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Abstract

The instruction-following ability of large lan-001
guage models enables humans to interact with002
AI agents in a natural way. However, when003
required to generate responses of a specific004
length, large language models often struggle005
to meet users’ needs due to their inherent dif-006
ficulty in accurately perceiving numerical con-007
straints. To explore the ability of large lan-008
guage models to control the length of gener-009
ated responses, we propose the Target Length010
Generation task (TLG) and design two metrics,011
Precise Match (PM) and Flexible Match (FM)012
to evaluate the model’s performance in adher-013
ing to specified response lengths. Furthermore,014
we introduce a novel, model-agnostic approach015
called RULER, which employs Meta Length016
Tokens (MLTs) to enhance the instruction-017
following ability of large language models un-018
der length-constrained instructions. Specifi-019
cally, RULER equips LLMs with the ability to020
generate responses of a specified length based021
on length constraints within the instructions.022
Moreover, RULER can automatically generate023
appropriate MLT when length constraints are024
not explicitly provided, demonstrating excel-025
lent versatility and generalization. Compre-026
hensive experiments show the effectiveness027
of RULER across different LLMs on Target028
Length Generation Task, e.g., 28.25 average029
gain on FM, 18.40 average gain on PM. In ad-030
dition, we conduct extensive ablation experi-031
ments to further substantiate the efficacy and032
generalization of RULER. Our code and data033
will be made publicly available upon publica-034
tion.035

1 Introduction036

Large Language Models (LLMs) have demon-037

strated remarkable capabilities across a variety of038

natural language tasks and are increasingly being039

utilized in various fields (Vaswani et al., 2017; De-040

vlin et al., 2019; Brown et al., 2020). A primary041

area of interest is the instruction following ability,042

Query: Tell me how to make a cake in 20 words.

Word count of the answer >50 ≠ 20

Answer: To make a cake, preheat your oven to 
350°F (175°C) and prepare an 8-inch round cake 
pan by greasing and flouring it. Cream together 1 
cup of granulated sugar and 1/2 cup of softened 
unsalted butter until light and fluffy, which takes 
about 3-4 minutes with an electric mixer. Add 2 
large eggs, one at a time, beat…

Failed

Figure 1: Existing LLMs lack the capability to follow
instructions for generating texts of a specified length.

referring to their capability to execute tasks or gen- 043

erate outputs based on instructions (Ouyang et al., 044

2022; Wei et al., 2022a). It reflects the model’s 045

effectiveness in understanding and responding to 046

instructions. 047

The practical challenges highlight the complex- 048

ity of achieving precise instruction following, par- 049

ticularly when users require control over the out- 050

put’s length. Users frequently give LLMs vari- 051

ous instructions, such as "Tell me how to make a 052

cake in 20 words", "Write a blog post using 50 053

words", "Compose a 300-word story for me" and 054

so on. These instructions challenge the instruc- 055

tion following capability of LLMs. To explore 056

how well LLMs handle such challenges, we fo- 057

cus on the scenario where users specify the tar- 058

get length of the responses. We pose the ques- 059

tion, "Can LLMs accurately generate with target 060

length?" and introduce the Target Length Gener- 061

ation Task (TLG). We create a test dataset with 062

various target lengths and introduce two evaluation 063

metrics: Precise Match (PM) and Flexible Match 064

(FM). Our findings reveal that current LLMs gen- 065

erally perform poorly in this task, indicating con- 066

siderable room for improvement. Potential reasons 067

for this include the inherent complexity of the lan- 068
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guage, limitations in training data, and insufficient069

understanding of context, among other factors.070

To address aforementioned issues, we introduce071

RULER, a model-agnostic approach designed to en-072

hance the instruction-following capability of LLMs073

through Meta Length Tokens (MLTs). MLTs are de-074

signed to control model’s responses. By utilizing075

RULER, LLMs can generate responses that meet tar-076

get lengths. We create a dataset with MLTs DMLT077

for end-to-end training of LLMs. LLMs learn to078

generate MLT and the corresponding length re-079

sponse after training. During inference, if a target080

length is provided, RULER can transform it into081

a MLT and generate responses that meet the re-082

quirement. If no target length is specified, it first083

generates a MLT, then the response, ensuring its084

length aligns with the generated MLT085

We apply RULER to various large language mod-086

els and test them on TLG. Each model demonstrates087

significant improvements. Furthermore, to rigor-088

ously test the capabilities of RULER, we randomly089

sample the dataset provided by Li et al. (2024a).090

We provide nine target lengths for each question091

and test the performance. RULER shows a mini-092

mum accuracy of 52.72, marking an improvement093

of 25.89 compared to the original models. Ad-094

ditionally, to test the ability in scenarios without095

target lengths, we assess whether the automatically096

generated MLT and the corresponding response097

lengths match. The lowest accuracy is 76.00. Addi-098

tionally, we test RULER on three other benchmarks099

to observe whether the models’ performance is af-100

fected.101

Our contributions can be summarized as follows:102

• We introduce the Target Length Generation103

Task (TLG), which designed to assess the in-104

struction following capability of LLMs. It105

evaluates how well models generate responses106

of target lengths as directed by instructions.107

• We propose RULER, a novel and model-108

agnostic approach which employs the Meta109

Length Tokens (MLTs). Through end-to-end110

training, it enables models to generate re-111

sponse matching the target lengths indicated112

by MLTs.113

• We demonstrate that RULER significantly en-114

hances the performance of various models on115

the TLG. Further experiments have also vali-116

dated the effectiveness and generalizability of117

RULER.118

2 Related Work 119

2.1 Large Language Model 120

The advent of LLMs has revolutionized the field 121

of natural language processing and become a mile- 122

stone (Vaswani et al., 2017; Devlin et al., 2019; 123

Brown et al., 2020; Zhang et al., 2023a). Large lan- 124

guage models have achieved success across various 125

NLP tasks. Models such as GPT-4(Achiam et al., 126

2023), Llama-3(AI@Meta, 2024), and Qwen(Bai 127

et al., 2023), known for their powerful capabilities, 128

are increasingly serving as the foundation for var- 129

ious applications and making significant inroads 130

into diverse fields, exerting a substantial impact. 131

In-context learning enables LLMs to infer and gen- 132

erate responses solely based on the contextual in- 133

formation provided within a prompt(Dong et al., 134

2022; Wei et al., 2022b). This capability allows 135

the models to exhibit a high degree of flexibility 136

and adaptability across a variety of tasks(Levine 137

et al., 2022; Chen et al., 2022; Zhao et al., 2021). 138

CoT further excavates and demonstrates the pow- 139

erful logical reasoning capabilities of LLMs(Wei 140

et al., 2022c; Huang and Chang, 2023; Zhang et al., 141

2023b). 142

2.2 Instruction Following 143

Instruction following refers to the ability of large 144

language models to comprehend and execute given 145

natural language instructions (Brown et al., 2020; 146

Ouyang et al., 2022; Wei et al., 2022a; Zhou et al., 147

2023a). This capability enables the models to per- 148

form a broad spectrum of tasks, from simple query 149

responses to complex problem-solving and content 150

generation, tailored to specific user requests. 151

In practical deployments, models may not adhere 152

to comply with user instructions, exhibiting behav- 153

iors that deviate from anticipated outcomes. This 154

includes generating responses unrelated to explicit 155

instructions, emitting redundant or erroneous in- 156

formation, or entirely ignoring specified directives 157

(Gehman et al., 2020; Kenton et al., 2021; Wei 158

et al., 2024). To enhance the instruction following 159

capability of LLMs, open-domain instruction fol- 160

lowing data is frequently used for training. Several 161

prominent studies have explored the construction 162

of instruct-tuning data, to achieve efficient and cost- 163

effective results(Li et al., 2024b; Cao et al., 2024; 164

Liu et al., 2024; Xu et al., 2024). 165
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Level Target Length Precise Match (PM) Flexible Match (FM)

Level:0

10 ±10 (0, 20]
30 ±10 (20, 40]
50 ±10 (40, 60]
80 ±10 (60, 100]

Level:1
150 ±20 (100, 200]
300 ±20 (200, 400]
500 ±50 (400, 600]

Level:2
700 ±70 (600, 800]

>800 (800,∞) (800,∞)

Table 1: Nine target lengths and their corresponding match ranges categorized as Precise Match (PM) and Flexible
Match (FM). Target lengths are classified into three categories, Level:0, Level:1, and Level:2.

2.3 Meta Token166

Recently, an increasing number of studies have em-167

ployed custom tokens within language models to168

execute specific functions or enhance performance.169

Todd et al. (2024) report findings that the hidden170

states of language models capture representations171

of these functions, which can be condensed into a172

Function Vector (FV). Furthermore, their research173

demonstrates that FV can effectively guide lan-174

guage models in performing specific tasks.175

Numerous studies have utilized meta tokens to176

compress prompts, thereby enhancing the the in-177

ference capability of models (Li et al., 2023; Liu178

et al., 2023; Zhang et al., 2024). Mu et al. (2023)in-179

troduce the concept of "gist tokens", which can be180

cached and reused for compute efficiency. Further181

Jiang et al. (2024) utilize a hierarchical and dy-182

namic approach to extend the concept, proposing183

"HD-Gist tokens" to improve model performance.184

3 Can LLMs Accurately Generate with185

Target Length?186

In this section, we examine the capability of LLMs187

to generate responses of a target length. Initially,188

we introduce Target Length Generation Task (TLG).189

Subsequently, we establish various target lengths190

and two evaluation metrics (§3.1). We then de-191

tail the experimental setup and assess the ability192

of LLMs to generate responses at target lengths193

(§3.2). Finally, we present the outcomes of the194

experiments (§3.3).195

3.1 Target Length Generation Task196

To assess the ability of existing LLMs to control the197

length of generated response, we develop the TLG.198

This task assesses the models’ ability in producing199

responses that match target lengths as directed The200

designed target lengths are detailed in Table 1. Ad- 201

ditionally, we divide these nine target lengths into 202

three levels: Level:0, Level:1, and Level:2. 203

Given that generating responses with target 204

lengths is challenging for existing LLMs, we de- 205

velop two metrics to evaluate the accuracy of re- 206

sponse lengths. 207

• Precise Match (PM): This metric requires 208

that the length of the generated response be 209

very close to the target length. For different 210

Level, a precise tolerance range is set (±10, 211

±20, . . . ) necessitating that the response 212

length stringently conforms to these defined 213

limits. 214

• Flexible Match (FM): This metric requires a 215

broader tolerance interval for target length. 216

For longer texts, the range incrementally 217

widens to meet response generation require- 218

ments. 219

For the N responses, we assess whethereach 220

response meets the target length, then calculating 221

the PM and FM scores of the model. 222

PM =

∑N
i=1 1

(
lbPTLi

< L (ci) ≤ ubPTLi

)
N

(1) 223

FM =

∑N
i=1 1

(
lbFTLi

< L (ci) ≤ ubFTLi

)
N

(2) 224

where: ci denotes the i-th response generated 225

by LLM. The function L(·) calculates the word 226

count of the input string. lbPTLi
and ubPTLi

denote 227

the lower and upper bounds of the precise match 228

range associated with the target length of i-th re- 229

sponse. lbFTLi
and ubFTLi

denote the lower and up- 230

per bounds of the flexible match range associated 231

with the target length of i-th response. 232
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Model Params
Target Length Generation Task (TLG)

Level:0 Level:1 Level:2 All Level

PM FM PM FM PM FM PM FM

Mistral 7B 20.29 23.50 16.77 48.32 3.62 5.66 15.45 27.70

Gemma
2B 20.95 23.17 8.69 24.24 0.23 0.23 12.35 18.45
7B 15.52 18.85 11.74 35.82 0.45 0.45 10.95 20.35

Llama3
8B 34.59 40.02 29.73 65.70 18.10 21.04 29.35 44.25

70B 58.76 64.52 36.59 77.90 36.43 41.18 46.55 63.75

InternLM2
7B 6.65 7.21 8.69 27.44 19.68 22.40 10.20 17.20

20B 8.98 9.87 10.98 34.45 17.42 20.14 11.50 20.20

DeepSeek-LLM
7B 28.16 31.37 17.68 44.36 10.86 13.12 20.90 31.60

67B 26.94 30.27 17.07 49.54 9.50 11.99 19.85 32.55

Yi-1.5
6B 23.50 25.83 16.46 48.78 18.10 20.36 20.00 32.15
9B 25.28 29.16 17.38 44.36 24.43 29.41 22.50 34.20

34B 28.82 33.59 26.07 65.40 21.27 25.79 26.25 42.30

Qwen1.5

7B 24.28 27.38 14.33 46.19 9.05 11.99 17.65 30.15
14B 28.27 31.49 18.45 43.90 11.09 14.25 21.25 31.75
32B 32.59 36.25 22.26 49.39 21.49 25.34 26.75 38.15
72B 35.59 39.69 18.29 49.70 3.85 6.11 22.90 35.55

Table 2: Overall results of different LLMs of TLG. All models used are either chat or instruct models. In models
belonging to the same series but varying in parameter sizes, those with larger parameters typically exhibit superior
performance. The best-performing model in each Level is in-bold, and the second best is underlined.

3.2 Experimental Setup233

Dataset. We employ a two-stage data construc-234

tion method for this study. Initially, we randomly235

sample 2,000 data from OpenHermes2.5 (Teknium,236

2023). To enhance the complexity of the task and237

prevent data leakage, the second stage involved238

uses only the questions from these samples. Ad-239

ditionally, we randomly assign one of nine target240

lengths for the responses. The distribution of tar-241

get length in the TLG dataset is shown in Figure242

3. Further details regarding the format of the TLG243

dataset are provided in Appendix A.1.244

Models & Prompt Templates. We conduct245

extensive experiments with open-source LLMs,246

specifically the chat or instruct version. The spe-247

cific models used are listed in Table 7. We evaluate248

each model using its own prompt template, as de-249

tailed in Table 8.250

To integrate the target length into the prompt, we251

modify the sentence The response should have252

a word count of {Target Length} words into253

each question. For target length is >800, we replace254

this with more than 800.255

Hardware & Hyperparameters. All experi-256

ments are conducted on NVIDIA A100 GPUs.257

Inference is performed using the vllm (Kwon258

et al., 2023), with temperature set to 0 and259

max_tokens set to 2,048 in the SamplingParams, 260

thereby employing greedy decoding for inference. 261

The model_max_length for all models is consis- 262

tent with their respective configurations, as shown 263

in Table 7. 264

3.3 Results and Analysis 265

Table 2 displays the PM and FM scores of various 266

models at different Levels. Generally, models with 267

advanced capabilities achieve higher PM and FM 268

scores, indicating stronger adherence to instruc- 269

tions. This observation aligns with human expecta- 270

tions. The Meta-Llama-3-70B-Instruct(AI@Meta, 271

2024) achieves a FM score exceeding 60 at All 272

Level. Within models from the same series but 273

with different parameter sizes, larger models, as 274

indicated by parameter size, generally demonstrate 275

improved performance. Notably, the Qwen1.5 (Bai 276

et al., 2023) with 72B parameters underperforms 277

compared to its 32B variant. 278

For most models, scores are lowest at Level:2, 279

suggesting significant potential for enhancement 280

in producing longer responses. In contrast, scores 281

at Level:1 are typically the highest, suggesting a 282

preference for generating shorter responses, which 283

are more common at this level. This trend may be 284

attributed to the prevalence of shorter responses in 285

the training datasets utilized for model fine-tuning, 286
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Training
Step 1: Data collection

 MLT

MLTs

(x,y) (x,mlt,y)

Step 2: Model learning

( , , )~max log ( , | )
MLTx mlt y p mlt y x  Model ModelR

ULER
Inference

Target length

Word count = target lengthTell me how to make a cake

Instruction

20

Target Length Generation Task

Query 1: Tell me how to make a cake in 20 words.

Query 2: Write a blog post using 50 words.

…

Non-target Length Generation Task

Query 1: Tell me how to make a cake.

Query 2: Write a blog post.

…

TLG
Step 1: Convert target length to MLT

[MLT:20]

Step 2: Apply template 
Step 2: Encode prompt

Step 3: Generate response

Response

Preheat oven to 350°F. Grease…

Step 4: Evaluate

Completed

Non-TLG
Step 1: Apply template and encode prompt

Tell me how to make a cake

Instruction

Step 2: Generate response w/ MLT

Response

[MLT:80]To make a cake, you will 
need to gather the ingredients 
and equipment needed…

Step 4: Evaluate

Completed

Figure 2: Overview of RULER. The method is divided into two parts: training and inference. The figure illustrates
the main content of both sections. Additionally, in the inference section, we show two scenarios: TLG and non-TLG
to show the difference.
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Figure 3: Target length distribution in TLG dataset. The
count of each target length is approximately 200.

which influences their generative biases. Further-287

more, the PM and FM scores for each model across288

various target lengths are detailed in Appendix A.3.289

4 RULER: Meta Length Token Controlled290

Generation291

In this section, we first introduce RULER, encom-292

passing the design of the Meta Length Tokens293

(MLTs), the data collection and the learning process294

associated with the models (§4.1). Subsequently,295

we detail the difference in the generation of RULER296

under two scenarios: TLG and non-TLG (§4.2).297

4.1 Method298

RULER. We introduce RULER, as illustrated in299

Figure 2, to effectively control the response length300

of LLMs using MLTs. The MLTs represent the301

model’s response length range and aim to enhance302

its capability on the TLG task. Our end-to-end303

training enables the LLMs to automatically gener-304

ate MLTs in various scenarios, regardless of target305

length requirements. MLTs (Table 3) offer more306

precise control than traditional text prompt meth-307

ods, which often prove insufficiently constraining.308

MLT Range of Variation No. in DMLT

[MLT:10] [5, 15) 20,000
[MLT:30] [25, 35) 20,000
[MLT:50] [45, 55) 20,000
[MLT:80] [75, 85) 20,000

[MLT:150] [145, 155) 20,000
[MLT:300] [295, 305) 10,333
[MLT:500] [495, 505) 2,317

[MLT:700] [695, 705) 497
[MLT:>800] (800,∞) 8,082

Table 3: Meta length tokens in RULER showing their
range of variation in data collection and counts in
DMLT .

Data collection for RULER. For common fine- 309

tuning training datasets, the format typically con- 310

sist of input-output pairs (x, y). Following Zhou 311

et al. (2023b), we calculate the word count of y for 312

each entry. Based on the predefined MLTs in Table 313

3 and their range of variation, we aim to match 314

each y to a corresponding mlt based on its word 315

count. If a match is found, the data is reformatted 316

as (x,mlt, y). This method aids in the construction 317

of the fine-tuning training dataset DMLT , detailed 318

in Algorithm B. 319

RULER learning. To minimize changes to the 320

model’s generation pattern and ensure stability in 321

non-TLG scenario, we position the MLT immedi- 322

ately before the original response during the con- 323

struction of fine-tuning data. This strategy main- 324

tains the model chat template. Consequently, the 325

combination of mlt and the original response y 326

forms a new complete response y′. 327

We conduct the training of the RULER M on 328

the curated corpus DMLT , which is augmented 329

with Meta Length Tokens DMLT , employing the 330
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Model
Target Length Generation Task (TLG)

Level:0 Level:1 Level:2 All Level

PM FM PM FM PM FM PM FM

Mistral-7B-Instruct 20.29 23.50 16.77 48.32 3.62 5.66 15.45 27.70
+RULER 68.29↑48.00 73.84↑50.34 41.92↑25.15 72.41↑24.09 33.71↑30.09 37.56↑31.90 52.00↑36.55 65.35↑37.65

gemma-7b-it 15.52 18.85 11.74 35.82 0.45 0.45 10.95 20.35
+RULER 71.84↑56.32 77.16↑58.31 47.26↑35.52 78.66↑42.84 33.26↑32.81 36.20↑35.75 55.25↑44.30 68.60↑48.25

Llama-3-8B-Instruct 34.59 40.02 29.73 65.70 18.10 21.04 29.35 44.25
+RULER 76.27↑41.68 80.49↑40.47 45.58↑15.85 78.05↑12.35 18.33↑0.23 20.59↓0.45 53.40↑24.05 66.45↑22.20

deepseek-llm-7b-chat 28.16 31.37 17.68 44.36 10.86 13.12 20.90 31.60
+RULER 61.75↑33.59 66.30↑34.93 25.76↑8.08 62.35↑17.99 9.50↓1.36 9.95↓3.17 38.40↑17.50 52.55↑20.95

Yi-1.5-6B-Chat 23.50 25.83 16.46 48.78 18.10 20.36 20.00 32.15
+RULER 58.54↑35.04 64.08↑38.25 32.47↑16.01 69.36↑20.58 11.76↓6.34 13.35↓7.01 39.65↑19.65 54.60↑22.45

Qwen1.5-7B-Chat 24.28 27.38 14.33 46.19 9.05 11.99 17.65 30.15
+RULER 58.98↑34.70 64.75↑37.37 29.27↑14.94 63.72↑17.53 14.71↑5.66 17.65↑5.66 39.45↑21.80 54.00↑23.85

Table 4: Overall results of various LLMs with RULER are presented. Additionally, we also annotate the table
with the score changes compared to the original model. Consistent improvements in both PM and FM scores are
observed across all Levels.

standard next token objective:331

max
M

E(x,mlt,y)∼DMLT
log pM(mlt, y|x) (3)332

We concatenate the MLT directly to the begin-333

ning of y to compute the loss and use the MLTs to334

expand the original vocabulary V .335

4.2 RULER Inference336

TLG scenario. In the Target Length Generation337

(TLG) scenario, the user’s instruction specifies a tar-338

get length, decomposed into a question and a target339

length. The RULER converts this target length into340

the corresponding MLT and appends it to the model341

chat template. Subsequent to the MLT, RULER gen-342

erates response that aligns with the target length,343

ensuring compliance with both the user’s question344

and the target length, as illustrated in Figure 2. This345

approach yields superior results compared to con-346

trolling outputs solely through prompts.347

non-TLG scenario. In the non-TLG scenario,348

users provide straightforward instructions consist-349

ing solely of a question. RULER integrates these350

instructions directly into the model’s chat template351

for generation. Owing to its innovative design and352

the use of a standard next-token objective in train-353

ing (Equation 3), RULER autonomously generates a354

MLT prior to producing the textual response. This355

MLT is designed to match the length of the content356

generated, thereby ensuring normal generation of357

the model in non-TLG scenarios, as illustrated in358

Figure 2.359

5 Experiments 360

5.1 Experimental Setup 361

Dataset DMLT . To ensure balanced frequency 362

distribution of each Meta Length Token (MLT) in 363

DMLT , we set a maximum occurrence limit of 364

20,000 for each MLT. We construct DMLT from 365

three datasets: OpenHermes2.5 (excluding data pre- 366

viously used in TLG) (Teknium, 2023), LongForm 367

(Köksal et al., 2023), and ELI5 (Fan et al., 2019), in 368

accordance with Algorithm 1. This approach aims 369

to create a diverse dataset, particularly effective for 370

generating longer content that is relatively rare. in 371

total, DMLT comprises 121,229 entries, with the 372

frequency of each MLT in Table 3. Moreover, we 373

calculate the word count for each response in every 374

dataset, allowing us to statistically analyze the MLT 375

distribution, as detailed in Table 12. 376

LLMs. To comprehensively evaluate the per- 377

formance of RULER across different models, 378

we consider factors such as model size, open- 379

source availability, and overall model perfor- 380

mance. We select six representative LLMs are 381

selected: Mistral-7B-Instruct-v0.3 (Jiang et al., 382

2023), gemma-7b-it (Team et al., 2024), Llama-3- 383

8B-Instruct (AI@Meta, 2024), deepseek-llm-7b- 384

chat (DeepSeek-AI, 2024), Yi-1.5-6B-Chat (AI 385

et al., 2024), and Qwen1.5-7B-Chat (Bai et al., 386

2023). 387

Evaluation Metric. Consistent with the TLG and 388

compared to previous results, we also calculate 389
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Figure 4: Distribution of MLTs generated by RULER in
self-generated MLT experiment. The models demonstrate
a preference for generating responses with target lengths
of 150 and 300.

Model FM Avg WC

Mistral-7B-Instruct-v0.3R 76.00 247
gemma-7b-itR 79.20 256
Llama-3-8B-InstructR 87.00 248
deepseek-llm-7b-chatR 80.40 238
Yi-1.5-6B-ChatR 80.40 257
Qwen1.5-7B-ChatR 80.20 263

Table 5: The FM score and average word
count of RULER with different models in self-
generated MLT experiment. FM scores are
notably high. Specifically, Mistral-7B-Instruct-
v0.3R recorded the lowest at 76.00, while
Llama-3-8B-InstructR achieved the highest at
87.00.

PM and FM scores to assess the effectiveness of390

RULER.391

5.2 Main Results392

Table 4 presents a detailed comparison of PM and393

FM scores across various LLMs using RULER394

across different Levels. For information on model395

training see Appendix C.2.396

Overall Performance Enhancement. Across all397

evaluated models, we observe a consistent improve-398

ment in both PM and FM scores at all Levels.399

The most significant improvement is observed in400

gemma-7b-itR
1, with PM and FM scores increasing401

by 44.30 and 48.25, respectively. In contrast, the402

least improvement is noted with PM and FM rising403

by 17.50 and 20.95, respectively. These improve-404

ments indicate that RULER effectively enhances405

the model’s ability to generate content of target406

lengths. This suggests that using MLT to control407

output length is more effective than using prompts,408

as the model learns to generate content of corre-409

sponding lengths during fine-tuning. Additionally,410

RULER’s ability to enhance various models demon-411

strates its generalizability and scalability.412

Despite these positive trends, some models, such413

as deepseek-llm-7b-chatR, show a slight decrease414

in scores at Level:2. This is attributed to the in-415

sufficient data for Level:2 in DMLT . The uneven416

distribution of data likely contributes to the slight417

decrease in scores at Level:2.418

Different Level Analysis. At Level:0, all mod-419

els show significant improvements in both PM420

and FM scores. Compared to other Level, each421

1Model name with R means model with RULER

model achieves the highest PM and FM score im- 422

provements at Level:0. This enhancement occurs 423

because the models are capable of generating re- 424

sponses of this length; however, their coarse length 425

control impedes precise adherence to target length 426

requirements. Our method significantly improves 427

the models’ capacity to accurately control content 428

length at Level:0 more accurately, better meeting 429

the target length requirements. 430

Moving to Level:1, while the improvements are 431

not as pronounced as at Level:0, the models still 432

exhibit significant gains in both PM and FM scores. 433

At Level:2, the extent of score improvements varies 434

across models. For instance, Mistral-7B-Instruct- 435

v0.3R and gemma-7b-itR continue to show substan- 436

tial score increases. In contrast, some models, such 437

as Yi-1.5-6B-ChatR, exhibit slight decreases, with 438

reductions of 6.34 and 7.01 in PM and FM scores, 439

respectively. These declines can be attributed to 440

the relatively small number of MLT at Level:2 in 441

DMLT , which might differ from the original train- 442

ing data distribution of these models, leading to 443

slight score reductions. 444

5.3 Do MLTs actually influence the length of 445

the generated content? 446

To further investigate the effectiveness and scal- 447

ability of MLTs, we designed two additional ex- 448

periments: multi MLT generation experiment and 449

self-generated MLT experiment. 450

Multi MLT Generation Experiment. To further 451

validate the efficacy and robustness of RULER, we 452

assess its ability to control response length. We 453

randomly sample 200 entries from Arena-Hard- 454

Auto (Li et al., 2024a) and subject each to all target 455
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Model Avg HellaSwag MMLU TruthfulQA Winogrande

Llama-3-8B-Instruct 66.95 78.84 65.77 51.66 71.51
+ RULER 62.85 77.40 52.86 52.55 68.59

deepseek-llm-7b-chat 62.29 79.65 51.35 47.92 70.24
+ RULER 61.80 80.50 50.12 47.34 69.22

Yi-1.5-6B-Chat 66.43 79.12 62.69 52.49 71.43
+ RULER 63.47 76.89 57.86 51.72 67.40

Qwen1.5-7B-Chat 64.52 78.67 60.56 53.58 65.27
+ RULER 61.27 74.79 54.34 50.19 65.75

Table 6: The results of 4 models with RULER in HellaSwag, MMLU, TruthfulQA and Winogrande benchmarks.

lengths (Table 1), culminating in 1,800 entries at456

last. Subsequently, we calculate the FM scores for457

each target length, using the original model as a458

baseline.459

The results presented in Table 13 highlight460

the enhancements in model performance due to461

RULER. The FM scores achieved by RULER462

generally surpass those of the baseline models.463

Notably, even the well-performing Llama-3-8B-464

Instruct shows significant improvements. However,465

when the target length is 700, RULER shows a de-466

cline in FM if the baseline model already achieves467

a certain score. In contrast, RULER enhances per-468

formance if the baseline model is underperforming.469

This phenomenon is likely due to an imbalance470

in the DMLT , where responses of 700 words are471

infrequent and differ from the fine-tuning data of472

the baseline, potentially undermining performance.473

Overall, RULER significantly improves model per-474

formance.475

Self-generated MLT Experiment. To validate476

RULER in generating MLT and responses under a477

non-TLG scenario, we use the Arena-Hard-Auto478

dataset without providing MLTs, thereby necessitat-479

ing autonomous response generation by the model.480

We evaluate performance by cataloging the types481

and proportions of generated MLTs (Figure 4) and482

evaluating response length using FM score at the483

target lengths corresponding to the MLTs (Table 5).484

Models show a preference for producing re-485

sponses with target lengths of 150 and 300. This486

inclination is likely attributable to the complex na-487

ture of the queries in the Arena-Hard-Auto, which488

require longer responses for problem resolution. In489

the non-TLG scenario, the FM scores are notably490

high, with the Mistral-7B-Instruct-v0.3R record-491

ing the lowest at 76.00 and Llama-3-8B-InstructR492

achieving the highest at 87.00. The average word493

count across all models approximates 250 words.494

5.4 Evaluation RULER on Other Tasks 495

To evaluate the impact of RULER on other tasks, 496

we conduct experiments utilizing four benchmark 497

datasets: HellaSwag (Zellers et al., 2019), MMLU 498

(Hendrycks et al., 2021), TruthfulQA (Lin et al., 499

2022), and Winogrande (Sakaguchi et al., 2019). 500

These benchmarks provide a comprehensive assess- 501

ment across different task types. Further details 502

about the experiments on the experiment can be 503

found in Appendix C.4. 504

Table 6 illustrates that RULER marginally re- 505

duces performance on several tasks. Specifically, 506

the MMLU dataset scores decline by 12.91 for 507

Llama-3-8B-Instruct and 6.22 for Qwen1.5-7B- 508

Chat, while other score changes remain within 509

five points. These variations are considered ac- 510

ceptable because dataset DMLT primarily focuses 511

on response length, without stringent criteria for 512

data quality and distribution, leading to score fluc- 513

tuations. We contend these fluctuations could be 514

minimized or eliminated with consideration of data 515

quality. 516

6 Conclusion 517

This study initially investigate the instruction fol- 518

lowing abilities of LLMs and introduces Target 519

Length Generation Task (TLG). Additionally, we 520

propose RULER, a novel and model-angnostic 521

method that controls generated length for LLMs. 522

RULER utilizes the MLT and end-to-end training to 523

enhance model performance. Experimental results 524

demonstrate that substantial improvements in PM 525

and FM scores across various models. Moreover, 526

two additional experiments are conducted to further 527

validate the efficacy of the proposed method. Fi- 528

nally, we assess performance across four different 529

benchmarks to demonstrate its superiority. 530
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Limitations531

With the emergence of large language models532

(LLMs), an increasing number of applications are533

now utilizing LLMs. A particularly interesting534

aspect is the instruction-following capabilities of535

LLMs. In this paper, we analyze the capabilities536

of LLMs solely from the perspective of controlling537

generated length and propose a solution through538

RULER. Instructions, which vary widely and repre-539

sent a real-life scenario or application. We believe540

addressing the challenges or solving widespread541

issues across various instructions is crucial. We em-542

ploy meta token to construct RULER and argue that543

meta tokens offer more robust control over models544

than prompts do. Exploring how to develop and545

utilize models effectively with the help of tokens is546

a profoundly important question.547

Ethical Statements548

This study concentrates on managing the output549

length of Large Language Models (LLMs). While550

our primary focus is on the length of generated551

content, we have not assessed the potential for pro-552

ducing toxic content. The research does not involve553

human participants, nor does it handle personal or554

sensitive information. We have used only open-555

source or suitably licensed resources, thereby com-556

plying with relevant standards. Additionally, all557

training data employed are open-source, ensuring558

the exclusion of any private or sensitive informa-559

tion.560
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A Target Length Generation Task Deatils832

In this section, we present the experimental details of the Target Length Generation (TLG).833

A.1 TLG Dataset834

Dataset constructed for the TLG, totaling 2,000 entries.835

TLG Dataset

{
"id":"0"
"Instruction":"How can I generate an AI model that can classify articles of clothing as shorts,

skirts, or pants based on their descriptions?",
"TargetLength":"50"

}
[...]
{

"id":"1999"
"Instruction":"You will be given several pieces of information about someone, and you will

have to answer a question based on the information given.\nJohn is taller than Bill. Mary is shorter
than John. Question: Who is the tallest person?",

"TargetLength":"30"
}

836

A.2 Models & Prompt Templates837

In this appendix, we list the models in the TLG, including their fullname, params, context length and838

vocab size. All models are downloaderd from Huggingface2 and inference is executed using vllm (Kwon839

et al., 2023).840

Model Model Full Name Params Context Length Vocab Size

Mistral Mistral-7B-Instruct-v0.3 7B 32,768 32,768

Gemma
gemma-2b-it 2B 8,192 256,000
gemma-7b-it 7B 8,192 256,000

Llama3
Meta-Llama-3-8B-Instruct 8B 8,192 128,256
Meta-Llama-3-70B-Instruct 70B 8,192 128,256

InternLM2
InternLM2-Chat-7B 7B 32,768 92,544
InternLM2-Chat-20B 20B 32,768 92,544

DeepSeek-LLM
deepseek-llm-7b-chat 7B 4,096 102,400
deepseek-llm-67b-chat 67B 4,096 102,400

Yi-1.5
Yi-1.5-6B-Chat 6B 4,096 64,000
Yi-1.5-9B-Chat 9B 4,096 64,000
Yi-1.5-34B-Chat 34B 4,096 64,000

Qwen1.5

Qwen1.5-7B-Chat 7B 32,768 151,936
Qwen1.5-14B-Chat 14B 32,768 151,936
Qwen1.5-32B-Chat 32B 32,768 151,936
Qwen1.5-72B-Chat 72B 32,768 151,936

Table 7: All models used in TLG

2https://huggingface.co/
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Model Prompt Template Eos Tokens

Mistral <s>[INST] {Instruction} [/INST] </s>

Gemma
<bos><start_of_turn>user\n{Instruction}

<eos>
<end_of_turn>\n<start_of_turn>model\n

Llama3
<|begin_of_text|><|start_header_id|>user

<|end_of_text|>,<|eot_id|><|end_header_id|>\n\n{Instruction}<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>\n\n

InternLM2
<s><|im_start|>user\n{Instruction}

</s>, <|im_end|>
<|im_end|>\n<|im_start|>assistant\n

DeepSeek-LLM
<|begin_of_sentence|>User: {Instruction}

<|end_of_sentence|>
\n\nAssistant:

Yi-1.5
<|im_start|>user\n{Instruction}<|im_end|>

<|im_end|>,<|endoftext|>
\n<|im_start|>assistant\n

Qwen1.5
<|im_start|>system\nYou are a helpful assistant.

<|im_end|>, <|endoftext|><|im_end|>\n<|im_start|>user\n{Instruction}
<|im_end|>\n<|im_start|>assistant\n

Table 8: Prompt templates and Eos tokens for all models used in TLG.

A.3 Results on Different Target Length 841

Here, we present the FM and PM scores of the models at all target lengths. 842

A.3.1 Level:0 843

The PM and FM scores for each model at Level:0 are shown in Table 9. 844

Model Params
Level:0

10 30 50 80

PM FM PM FM PM FM PM FM

Mistral 7B 30.73 30.73 18.60 18.60 16.87 16.87 15.45 28.64

Gemma
2B 21.56 21.56 30.23 30.23 20.88 20.88 11.36 20.45
7B 12.39 12.39 18.14 18.14 18.88 18.88 12.27 25.91

Llama3
8B 45.41 45.41 35.35 35.35 33.73 33.73 24.09 46.36

70B 60.55 60.55 66.05 66.05 61.45 61.45 46.82 70.45

InternLM2
7B 17.89 17.89 6.98 6.98 1.20 1.20 1.36 3.64

20B 20.64 20.64 8.84 8.84 2.81 2.81 4.55 8.18

DeepSeek-LLM
7B 58.26 58.26 25.12 25.12 17.67 17.67 13.18 26.36

67B 46.79 46.79 20.47 20.47 22.09 22.09 19.09 32.73

Yi-1.5
6B 39.91 39.91 23.72 23.72 20.08 20.08 10.91 20.45
9B 47.71 47.71 23.72 23.72 17.27 17.27 13.64 29.55

34B 45.41 45.41 27.44 27.44 20.48 20.48 23.18 42.73

Qwen1.5

7B 31.19 31.19 25.58 25.58 22.89 22.89 17.73 30.45
14B 45.87 45.87 28.84 28.84 26.51 26.51 12.27 25.45
32B 46.79 46.79 33.95 33.95 29.32 29.32 20.91 35.91
72B 39.45 39.45 41.86 41.86 32.53 32.53 29.09 45.91

Table 9: Results of different LLMs of TLG at Level:0. The best-performing model in each target length is in-bold,
and the second best is underlined.

A.3.2 Level:1 845

The PM and FM scores for each model at Level:1 are shown in Table 10. 846

13



Model Params
Level:1

150 300 500

PM FM PM FM PM FM

Mistral 7B 17.86 41.84 14.77 70.04 17.94 30.94

Gemma
2B 17.35 32.65 7.17 33.33 2.69 7.17
7B 18.88 42.35 12.24 51.90 4.93 13.00

Llama3
8B 38.27 70.92 27.00 78.90 25.11 47.09

70B 55.10 85.71 22.36 88.61 35.43 59.64

InternLM2
7B 9.18 20.92 5.91 37.55 11.21 22.42

20B 9.69 22.96 9.28 45.99 13.90 32.29

DeepSeek-LLM
7B 15.31 37.24 18.14 60.76 19.28 33.18

67B 9.18 34.69 19.83 71.73 21.08 39.01

Yi-1.5
6B 18.88 46.94 12.66 62.45 18.39 35.87
9B 12.76 33.16 12.66 53.59 26.46 44.39

34B 25.51 58.67 24.05 78.48 28.70 57.40

Qwen1.5

7B 9.69 29.59 7.17 61.60 26.01 44.39
14B 5.61 16.84 10.97 56.12 37.67 54.71
32B 20.92 43.37 14.77 53.59 31.39 50.22
72B 13.27 35.20 12.66 64.98 28.70 46.19

Table 10: Results of different LLMs of TLG at Level:1. The best-performing model in each target length is in-bold,
and the second best is underlined.

A.3.3 Level:2847

The PM and FM scores for each model at Level:2 are shown in Table 11.848

Model Params
Level:1

150 300

PM FM PM FM

Mistral 7B 3.04 6.96 4.25 4.25

Gemma
2B 0.00 0.00 0.47 0.47
7B 0.87 0.87 0.00 0.00

Llama3
8B 16.09 21.74 20.28 20.28

70B 24.35 33.48 49.53 49.53

InternLM2
7B 18.70 23.91 20.75 20.75

20B 17.39 22.61 17.45 17.45

DeepSeek-LLM
7B 9.13 13.48 12.74 12.74

67B 9.13 13.91 9.91 9.91

Yi-1.5
6B 12.61 16.96 24.06 24.06
9B 22.17 31.74 26.89 26.89

34B 22.17 30.87 20.28 20.28

Qwen1.5

7B 12.17 17.83 5.66 5.66
14B 15.22 21.30 6.60 6.60
32B 23.91 31.30 18.87 18.87
72B 6.09 10.43 1.42 1.42

Table 11: Results of different LLMs of TLG at Level:2. The best-performing model in each target length is in-bold,
and the second best is underlined.
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B DMLT Data Creation 849

Algorithm 1 DMLT Data Creation

Require: Word count function L(·), meta length tokens MLTs = {MLT0,MLT1, · · · }
Input: Initial dataset D
Output: DMLT

1: DMLT ← {}
2: for each tuple (x, y) in D do
3: mlt← None
4: for each MLT in MLTs do
5: if L(y) > lbMLT and L(y) ≤ ubMLT then
6: mlt←MLT
7: break
8: end if
9: end for

10: if mlt is not None then
11: DMLT ← DMLT ∪ {(x,mlt, y)}
12: end if
13: end for
14: return DMLT

C Experiments Details 850

C.1 MLT in Datasets 851

To obtain data with varying response lengths for composingDMLT , particularly those responses exceeding 852

500, we integrateg data from OpenHermes2.5 (Teknium, 2023), LongForm (Köksal et al., 2023) and 853

ELI5 (Fan et al., 2019). We calculate the word count for each response in every dataset, allowing us to 854

statistically analyze the MLT distribution, shown in Table 12. 855

MLT OpenHermes2.5 LongForm ELI5
(Teknium, 2023) (Köksal et al., 2023) (Fan et al., 2019)

[MLT:10] 28,552 586 3,280
[MLT:30] 16,860 1,428 14,143
[MLT:50] 18,867 1,236 17,597
[MLT:80] 18,014 852 15,926

[MLT:150] 37,515 1,037 19,103
[MLT:300] 7,526 252 2,555
[MLT:500] 1,495 140 682

[MLT:700] 193 101 203
[MLT:800] 1,809 2,465 3,808

Table 12: MLT distribution in each dataset. The OpenHermes2.5 excludes the data utilized in TLG. The LongForm
and ELI5 employs its training, validation, and test sets simultaneously. When multiple answers are available in the
dataset, the longest answer is selected as the final response.

C.2 More Details of Training 856

More details of training. We use 4*A100 with 80GB Nvidia GPUs to train the models. The training 857

utilizes both bf16 and tensor tf32 precision formats. The per-device training batch size is set to 4, with 858

gradient accumulation is 8 steps. A cosine learning rate scheduler is applied, starting with an initial 859
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learning rate of 2e-5 and a warmup ratio of 0.05. All models are trained for 3 epochs. Additionally, log is860

set to print every 5 steps.861

Loss. We document the changes in training loss for all models, as shown in Figure 5.862
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Figure 5: Training loss for models.

C.3 Multi MLT generation experiment863

Here is the results in multi MLT generation experiment.864

Model FM of Different Target Length Avg FM
10 30 50 80 150 300 500 700 >800

Mistral-7B-Instruct-v0.3 0.5 0.0 0.5 2.0 18.5 50.5 20.5 3.0 2.5 10.89
+RULER 73.0 73.0 71.5 76.0 75.5 71.5 48.0 33.0 58.5 64.44

gemma-7b-it 13.0 17.0 15.5 26.0 54.5 76.5 17.5 0.0 0.0 24.44
+RULER 84.0 79.5 62.5 69.0 82.5 74.0 52.0 37.5 62.0 67.00

Llama-3-8B-Instruct 23.5 18.0 12.5 28.0 50.5 76.5 57.0 25.5 30.5 35.78
+RULER 75.5 81.0 68.0 78.0 85.5 85.5 56.5 16.5 49.5 66.22

deepseek-llm-7b-chat 36.5 16.0 12.5 17.5 23.5 60.5 36.5 16.0 22.5 26.83
+RULER 64.0 60.0 57.0 69.0 80.5 82.0 26.0 3.5 32.5 52.72

Yi-1.5-6B-Chat 26.5 16.5 14.5 14.5 18.5 42.5 35.0 33.5 28.5 25.56
+RULER 74.5 63.5 47.5 71.5 74.5 84.5 50.0 19.0 28.5 57.06

Qwen1.5-7B-Chat 13.5 17.0 9.5 16.0 6.5 51.0 57.5 22.5 4.5 22.00
+RULER 70.0 65.0 49.5 66.5 77.0 79.5 38.5 13.0 44.0 55.89

Table 13: Results in multi MLT generation experiment. Generally, the FM scores obtained via RULER surpass those
of the baseline models.

C.4 More Details of Other Tasks865

We tested the RULERon four benchmarks (HellaSwag (Zellers et al., 2019), MMLU (Hendrycks et al.,866

2021), TruthfulQA (Lin et al., 2022), and Winogrande (Sakaguchi et al., 2019)) to examine whether the867

performance of the fine-tuned models varies on different tasks. We employ a 10-shot setting in Hellaswag,868

5-shot setting in MMLU, 0-shot setting in TruthfulQA and 5-shot setting in Winogrande.869
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