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ABSTRACT

The discovery of new molecular materials with desirable properties is essential for
technological advancements, from pharmaceuticals to renewable energy. However,
the discovery process is arduous, requiring many trial-and-error cycles of complex
and expensive experiments. Bayesian optimization (BO) is commonly used to find
and screen candidate molecules efficiently. However, it is unclear how to choose the
right molecular representations for a Bayesian surrogate model: While molecules
are 3-dimensional in nature, 3D features in BO have largely been underexplored.
Indeed, 1D and 2D molecular features—which incur loss of information—are
typically used. In this work, we study this discrepancy: Why have 3D features
been overlooked for BO in materials discovery? To this end, we evaluate 3D
features against standard lower-dimensional features. We assess their optimization
performance on real-world chemistry datasets, considering both various settings
such as low- & high-data regimes and transfer learning, and different types of
Bayesian surrogates. This amounts to the evaluation of 35 different setups per
dataset, totaling over 2100 distinct runs. Our large-scale work provides insights
and modeling guides to chemists and practitioners on the trade-offs between 1D,
2D, and 3D representations, in a bid to further accelerate materials discovery.

1 INTRODUCTION

The discovery of new materials is crucial for technological advancements, yet experiments and
simulations in chemistry are often expensive in terms of time and computational resources (Tom
et al., 2024; van Mourik et al., 2014). To overcome this, Bayesian optimization (BO) has emerged
as a method for efficiently exploring the vast space of potential materials and guiding experimental
efforts toward the most promising candidates for calculations in computational chemistry (Korovina
et al., 2020; Li et al., 2024; Ranković et al., 2024). BO relies on training probabilistic surrogate
models, such as Gaussian processes (GPs) or neural networks (NNs), using feature vectors obtained
from various representations of molecules.

In molecular discovery, how to best represent molecules remains unclear. Commonly, BO for
materials discovery rely on simplified 1D and 2D representations (Felton et al., 2021; Griffiths
et al., 2024; Häse et al., 2021), such as SMILES strings or 2D molecular graphs, which fail to
capture the true 3D spatial and geometric complexities of molecules (Wigh et al., 2022). Recently,
3D GNNs have shown promise in extracting features from the geometric structure of molecules,
while respecting known physical symmetries, potentially offering superior predictive performance
(Batatia et al., 2022; Crivelli-Decker et al., 2024; Gilmer et al., 2017; Liao & Smidt, 2023). While
interest in 3D representations is growing (Li et al., 2022), much of the existing research has not fully
explored their applicability within BO for materials discovery, leaving a gap in understanding why
3D features—which is faithful to the 3D nature of molecules—are underused.

In this work, we address this question. We perform a comprehensive, systematic benchmark of
1D, 2D, and 3D molecular representations for materials discovery tasks. We leverage LLM-based
feature extractor (Kristiadi et al., 2024) to handle 1D SMILES representation, 2D message-passing
GNNs (Gilmer et al., 2017), and 3D equivariant GNNs (Liao & Smidt, 2023), combining them with
popular probabilistic surrogates like GPs and Bayesian NNs. We assess their BO performances
across various settings (e.g., transfer learning) and various data regimes. Using this setup, shown
in Fig. 1, we compare these features-models-settings combination across 2100 runs to evaluate the
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Figure 1: We investigate the effect of the number of dimensions (1D, 2D, 3D) in molecular
representations for materials discovery. While common wisdom suggests that “more is better”, 3D
features are underused in BO. This leads to our main question: “If 3D features are faithful to the 3D
nature of molecules, why do nobody use them in BO for materials discovery?”

trade-off between computational cost and predictive accuracy. We find that LLM methods consistently
outperform, 2D methods yield better results to 3D in most cases, and transfer learning performs
similarly to models trained on the specific property on the BO loop.

In sum, our contributions are as follows:

• Through a large-scale benchmarking effort, we empirically answer the question of why 3D
molecular features are underused in various real-world materials discovery tasks.

• We investigate tradeoffs in leveraging different representation dimensionalities in various
realistic settings, e.g. in transfer learning.

• We provide insights into the scalability and compatibility of different molecular feature
extractors with popular choices of probabilistic surrogates.

All in all, our work provides guiding principles for chemists and practitioners in making practical
modelling decisions. Code to reproduce our work can be found in the following anonymous repository:
https://anonymous.4open.science/r/3D_Bayes-0F8F.

2 PRELIMINARIES

2.1 BAYESIAN OPTIMIZATION

BO addresses the problem of finding the global maximizer of an unknown objective function
f : X → Y . The goal is to find

x∗ = argmax
x∈X

f(x),

where X represents an arbitrary d-dimensional search space. Here, f is assumed to be hard and
expensive to evaluate. The challenge is, therefore, to minimize the number of such function evalua-
tions when solving the above optimization problem (Shahriari et al., 2016). The key components
of BO are (i) a probabilistic belief p(f | Ωt) over the target function f given past observation
Ωt = {(xi, f(xi))}ti=1 and (ii) an acquisition function α : X → R, which guides where to evaluate
f next at step t+ 1. The representational capacity of p(f | Ωt) dictates how well-calibrated we can
approximate f . This, in turn, affects the exploration-exploitation capabilities of the overall system, a
critical factor in finding the optimal x∗ in as few steps as possible (Garnett et al., 2012).

2.2 PROBABILISTIC SURROGATES

GPs are a common choice for the surrogate p(f | Ωt) in BO (Shahriari et al., 2016), but alternatives
like Bayesian NNs (BNNs) are also widely explored (Lamb & Paige, 2020).
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Gaussian processes A GP can be seen as a distribution over functions f(x), where for every finite
collection {xi}ti=1, the distribution of {f(xi)}ti=1 is a multivariate Gaussian. In particular, this
means f(x) ∼ N (f(x) | µθ(x),Kθ(x,x)) for some mean function µθ and covariance function Kθ

(Rasmussen & Williams, 2005). The covariance/kernel function effectively injects prior information
about the function f into our belief. Finally, θ contains the hyperparameters of the GP, which is often
tuned via marginal-likelihood maximization.

Bayesian neural networks A neural network f : X ×Θ → Y , parameterized by θ ∈ Θ, is usually
trained by maximizing the following maximum a posteriori (MAP) objective

θ∗ = argmax
θ∈Θ

log p(Ωt | θ) + log p(θ) = argmax
θ∈Θ

log p(θ | Ωt).

Since it is a point-estimation procedure, notice that this training scheme does not capture the
uncertainty in θ and thus in f . Standard NNs are, therefore, unsuitable for BO. Various ways to
construct a BNN exist, such as via variational inference (Blundell et al., 2015) and Markov chain
Monte Carlo (Hoffman et al., 2014). One of the simplest, however, is the Laplace approximation
(MacKay, 1992). It quantifies the uncertainty in θ by fitting a Gaussian distribution p(θ | Ωt) ≈
N (θ∗,Σ

−1
∗ ), where the covariance matrix Σ−1

∗ is determined by the inverse Hessian of the negative
log posterior Σ−1

∗ = −∇2
θ log p(θ | Ωt)|θ=θ∗ . To obtain the posterior over f , the linearized Laplace

approximation (LLA) is often used (Daxberger et al., 2021), resulting in the Gaussian distribution
over function outputs N (f(x; θ∗), J(x; θ∗)Σ

−1
∗ J(x; θ∗)

⊤) where J(x; θ∗) = ∂f(x;θ)/∂θ|θ=θ∗ . This
distribution can then be used to model the target black-box function in BO (Kristiadi et al., 2023).

2.3 MOLECULAR FEATURE EXTRACTORS

Molecules can be expressed via various 1D, 2D, and 3D representations. These range from simple
strings like SMILES to more complex graph-based and geometric descriptors. SMILES offers a 1D
representation of molecular structures (Weininger, 1988). Graph-based representations leverage 2D
graphs of molecular bonds (Duvenaud et al., 2015), and 3D representations capture the full geometric
structure of molecules (Schütt et al., 2017). Before they can be used by a GP or BNN surrogate, these
representations are often transformed into feature vectors. The following are various features that are
commonly used in materials discovery.

Molecular fingerprints Molecular fingerprints are unique digital representations of molecular
structures. They are generated by analyzing the atomic composition and connectivity within a
molecule, resulting in a high-dimensional bit vector that uniquely identifies the molecule. One of
the most commonly used are extended-circular fingerprints (Rogers & Hahn, 2010) which iterate
over node centers and assign bits according to sub-structures up to 2 edges away (Weininger, 1988).
Fingerprints capture structural information, such as the presence of specific functional groups or
molecular motifs. They are widely used in cheminformatics for tasks like similarity searching,
property prediction, and structure-activity relationship studies. In addition to fingerprints, other
molecular descriptors are often employed to characterize physicochemical properties.

Graph-neural-network features Molecular fingerprints are computationally efficient but lack the
structural richness required for complex tasks (He et al., 2021). Graph NNs (GNNs) have emerged as
effective methods to capture local structures in graph-structured data, such as graph representations
of molecules. Traditionally, GNNs are used to process 2D graphs by passing messages between
their hidden layers to learn graph features (Duvenaud et al., 2015; Gilmer et al., 2017). Recently,
equivariant GNNs that leverage the symmetries in 3D molecular structures, further improving the
representational power of traditional GNNs, have been proposed (Liao et al., 2024).

Large-language-model features A significant advancement in the development of large neural
networks is the introduction of the architecture called transformer (Vaswani et al., 2017), which serves
as the foundation for large language models (LLMs). Due to the large size of LLMs, training them
from scratch is computationally prohibitive (Sharir et al., 2020), but they are typically pre-trained in
a task-agnostic manner, allowing them to serve as meaningful priors for various tasks (Brown et al.,
2020). Recently, LLMs specifically tailored for chemistry-related applications have gained significant
traction, particularly in their ability to extract meaningful features from chemical data (Chithrananda
et al., 2020; Schwaller et al., 2019). These models are trained on large-scale chemical databases via
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the molecules’ 1D string representations. This makes LLMs useful as molecular feature extractors
and has been used for materials discovery (Jablonka et al., 2023; Kristiadi et al., 2024).

2.4 3D FEATURES

3D molecular representations capture the full geometric structure of a molecule, providing critical
information about atom positions, bond angles, and spatial orientation (Fang et al., 2022). This
spatial configuration is particularly relevant for tasks where molecular conformation plays a role
in determining chemical properties, such as catalysis or drug binding affinity (Turner et al., 2006).
Historically, 3D features have been more computationally expensive than 1D or 2D representations,
often requiring quantum mechanical calculations or molecular simulations to obtain accurate geome-
tries (van Mourik et al., 2014). Methods such as SchNet (Schütt et al., 2017) and more recently,
equivariant GNNs like EquiFormer (Liao & Smidt, 2023), have been developed to leverage these 3D
structures by respecting their inherent symmetries, including rotational and translational invariance.

3 RELATED WORK

Various benchmarks have been developed for studying the effectiveness of BO surrogates in chemical
applications. Olympus (Häse et al., 2021) offers a suite of common optimization response surfaces
along with experimentally derived chemical prediction datasets for benchmarking. Similarly, Summit
(Felton et al., 2021) offers a suite of virtual chemical reactions for optimization. Works have
also studied and benchmarked the performance and uncertainty calibration of surrogate models
on molecular screening tasks (Graff et al., 2021; Griffiths et al., 2024; Liang et al., 2021; Tom
et al., 2023). Notably, these benchmarking works only consider (1D) string, molecular descriptors
and fingerprints, and 2D graph representations of molecules. Our work complements these prior
benchmarking efforts by investigating 3D representations that have largely been ignored.

Many sophisticated feature extractors have been used in BO for materials discovery. Strieth-Kalthoff
et al. (2024) leverage graph features to accelerate the discovery of organic laser emitters by optimizing
material properties across distributed labs in a closed-loop discovery system. However, they represent
molecules as 2D graphs and use 2D GNNs as feature extractors. Kristiadi et al. (2024) and Liu
et al. (2024) study transformers and LLMs as feature extractors in BO for materials discovery.
While they represent the state-of-the-art general-purpose class of architectures, notably, they take
1D string representations of molecules (SMILES (Weininger, 1988), SELFIES (Krenn et al., 2020))
as inputs. Furthermore, there has been research on building graph foundation models (Zhou et al.,
2023) utilizing molecular graph structures and self-supervised pretraining to achieve state-of-the-art
performance in various chemistry-related tasks. Our work, meanwhile, studies the scenario where 3D
molecular representations are used as the inputs of the feature extractor in material discovery tasks.

4 SETUP

We investigate BO performance using 1D, 2D, and 3D representations of molecules. This section
outlines our experimental setup, including datasets, feature extractors, tasks, sample complexities,
and evaluation methods.

Datasets We use four datasets in our experiments: QM7 (Blum & Reymond, 2009; Montavon
et al., 2013), QM9 (Ramakrishnan et al., 2014; Ruddigkeit et al., 2012), GEOM’s MoleculeNet and
DRUGS (Axelrod & Gómez-Bombarelli, 2022; Wu et al., 2017). QM7 includes 7165 molecules with
atomization energies (∆E) in kcal/mol and up to seven heavy atoms (C, N, O, S), while QM9 contains
133 885 molecules with up to nine heavy atoms (C, N, O, F) and 12 properties. The MoleculeNet
dataset consists of benchmark datasets designed for molecular machine learning tasks and includes
28 295 molecules, covering tasks like quantum mechanics, physical chemistry, biophysics, and
physiology. GEOM provides an enhanced version of this dataset that includes conformers for each
example. On the other hand, GEOM also contains the DRUGS dataset, which provides molecular
geometries for drug-like molecules, with up to 91 heavy atoms and 317 928 molecules, which are
useful for studies involving conformational flexibility and geometric properties. The models were
trained on QM9, which was split into a training set and a virtual library serving as the search space,
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ensuring that the best 10 observations remain in the virtual library. The virtual library and all other
datasets were used in the BO loop to evaluate the models.

Tasks Each model is trained for target property prediction and transfer learning. In the target prop-
erty prediction task, the model has a single readout layer trained to predict a specific property—e.g.
HOMO-LUMO gap (∆Egap in eV) from QM9, crucial in determining molecular reactivity and optical
properties; atomization energy (∆E in kcal/mol) from QM7, used to understand molecular stability;
and absolute energy (E in Hartree) from GEOM’s MoleculeNet and DRUGS, useful in studying
binding energy and potential energy in the molecular system. The model has n− 1 readout layers in
transfer learning, each trained on different tasks. We aim to assess whether a model trained on one set
of properties can still provide accurate predictions on different experimental datasets by fine-tuning
only the final layer, evaluating its potential as a foundation model (Yao et al., 2024).

Feature extractors We compare MPNN, which inherently leverages 2D molecular information,
Equiformer v2 (Liao et al., 2024), an equivariant attention-based GNN which captures the full 3D
geometric structure and symmetries of molecules, and MolFormer (Kristiadi et al., 2024; Ross
et al., 2022), a masked language model that operates on 1D SMILES representations, leveraging
transformers to capture both local and global chemical patterns. The GNNs serve as feature extractors
up to their respective readout layers, encoding molecules into high-dimensional embeddings before
making predictions on the target properties. To ensure consistency, the GNN feature extractors are
constrained to similar sizes, with each containing approximately 1.5 million parameters.

Surrogates We use each features in two surrogate models. Each surrogate, either GP or an NN
with LLA, uses the extracted features as inputs to provide a posterior distribution p(f | D). The LLA
surrogate consists of an NN with two hidden layers, as suggested by Li et al. (2024). As further
baselines, we use (1) random search, which uniformly samples from the molecular space, and (2)
GPs utilizing the Tanimoto kernel with 1D molecular fingerprints (Tripp et al., 2023).

Evaluation We run 1000 iterations with 10 initial observations. For each run, we either subsample
10 000 observations from our virtual libraries (QM9, and GEOM’s MoleculeNet and DRUGS) or use
the entirety of the virtual library (QM7), repeating the processes for 15 different seeds, and reporting
their average and standard error. We further evaluate with the GAP metric (Jiang et al., 2020), defined
by GAP = (yi − y0)/(y∗ − y0) where yi is the maximum observed value at step i and y∗ is the true
optimal value. Note that the GAP metric is normalized in [0, 1] and is thus useful for comparing and
aggregating results across different datasets/problems.

5 RESULTS

5.1 BAYESIAN OPTIMIZATION PERFORMANCE

QM7 For QM7, which features relatively simple molecules, highlights the surprising effectiveness
of molecular fingerprints. Notably, the 1D GP method performed slightly worse than more complex
models. In contrast, GP regression with binary encoded SMILES, serving as a baseline, demon-
strated that even simple 1D representations can capture sufficient information to remain competitive.
Although 2D models outperformed 3D models overall—particularly when combined with GP re-
gressors—the performance gap was modest. While the 3D models saw slight improvements when
paired with LLA, the gains were limited, suggesting that higher-dimensional representations may not
be critical for simpler molecular structures like those in QM7. This is evident in Fig. 3, where the
top-performing models for simpler tasks did not heavily rely on 3D data. The results of the LLM
were striking, as it outperformed all other models by a significant margin. Its ability to leverage
contextual information and generate accurate predictions, even for relatively simple molecules in the
QM7 dataset, demonstrated its superior generalization capabilities.

QM9 In contrast, the QM9 dataset, which features slightly more complex molecules, underscores
the limitations of 1D representations. Here, 2D MPNNs achieve the highest performance, and consis-
tently outperform 1D GP and RS methods, while 3D models only outperform RS. The differences
become even more pronounced with increasing molecular complexity as described by size. While
2D models continue to demonstrate strong performance and stability, the 3D GNNs, particularly
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when enhanced with LLA, begin to close the gap, indicating that the extra structural information
provided by 3D representations becomes more important as molecular complexity increases. Despite
the overall advantage of the 2D models, the smaller margins between 2D and 3D performance suggest
that for highly complex molecules, further optimization of 3D models may yield competitive results,
as seen in the bottom row of Fig. 3. Contrary to all other datasets, LLMs performed worse than 2D
and 3D models. This task may have been the most dependent on information not captured by 2D and
3D representations the specific, which could explain why it performed worse.

MoleculeNet As shown in Fig. 3, 2D models consistently outperformed 3D models across a wide
range of tasks, which suggests that 2D representations efficiently capture the necessary structural
information for accurate predictions without the computational overhead of 3D models. The slight
improvements observed with 3D models when using techniques like LLA are insufficient to justify
their use, as the performance gains are marginal and insufficient. The consistently strong performance
of 2D models raises important questions about the value of incorporating 3D information. Even as
molecular size increases, 3D models fail to offer significant advantages, and in many cases, they
underperform compared to 2D approaches. Additionally, the competitive performance of 1D models,
such as GPs with SMILES encoding, highlights the efficiency of simpler representations in certain
scenarios. Although 1D models struggle with larger datasets and more complex molecular structures,
their ability to remain competitive in simpler tasks emphasizes that higher-dimensional representations
are not always necessary. The LLM, as with the QM7 and DRUGS results, outperformed all other
models. Its superior performance across both simple and complex molecular datasets highlights its
ability to generalize effectively, surpassing the limitations of both 2D and 3D models. This reinforces
the trend observed before, where the LLM demonstrated remarkable versatility and accuracy.

GEOM DRUGS The DRUGS dataset emphasizes the importance of higher-dimensional features.
However, despite the increased molecular size, both 1D and 2D representations manage to capture
sufficient information to perform competitively. As shown in Fig. 3, LLMs and 2D models consistently
outperform 3D models across most tasks, even for large drug-like molecules. Interestingly, simple
GP regression and random search performed similarly, suggesting that the models used may not
be sufficiently complex to outperform these benchmark methods. This indicates that larger models
or further optimization would be necessary to see significant improvements beyond the baseline
methods. The 3D models, while more suited for capturing subtle geometric features, do not provide
a substantial performance increase, reinforcing that for property optimization in such datasets, 3D
features may not be necessary unless ultra-high precision is required. The LLM achieved the most
substantial performance gap so far, outperforming all other models by a wide margin. This is
particularly remarkable given the complexity and size of the molecules in this dataset. Despite the
strong performance of 2D models, the LLM’s ability to handle intricate molecular details allowed
it to excel far beyond both 2D and 3D representations. This suggests that the LLM’s contextual
understanding is especially beneficial for larger, more complex molecular structures.
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Figure 2: Aggregated GAP Performance for 1D,
2D and 3D models.

Aggregated results Contrary to the assump-
tion that 3D features, which align more closely
with the true nature of molecular structures,
would offer superior performance, the aggre-
gated results across all models from Fig. 2 con-
sistently show that 1D and 2D representations
outperform 3D approaches. Furthermore, re-
gardless of molecular size, 1D representations
such as SMILES proved surprisingly compet-
itive. These models strike a balance between
capturing essential molecular information and
maintaining computational efficiency, making
them highly effective for property prediction
tasks in BO. On the other hand, 3D models,
while expected to provide more detailed geomet-
ric insights, did not offer significant advantages
over 2D models. The computational overhead
required by 3D models often outweighed their predictive performance, especially in cases where
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Figure 3: Experimental Results. Top row: QM7. Second row: QM9. Third row: GEOM’s Molecule
Net. Bottom row: GEOM’s DRUGS.

molecular size was not extreme. Overall, the results suggest that 1D representations are a strong
default choice for most BO tasks, providing strong performance without the additional complexity
and cost of 3D features. This finding challenges the notion that higher-dimensional data always leads
to better outcomes in molecular optimization, highlighting the practical utility of 1D or 2D models in
real-world chemistry and materials discovery tasks.

As molecular size increases, 1D models and 2D representations capture enough information
to perform effectively, rendering 3D features generally capture enough information.

5.2 HOW MANY SAMPLES DOES EACH DIMENSION NEED?

The models were trained on datasets with varying sample complexities to evaluate their performance
based on the number of observations needed to utilize 3D information effectively. Previous research
indicates that equivariant models generally require more samples than non-equivariant models
to achieve similar performance levels (Elesedy & Zaidi, 2021). For the feature extractors, we
experimented with four different training set sizes: 500, 1000, 10 000, and 50 000 observations. Thus,
we investigated how model performance scales with sample size.

As illustrated in Fig. 4, 3D models consistently required a larger number of training samples to
outperform or even match the performance of 2D models, particularly for simpler datasets such as
QM7. In these lower-complexity tasks, the computational overhead introduced by 3D features did
not translate into closes the performance gap until the sample size exceeded 10,000 observations.
For example, while 3D models did show some improvement with more samples, their performance
remained inferior to that of 2D models with smaller datasets.

In contrast, the 2D models were highly data-efficient across all datasets, capturing essential structural
information with relatively few samples. Even with a modest dataset of 500 to 1,000 observations,
2D models achieved competitive performance, suggesting that the information content provided by
2D representations is generally sufficient for many molecular property prediction tasks. The gap
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between the performance of 2D and 3D models was most pronounced in smaller datasets, where
3D models often struggled to justify their computational expense. This finding aligns with earlier
research (Elesedy & Zaidi, 2021), which highlights the difficulty of leveraging 3D information in
data-scarce regimes.

3D models require more observations, particularly for simpler molecules, to match the
performance of 2D models. In more complex datasets, the improvement of 3D models is
minimal, indicating that 2D models are sufficient and more efficient.

5.3 IS TRANSFER LEARNING BENEFICIAL?

The results comparing 2D and 3D models across single-property prediction and transfer learning
tasks, as shown in Fig. 5, reveal key differences in their effectiveness. The LLM used was trained in
multiple tasks, thus offering only a transfer learning perspective. In single-property tasks, 2D models
consistently outperform 3D models, particularly in datasets with limited data, like QM7 and QM9.
This suggests that 2D representations capture essential structural information efficiently, without
the computational cost of 3D models. Even in more complex datasets like GEOM DRUGS, where
the performance gap between 2D and 3D models narrows, 2D models remain more competitive and
effective for property prediction, offering a balance of simplicity and accuracy. However, in transfer
learning—where models trained on one molecular property are fine-tuned to predict another—3D
models show some improvement but still lag behind 2D models. The additional geometric detail
provided by 3D representations enhances generalization across tasks but is not enough to outperform
2D models in terms of efficiency and accuracy.

Moreover, transfer learning appears to offer a viable path to generalizing across multiple molecular
properties with minimal loss in accuracy, making it an attractive option for both 2D and 3D models.
While 2D models continue to lead in terms of efficiency and precision, particularly in targeted
tasks, the fact that transfer learning models can achieve performance levels close to task-specific
models suggests that they can be a valuable tool for both types of models. Even though 3D models
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Figure 5: Experimental Results per Task. Top row: QM7. Bottom row: QM9.

do not outperform 2D models, they still show notable improvements through transfer learning,
and this adaptability highlights the practicality of using transfer learning in scenarios that demand
generalization across different molecular properties.

Performance on transfer learning is close to that of specific task prediction. Foundation
models prove a good tool to leverage in molecular optimization.

6 CONCLUSION

Across all datasets examined LLMs consistently outperformed both 2D and 3D models, offering
a stable and highly efficient approach for molecular property prediction. This superiority was
particularly evident in more complex datasets, such as GEOM DRUGS, where LLMs demonstrated a
significant performance gap compared to other models, even for large, intricate molecules. Notably,
2D representations also showed promise, outperforming 3D models across a wide range of tasks. The
relative success of 1D and 2D models highlights the advantage of simpler representations, which not
only provide strong predictive accuracy but also strike an excellent balance between efficiency and
computational cost. This advantage is particularly noticeable in datasets traditionally associated with
3D models, where 3D geometric information was expected to offer an edge but instead provided only
marginal improvements at a higher computational cost.

In addition, this study highlights the potential of transfer learning as a powerful strategy for improving
model adaptability across diverse molecular tasks. The ability of LLMs to generalize well across
different datasets underscores the potential of transfer learning to enhance the versatility of machine
learning models, regardless of the molecular representation’s dimensionality. Future research should
focus on extending this work by exploring tasks where 3D information might be more important e.g.
protein docking. Investigating how BO performance scales with model size and complexity will also
be crucial for optimizing these approaches. Additionally, the exploration of graph foundation models
could open new avenues for representing and processing molecular data, combining the strengths of
graph-based and large-scale foundation models.
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Bojana Ranković, Ryan-Rhys Griffiths, Henry B. Moss, and Philippe Schwaller. Bayesian Opti-
misation for Additive Screening and Yield Improvements – Beyond One-Hot Encoding. Digital
Discovery, 3(4):654–666, 2024. ISSN 2635-098X. doi: 10.1039/d3dd00096f.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine Learning.
The MIT Press, November 2005. ISBN 9780262256834.

Hippolyt Ritter, Aleksandar Botev, and David Barber. A Scalable Laplace Approximation for Neural
Networks. In ICLR, 2018.

David Rogers and Mathew Hahn. Extended-connectivity Fingerprints. Journal of Chemical Informa-
tion and Modeling, 50(5):742–754, 2010.

Jerret Ross, Brian Belgodere, Vijil Chenthamarakshan, Inkit Padhi, Youssef Mroueh, and Payel
Das. Large-scale Chemical Language Representations Capture Molecular Structure and Properties.
Nature Machine Intelligence, 4(12):1256–1264, December 2022. ISSN 2522-5839. doi: 10.1038/
s42256-022-00580-7.

Lars Ruddigkeit, Ruud van Deursen, Lorenz C. Blum, and Jean-Louis Reymond. Enumeration of
166 Billion Organic Small Molecules in the Chemical Universe Database GDB-17. Journal of
Chemical Information and Modeling, 52(11):2864–2875, 2012. doi: 10.1021/ci300415d.

K. T. Schütt, P.-J. Kindermans, H. E. Sauceda, S. Chmiela, A. Tkatchenko, and K.-R. Müller.
Schnet: A Continuous-Filter Convolutional Neural Network for Modeling quantum interactions.
In NeurIPS, 2017.

12

http://dx.doi.org/10.1038/s41524-021-00656-9
https://arxiv.org/abs/2402.03921


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Philippe Schwaller, Teodoro Laino, Théophile Gaudin, Peter Bolgar, Christopher A. Hunter, Costas
Bekas, and Alpha A. Lee. Molecular Transformer: A Model for Uncertainty-Calibrated Chemical
Reaction Prediction. ACS Central Science, 5(9):1572–1583, August 2019. ISSN 2374-7951. doi:
10.1021/acscentsci.9b00576.

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P. Adams, and Nando de Freitas. Taking the
Human Out of the Loop: A Review of Bayesian Optimization. Proc. IEEE, 104(1):148–175, 2016.
doi: 10.1109/JPROC.2015.2494218.

Or Sharir, Barak Peleg, and Yoav Shoham. The Cost of Training NLP Models: A Concise Overview.
ArXiv, abs/2004.08900, 2020.

Felix Strieth-Kalthoff, Han Hao, Vandana Rathore, Joshua Derasp, Théophile Gaudin, Nicholas H.
Angello, Martin Seifrid, Ekaterina Trushina, Mason Guy, Junliang Liu, Xun Tang, Masashi
Mamada, Wesley Wang, Tuul Tsagaantsooj, Cyrille Lavigne, Robert Pollice, Tony C. Wu, Kazuhiro
Hotta, Leticia Bodo, Shangyu Li, Mohammad Haddadnia, Agnieszka Wołos, Rafał Roszak,
Cher Tian Ser, Carlota Bozal-Ginesta, Riley J. Hickman, Jenya Vestfrid, Andrés Aguilar-Granda,
Elena L. Klimareva, Ralph C. Sigerson, Wenduan Hou, x Daniel Gahler, Slawomir Lach, Adrian
Warzybok, Oleg Borodin, Simon Rohrbach, Benjamin Sanchez-Lengeling, Chihaya Adachi,
Bartosz A. Grzybowski, Leroy Cronin, Jason E. Hein, Martin D. Burke, and Alán Aspuru-Guzik.
Delocalized, Asynchronous, Closed-loop Discovery of organic Naser Emitters. Science, 384(6697),
May 2024. ISSN 1095-9203. doi: 10.1126/science.adk9227. URL http://dx.doi.org/10.
1126/science.adk9227.

Gary Tom, Riley J. Hickman, Aniket Zinzuwadia, Afshan Mohajeri, Benjamin Sanchez-Lengeling,
and Alán Aspuru-Guzik. Calibration and Generalizability of Probabilistic Models on Low-data
Chemical Datasets with DIONYSUS. Digital Discovery, 2(3):759–774, 2023. ISSN 2635-098X.
doi: 10.1039/d2dd00146b. URL http://dx.doi.org/10.1039/D2DD00146B.

Gary Tom, Stefan P. Schmid, Sterling G. Baird, Yang Cao, Kourosh Darvish, Han Hao, Stanley
Lo, Sergio Pablo-García, Ella M. Rajaonson, Marta Skreta, Naruki Yoshikawa, Samantha Corapi,
Gun Deniz Akkoc, Felix Strieth-Kalthoff, Martin Seifrid, and Alán Aspuru-Guzik. Self-driving
Laboratories for Chemistry and Materials Science. Chemical Reviews, 124(16):9633–9732, August
2024. ISSN 1520-6890. doi: 10.1021/acs.chemrev.4c00055. URL http://dx.doi.org/10.
1021/acs.chemrev.4c00055.

Austin Tripp, Sergio Bacallado, Sukriti Singh, and José Miguel Hernández-Lobato. Tanimoto
Random Features for Scalable Molecular Machine Learning. In NeurIPS, 2023.

Nicholas W. Turner, Christopher W. Jeans, Keith R. Brain, Christopher J. Allender, Vladimir Hlady,
and David W. Britt. From 3D to 2D: A Review of the Molecular Imprinting of Proteins. Biotech-
nology Progress, 22(6):1474–1489, 2006. ISSN 1520-6033. doi: 10.1002/bp060122g. URL
http://dx.doi.org/10.1002/bp060122g.

Tanja van Mourik, Michael Bühl, and Marie-Pierre Gaigeot. Density Functional Theory across
Chemistry, Physics and Biology. Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 372(2011):20120488, March 2014. ISSN 1471-2962. doi:
10.1098/rsta.2012.0488.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. Attention is All You Need. In NeurIPS, 2017.

David Weininger. Smiles, a Chemical Language and Information System. Journal of Chemical
Information and Computer Sciences, 28(1):31–36, February 1988. ISSN 1520-5142. doi: 10.1021/
ci00057a005.

Daniel S. Wigh, Jonathan M. Goodman, and Alexei A. Lapkin. A Review of Molecular Representation
in the Age of Machine Learning. WIREs Computational Molecular Science, 12(5), February 2022.
ISSN 1759-0884. doi: 10.1002/wcms.1603.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von

13

http://dx.doi.org/10.1126/science.adk9227
http://dx.doi.org/10.1126/science.adk9227
http://dx.doi.org/10.1039/D2DD00146B
http://dx.doi.org/10.1021/acs.chemrev.4c00055
http://dx.doi.org/10.1021/acs.chemrev.4c00055
http://dx.doi.org/10.1002/bp060122g


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
Drame, Quentin Lhoest, and Alexander M. Rush. Huggingface’s Transformers: State-of-the-art
Natural Language Processing, 2020. URL https://arxiv.org/abs/1910.03771.

Zhenqin Wu, Bharath Ramsundar, Evan N. Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S.
Pappu, Karl Leswing, and Vijay S. Pande. Moleculenet: a Benchmark for Molecular Machine
Learning. Chemical Science, 9:513 – 530, 2017.

Shaolun Yao, Jie Song, Lingxiang Jia, Lechao Cheng, Zipeng Zhong, Mingli Song, and Zunlei Feng.
Fast and Effective Molecular Property Prediction with Transferability Map. Communications
Chemistry, 7(1), April 2024. ISSN 2399-3669. doi: 10.1038/s42004-024-01169-4.

Gengmo Zhou, Zhifeng Gao, Qiankun Ding, Hang Zheng, Hongteng Xu, Zhewei Wei, Linfeng Zhang,
and Guolin Ke. Uni-mol: A Universal 3D Molecular Representation Learning Framework. In
ICML, 2023.

14

https://arxiv.org/abs/1910.03771


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 PSEUDOCODES

We present the pseudocode of the Bayesian Optimization (BO) loop and Section 5 in Algorithm 1.

Algorithm 1 Using an NN as a feature extractor in BO.
Require: Pre-trained feature extractor ϕW∗ , mapping a molecular representation c(x) to its embed-

ding vector h ∈ RH ; surrogate model gθ : RH → R; candidate molecules Dcand = {xi}ni=1;
initial dataset D1 = {(xi, f(xi))}mi=1; time budget T .

1: for t = 1, . . . , T do
2: Φt = {(ϕW∗(c(x)), f(x)) : (x, f(x)) ∈ Dt}
3: p(gt|Dt) = infer(gθ,Φt)
4: xt = argmaxx∈Dcand α(p(gt(c(x))|Dt))
5: Dt+1 = Dt ∪ {(xt, f(xt))}
6: Dcand = Dcand \ {xt}
7: end for
8: return argmax(x,f(x))∈DT+1

f(x)

A.2 TRAINING

A.2.1 FIXED-FEATURE SURROGATES

The following are the training details of the surrogates we used in Section 5. We used HuggingFace’s
transformers library (Wolf et al., 2020) for MolFormer. For GPs, we use BoTorch (Balandat et al.,
2020) to construct the surrogate function. The Tanimoto kernel is taken from Gauche (Griffiths
et al., 2024). To optimize the marginal likelihood, we use Adam (Kingma & Ba, 2014) with a
learning rate of 0.01 for 500 epochs. We constrain the GNNs to 1̃.5 million parameters, and further
train Equifrormer v2 on noisy nodes. We optimize the GNNs with Adam with a learning rate of
1× 10−4 and weight decay of 5× 10−4 until convergence with early stopping at 20 epochs without
improvement with a batch size of 64. We anneal the learning rate with the cosine annealing scheme
(Loshchilov & Hutter, 2016). On the other hand for LLA, our implementation is based on the
laplace-bayesopt package. The neural net used is a 2-hidden-layer multilayer perceptron with 50
hidden units on each layer along with the ReLU activation function. The Laplace approximation is
done post-hoc, and we tune the prior precision with the marginal likelihood for 100 iterations. The
Hessian is approximated with a Kronecker structure (Ritter et al., 2018).

A.3 PROMPTING

Following the framework in Kristiadi et al. (2024), we used the prompt “The estimated {objective
str} of the molecule {smiles str} is:” in our experiments. The variable smiles_str equals the
SMILES representation of the molecule at hand, e.g., “OS(=O)(=O)O” for sulfuric acid. The variable
obj_str has the value of the textual description of the problem at hand: “HOMO-LUMO gap in
eV” for QM9, “ atomization energy in kcal/mol ” for QM7, “total energy in Hartees” for GEOM’s
Molecule Net and DRUGS.
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