: 10.1038/s41598-023-35132-5. URL https://doi.org/10.1038/
s41598-023-35132-5.

Gabriele Corso, Hannes Stirk, Bowen Jing, Regina Barzilay, and Tommi S. Jaakkola. Diffdock:
Diffusion steps, twists, and turns for molecular docking. In the I1th International Conference on
Learning Representations (ICLR), 2023. URL https://openreview.net/forum?id=
kKF8_K-mBbS.

Inbal Halperin, Buyong Ma, Haim Wolfson, and Ruth Nussinov. Principles of docking: An
overview of search algorithms and a guide to scoring functions. Proteins: Structure, Func-
tion, and Bioinformatics, 47(4):409-443, 2002. doi: https://doi.org/10.1002/prot.10115. URL
https://onlinelibrary.wiley.com/doi/abs/10.1002/prot.10115.

Nafisa M. Hassan, Amr A. Alhossary, Yuguang Mu, and Chee-Keong Kwoh. Protein-ligand blind
docking using quickvina-w with inter-process spatio-temporal integration. Scientific Reports,
7:15451, 2017. doi: 10.1038/s41598-017-15571-7. URL https://doi.org/10.1038/
s41598-017-15571-7.

Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure
Leskovec. Strategies for pre-training graph neural networks. In International Conference on
Learning Representations (ICLR), 2020. URL https://openreview.net/forum?id=
HJ1WWJSFDH.

YuPeng Huang, Hong Zhang, Siyuan Jiang, Dajiong Yue, Xiaohan Lin, Jun Zhang, and Yi Qin
Gao. Dsdp: A blind docking strategy accelerated by gpus. Journal of Chemical Information and
Modeling, 63(14):4355-4363, 2023. doi: 10.1021/acs.jcim.3c00519. URL https://doi.
org/10.1021/acs.jcim.3c00519. PMID: 37386792.

Arian Rokkum Jamasb, Ramon Vifias Torné, Eric J Ma, Yuangi Du, Charles Harris, Kexin Huang,
Dominic Hall, Pietro Lio, and Tom Leon Blundell. Graphein - a python library for geomet-
ric deep learning and network analysis on biomolecular structures and interaction networks. In
Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neu-
ral Information Processing Systems, 2022. URL https://openreview.net/forum?id=
9xRZ1V6GLOX.

Pascal Kerschke, Holger H Hoos, Frank Neumann, and Heike Trautmann. Automated algorithm
selection: Survey and perspectives. Evolutionary Computation, 27(1):3-45, 2019.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In International Conference on Learning Representations (ICLR), 2017. URL https:
//openreview.net/forum?id=SJU4dayYgl.

David Ryan Koes, Matthew P. Baumgartner, and Carlos J. Camacho. Lessons learned in empirical
scoring with smina from the csar 2011 benchmarking exercise. Journal of Chemical Information
and Modeling, 53(8):1893—-1904, 2013. doi: 10.1021/ci300604z. URL https://doi.org/
10.1021/ci300604z.

Ana Kostovska, Anja Jankovic, Diederick Vermetten, SaSo DZeroski, Tome Eftimov, and Carola
Doerr. Comparing algorithm selection approaches on black-box optimization problems. In Pro-
ceedings of the Companion Conference on Genetic and Evolutionary Computation (GECCO), pp.
495-498, 2023.

Radoslav Krivdk and David Hoksza. P2rank: machine learning based tool for rapid and ac-
curate prediction of ligand binding sites from protein structure. Journal of Cheminformat-
ics, 10:39, 2018. doi: 10.1186/s13321-018-0285-8. URL httpe://doi.org/10.1186/
5s13321-018-0285-8.

Zhihai Liu, Minyi Su, Li Han, Jie Liu, Qifan Yang, Yan Li, and Renxiao Wang. Forging the basis for
developing protein—ligand interaction scoring functions. Accounts of Chemical Research, 50(2):
302-309, 2017. doi: 10.1021/acs.accounts.6b00491. URL https://doi.org/10.1021/
acs.accounts.6b00491. PMID: 28182403.

10

https://doi.org/10.1038/s41598-023-35132-5
https://doi.org/10.1038/s41598-023-35132-5
https://openreview.net/forum?id=kKF8_K-mBbS
https://openreview.net/forum?id=kKF8_K-mBbS
https://onlinelibrary.wiley.com/doi/abs/10.1002/prot.10115
https://doi.org/10.1038/s41598-017-15571-7
https://doi.org/10.1038/s41598-017-15571-7
https://openreview.net/forum?id=HJlWWJSFDH
https://openreview.net/forum?id=HJlWWJSFDH
https://doi.org/10.1021/acs.jcim.3c00519
https://doi.org/10.1021/acs.jcim.3c00519
https://openreview.net/forum?id=9xRZlV6GfOX
https://openreview.net/forum?id=9xRZlV6GfOX
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.1021/ci300604z
https://doi.org/10.1021/ci300604z
httpe://doi.org/10.1186/s13321-018-0285-8
httpe://doi.org/10.1186/s13321-018-0285-8
https://doi.org/10.1021/acs.accounts.6b00491
https://doi.org/10.1021/acs.accounts.6b00491

Under review as a conference paper at ICLR 2025

Andrea Loreggia, Yuri Malitsky, Horst Samulowitz, and Vijay Saraswat. Deep learning for algorithm
portfolios. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 30, 2016.

Wei Lu, Qifeng Wu, Jixian Zhang, Jiahua Rao, Chengtao Li, and Shuangjia Zheng. Tankbind:
Trigonometry-aware neural networks for drug-protein binding structure prediction. bioRxiv, 2022.
doi: 10.1101/2022.06.06.495043. URL https://www.biorxiv.org/content/early/
2022/10/25/2022.06.06.495043!

Andrew T. McNutt, Paul Francoeur, Rishal Aggarwal, Tomohide Masuda, Rocco Meli, Matthew
Ragoza, Jocelyn Sunseri, and David Ryan Koes. Gnina 1.0: Molecular docking with deep
learning. Journal of Cheminformatics, 13, 2021. doi: 10.1186/s13321-021-00522-2. URL
https://doi.org/10.1186/s13321-021-00522-2.

Jens Meiler, Michael Miiller, Anita Zeidler, and Felix Schmischke. Generation and evaluation of
dimension-reduced amino acid parameter representations by artificial neural networks. Molecular
modeling annual, pp. 360-369, 2001. doi: 10.1007/s008940100038. URL https://doi.
org/10.1007/s008940100038.

Rocco Meli and Philip C. Biggin. spyrmsd: symmetry-corrected rmsd calculations in python. Jour-
nal of Cheminformatics, pp. 49, 2020. doi: 10.1186/s13321-020-00455-2. URL https:
//doi.org/10.1186/s13321-020-00455-2.

Ammar Mohammed and Rania Kora. A comprehensive review on ensemble deep learning:
Opportunities and challenges. Journal of King Saud University - Computer and Informa-
tion Sciences, 35(2):757-774, 2023. ISSN 1319-1578. doi: https://doi.org/10.1016/j.jksuci.
2023.01.014. URL https://www.sciencedirect.com/science/article/pii/
S1319157823000228.

Ghaith Mqgawass and P. Popov. Graphlambda: Fusion graph neural networks for binding affinity
prediction. Journal of Chemical Information and Modeling, 64(7):2323-2330, 2024. doi: 10.
1021/acs.jcim.3c00771. URL https://doi.org/10.1021/acs.jcim.3c00771,

Mustafa Misir and Michele Sebag. ALORS: An algorithm recommender system. Artificial
Intelligence, 244:291-314, 2017. ISSN 0004-3702. doi: https://doi.org/10.1016/j.artint.
2016.12.001. URL https://www.sciencedirect.com/science/article/pii/
S0004370216301436l

Ivan Olier, Noureddin Sadawi, G Richard Bickerton, Joaquin Vanschoren, Crina Grosan, Larisa
Soldatova, and Ross D King. Meta-gsar: a large-scale application of meta-learning to drug design
and discovery. Machine Learning, 107:285-311, 2018.

Aleksandra Rudnitskaya, Béla Torok, and Marianna Torok. Molecular docking of enzyme in-
hibitors. Biochemistry and Molecular Biology Education, 38(4):261-265, 2010. doi: https://doi.
org/10.1002/bmb.20392. URL https://iubmb.onlinelibrary.wiley.com/doi/
abs/10.1002/bmb.20392.

Thalea Schlender, Markus Viljanen, Jan N van Rijn, Felix Mohr, Willie JGM Peijnenburg, Holger H
Hoos, Emiel Rorije, and Albert Wong. The bigger fish: a comparison of meta-learning gsar

models on low-resourced aquatic toxicity regression tasks. Environmental Science & Technology,
57(46):17818-17830, 2023.

Francesca Stanzione, Ilenia Giangreco, and Jason C Cole. Use of molecular docking computational
tools in drug discovery. Progress in medicinal chemistry, 60:273-343, 2021. doi: 10.1016/bs.
pmch.2021.01.004. URL https://doi.org/10.1016/bs.pmch.2021.01.004,

Hannes Stirk, Octavian-Eugen Ganea, Lagnajit Pattanaik, Regina Barzilay, and Tommi Jaakkola.
Equibind: Geometric deep learning for drug binding structure prediction, 2022. URL https:
//arxiv.org/abs/2202.05146.

Oleg Trott and Arthur J. Olson. Autodock vina: Improving the speed and accuracy of docking with
a new scoring function, efficient optimization, and multithreading. Journal of Computational
Chemistry, 31(2):455-461, 2010. doi: 10.1002/jcc.21334. URL https://doi.org/10.
1002/3cc.21334l

11

https://www.biorxiv.org/content/early/2022/10/25/2022.06.06.495043
https://www.biorxiv.org/content/early/2022/10/25/2022.06.06.495043
https://doi.org/10.1186/s13321-021-00522-2
https://doi.org/10.1007/s008940100038
https://doi.org/10.1007/s008940100038
https://doi.org/10.1186/s13321-020-00455-2
https://doi.org/10.1186/s13321-020-00455-2
https://www.sciencedirect.com/science/article/pii/S1319157823000228
https://www.sciencedirect.com/science/article/pii/S1319157823000228
https://doi.org/10.1021/acs.jcim.3c00771
https://www.sciencedirect.com/science/article/pii/S0004370216301436
https://www.sciencedirect.com/science/article/pii/S0004370216301436
https://iubmb.onlinelibrary.wiley.com/doi/abs/10.1002/bmb.20392
https://iubmb.onlinelibrary.wiley.com/doi/abs/10.1002/bmb.20392
https://doi.org/10.1016/bs.pmch.2021.01.004
https://arxiv.org/abs/2202.05146
https://arxiv.org/abs/2202.05146
https://doi.org/10.1002/jcc.21334
https://doi.org/10.1002/jcc.21334

Under review as a conference paper at ICLR 2025

Petar Velickovié, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=rJXMpikCZ.

D.H. Wolpert and W.G. Macready. No free lunch theorems for optimization. /EEE Transactions
on Evolutionary Computation, 1(1):67-82, 1997. doi: 10.1109/4235.585893. URL https:
//doi.org/10.1109/4235.585893!

Jie Zhou, Ganqu Cui, Shutao Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Li Wang, Chang Li,
and Maosong Sun. Graph neural networks: A review of methods and applications. Al Open, 1:
57-81, 2020. doi: 10.1016/j.ai0open.2021.01.001. URL https://doi.org/10.1016/73.
aiopen.2021.01.001.

12

https://openreview.net/forum?id=rJXMpikCZ
https://doi.org/10.1109/4235.585893
https://doi.org/10.1109/4235.585893
https://doi.org/10.1016/j.aiopen.2021.01.001
https://doi.org/10.1016/j.aiopen.2021.01.001

	Introduction
	Background
	Molecular Docking Methods.
	Algorithm Selection.

	Method: GNNAS-Dock
	Ligand Graph
	Protein Graph
	Accuracy Model
	Efficiency Model

	Experiments and Results
	Protein and Ligand Graph Architectures
	Computational Results

	Conclusions

