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FairSync: Ensuring Amortized Group Exposure in
Distributed Recommendation Retrieval

Anonymous Author(s)

ABSTRACT
Driven by considerations of fairness, business, and balanced de-

velopment needs, the recommender system (RS) often necessitates

ensuring that certain groups have a minimum level of exposure

within a period of time. For example, RS platforms often have the

demand to ensure adequate exposure for new providers or specific

categories of items according to their needs. Modern industry RS

usually adopts a two-stage pipeline: stage-1 (retrieval stage) re-

trieves hundreds of candidates from millions of items distributed

across various servers, and stage-2 (ranking stage) focuses on pre-

senting a small-size but accurate selection from items chosen in

stage-1. Existing efforts for ensuring amortized group exposures fo-

cus on stage-2, however, stage-1 is also critical for the task. Without

a high-quality set of candidates, the stage-2 ranker cannot ensure

the required exposure for the selected groups. Previous fairness-

aware works designed for stage-2 typically require accessing and

traversing of all items. In stage-1, however, millions of items are

distributively stored in servers, making it infeasible to traverse

all of them. How to ensure the global amortized group exposures

in the distributed retrieval process is a challenging question. To

address this issue, we introduce a model named FairSync, which

transforms the problem into a constrained distributed optimization

problem. Specifically, FairSync resolves the issue by moving it to

the dual space, where a central node aggregates historical fairness

data into a vector and distributes it to all servers. In theory, by

utilizing both local and distributed searching techniques, we can

ensure the necessary global amortized exposures. To trade-off the

efficiency and retrieval accuracy, the gradient descent technique is

used to periodically update the parameter of the dual vector. The

experiment results on two public recommender retrieval datasets

showcased that FairSync outperformed all the baselines, achieving

the desired minimum level of exposures while maintaining a high

level of retrieval accuracy.
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(b) Two stage performances

Figure 1: (a) The two stage pipelines of recommender system,
including retrieval (stage-1) and ranking (stage-2). (b) Sim-
ulations depicting the changes for the minimum exposures
across two stages.

1 INTRODUCTION
In recent times, the need for fair recommender systems (RS) has

gained prominence in industrial requirements [22, 23, 35]. Among

these requirements, RS platform has the demands of guarantee-

ing that specific groups achieve a minimum level of exposure to

items within a defined time period, aligning with the perspective

of amortized group max-min fairness (MMF) [3, 19, 25, 28, 40, 43].

For instance, certain studies propose to ensure minimum item ex-

posures for new providers [5, 31, 40, 41] for attracting providers to

join, while others focus on enhancing the visibility of specific item

categories [47, 48] for promoting certain festivals. Such “minimum

wage policy” [34] significantly contributes to the enhancement of

RS, fostering the creation of a more equitable and robust ecosystem.

In modern RS, two-stage pipelines have been widely adopted, as

shown in Figure 1 (a). The primary objective of stage-1 (retrieval)

is to efficiently generate a small set of candidates from millions of

items in a distributedmanner withinmilliseconds [6, 9, 21, 26] while

stage-2 (ranking) more accurately deals with the candidates selected

in stage-1 and generates the final recommendations (usually single-

digit items) [40, 48]. Regarding ensuring minimum group exposures

in RS, most existing studies [5, 10, 29, 31, 39, 40, 48] primarily

concentrated on stage-2.

Existing studies revealed that the fairness task in stage-2 can

be compromised if stage-1 failed to retrieve a sufficient number of

items [38]. We also conduct a simulation to examine how the mini-

mum exposure in stage-1 affects the minimum exposure in stage-2.

Specifically, we conduct a simulation using Amazon
1
dataset to as-

sess the minimum exposure of groups across two stages. In stage-1,

we leverage the YoutubeDNN [9] model and employ a rule-based

method to regulate the retrieved exposures of item categories. In

stage-2, we implement an oracle ranking model, ensuring the at-

tainment of the highest minimum exposure of groups. The x-axis

represents the minimum exposures of item categories in stage-1,

1
http://jmcauley.ucsd.edu/data/amazon/

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
http://jmcauley.ucsd.edu/data/amazon/
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while the y-axis corresponds to the exposures of these categories

in stage-2. The results reported in Figure 1 (b) indicate that there

exists a robust positive correlation between the minimum group

exposure of the two stages. In the simpler terms, if stage-1 is unable

to retrieve required item categories effectively, it will also pose

challenges for stage-2 in ensuring the exposure of certain groups.

Though critically important, existing approaches designed for

stage-2 [10, 29, 31, 39, 40] cannot be directly applied to stage-1

because they ensure the amortized group exposures by traversing

all items and adjusting exposures through aggregating information.

During stage-1, however, traversing all items (usually millions of

items) is infeasible because (1) these items are distributively stored

at different servers, and (2) accessing millions of items causes sub-

stantial computational cost. While some heuristic approaches have

employed strict rules or adjusted group weights, they still lack the

capacity to effectively address the challenge.

In this paper, we introduce a novel model named FairSync, which

can ensure the minimum amortized group exposure requirements

in the retrieval stage of RS. FairSync converts the problem into a

constrained distributed optimization and addresses the problem by

transferring it to the dual space. In such space, we aggregate past

fairness information into a vector and distribute it to servers. Based

on the vector, each server independently conducts the item retrieval.

Theoretical analysis shows that, even with local and distributive

search, FairSync can still achieve global fairness.

In particular, the RS platform first sets a target to ensure that ev-

ery group attains a minimum level of exposure. Then we approach

the problem by formulating it as a distributed resource allocation

problem [2, 40], with the constraint of required exposures. Subse-

quently, we can transform the constrained optimization problem

into an unconstrained dual problem. Then, a constructed dual vec-

tor, stored the past fairness information, is combined with user

embeddings to form a query vector. Each item, along with its em-

beddings, was concated with the group embedding to form the new

item embeddings which will be distributed across servers. After

that, each server conducts KNN search for identifying candidate

items within milliseconds by using the dense retrieval [44] archi-

tecture. Finally, the outcomes are aggregated into a set of candidate

items for stage-2. As for the learning procedure, we employ the

gradient descent method [18] to update the parameters of dual

vector periodically to trade-off the efficiency and effectiveness.

We summarize the major contributions of this paper as follows:

(1) We emphasize the critical importance of incorporating the

assurance of minimum exposure for specific groups into the dis-

tributed stage-1 (retrieval) of RS.

(2) We introduce a model named FairSync which is tailored to

meet the distributed, efficient, and online demands of the prevalent

dense retrieval architecture in stage-1 of RS.

(3) The experimental results on two publicly available large-scale

recommendation datasets clearly demonstrate that FairSync out-

performs the baseline models, attaining the desired minimum level

of exposures while preserving a high level of retrieval accuracy.

2 RELATEDWORK
Fairness has emerged as a prominent research theme within rec-

ommender systems. In this realm, two predominant aspects are

often explored: individual fairness [24, 27], which concentrates on

equitable treatment for individuals, and group fairness, which cate-

gorizes items into various groups such as providers [5, 29, 31, 39–

41], and item categories [12, 38]. In group fairness, there are usu-

ally two criteria. One is egalitarian proposes [12, 27, 29, 38, 39],

which aims to equalize the outcome of different groups, another is

Rawl’s principle [19], which aims to improve the utility of worst-off

groups [5, 31, 40, 41]. In real application of RS, amortized fair-

ness [4, 5, 31, 40, 41] is more realistic, which achieves fairness over

a period of time, rather than enforcing it strictly on an a single

ranking list. In our research, we mainly focused on the amortized

group max-min fairness, which is used to support new providers

or enhance the visibility of specific item categories.

In RS, there are many methods proposed to alleviate amortized

group MMF. FairRec [31] and its extension FairRec+ [5] proposed

a offline recommender model to guarantee equal frequency for

all items in a series of ranking lists. Yang and Ai [42] proposed a

marginal optimizing approach to conduct amortized MMF in the

learning-to-rank process. TFROM [39] and CP-Fair [29] proposed a

Linear Programming (LP)-based method to ensure the group fair-

ness, see also [3, 10, 25, 43]. P-MMF [40], LTP-MMF [41] proposed

a online mirror gradient descent to improve worst-off provider’s

exposures in the dual space. Nonetheless, all of these proposals have

been introduced within the context of stage-2 scenarios, making

them impractical for application in stage-1 due to their substantial

computational overhead.

In large RS, the significance of stage-1 (retrieval) cannot be

overstated, as the performance of stage-2 is heavily reliant on

it [6, 20, 21, 38, 45]. There are also some work proposed inspiring ap-

proaches to solve fairness issue in the stage-1. Wang and Joachims

[38] proposed a uncertainty quantification approach to control the

threshold of each retrieval channels in one retrieval process. Hao

et al. [14], Rastegarpanah et al. [32] proposed a fairness-related ma-

trix factorization method to adjust the weight the retrieval model.

In resource allocation, Balseiro et al. [2], Cheung et al. [8] proposed

a mirror-descent method to solve in the dual space. However, these

methods either fall in addressing amortized group max-min fair-

ness well or are unsuitable for implementation within the retrieval

systems that require distributive, efficient, and online capabilities.

3 PROBLEM FORMULATION
In RS, let U,I be the set of users and items and each item 𝑖 ∈ I
is associated to a unique group 𝑔 ∈ G. The set of items associated

with a specific group 𝑔 is denoted as I𝑔 . When a specific user𝑢 ∈ U
accesses the retrieval system, the system will retrieve items from

distributed servers and aggregate them into a list of candidate items

with a predefined size of 𝐾 , denoted by 𝐿𝐾 (𝑢) ∈ I𝐾 , which is then

prepared for stage-2 for detailed ranking.

In real-world applications, the users arrive at the RS sequentially.

Assume that at time 𝑡 , user 𝑢𝑡 arrives. The RS aims to task with

ensuring that the exposure of a specific group 𝑔 remains at or

exceeds a threshold of𝑚𝑔 throughout the entire time horizon from

𝑡 = 1 to 𝑇 , all the while optimizing to retain the enough relevant

items within a single candidate retrieval list. In the same time, we

require an online solution, where at time step 𝑡 , the RS responds to

a request from user𝑢𝑡 by providing a candidate list without waiting

2
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Figure 2: FairSync Framework. Sub-figure (a) illustrates an example to show the intuitive example of how FairSync works.
Sub-figure (b) illustrates that the online retrieval process when user 𝑢𝑡 arrives, while sub-figure (c) depicts the offline item
embeddings in the dual space construction process.

for input from a second user 𝑢𝑡+1. An online retrieval algorithm

ℎ produces a real-time decision candidates 𝐿𝐾 (𝑢𝑡 ) based on the

current user 𝑢𝑡 and the previous history H𝑡−1 = {𝑢𝑠 , 𝐿𝐾 (𝑢𝑠 )}𝑡−1𝑠=1
:

𝐿𝐾 (𝑢𝑡 ) = ℎ(𝑢𝑡 | H𝑡−1,M),
whereM = {𝑚𝑔 |𝑔 ∈ G} is the factor set by the platform.

State-of-the-art recommender retrieval models [6, 20, 21, 45] usu-

ally employ the distributive dense retrieval architecture, wherein

an item 𝑖 is represented as an embedding 𝒆𝒊 ∈ 𝑅𝑑 using complex

neural networks, such as transformers [37]. These embeddings are

indexed on each server 𝑆𝑛, 𝑛 ∈ [1, 2, · · · , 𝑀] in a distributed man-

ner, with 𝑑 ∈ 𝑁 +
being the predefined dimension and 𝑀 is the

server number. For the user 𝑢, a simple network is employed to

represent them as an embedding 𝒆𝑢 ∈ 𝑅𝑑 , typically utilizing their

historical browsing information in state-of-the-art systems. The

user-item relevance score 𝑟𝑢,𝑖 is calculated as the distance between

𝒆𝑖 and 𝒆𝑢 locally in each server 𝑆𝑛 . The retrieval model’s objective

is to identify candidate items whose embeddings 𝒆𝑖 are in close

proximity to the embedding of the user 𝒆𝑢 , i.e., finding the highest

possible relevance scores 𝑟𝑢,𝑖 in the candidate list for the stage-2

ranking process.

Generally, the RS will establish the offline index [17] for items

to efficiently search the desired ones from each server. Previous

research [10, 31, 40] focus on ensuring amortized group exposure

M by traversing all items 𝑖 and their corresponding groups𝑔, where

𝑖 ∈ I𝑔 . However, in a distributed dense retrieval architecture, these

methods are no longer suitable.

4 OUR APPROACH
In this section, we will introduce our approach FairSync. To be-

gin with, we will introduce the distributed dense retrieval archi-

tecture of stage-1. Then, we will frame the retrieval process as a

distributed and constrained resource allocation problem and subse-

quently formulate its dual problem. After that, we propose to tackle

this problem in the dual space integrating it with the distributive

dense retrieval architecture and employing the gradient descent [1]

technique to efficiently approach a solution.

4.1 Distributed Dense Retrieval Architecture
In themainstream recommender retrieval architectures, the primary

objective is to identify items whose embeddings 𝒆𝑖 , are in close

proximity to the embedding of the user 𝒆𝑢 distributively. Formally,

the problem can write as:

𝐿𝐾 (𝑢) = argmin

𝐿⊂{1,2,..., | I | }, |𝐿 |=𝑘

∑︁
𝑖∈𝑆𝑛,∀𝑛

𝑑 (𝒆𝑢 , 𝒆𝑖 ), (1)

where 𝐿 is the set of indices of the 𝐾 nearest neighbors, 𝑑 (𝒆𝑢 , 𝒆𝑖 )
is the distance between embedding 𝒆𝑢 , 𝒆𝑖 , 𝑖-th the commonly used

distance metric being the dot-product locally on each server, i.e.

𝑑 (𝒆𝑢 , 𝒆𝑖 ) = −𝑒⊤𝑢 𝒆𝑖 ,

and the 𝒆𝑢 and 𝒆𝑖 are calculated by a complex model, such as Deep

Neural Network [9], Recurrent Neural Network [16], Capsule Net-

work [21], i.e.

𝒆𝑢 =𝑚𝑢 (𝑢), 𝒆𝑖 =𝑚
𝑖 (𝑖),

where𝑚𝑢 (·) and𝑚𝑖 (·) are two embedding extraction networks.

Typically, the item embeddings 𝒆𝑖 are pre-calculated and dis-

tributively indexed on servers [17], whereas the user embedding 𝒆𝑢
requires online inference using complex recommendation models,

see [6, 9, 21, 45]. In real application [6], Equation (1) is computed

by performing KNN search in the embedding space efficiently.

4.2 Dual Space of Retrieval
After the platform gives the minimum exposure requirement for

each group, i.e., requiring the exposure of a specific group 𝑔 to

remain at or exceed a threshold of𝑚𝑔 throughout the entire time

horizon from 𝑡 = 1 to 𝑇 . Therefore, we write the equation (1) as a

distributed resource allocation problem:

max

𝑥𝑢𝑡 ,𝑖

𝑇∑︁
𝑡=1

∑︁
𝑖∈𝑆𝑛,∀𝑛

𝑥𝑢𝑡 ,𝑖𝑟𝑢𝑡 ,𝑖

s.t.

∑︁
𝑖∈𝑆𝑛,∀𝑛

𝑥𝑢𝑡 ,𝑖 = 𝐾, ∀𝑡 ∈ [1, 2, . . . ,𝑇 ]

𝑟𝑢𝑡 ,𝑖 = −𝑑 (𝒆𝑢𝑡 , 𝒆𝑖 )

𝑒𝑔 =

𝑇∑︁
𝑡=1

∑︁
𝑖∈I𝑔

𝑥𝑢𝑡 ,𝑖 , ∀𝑔 ∈ G

𝑒𝑔 ≥ 𝑚𝑔, ∀𝑔 ∈ G
𝑥𝑢𝑡 ,𝑖 ∈ {0, 1},∀𝑡 ∈ [1, 2, . . . ,𝑇 ], 𝑖 ∈ I

(2)

3
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where 𝑒𝑔 can be seen as the total number of exposed items of group

𝑔, accumulated over the period 1 to 𝑇 , 𝑥𝑢𝑡 ,𝑖 ∈ {0, 1} is the decision
vector for user𝑢𝑡 . Specifically, for each item 𝑖 , 𝑥𝑢𝑡 ,𝑖 = 1 if it is added

to the candidate list 𝐿𝐾 (𝑢𝑡 ), otherwise 𝑥𝑢𝑡 ,𝑖 = 0.

Theorem 1. The dual problem objective𝑊 Dual of Equation (2)

can be write as

min

𝝁


𝑇∑︁
𝑡=1

𝐾∑︁
𝑘=1

(𝑟𝑢𝑡 ,𝑖 −𝑨𝝁)[𝑘 ] +
∑︁
𝑔∈G

𝑚𝑔𝝁𝑔 +max

𝑔
{𝝁𝑔}(𝑇𝐾 −

∑︁
𝑔∈G

𝑚𝑔)
 ,

(3)

where we can have a dual variable 𝝁 ∈ R | G | , A ∈ R | I |× |G | is the
item-group adjacent matrix, and 𝐴𝑖𝑔 = 1 indicates item 𝑖 ∈ I𝑔 , and 0
otherwise. Moreover, the dual problem is a strong-dual problem, that
is the optimal value of Equation (3) is the same as Equation (2).

Remark 1 (Distributed solution in dual space). After the
transformation of the original problem (Equation (1)) into its dual
form (Equation (1)), we can convert the problem into an unconstrained
optimization problem, simplifying the optimization process signifi-
cantly. We can also observe that different items are independent with
each other. Therefore, the problem can be effectively solved in a dis-
tributed manner. The value 𝝁 can be regarded as the accumulated
exposure information and be distributed to each server during the
retrieval process.

Remark 2 (Small computational costs). The original problem
(Equation (1)) is computationally intensive due to its nature as a
constraint integral linear problem, and it involves a vast variable
space of size 𝑇 × |I| given that the retrieval process may encompass
millions of items. However, in the dual problem (2), we observe that
the variable size has been significantly reduced to |G| ≪ 𝑇 × |I|, and
thanks to the sparsity of A, the computation of A𝝁 is highly efficient.
This operation serves to project the variable 𝝁 from the group space
into the item spaces.

The detailed proof can be seen in the Appendix A.2.

4.3 FairSync Algorithm
The Figure 2 shows the framework of the FairSync. FairSync will

retrieve items from the transformed dual space. Next, we will illus-

trate the inference phase and online learning phase, respectively.

4.3.1 Inference phase. we will provide illustrative examples to

demonstrate how FairSync works and present a detailed inference

workflow of FairSync.

Firstly, Figure 2 (a) provides an illustrative example to demon-

strate the functioning of the FairSync algorithm in an intuitive

manner. In this example, we simplify the problem to retrieving two

items from a corpus containing four items (depicted as circles in the

figure), each assigned to different groups, represented by distinct

colors in the figure. A user 𝑢𝑡 arrives at the recommender system,

and this user is represented as the red pentagram. The system’s

requirement is to ensure that there is at least one exposure of each

group. From the original space, the user and items are represented

as the embedding 𝒆𝑢 , 𝒆𝑖 in Section 4.1. In such space, the retrieval

system will find the top-2 closest items, i.e. orange items to users.

However, in the dual space, FairSync will project the user and item

Algorithm 1: FairSync Algorithm

Input: User arriving order {𝑢𝑡 }𝑇𝑡=1, item corpus I, candidate size
𝐾 , batch size 𝐵, optimizer Opt with learning rate 𝜂, trained

user item embedding network𝑚𝑢 (·),𝑚𝑖 (·) item-group

adjacent matrix A, minimum group exposure requirement

{𝑚𝑔}𝑔∈G .
Output: The candidate lists for every user {𝐿𝐾 (𝑢𝑡 )}𝑇𝑡=1
1: Calculate items embeddings {𝒆𝑖 =𝑚𝑖 (𝑖),∀𝑖 ∈ I}
2: Re-construct and distributively index the item embeddings

{𝒉𝑖 = 𝒆𝑖 ∥𝑨𝑖 ,∀𝑖 ∈ I} utilizing the Equation (5).

3: Initialize update count 𝑏 = 0.

4: Initialize the gradient buffer B𝑠 = {}.
5: for 𝑡 = 1, · · · ,𝑇 do
6: Initialize dual solution 𝝁 = 0

7: User 𝑢𝑡 arrives

8: Calculate user embedding 𝒆𝑢𝑡 =𝑚
𝑢 (𝑢𝑡 )

9: Re-construct query embeddings 𝒒𝑢𝑡 = 𝒆𝑢𝑡 ∥𝝁 utilizing the

Equation (5)

10: // KNN Retrieval: (Equation (4))

11: 𝐿𝐾 (𝑢𝑡 ) = argmin𝑆⊂{1,2,..., | I | }, |𝑆 |=𝑘
∑
𝑖∈𝑆 𝑑

Dual (𝒒𝑢𝑡 ,𝒉𝑖 ),
12: // Compute the sub-gradient:
13: Compute the sub-gradient 𝒔 utilizing the Equation (6)

14: Store the sub-gradient 𝒔 into B𝑠
15: Update count 𝑐 = 𝑐 + 1

16: if 𝑐 = 𝐵 // Update per B users then
17: 𝒖 = Opt(𝝁,∑𝒔∈B𝑠 𝒔) (Equation (7))

18: Initialize update count 𝑏 = 0.

19: Initialize the gradient buffer B𝑠 = {}
20: end if
21: end for

embeddings to different points, while ensuring the minimum ex-

posure constraint is satisfied. In the dual space, the dense retrieval

system can efficiently locate the distributed items that meet the

requirements and simultaneously maintain retrieval accuracy.

Formally, from Theorem 1, we can observe that the distance

between the user and item in the dual space transforms to:

𝑑Dual = 𝑑 (𝒆𝑢 , 𝒆𝑖 ) + 𝝁𝑔, 𝑖 ∈ I𝑔 . (4)

Therefore, to better adapt to the dense retrieval architecture

discussed in Section 4.1, we reconstruct user 𝑢𝑡 embeddings to 𝒒𝑢𝑡
and embedding of item 𝑖 to 𝒉𝑖 , where 𝒒𝑢𝑡 and 𝒉𝑖 are defined as

follows:

𝒒𝑢𝑡 = 𝒆𝑢𝑡 ∥ − 𝝁𝑡 , 𝒉𝑖 = 𝒆𝑖 ∥𝑨𝑖 , (5)

where ∥ denotes the concat operator between two vectors and 𝑨𝑖
denotes the 𝑖-th column vector of adjacent matrix in Theorem 1.

Therefore, we have

𝑑Dual = −𝒒⊤𝑢𝑡𝒉𝑖 .
Figure 2 (b) illustrate the inference phase of FairSync in a more

visualized way. Firstly, a user 𝑢𝑡 arrives, then the user embedding

extraction𝑚𝑢 module (any retrieval model) will extract the user

embedding 𝒆𝑢𝑡 . Then, at time 𝑡 , we have a dual vector 𝝁𝑡 to form the

query vector 𝒒𝑢𝑡 (Equation (5)). Then we will utilized the vector 𝒒𝑢𝑡
to utilize k-nearest neighbors (KNN) search on the distributively

indexed item embeddings {𝒉𝑖 ,∀𝑖 ∈ I} in the dual space to retrieve

4
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Table 1: Statistics of the datasets.

Dataset #User #Item #Group #Interaction

Amazon-Book 459,133 313,966 165 8,898,041

Taobao 976,779 1,708,530 1246 85,384,110

a corresponding list of candidate items (Figure 2 (c)).

4.3.2 Online learning phase. In the online learning phase, we aim

to update the dual vector 𝝁𝑡 once in a while.

Specifically, we can see that the sub-gradient 𝒔 ∈ R | G |
, 𝒔 ∈

𝜕𝑊 Dual/𝜕𝝁𝑡 in Equation (3) at time 𝑡 satisfies:

𝒔𝑔 =

{
𝑚𝑔 +

∑
𝑖∈𝐿𝐾 (𝑢𝑡 ) 𝐼 (𝑖 ∈ I𝑔), if 𝑔 ≠ 𝑔∑

𝑖∈𝐿𝐾 (𝑢𝑡 ) 𝐼 (𝑖 ∈ I𝑔) + (𝑇𝐾 −∑
𝑔≠𝑔𝑚𝑔), else,

(6)

where 𝐼 (·) denotes the indicator function and

𝑔 = argmax

𝑔∈G
𝝁𝑔 .

Based on the assumption that user comes to the system ran-

domly [40], we can utilize the sub-gradient 𝒔 to update 𝝁𝑡 . In real

applications, however, updating 𝝁𝑡 at every time step 𝑡 is chal-

lenged by a large number of asynchronous update operations on

different servers, and when the update frequency is too high, it can

lead to excessively long recall times, thereby impacting the user

experience. Therefore, to trade-off the efficiency and effectiveness,

we will update the dual vector 𝝁 each 𝐵 steps.

Specifically, we will store the sub-gradient 𝒔 of each step into a

gradient buffer B𝑠 . For each 𝐵 steps, we will utilized any optimizer

Opt (in this paper, we utilized the well-performing Adam [18]) to

update 𝝁 utilizing the averaged gradient in the buffer, i.e.

𝝁 = Opt(𝝁,
∑︁
𝒔∈B𝑠

𝒔) . (7)

The detailed FairSync algorithm is shown in Algorithm 1.

5 EXPERIMENT
We conducted experiments to demonstrate the effectiveness of the

proposed FairSync. The source code and experiments have been

shared at github
2
.

5.1 Experimental settings
5.1.1 Datasets. Following the practice in Cen et al. [6], the exper-

iments were conducted on one common used publicly available

retrieval datasets and one billion-scale industrial dataset, including:

Amazon-Book3: The subsets (book domains) of Amazon [15]

Product dataset. The item grouping relies on the field “categories”.

Each training sample is truncated at length 20. As a pre-processing

step, we consider groups with fewer than 50 items as a single group,

which we name the “infrequent group”.

Taobao4: collected about 1 million user behaviors data based on

Taobao’s recommender systems [46] during November 25 to De-

cember 03, 2017. The item grouping relies on the field “category ID”.

Each training sample is truncated at length 50. As a pre-processing

2
https://anonymous.4open.science/r/WWW2023-FairSync-72B1

3
http://jmcauley.ucsd.edu/data/amazon/

4
https://tianchi.aliyun.com/dataset/dataDetail?dataId=649&userId=1

step, we consider groups with fewer than 200 items as a single

group, which we name the “infrequent group”.

The statistics of the two datasets are shown in Table 1.

5.1.2 Evaluation. Firstly, we follow the common practice of the

sequential recommendation retrieval model [6, 20, 21] to get the

embedding extraction network𝑚𝑖 (·),𝑚𝑢 (·). We sorted all the in-

teractions in the dataset based on their timestamps and utilized

the initial 80% of the interactions as the training data for network

𝑚𝑖 (·),𝑚𝑢 (·) training. The remaining 20% of interactions were split

into two equal parts, with each 10% portion serving as the validation

and test data, respectively, for evaluation.

As for the evaluation metrics, the performances of the models

were evaluated from two aspects: retrieval accuracy, the minimum

group exposure satisfaction (i.e. performance of fairness). Let 𝑇 be

the test set length and
ˆI𝑢 be the set of items for user 𝑢 in the test

set.

As for the retrieval accuracy, following the practices in [6], we

utilized

• Recall. We adopt per-user average instead of global aver-

age [6, 7]:

Recall@N =
1

𝑇

𝑇∑︁
𝑡=1

|𝐿𝐾 (𝑢𝑡 ) ∩ ˆI𝑢𝑡 |
ˆI𝑢𝑡

.

• Hit Rate. The HR Rate (HR) is a metric that quantifies the

percentage of recommended items that include at least one

item that the user has previously interacted with [6, 7].

HR@N =
1

𝑇

𝑇∑︁
𝑡=1

𝐼 ( |𝐿𝐾 (𝑢𝑡 ) ∩ ˆI𝑢𝑡 | > 0) .

• Normalized Discounted Cumulative Gain. Normalized

Discounted Cumulative Gain (NDCG) is a metric that fac-

tors in the positions of correctly recommended items, pro-

viding a measure that accounts for the item’s relevance and

its position in the recommendation list [6].

NDCG@N =
1

𝑇

𝑇∑︁
𝑡=1

∑︁
𝑖∈𝐿𝐾 (𝑢𝑡 )

𝐼 (𝑖 ∈ 𝐼𝑢𝑡 )
log

2
(pos(𝑖, 𝐿𝐾 (𝑢𝑡 )))

/𝑍𝑡 ,

where pos(𝑖, 𝐿𝐾 (𝑢𝑡 )) is the sorting position of item 𝑖 in

the list 𝐿𝐾 (𝑢𝑡 ), starting from 1 to 𝐾 and 𝑍𝑡 represents a

normalization constant that denotes the ideal discounted

cumulative gain (IDCG@N), which signifies the highest

achievable value for the numerator in the metric at time 𝑡 .

For the minimum group exposure satisfaction, we apply:

• Enough Satisfaction Groups. Enough satisfaction groups

(ESP) aims to estimate whether each candidate generation

policy selects enough items that satisfies the minimum

group exposure requirement, similar to the enough relevant

items (ER) metric in [38]:

ESP =
1

|G|
∑︁
𝑔∈G

𝐼
©­«

𝑇∑︁
𝑡=1

∑︁
𝑖∈𝐿𝐾 (𝑢𝑡 )

𝐼 (𝑖 ∈ I𝑔)
 > 𝑚𝑔

ª®¬
.

5
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Table 2: Performance comparisons between ours and the baselines on Amazon book subset and Taobao. Our objective is to
guarantee that each group possesses a minimum of 200 exposures to fulfill the ESP metric. The ∗means the improvements over
the baseline that can guarantee minimum exposure baselines (K-neighbor and Uncalibrated) are statistical significant (t-tests
and 𝑝-value < 0.05). The bold number indicates that the accuracy value exceeds that of all the baselines. All the numbers in the
table are percentage numbers with “%” omitted.

Base model Fairness model

Amazon-Book dataset Taobao dataset

top-20 top-50 top-20 top-50

Recall NDCG HR ESP Recall NDCG HR ESP Recall NDCG HR ESP Recall NDCG HR ESP

youtubeDNN

regularized-fair 4.52 4.61 10.13 53.94 7.11 5.64 15.55 81.21 3.29 14.85 28.89 58.27 4.97 16.56 39.31 82.83

IPW 4.55 4.64 10.19 45.45 7.16 5.68 15.66 73.94 3.29 14.85 28.89 57.78 4.97 16.56 39.31 82.66

K-neighbor 0.09 0.14 0.29 100.00 0.14 0.17 0.41 100.00 0.15 0.87 1.73 100.00 0.24 1.00 2.51 100.00

Uncalibrated 4.44 4.53 9.96 100.00 7.08 5.62 15.51 100.00 2.99 13.46 26.18 100.00 4.79 15.95 37.87 100.00

FairSync(ours) 4.55∗ 4.64∗ 10.19∗ 100.00 7.16∗ 5.69∗ 15.68∗ 100.00 3.29∗ 14.77
∗

28.74
∗

100.00 4.99∗ 16.56∗ 39.32∗ 100.00

GRU4REC

regularized-fair 3.95 4.01 8.70 46.67 6.35 4.94 13.63 77.58 4.73 18.84 35.63 64.93 6.95 20.43 45.99 83.63

IPW 3.97 4.04 8.76 38.79 6.38 4.97 13.70 63.03 4.73 18.84 35.64 64.69 6.95 20.43 45.99 83.55

K-neighbor 0.09 0.13 0.26 100.00 0.14 0.15 0.41 100.00 0.17 0.79 1.54 100.00 0.24 0.92 2.19 100.00

Uncalibrated 3.90 3.94 8.58 100.00 6.32 4.91 13.55 100.00 4.29 17.08 32.26 100.00 6.69 19.65 44.25 100.00

FairSync(ours) 3.98∗ 4.04∗ 8.77∗ 100.00 6.37
∗ 4.97∗ 13.68

∗
100.00 4.74∗ 18.79

∗
35.52

∗
100.00 6.96∗ 20.54∗ 46.01∗ 100.00

MIND

regularized-fair 6.64 6.58 13.70 41.82 9.64 7.66 19.46 63.64 4.62 18.98 36.15 62.28 6.96 20.70 47.34 79.21

IPW 6.62 6.56 13.67 38.18 9.63 7.63 19.42 58.79 4.62 18.98 36.15 62.28 6.96 20.70 47.34 78.97

K-neighbor 0.10 0.16 0.32 100.00 0.15 0.18 0.40 100.00 0.17 0.94 1.80 100.00 0.26 1.12 2.60 100.00

Uncalibrated 6.45 6.39 13.33 100.00 9.52 7.54 19.20 100.00 4.20 17.23 32.80 100.00 6.69 19.93 45.58 100.00

FairSync(ours) 6.60
∗ 6.60∗ 13.65

∗
100.00 9.65∗ 7.69∗ 19.48∗ 100.00 4.57

∗
18.82

∗
35.86

∗
100.00 6.98∗ 20.76∗ 47.38∗ 100.00

ComiRec-DR

regularized-fair 4.92 5.26 10.99 37.58 7.40 6.20 16.03 61.21 5.51 23.49 42.25 63.24 7.98 24.85 52.77 80.26

IPW 4.91 5.24 10.97 33.33 7.41 6.18 16.03 55.15 5.51 23.49 42.25 63.24 7.98 24.85 52.76 80.26

K-neighbor 0.09 0.14 0.25 100.00 0.14 0.16 0.37 100.00 0.19 1.01 1.85 100.00 0.28 1.18 2.60 100.00

Uncalibrated 4.76 5.10 10.68 100.00 7.30 6.10 15.82 100.00 4.99 21.29 38.30 100.00 7.67 23.92 50.81 100.00

FairSync(ours) 4.92∗ 5.28∗ 11.0∗ 100.00 7.42∗ 6.20∗ 16.08∗ 100.00 5.47
∗

23.35
∗

42.20
∗

100.00 8.07∗ 24.93∗ 52.80∗ 100.00

ComiRec-SA

regularized-fair 5.23 3.78 10.83 49.70 8.09 4.93 16.47 75.76 5.49 23.77 41.61 63.88 7.76 24.98 51.28 80.10

IPW 5.25 3.79 10.85 44.85 8.10 4.93 16.46 70.91 5.49 23.77 41.62 63.80 7.76 24.99 51.28 80.10

K-neighbor 0.11 0.14 0.29 100.00 0.15 0.75 1.92 100.00 0.17 0.90 1.61 100.00 0.25 1.10 2.39 100.00

Uncalibrated 5.12 3.70 10.59 100.00 8.01 4.88 16.30 100.00 4.97 21.53 37.65 100.00 7.47 24.06 49.36 100.00

FairSync(ours) 5.26∗ 3.80∗ 10.81
∗

100.00 8.12∗ 4.93∗ 16.47∗ 100.00 5.45
∗

23.66
∗

41.36
∗

100.00 7.76∗ 24.99∗ 51.33∗ 100.00
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Figure 3: The accuracy curve (Recall, NDCG, and HR) of FairSync (ours) and the best baseline Uncalibrated under different
minimum exposure threshold𝑚𝑔. The experiments were conducted based on the best retrieval base model ComiRec-DR.

5.1.3 Baselines and Base Models. In this section, we mainly intro-

duce the controllable retrieval baselines and base models used for

extraction user and item embeddings.

For the distributed retrieval baseline, we mainly choose four

heuristic methods: regularized-fair (detailed pseudo-code in Ap-

pendix B): at each time step 𝑡 , a regularized-based dual variable 𝝁𝑟 is
replaced with the dual variable 𝝁 of FairSync, which aims to reduce

the exposure gaps between the all items and the worst-off item.

IPW [38]: selected the group exposure as item’s inverse propen-

sity weighted (IPW) during the retrieval process. However, the

aforementioned two baselines are not able to ensure the required

minimum exposures of groups.

The next baselines are the two heuristic methods used to ensure

that the required minimum exposures of groups are guaranteed in

the retrieval process. 𝐾-neighbor [31]: at each time step 𝑡 , Only

the items on each server associated with the top-K group, having

the lowest cumulative exposure, are retrieved. Uncalibrated [38]:

each step 𝑡 only choose the items whose group do not satisfy the

required exposures. For items that already meet the required expo-

sure criteria, we retrieve them using the KNN search method as the

base models.

For the retrieval base models, we utilize: Youtube DNN [9]:

the most commonly used retrieval models in industrial recom-

mender systems; GRU4Rec [16]: utilized the recurrent neural net-

work (RNN) to model the user sequential behaviors in the retrieval

process; MIND [21]: aimed to model user’s diverse interests by

designing a multi-interest extractor layer based on the capsule

6



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

FairSync: Ensuring Amortized Group Exposure in
Distributed Recommendation Retrieval Conference’17, July 2017, Washington, DC, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

0.3 0.2 0.1 0.0 0.1 0.2 0.3

Dimension 1

0.3

0.2

0.1

0.0

0.1

0.2

D
im

en
si

on
 2

ComiRec-DR embeddings

0.3 0.2 0.1 0.0 0.1 0.2 0.3

Dimension 1

0.3

0.2

0.1

0.0

0.1

0.2

D
im

en
si

on
 2

ComiRec-DR embeddings

0.3 0.2 0.1 0.0 0.1 0.2 0.3

Dimension 1

0.3

0.2

0.1

0.0

0.1

0.2

D
im

en
si

on
 2

ComiRec-DR embeddings

0.3 0.2 0.1 0.0 0.1 0.2 0.3

Dimension 1

0.3

0.2

0.1

0.0

0.1

0.2

D
im

en
si

on
 2

ComiRec-DR+FairSync embeddings

0.3 0.2 0.1 0.0 0.1 0.2 0.3

Dimension 1

0.3

0.2

0.1

0.0

0.1

0.2

D
im

en
si

on
 2

ComiRec-DR+FairSync embeddings

0.3 0.2 0.1 0.0 0.1 0.2 0.3

Dimension 1

0.3

0.2

0.1

0.0

0.1

0.2

D
im

en
si

on
 2

ComiRec-DR+FairSync embeddings

Cat 1 Cat 2 Cat 3 Cat 4 Cat 5

categories
0.0

0.5

1.0

1.5

2.0

ex
po

su
re

s

0.0 0.0

1.0

0.0 0.0

category exposures

Cat 1 Cat 2 Cat 3 Cat 4 Cat 5

categories
0

2

4

6

8

ex
po

su
re

s

1.0

2.0

7.0

3.0 3.0

category exposures

Cat 1 Cat 2 Cat 3 Cat 4 Cat 5

categories
0

20

40

60

80

100

ex
po

su
re

s

103.0 103.0
110.0 106.0

98.0

category exposures

(a)t=30 (b)t=3000 (c)t=30000

Figure 4: The three sub-figures in the first row illustrate the t-SNE visualization of Comirec-DR item embeddings 𝒆𝑖 and user
embeddings 𝒆𝑢𝑡 under different 𝑡 . The three sub-figures in the second row depict the t-SNE visualization of our model FairSync
using Comirec-DR as the base model for item embeddings 𝒉𝑖 and user embeddings 𝒒𝑢𝑡 under different 𝑡 . The three sub-figures
in the final row depict the category exposures under different time steps 𝑡 . The experiment was conducted on the Amazon-book
dataset with retrieval number 𝐾 = 50.

routing mechanism [13]; ComiRec-SA [6]: the recent state-of-

the-art retrieval models, which captured user diverse interests by

the self-attention mechanism. ComiRec-DR [6]: the variant of

ComiRec-SA, which used the dynamic routing method to model

user’s sequential behaviors.

5.1.4 Implementation details. As for the hyper-parameters in all

models, the learning rate 𝜂 was tuned among [1𝑒 − 2, 1𝑒 − 4] and
the batch size for updating dual vector 𝐵 was tuned among [1, 512].
For training the base retrieval model, we utilized the best parame-

ters reported in the original papers of the models. We implemente

FairSync with the most common faiss [17] KNN-search package.

The gradient descent package used Pytorch [30] to apply the auto-

gradient. The experiments were conducted under a server with a

single NVIDIA GeForce RTX 3090.

5.2 Experimental Results on Full Datasets
In this section, we conduct experiments using our model FairSync

along with other baselines across all datasets to validate the effec-

tiveness of FairSync.

Firstly, we conduct experiments to show the performance of

FairSync and other baselines under the same minimum exposure

requirement (𝑚𝑔 = 200,∀𝑔 ∈ G) across all retrieval base models.

Table 2 presents the experimental outcomes for our FairSync model

and the baseline methods across all datasets, while ensuring that
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Figure 5: Inference time per user w.r.t. w.r.t. batch size 𝐵.

each groups maintains a minimum of 200 exposures as a require-

ment. To make fair comparisons, all the baselines were tuned their

hyper parameters to obtain the best performance under our settings.

Based on the reported findings, it becomes evident that our

model FairSync effectively fulfills the requirement of each groups

maintaining a minimum of 200 exposures (i.e., ESP=100%). Further-

more, FairSync significantly outperform the baseline techniques

intended for guaranteeing minimum exposure (K-neighbor and

Uncalibrated) across all datasets and various base retrieval models,

encompassing different top-K retrieval numbers, as reflected in

accuracy metrics including Recall, NDCG, and HR. Simultaneously,

FairSync exhibits accuracy performance that is comparable with
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Figure 6: Recall, NDCG, HR and ESP curves of FairSync under
different top-K ranking w.r.t. batch size 𝐵.

other fairness baselines (regularized-fair and IPW), even though

these methods do not strictly ensure the required minimum ex-

posure of groups. The experiments conclusively demonstrate that

FairSync effectively guarantees theminimum exposure requirement

without significantly compromising accuracy of retrieval process.

Secondly, we conduct experiments to demonstrate the perfor-

mance of FairSync and the best baseline (Uncalibrated) under

varying minimum exposure requirements under the best retrieval

base model ComiRec-DR. Figure 3 reports the accuracy (Recall,

NDCG and HR) curve of our model FairSync and the best base-

line Uncalibrated under different minimum exposure threshold

𝑚𝑔 ∈ [10, 200],∀𝑔 ∈ G. Both FairSync and Uncalibrated are able to

satisfy the minimum exposure requirements.

From the curves presented in Figure 3 (a-d), it is evident that

our model FairSync consistently outperforms Uncalibrated with a

large marign across various accuracy metrics, datasets, and retrieval

numbers (𝐾 = 20, 50). The experiment demonstrates that our model

FairSync consistently exhibits better accuracy when ensuring the

minimum exposure requirements of different groups.

5.3 Experiment analysis
We also conduct experiments to analyze FairSync on Amazon-book

dataset under the best retreival base model ComiRec-DR.

5.3.1 Visualization of embeddings under original and dual space.
In this section, we aim to visualize and illustrate the effective

dual projection of FairSync (with ComiRec-DR as base model, i.e.

ComiRec+FairSync) by randomly sampling 5 item categories and

set the requirement𝑚𝑔 = 200,∀𝑔 ∈ G. Figure 4 utilized t-SNE [36]

to visually represent user and item embeddings 𝒆𝑢𝑡 and 𝒆𝑖 in the

original space (sub-figures in first rows), as well as user and item

embeddings 𝒒𝑢𝑡 and 𝒉𝑖 in the dual space (sub-figures in second

rows), across various time steps 𝑡 . We also show the category expo-

sures under different time steps 𝑡 (sub-figures in third rows). Note

that ComiRec-DR is a multi-interest retrieval model [6, 21], where

we set four user embedding generated to represent different user

interests per time step 𝑡 .

Figure 4 (a) illustrates that at the initial retrieval process (𝑡 = 30),

the exposure levels for various categories (as depicted in the third

column’s bar plots) are nearly equalized. Such equalized exposure,

in turn, leads to FairSync’s reconstructed embeddings in the dual

space (ComiRec-DR+FairSync embeddings) closely mirroring the

patterns of the original embeddings (ComiRec-DR embeddings) to

maintain retrieval accuracy.

Figure 4 (b, c) illustrates the intermediary and ending stage

(𝑡 = 3000, 30000) of stage-1, during which the category 3 and 4

experiences dominance in exposure levels, whereas the other cat-

egories exhibits a lower level of exposure. In the original space

(ComiRec-DR embeddings), it is evident that the user embeddings

are closely aligned with the embeddings of category 3 and 4, result-

ing in the dominance of category 3 and 4. However, in the dual space

(ComiRec-DR+FairSync embeddings), the user embeddings are in

closer proximity to other categories (1,2 and 5), thereby ensuring

that other categories meets the minimum exposure requirements.

At the same time, the dual embeddings maintain close proximity

to the original embeddings, ensuring the preservation of retrieval

accuracy.

The experiment clearly demonstrated that throughout the re-

trieval process, our model FairSync dynamically adjusts the user em-

bedding’s position based on category exposure, enhancing retrieval

accuracy while maintaining the minimum exposure requirement.

5.3.2 Ablation study on batch size. In this section, we aim to con-

duct experiments to show the performance and inference time

influenced by different online batch size 𝐵, since 𝐵 controls the

dual vector 𝝁’s updating frequency. Figure 5 and Figure 6 depict the
variations in inference time and performance, respectively, with

respect to the batch size 𝐵 ∈ [1, 512].
Firstly, Figure 5 illustrates that the online inference time per

user w.r.t. batch size under different retrieval number 𝐾 . From the

displayed curve, it is evident that when the batch size is smaller

(𝐵 ≤ 8), FairSync still demands approximately [0.2, 1] msmore time

in comparison to the base model. When the batch size is relatively

large (𝐵 > 8), the inference times of both FairSync and the base

model are comparable, typically remaining below 0.25 ms. This

satisfies the inference time requirements for industrial applications.

Secondly, Figure 6 illustrates that accuracy (Recall, NDCG and

HR) curve and ESP (𝑚𝑔 = 200) curve w.r.t. batch size under different

retrieval number 𝐾 . Based on the depicted curve, it is apparent

that the retrieval accuracy curve decreases as the batch size varies

within the range 𝐵 ∈ [1, 8], whereas for batch sizes within the

range 𝐵 ∈ [8, 512], the accuracy curve exhibits an increase. It is

also worth noting that the minimum exposure requirement is no

longer satisfied as the batch size increases beyond 𝐵 > 64.

Therefore, we observe that the online batch size 𝐵 is a trade-

off co-efficient for performance and inference time. In real-world

applications, we must carefully control the online batch size 𝐵, as

larger values can reduce inference time but may result in poorer

performance, while smaller values can have the opposite effect.

6 CONCLUSION
This paper proposes a novel retrieval model called FairSync that

aims to maintain accuracy while ensuring the minimum exposure

for specific groups in distributed retreival process. In FairSync, we

transform the problem into a constrained distributed optimization

problem. and resolved the issue in the dual space of the problem

in a distributed manner. Extensive experiments conducted on two

large-scale datasets consistently showcased FairSync’s superior per-

formance over baseline models across various retrieval base models.

Importantly, FairSync manages to maintain minimal computational

costs in real-world applications.
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Algorithm 2: regularized-fair Algorithm

Input: User arriving order {𝑢𝑡 }𝑇𝑡=1, item corpus I, candidate size
𝐾 , batch size 𝐵, trained user item embedding network

𝑚𝑢 (·),𝑚𝑖 (·) item-group adjacent matrix A, trade-off
coefficient 𝜆.

Output: The candidate lists for every user {𝐿𝐾 (𝑢𝑡 )}𝑇𝑡=1
1: Calculate items embeddings {𝒆𝑖 =𝑚𝑖 (𝑖),∀𝑖 ∈ I}
2: Re-construct and distributively index the item embeddings

{𝒉𝑖 = 𝒆𝑖 ∥𝑨𝑖 ,∀𝑖 ∈ I} utilizing the Equation (5).

3: for 𝑡 = 1, · · · ,𝑇 do
4: User 𝑢𝑡 arrives

5: Calculate user embedding 𝒆𝑢𝑡 =𝑚
𝑢 (𝑢𝑡 )

6: Compute 𝝁𝑟 = 𝜆[A(𝑒 − (min𝑔∈G 𝑒𝑔1⊤)]
7: Re-construct query embeddings 𝒒𝑢𝑡 = 𝒆𝑢𝑡 ∥ − 𝝁𝑟 .
8: // KNN Retrieval: (Equation (4))

9: 𝐿𝐾 (𝑢𝑡 ) = argmin𝑆⊂{1,2,..., | I | }, |𝑆 |=𝑘
∑
𝑖∈𝑆 𝑑

Dual (𝒒𝑢𝑡 ,𝒉𝑖 ),
10: end for

A APPENDIX
A.1 Lemma 1
Firstly, we prove a lemma before we start the proof of Theorem 1.

Lemma 1. Let 𝒂 [𝑖 ] denotes the 𝑖-th largest element of 𝒂. Consider-
ing the function with the 𝒙 ∈ R𝑁 as the input,

Top-K(𝒙) =
𝐾∑︁
𝑘=1

𝒙 [𝑘 ] .

We will demonstrate that the function 𝑓 (𝒙) exhibits concavity with
respect to 𝒙 .

Proof. By the definition, for any 0 ≤ 𝜆 ≤ 1 we have

Top-K(𝜆𝒙 + (1 − 𝜆)𝒚) =
𝐾∑︁
𝑘=1

(𝜆𝒙 + (1 − 𝜆)𝒚)[𝑘 ]

≤ 𝜆

𝐾∑︁
𝑘=1

𝒙 [𝑘 ] + (1 − 𝜆)
𝐾∑︁
𝑘=1

𝒚[𝑘 ]

= 𝜆Top-K(𝒙) + (1 − 𝜆)Top-K(𝒚) .
, that is the sum of the first k elements of two vectors added together

is less than the sum of the first k elements of the two vectors

individually added.

Q.E.D. □

A.2 Proof of Theorem 1
Proof. We will firstly list some notations used in our proof: 𝒂 [𝑖 ]

denotes the 𝑖-th largest element of 𝒂. 𝑨𝑖 denote the 𝑖-th column of

the matrix 𝑨.
We can utilize the Lagrangian condition to re-write the minimum

guarantee condition 𝑒𝑔 =
∑𝑇
𝑡=1

∑
𝑖∈I𝑔 𝑥𝑢𝑡 ,𝑖 of problem (2) as the

following problem:

𝑊𝐷𝑢𝑎𝑙 = max

𝒙𝑢𝑡 ,𝑖
min

𝝁

𝑇∑︁
𝑡=1

| I |∑︁
𝑖=1

(𝑟𝑢𝑡 ,𝑖 −𝑨⊤
𝑖 𝝁)𝒙𝑢𝑡 ,𝑖 +

∑︁
𝑔∈G

𝝁𝑔𝑒𝑔


s.t.

∑︁
𝑖∈I

𝒙𝑢𝑡 ,𝑖 = 𝐾, ∀𝑡 ∈ [1, 2, . . . ,𝑇 ]

𝒙𝑢𝑡 ,𝑖 = {0, 1}, ∀𝑖 ∈ I, ∀𝑡 ∈ [1, 2, . . . ,𝑇 ]
𝑒𝑔 ≥ 𝑚𝑔, ∀𝑔 ∈ G

. Where the 𝝁 ∈ R | G |
is the dual vector.

Let’s consider the following program:

max

𝒙
𝒂⊤𝒙

s.t. 1𝑇 𝒙 = 𝐾,

0 ≤ 𝒙 ≤ 1,

(8)

This problem is a well-studied knapsack problem [33], whose

optimal objective should be

∑𝐾
𝑖=1 𝒂 [𝑖 ] . The equation tells us that

only the top 𝐾 items that user 𝑢𝑡 have the highest preference for

the every group 𝑝 will be recommended for every user.

Thus, we can easily observe that the objective𝑊 of the target

about 𝑥𝑡,𝑖 is a top-K function in lemma 1 and from lemma 1, we

can observe that𝑊 is is concave with respect to 𝑥 and convex with

respect to the variable 𝝁. From the minimax theorem [11], we can

re-write the equation as:

𝑊 = min

𝝁
max

𝑒𝑔

𝑇∑︁
𝑡=1

𝐾∑︁
𝑘=1

(𝑟𝑢𝑡 ,𝑖 −𝑨⊤
𝑖 𝝁)[𝑘 ] +

∑︁
𝑔∈G

𝝁𝑔𝑒𝑔


s.t. 𝑒𝑔 ≥ 𝑚𝑔, ∀𝑔 ∈ G∑︁

𝑔∈G
𝑒𝑔 = 𝑇𝐾

, (9)

where we replace the variable 𝑥 to 𝑒 utilizing the condition 𝑒𝑔 =∑𝑇
𝑡=1

∑
𝑖∈I𝑔 𝑥𝑢𝑡 ,𝑖 . Now, considering the following problem:

𝐿 =max

𝒆

∑︁
𝑔∈G

𝝁𝑔𝑒𝑔

s.t.

∑︁
𝑔∈G

𝒆𝑔 = 𝑇𝐾,

𝒆𝑔 ≥ 𝑚𝑔, ∀𝑔 ∈ G
, which is a well-studied knapsack problem [33], with the optimal

solution ∑︁
𝑔∈G

𝑚𝑔𝝁𝑔 +max

𝑔∈G
{𝝁𝑔}(𝑇𝐾 −

∑︁
𝑔∈G

𝑚𝑔) .

Finally, we can take the optimal solution into Equation (9), we

get𝑊𝐷𝑢𝑎𝑙
as

𝑚𝑖𝑛𝜇


𝑇∑︁
𝑡=1

𝐾∑︁
𝑘=1

(𝑟𝑢𝑡 ,𝑖 −𝑨𝝁)[𝑘 ] +
∑︁
𝑔∈G

𝑚𝑔𝝁𝑔 +max

𝑔
{𝝁𝑔}(𝑇𝐾 −

∑︁
𝑔∈G

𝑚𝑔)
 .

Q.E.D.

□

B REGULARIZED-FAIR ALGORITHM
In this section, we propose a heuristic method for distributed ap-

proach for improving the worst-off group exposures in retrieval pro-

cess, aligning with the concept amortized max-min fairness [10, 40],

named regularized-fair. Similar with the dual form of FairSync, it

introduced a dual variable 𝝁𝑟 that measures the exposure gaps

between the target group and the worst-groups. The detailed algo-

rithm is shown in Algorithm 2.
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