
Under review as a conference paper at ICLR 2024

ROTATIVE FACTORIZATION MACHINES

Anonymous authors
Paper under double-blind review

ABSTRACT

Feature interaction learning, which focuses on capturing the complex relation-
ships among multiple features, is crucial in various real-world predictive tasks.
However, most feature interaction approaches empirically enumerate all feature
interactions within a predefined maximal order, which leads to suboptimal re-
sults due to the restricted learning capacity. Some recent studies propose intricate
transformations to convert the feature interaction orders into learnable parame-
ters, enabling them to automatically learn the interactions from data. Despite
the progress, the interaction order of each feature is often independently learned,
which lacks the flexibility to capture the feature dependencies in the varying con-
text. In addition, they can only model the feature interactions within a bounded
order due to the exponential growth of the interaction terms. To address these is-
sues, we present a Rotative Factorization Machine (RFM). Unlike prior studies,
RFM represents each feature as a polar angle in the complex plane. As such, the
feature interactions are converted into a series of complex rotations, where the
orders are cast into the rotation coefficients, thereby allowing for the learning of
arbitrarily large order. Further, we propose a novel self-attentive rotation function
that models the rotation coefficients through a rotation-based attention mecha-
nism, which can adaptively learn the interaction orders from different interaction
contexts. Moreover, it incorporates a modulus amplification network to learn the
modulus of the complex features that further enhances the representations. Such
a network can adaptively capture the feature interactions in the varying context,
with no need of predefined order coefficients. Extensive experiments conducted
on five widely used datasets have demonstrated the effectiveness of our approach.

1 INTRODUCTION

Feature interaction learning is crucial for the success of various real-world predictive tasks, such as
click-through rate (CTR) predictions and product recommendations. The key to learning effective
feature interactions is to accurately model the complex relationship among multiple features. Typi-
cally, a feature interaction term is modeled as a combination of input features with their respective
interaction orders, formally denoted by eα1

1 ⊙ · · · ⊙ eαm
m . The order αj determines the effect of

the j-th feature and αj = 0 discards the corresponding feature ej . In the literature, various methods
have been proposed for learning effective feature interactions, from early factorization machines
(e.g., FM (Rendle, 2010)) to recent deep neural networks (e.g., CrossNet (Wang et al., 2021)).

Typically, existing methods have adopted a similar modeling approach: they often set a maximal
order, and consider conducting feature interactions within the predefined order. Despite the progress,
they suffer from a decline in model capability owing to the suboptimal learning of the restricted
orders (e.g., integer-only order (Lian et al., 2018)). Further, due to the exponential growth of feature
combinations, they can only learn the interactions within a small order to maintain efficiency, e.g.,
FM (Rendle, 2010) only considers second-order feature interactions.

Considering the above limitations, several studies (Cheng et al., 2020; Tian et al., 2023; Cai et al.,
2021) propose to automatically learn the interaction orders from data. The core idea of these ap-
proaches is to map features into a special vector space (e.g., logarithmic vector space (Cheng et al.,
2020)). As such, the exponential form of interaction terms (i.e.,

∏
e
αj

j) is converted to linear com-
binations (i.e., exp (

∑
αj log ej)), and the orders (i.e., αj) are cast into learnable linear coefficients,

allowing for the learning of adaptive-order interactions. Generally, existing methods learn the orders
either in a field-aware way or in an instance-aware way. As shown in Figure 1(a) and Figure 1(b),

1

Under review as a conference paper at ICLR 2024

given two fields along with their feature interaction, field-aware methods learn a shared order for all
features from the same field (e.g., αG is shared by Male,Female for field Gender), capturing the
field-level importance, whereas the instance-aware methods assign a specific order for each feature
(e.g., αM , αF for Male,Female) to learn the feature importance.

Although these approaches are capable of capturing the underlying relationships in real-world sce-
narios, they still have two limitations. First, the interaction order of each feature is independently
learned, which lacks the flexibility to capture the feature dependencies in the varying context. As
increasing evidence shows (Wang et al., 2022), in real-world applications, the importance of a cer-
tain feature is often influenced by other features. For example, considering the feature interaction
⟨UserGender,MovieGenre,Actor⟩ in the scenario of movie recommendations, the Actor features
may have varying effects for Idol and Horror movie genres. However, it is challenging for both
field-aware and instance-aware models to effectively capture such varied feature importance in dif-
ferent interaction contexts. As such, we argue that the importance of a specific feature should be
adaptively learned depending on the other features it is involved with, which is called relation-aware
(See Figure 1(c)) in this paper. Second, since the interaction terms exponentially grow with the or-
der, these methods often model the interactions within a bounded order1, which cannot scale to the
high-order cases in industrial scenarios. Considering these limitations, we aim to seek a more effec-
tive approach to adaptively learn the interaction order in a relation-aware way, meanwhile surpass
the scale limits of interaction order in existing work.

Gender (G)

Male (M)

FeMale (F)

AgeGroup (A)

Feature Field

Feature Instance

𝒆𝑴
𝜶1 ⊙𝒆𝑶

𝜷𝟏

𝒆𝑴
𝜶2 ⊙𝒆𝒀

𝜷𝟐

𝒆𝑭
𝜶3 ⊙𝒆𝑶

𝜷𝟑

Younger (Y)

Older (O)

(a) Field-aware (b) Instance-aware (c) Relation-aware

(AFN, EulerNet) (ARM-Net) (Ours)

𝜶𝑮

𝜶1 = 𝜶𝟐 = 𝜶𝟑 = 𝜶𝑮

𝒆𝑴
𝜶1 ⊙𝒆𝑶

𝜷𝟏

𝒆𝑴
𝜶2 ⊙𝒆𝒀

𝜷𝟐

𝒆𝑭
𝜶3 ⊙𝒆𝑶

𝜷𝟑

𝜶𝑴

𝜶1 = 𝜶𝟐 = 𝜶𝑴 𝜶𝟑 = 𝜶𝑭

𝜶𝑭

𝒆𝑴
𝜶1 ⊙𝒆𝑶

𝜷𝟏

𝒆𝑴
𝜶2 ⊙𝒆𝒀

𝜷𝟐

𝒆𝑭
𝜶3 ⊙𝒆𝑶

𝜷𝟑

𝜶1 = 𝜶𝑴,𝑶 𝜶2 = 𝜶𝑴,𝒀 𝜶𝟑 = 𝜶𝑭,𝑶

𝜶𝑴,𝑶

𝜶𝑴,𝒀

𝜶𝑭,𝑶

Figure 1: Comparisons of three feature interaction approaches. Field-aware methods set a fixed interaction
order for each feature field; instance-aware methods set a unique interaction order for each feature instance
(a.k.a., feature value); relation-aware methods set a unique interaction order for each feature combination.

To this end, this paper presents a novel rotative factorization machine (RFM), for adaptively learn-
ing the unbounded-order feature interactions in a relation-aware way. Unlike prior work, the key
idea of RFM is to represent each feature as a polar angle (i.e., eiθj) in the complex plane, and con-
duct the attentive rotations to model complicated feature interactions. For learning the unbounded-
order feature interactions, RFM converts the feature interactions into the complex rotations (i.e.,
exp(i

∑
αjθj)), where the interaction orders are cast into the rotation coefficients (i.e., αj), thereby

avoiding the exponential explosion of the interaction terms. For learning the feature interactions
in a relation-aware way, we propose a novel self-attentive rotation function (i.e., exp(i

∑
αj,lθl)),

where the rotation coefficients (i.e., αj,l) are learned by a rotation-based attention mechanism, cap-
turing the dependencies between feature j and l. Moreover, we devise a modulus amplification
network to learn the modulus of the complex features that further enhances the feature interaction
learning. Such a network can model all three types of feature interaction patterns (i.e., field-aware,
instance-aware and relation-aware), with no need of pre-specified order coefficients.

To our knowledge, it is the first work that is capable of learning the interactions with arbitrarily large
order adaptively from the corresponding interaction contexts. Furthermore, it has been proven that
our approach can be instantiated to a variety of traditional inner-product based interaction models
(e.g., FM (Rendle, 2010)). To evaluate our model, we conduct extensive experiments on five public
datasets, and the experimental results show that our model consistently outperforms a number of
competitive feature interaction approaches.

2 PRELIMINARY

As the key technique in many prediction tasks (Zhang et al., 2021; Xiao & Benbasat, 2007), feature
interaction modeling aims to capture the underlying relationships among multiple features. It takes
as input a concatenated vector of features, denoted as x = [x1, ...,xm], where m represents the
number of feature fields (e.g., Gender), and xj is the one-hot vector of a feature instance (e.g.,

1Due to gradient explosion, they cannot learn a large interaction order (e.g., ≥ 70, See Section 4.3).

2

Under review as a conference paper at ICLR 2024

p

Query

Key

0 r

𝑸𝒋

𝑲𝒍

Weight

C
o

sin
e

D
o

t

𝒘

𝑹𝒐𝒕𝑨𝒕𝒕(𝑸𝒋, 𝑲𝒍)

Rotation-based Attention

𝑺𝒊𝒈𝒎𝒐𝒊𝒅

𝜶𝒋,𝒍 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 𝒘𝑻𝒄𝒐𝒔 𝑸𝒋 −𝑲𝒍
Input Features

Angular Embedding

Add & Norm

𝑵 ×

Amplification

Group Norm

Add

𝑳 ×

Prediction

𝒆𝒊𝜽 ⇒ 𝒄𝒐𝒔𝜽 + 𝒊𝒔𝒊𝒏𝜽

Self-Attentive Rotation

Multi-Head

Self-Attentive Rotation

𝒆
𝟏

𝜶𝒋,𝟏
⋯⊙ 𝒆

𝒍

𝜶𝒋,𝒍
··⊙ 𝒆𝒎

𝜶𝒋,𝒎

𝑸𝟏 𝑸𝒋 𝑸𝒍 𝑸𝒎

𝑲𝟏 𝑲𝒋 𝑲𝒍 𝑲𝒎

𝑽𝟏 𝑽𝒋 𝑽𝒍 𝑽𝒎

…

𝜽𝟏

𝜽𝒎

𝜽𝟐

𝑹𝒐𝒕𝑨𝒕𝒕(𝑸𝒋, 𝑲𝒍)

0 r

𝒆
𝟏

𝜶𝒋,𝟏⊙

…⊙…⊙𝒆
𝒍

𝜶𝒋,𝒍

⊙
…

⊙

𝒆𝒎
𝜶𝒋,𝒎

p
Attentive Rotations

Input Angles

exp 𝑖(σ𝜶𝒋,𝒍𝑽𝒍)

(a) Model Architecture (b) Self-Attentive Rotation Mechanism

Figure 2: Architecture and components of our proposed rotative factorization machines.

Male) in the j-th field. Due to the high-dimensional, sparse nature of x, an embedding look-up
operation E(·) is often used to map each feature into a d-dimensional vector ej = E(xj) ∈ Rd. In
this context, the feature interaction learning function F(·) is commonly defined as:

F(A) =
∑
α∈A

eα1
1 ⊙ eα2

2 ⊙ · · · ⊙ eαm
m , (1)

where ⊙ denotes the element-wise product, A represents the set of all interaction orders, and each
α ∈ A specifies the order for each feature. While many methods manually set feature interaction
orders, for instance, FM (Rendle, 2010) assigns A = {α|

∑m
j=1 αj = 2,∀αj ∈ {0, 1}} to capture

second-order feature interactions. Further, AFN (Cheng et al., 2020) and EulerNet (Tian et al., 2023)
propose automatically learning orders (i.e., A) from data. However, they primarily capture field-
aware interactions, where the order α is shared across all features within a field. ARM-Net (Cai
et al., 2021), as a promising approach, introduces a gated attention Gate(·) for instance-aware
interactions, with αj = Gate(ej) evaluating feature importance. In contrast, we focus on learning
relation-aware interactions, where αj considers the dependencies between ej and other features.

3 METHODOLOGY

In this section, we present the proposed Rotative Factorization Machines (RFM) (Figure 2(a)) for
better modeling feature interactions in the prediction tasks. Unlike prior work, we represent each
feature as a polar angle in the complex plane and use the attentive rotations to model compli-
cated feature interactions. Specially, we focus on adaptively learning the unbounded-order feature
interactions in a relation-aware way. For learning unbounded-order interactions, we convert the in-
teractions into the complex rotations that casts the orders into the rotation coefficients, allowing for
the learning of arbitrarily large order. For learning relation-aware interactions, we propose a self-
attentive rotation layer, which can adaptively learn the orders from different interaction contexts.
Moreover, a modulus amplification network is incorporated to learn the modulus of the complex
features for enhancing the representations. In what follows, we introduce the details of relation-
aware interaction modeling (Section 3.1) and the modulus amplification network (Section 3.2).

3.1 RELATION-AWARE FEATURE INTERACTION LEARNING

As discussed in Section 1, prior work mainly learns the feature interactions in a field-aware or
instance-aware way (directly optimizing Eq.1), suffering from two major limitations. First, since
the term e

αj

j exponentially grows with the power αj , they can only learn the interactions within a
bounded order, which cannot scale to the high-order cases. Second, the interaction order of each
feature is independently learned. It is difficult for them to learn the feature dependencies in the
varying context that leads to the suboptimal performance. To address these issues, we represent
each feature as a polar angle in the complex plane and propose a self-attentive rotation layer for
learning the relation-aware feature interactions.

3

Under review as a conference paper at ICLR 2024

3.1.1 ANGULAR REPRESENTATION OF FEATURES

As mentioned in Section 2, the feature xj can be mapped into a vector embedding via the look-up
operation E(·). Due to the exponential explosion, it is challenging to effectively learn high-order
interactions. Our solution is to represent the features as a set of polar angles in the complex plane:

θj = E(xj), ẽj = eiθj , (2)
where i is the imaginary unit that satisfies i2 = −1. In this way, given the angular feature represen-
tations {ẽj}mj=1 ∈ Cm×d, the interactions are cast into a series of complex rotations:

F(A) =
∑
α∈A

ẽα1
1 ⊙ ẽα2

2 ⊙ · · · ⊙ ẽαm
m =

∑
α∈A

exp
(
i

m∑
j=1

αjθj

)
︸ ︷︷ ︸
Complex Rotation

. (3)

In mathematics, a complex rotation (i.e., exp(i
∑m

j=1 αjθj)) performs a linear transformation on the
phase of the complex vectors without affecting their modulus. In our case, we utilize it to model the
complicated interactions, and use the rotation coefficients (i.e., αj) to model the interaction orders.
As such, the interactions are learned on a unit circle (i.e., modulus are fixed to 1) with a finite norm:

||F(A)|| =
∣∣∣∣∣∣ ∑

α∈A
exp

(
i

m∑
j=1

αjθj

)∣∣∣∣∣∣ ≤ ∑
α∈A

∣∣∣∣∣∣ exp(i m∑
j=1

αjθj

)∣∣∣∣∣∣ ≤ |A|d. (4)

Since the upper bound is independent of the order αj , it can effectively learn complicated interac-
tions with arbitrarily large order, without limitations in prior work (e.g., exponential explosion).

3.1.2 SELF-ATTENTIVE ROTATION

The self-attentive rotation layer is the core of our proposed RFM for learning the relation-aware
feature interactions. As shown in Figure 2(b), the key idea of this layer is to conduct the attentive
rotations with the rotation coefficients modeled by a rotation-based attention mechanism, thereby
allowing for the adaptive learning of feature dependencies in the varying context. As such, it takes
as input a set of angles and outputs a set of rotated angles, and thus we can stack multiple such layers
to form a capable network. Here we describe the attentive rotations within a single layer.

Rotation-based Attention for Attentive Rotations. As shown in Eq. 3, the interaction with the
order α is cast into a complex rotation (i.e., exp(i

∑m
j=1 αjθj)). To learn the relation-aware inter-

actions, a major issue is how to effectively model the feature dependencies in the varying context.
Typically, the self-attention mechanism (Vaswani et al., 2017) has shown excellent capacity in mod-
eling complicated dependencies. However, it is designed to model relationships for real vectors,
which is not suitable for modeling relationships among angular representations. As our solution, we
propose a rotation-based attention mechanism to adaptively model the rotation coefficients (i.e., αj),
which enables it to effectively learn the dependencies between different angle-represented features.

As shown in Figure 2(b), we adopt a key-value based self-attention to conduct the attentive rotations.
Specifically, the query-key pairs with similar angles are considered more important. Given the input
{θj}mj=1, the dependency between feature j and l is learned by the rotation angle from key to query:

αj,l = RotAtt(Qj ,Kl) = Sigmoid(w⊤ cos(θQ
j − θK

l)), (5)

Q⊤
j = θQ

j = WQ
j θj , K⊤

l = θK
l = WK

l θl, (6)

where w ∈ Rd is a weight vector. To improve the field-specific semantics, we utilize a set of field-
specific matrices {WQ

j ∈ Rd′×d}mj=1, {WK
l ∈ Rd′×d}ml=1 to map the features into a set of queries

{θQ
j }mj=1 and keys {θK

l }ml=1, and pack them together into two matrices Q,K ∈ Rm×d′
. Likewise,

the values are also packed into matrix V ∈ Rm×d′
. Further, we aggregate all contextual information

of feature j as θ̃j =
∑m

l=1 αj,lθ
V
l . As such, the interaction with order Aj = {αj} is cast into a

self-attentive rotation with coefficients learned by the proposed rotation-based attention (Eq. 5):

F(Aj) = exp
(
i

m∑
l=1

αj,lθ
V
l

)
︸ ︷︷ ︸

Self-Attentive Rotation

= exp (iθ̃j). (7)

4

Under review as a conference paper at ICLR 2024

This formula is the core of RFM for learning the relation-aware interactions. Different from prior
work, the rotation coefficient αj,l, which also represents the interaction order, is learned through the
self-attention mechanism, capturing the dependencies between feature j and l. In practice, we pack
the orders into a matrix A (i.e., Aj,l = αj,l), to aggregate the contextual information of all features:

AttentiveRo(Q,K,V) = [θ̃1, θ̃2, · · · , θ̃m]⊤ = AV . (8)
Formally, the tensor-form calculation of the rotation-based attention score can be also given by:

A = RotAtt(Q,K) = Sigmoid
(
Re
[(

exp(iQ)diag(w)
)
exp(−iK)⊤

])
, (9)

where Re[·] returns the real part of a complex vector. See proof in Appendix A.1.

Multi-Head Rotation. To learn diversified contextual information from different subspaces, we
extend RFM to adopt a multi-head rotation. Specifically, we introduce h independent attention heads
performing the rotation function of Eq. 8, and then concatenate them to obtain final representations:

MultiHeadRo(Q,K,V) = Concat(head1,head2, ...,headh), (10)

headj = AttentiveRo(QHQ
j ,KHK

j ,V HV
j), (11)

where HQ
j ,HK

j ,HV
j ∈ Rd′×dh are projection matrices, dh = d′/h. In this way, we can use the

head number h to control the number of feature interaction terms. Further, we can stack multiple
layers by taking the output representations of the previous layer as the input for the next layer, and
set varying h at different layers to increase the model flexibility. Besides, to preserve the previ-
ously learned representations, we follow the transformer Miller et al. (2016) that employs a residual
connection with a layer normalization (Ba et al., 2016) around each layer.

3.2 MODULUS AMPLIFICATION FOR ENHANCED FEATURE INTERACTION LEARNING

In the above rotation procedure, the features are limited to a unit circle with a fixed modulus of
one, which may limit the model’s capacity and lead to suboptimal results. For further enhancing the
interaction learning, we devise a modulus amplification network to learn the modulus of the features.

Coordinate Transformation. For learning the modulus of the complex features, a straightforward
approach is to feed them into a feed-forward neural network. However, it cannot effectively learn the
representations since all features have the same modulus (i.e., 1) after rotations. Instead of directly
learning the modulus of the complex features, our solution is to optimize their real and imaginary
parts. Specifically, given the output representation eiθ̃j (See Eq. 8) of the last self-attentive rotation
layer, we use the Euler’s formula (i.e., eiθ = cosθ + i sinθ) to obtain its real and imaginary parts:

rj = cos θ̃j , pj = sin θ̃j , (12)
where j ∈ {1, ...,m}. After the coordinate transformation, each feature is represented by a
rectangular-form complex vector, i.e., rj+ipj . We utilize the complex representations {rj+ipj}mj=1
for the subsequent modulus amplification procedure. Further, we can optionally add a residual con-
nection of the original (i.e., first-order) features (See Eq. 2) to improve the low-order interactions.

Modulus Amplification. Given the representations in the rectangular form {rj + ipj}mj=1, we
concatenate their real and imaginary parts and feed them into a shared multi-layer perception (MLP):

r(0) = Concat(r1, ..., rm), p(0) = Concat(p1, ...,pm), (13)

r(k) = GN(σ(Wkr
(k−1) + bk)), p(k) = GN(σ(Wkp

(k−1) + bk)), (14)
where k ∈ {1, 2, ..., L}, L is the depth, σ is the activation function, Wk and bk are the weight
and bias of the k-th layer. In the above transformations, all feature vectors are concatenated into
a long hidden vector as the input of the MLP, which may diminish the vector-based representation
of each feature. To address this problem, we use the group normalization (Wu & He, 2018) GN(·)
to preserve the feature-wise information. Formally, given the input vector X ∈ RD, we view it as
having f latent features (i.e., X = [X1,X2, ...,Xf], f | D), and GN(·) is formulated as follows:

GN(Xj) = γ · Xj − µj√
σ2
j + ϵ

+ β, (15)

5

Under review as a conference paper at ICLR 2024

where j ∈ {1, 2, ..., f}, µj and σj denote the mean and standard deviation of Xj , the scale parameter
γ and shift parameter β are set to be trainable to enhance the representation of the GN(·) layer.

Predictions for Model Training. For predictions, we follow the prior work (Tian et al., 2023) that
incorporates a transition weight u to project the representation of the last layer (i.e., r(L) + ip(L)):

z = u⊤(r(L) + ip(L)) = zr + izp, (16)
ŷ = σ(zr + zp). (17)

Similar to FM (Rendle, 2010), RFM can be applied to a variety of tasks, such as classification and
regression. Taking the binary classification tasks (e.g., click-through rate prediction) for example,
we use the widely-used binary cross-entropy loss with a regularization term to train our model:

L(Θ) = − 1

N

N∑
j=1

(
yj log(ŷj) + (1− yj) log(1− ŷj)

)
+ λ||Θ||22, (18)

where yj and ŷj are the ground-truth label and predicted result of j-th instance respectively, Θ is
the set of model parameters, and λ is the L2-norm penalty.

3.3 DISCUSSION

With the above transformations, RFM is able to model all three types of feature interaction patterns
(i.e., field-aware, instance-aware and relation-aware) introduced in the Figure 1, meanwhile surpass
the order limits in existing studies (See proofs in Eq. 4). Formally, we have the following finding:
Theorem 3.1. If embeddings {θj}mj=1 ∈ Rm×d are L2-regularized such that ||θj ||2 ≤ 1,∀j ∈
{1, ...,m}, RFM can model the feature interaction pattern ∆R = e

αj,1

1 ⊙e
αj,2

2 ⊙· · ·⊙e
αj,m
m , with a

probability of at least O(1−m/d) that satisfies the maximum prediction error R = max(|∆RFM−
∆R|) < O(2

∑m
k=1 αj,k ·

√
ln d/(d− 1)). Here ej ∈ Rd, j ∈ {1, ...,m}, αj,k = f(ej , ek), and

f : Rd × Rd → {0, 1} is any given feature dependency function. See proof in Appendix A.2.

It indicates that in high-dimensional spaces, RFM can effectively learn the given feature relation-
ships in real-world scenarios with infinitesimal loss. Further, the interactions learned in RFM can
cover both the field-aware and instance-aware interactions (See proof in Appendix A.3). Specially,
the inner product-based interactions (e.g., FM (Rendle, 2010)) are special cases of our proposed
rotation-based interactions (See Lemma A.1 and A.2). To our knowledge, RFM is the first work
that proposes an attentive rotation mechanism for learning the unbounded-order interactions. In the
literature, AFN (Cheng et al., 2020), EulerNet (Tian et al., 2023) and ARMNet (Cai et al., 2021)
have also proposed to model the adaptive-order interactions, but the order of each feature is indepen-
dently learned, which lacks the flexibility to capture the feature dependencies in the varying context.
Although EulerNet has proposed to enhance the representations in the complex vector space, it still
suffers from the exponential explosion issue when dealing with a large order (See Section 4.3), due
to the exponential growth in the modulus of the complex features. In contrast, RFM is more flex-
ible, robust in accurately learning the complicated feature interactions with arbitrarily large order
involving massive feature fields. The comparison of these approaches is presented in Table 1.

Table 1: Comparison of different methods.

Methods Adaptive
Order

Unbounded
Order Interaction Type

FM ✗ ✗ Field
AFN ✓ ✗ Field
ARM-Net ✓ ✗ Field, Instance
EulerNet ✓ ✗ Field
RFM ✓ ✓ Field, Instance, Relation

Table 2: Statistics of all datasets.
Datasets #Field #Feature #Instance
Criteo 39 1,327,180 45,840,617
Avazu 23 1,544,257 40,428,967
ML-1M 7 13,265 739,012
ML-Tag 3 90,448 2,006,859
Frappe 10 5,392 288,609

4 EXPERIMENT

4.1 EXPERIMENTAL SETTING

Datasets. We evaluate the proposed RFM on five public datasets, following previous works: Criteo,
Avazu, ML-1M, ML-Tag, and Frappe. The statistics of the datasets are shown in Table 2. Due to the
page limitation, more details on dataset processing are listed in the Appendix B.

6

Under review as a conference paper at ICLR 2024

Metrics. We adopt AUC (Lobo et al., 2008) and LogLoss (Buja et al., 2005) to evaluate the model
performance.

Baselines. We compare RFM with the following state-of-the-art models: (1) First-Order (FO):
LR (Richardson et al., 2007); (2) Second-Order (SO): FwFM (Pan et al., 2018), FmFM (Sun et al.,
2021); (3) High-Order (HO): NFM (He & Chua, 2017), CIN (Lian et al., 2018), CrossNet (Wang
et al., 2021), PNN (Qu et al., 2016); (4) Ensemble (EN): AutoInt+ (Song et al., 2019) (Also known
as Transformer), DeepFM Guo et al., xDeepFM (Lian et al., 2018), DCNV2 (Wang et al., 2021);
(5) Adaptive-Order (AO): AFN+ (Cheng et al., 2020), ARM-Net (Cai et al., 2021), EulerNet (Tian
et al., 2023). The description and reproducibility details are presented in Appendices C and D.

Table 3: Performance comparisons. Note that a higher AUC or a lower Logloss at the 0.001 level is regarded
as significant, as stated in Tian et al. (2023); Song et al. (2019); Cheng et al. (2016); Guo et al. (2017). “*”
denotes that statistical significance for p < 0.01 compare to the best baseline. “LL” denotes the LogLoss.

Type Model Criteo Avazu ML-1M ML-Tag Frappe Effciency
AUC LL AUC LL AUC LL AUC LL AUC LL Params Latency

FO LR 0.7900 0.4598 0.7663 0.3879 0.8712 0.3506 0.9303 0.3455 0.9379 0.2858 5.39 K 0.76 ms

SO FwFM 0.8104 0.4414 0.7817 0.3813 0.8934 0.3201 0.9415 0.2761 0.9764 0.1791 91.66 K 1.02 ms
FmFM 0.8112 0.4408 0.7794 0.3819 0.8942 0.3191 0.9595 0.2255 0.9783 0.1675 93.21 K 1.21 ms

HO

NFM 0.8066 0.4456 0.7832 0.3784 0.8931 0.3245 0.9578 0.2353 0.9779 0.1722 216.14 K 2.14 ms
CIN 0.8109 0.4424 0.7852 0.3771 0.8913 0.3255 0.9624 0.2125 0.9816 0.1669 362.27 K 3.79 ms

CrossNet 0.8123 0.4398 0.7874 0.3767 0.8983 0.3156 0.9647 0.2159 0.9817 0.1611 272.31 K 1.78 ms
PNN 0.8120 0.4399 0.7841 0.3773 0.8953 0.3233 0.9635 0.2197 0.9813 0.1567 113.23 K 1.58 ms

EN

Transformer 0.8126 0.4396 0.7841 0.3778 0.8981 0.3195 0.9642 0.2207 0.9810 0.1647 256.13 K 3.27 ms
DeepFM 0.8123 0.4399 0.7856 0.3768 0.8973 0.3166 0.9618 0.2264 0.9812 0.1689 252.17 K 1.61 ms

xDeepFM 0.8124 0.4406 0.7874 0.3761 0.8969 0.3187 0.9625 0.2121 0.9819 0.1580 375.22 K 5.70 ms
DCNV2 0.8129 0.4392 0.7876 0.3757 0.8989 0.3147 0.9649 0.2084 0.9822 0.1531 302.99 K 2.03 ms

AO

AFN+ 0.8125 0.4395 0.7877 0.3756 0.8931 0.3230 0.9607 0.2285 0.9813 0.1697 1976.36 K 3.39 ms
ARM-Net+ 0.8125 0.4396 0.7877 0.3757 0.8969 0.3141 0.9650 0.2096 0.9818 0.1517 1648.16 K 5.62 ms

EulerNet 0.8139 0.4387 0.7879 0.3755 0.9010 0.3098 0.9656 0.2134 0.9832 0.1581 170.76 K 1.88 ms

RFM 0.8147∗ 0.4374∗ 0.7890∗ 0.3749∗ 0.9026∗ 0.3090∗ 0.9667∗ 0.2049∗ 0.9843∗ 0.1506 348.17 K 2.27 ms

4.2 OVERALL PERFORMANCE

The overall performance is shown in Table 3. We have the following observations: (1) Low-order
models (i.e., LR, FwFM and FmFM) perform worse than high-order models (i.e., NFM, CIN, Cross-
Net and PNN), due to limited learning capacity. (2) Ensemble methods (i.e., Transformer, DeepFM,
xDeepFM, DCNV2) achieve competitive performance across all datasets, showing the effective-
ness of integrating MLPs for learning enhanced feature interactions. (3) For adaptive-order models,
ARM-Net+ outperforms AFN on the ML-1M, ML-Tag and Frappe datasets, demonstrating the ef-
fectiveness of instance-aware interaction learning. Additionally, EulerNet performs very well across
all datasets, indicating that the complex vector space is more suitable for learning adaptive-order
interactions. (4) RFM consistently outperforms all compared baselines, showing the effectiveness
of our proposed self-attentive rotation function for learning relation-aware interactions.

For efficiency, we observe that the latency of first-order and second-order models is relatively small
due to their simple architectures. The high-order and ensemble models are more time-consuming
because they have more complicated architectures. Compared to EulerNet, AFN+ and ARM-Net+
have to incorporate many more parameters to compensate for the limited representation capac-
ity. Note that RFM is sufficiently efficient and is comparable to many efficient approaches (e.g.,
DCNV2). The complexity of RFM is of the same order as that of the Transformer (See Appendix E).

4.3 FURTHER STUDY

Ablation Study. We first analyze how our proposed components influence the performance of RFM.
The results are shown in Table 4. We propose four variants as follows: (1) w/o AttRo: removing
the self-attentive rotation layer, (2) w/o AmpNet: removing the modulus amplification network, (3)
w/o Res: removing the residual in the self-attentive rotation layer, (4) w/o Coo Trans: removing the
coordinate transformation procedure (See Section 3.2) that directly feeds the angular representations
to an MLP. We can see that all these variants underperform the complete RFM, showing that all of
our proposed approaches are useful to improve the performance. Specially, the model performance
of variant (1) shows a significant decrease, indicating that the self-attentive rotation layer is the core
of RFM for learning effective feature interactions. We further present the hyper-parameter studies
in Appendix F, and visualize the effect of the modulus amplification network in Appendix I.

7

Under review as a conference paper at ICLR 2024

Table 4: Components.
Variant ML-Tag Frappe

AUC LogLoss AUC LogLoss
(0): RFM 0.9667 0.2049 0.9843 0.1506
(1): w/o AttRo 0.9552 0.2454 0.9763 0.1768
(2): w/o AmpNet 0.9629 0.2178 0.9804 0.1491
(3): w/o Res 0.9635 0.2164 0.9806 0.1620
(4): w/o Coo Trans 0.9637 0.2163 0.9816 0.1611

Table 5: Attention and Normalization.
Variant ML-Tag Frappe

AUC LogLoss AUC LogLoss
(5): w/o AttWeight 0.9656 0.2073 0.9816 0.1533
(6): (1) + w DotAtt 0.9607 0.2330 0.9813 0.1561
(7): w/o GN 0.9626 0.2188 0.9789 0.1678
(8): (7) + w LN 0.9646 0.2137 0.9820 0.1491
(9): (7) + w BN 0.9653 0.2089 0.9833 0.1475

Besides, we investigate the effects of our proposed self-attentive rotation function in Table 5. In vari-
ant (5), we remove the weight vector (i.e., w in Eq. 5) of rotation-based attention algorithm. Variant
(6) replaces the rotation-based attention with the widely used scaled dot-product attention (Vaswani
et al., 2017). The performance of both variants shows a notable decrease. This indicates that our
proposed rotation-based attention mechanism is more effective for the relation modeling of the an-
gular representations in the complex plane. In variants (7), (8), and (9), we explore the effects of
different normalization methods. The results show that GroupNorm is more suitable for learning the
feature-wise representations. More ablation study results are presented in Appendix G.

Feature order

In
st

an
ce

Field-Aware (EulerNet)

Feature order

In
st

an
ce

Instance-Aware (ARM-Net)

Feature order

In
st

an
ce

Relation-Aware (RFM)

0.5 1.0 −0.05 0.00 0.25 0.50 0.75

(a) Visualizing the interaction orders. (b) Visualizing the representations.

Figure 3: Interpretability analysis on the MovieLens-1M dataset.

Interpretability Analysis. RFM is capable of adaptively learning the interaction orders from dif-
ferent interaction contexts. Figure 3(a) visualizes the learned orders of different methods. We can
observe that the orders in field-aware method are the same for all features within each field (i.e., the
columns). The instance-aware method can identity the importance of some features (i.e., 2nd col-
umn), but cannot capture the dependencies between different fields. In contrast, RFM can learn the
varied feature interactions from different contexts. The diversified orders learned from the varying
context enable it to capture more effective relationships.

To have an intuitive understanding of our approach, we visualize the representations with a simple
case (the embedding dimension d = 1) on the MovieLens-1M dataset. As shown in Figure 3(b), the
left figure visualizes the query angles (i.e., θQ

j in Eq.5) of the gender features and the key angles
(i.e., θK

j in Eq.5) of others, and the right figure illustrates the conditional mutual information scores
on the gender features, representing the strength of each feature field on the ground-truth labels
given the gender features. We can observe that the fields (user id, zip code and item id) have a
strong effect on the results, and they are closely aligned with the gender features. For the fields with
less importance (age, occupation and release year), they have no intersecting features with gender
and the corresponding rotation angles are relatively large. These results indicate that the rotation
angles from keys to queries can reflect the importance of feature relationships, which enables RFM
to capture the effective feature dependencies for learning varied feature interactions.

0 2500 5000 7500 10000 12500 15000 17500 20000
training step

0.0

0.2

0.4

0.6

0.8

1.0

Av
g.

 O
rd

er

RFM
EulerNet
ARM-Net
AFN

(a) The learning trajectory of aver-
age feature order

2 4 6 8 10
Num_field

0.1

0.2

0.3

0.4

0.5

0.6

Av
g.

 O
rd

er

RFM
EulerNet
ARM-Net
AFN

(b) The average feature order w.r.t
the number of feature fields

0 50 100 150 200 250 300
Order

0

2000

4000

6000

8000

10000

Gr
ad

ie
nt

RFM
EulerNet
ARM-Net
AFN

(c) The gradient w.r.t the maximal
interaction order.

Figure 4: Interaction order learning analysis on the Frappe dataset.

8

Under review as a conference paper at ICLR 2024

Arbitrary-Order Learning Analysis. We investigate the arbitrary-order learning capacity of dif-
ferent approaches. Figure 4(a) shows the trajectory of the average feature order (i.e., αj in Eq. 1)
during training. We can see that RFM converges to a relatively large order, while other models tend
to approach a zero order. This demonstrates RFM’s ability to learn more effective interactions.

Then we probe the learning effectiveness with respect to the number of feature fields (i.e., m in
Eq. 1). As shown in Figure 4(b), the average orders learned in EulerNet, AFN and ARM-Net de-
crease when adding the feature fields. This is due to the fact that the interaction terms exponentially
grow with the increasing number of feature fields (i.e., m in Eq. 1). Figure 4(c) shows the gradi-
ents with respect to the interaction order (i.e.,

∑m
j=1 αj in Eq.1). We observe that the gradient in

EulerNet, AFN and ARM-Net exponentially grows with the increasing order, leading to the gradi-
ent explosion issue when the order reaches a large value. In contrast, the gradient in RFM remains
relatively stable, and it is more robust to a large number of feature fields or large interaction or-
ders. These results demonstrate the superiority of our proposed self-attentive rotation function for
learning high-order feature interactions. We further provide theoretical analysis in Appendix A.4.

5 RELATED WORK

Feature Interaction Learning. Learning feature interactions is a fundamental problem in vari-
ous machine learning tasks, leading to the emergence of several interaction models (Rendle, 2010;
Huang et al., 2019; Li et al., 2019; Chen et al., 2019; Yu et al., 2020; Lu et al., 2021). Among them,
FM (Rendle, 2010) is the most basic model, using feature embedding vectors to capture second-order
interactions. Besides, HOFM (Blondel et al., 2016) introduces a dynamic programming algorithm
for higher-order interactions; xDeepFM (Lian et al., 2018) and DCNV2 (Wang et al., 2021) propose
intricate interaction architectures to iteratively enumerate the interactions within a predefined or-
der. These methods have significantly improved performance across various applications. However,
their reliance on empirically designed orders may hinder accurate learning in real-world contexts.
Recent works (Cheng et al., 2020; Cai et al., 2021; Tian et al., 2023) propose to automatically learn
the orders from data. However, these methods cannot capture the feature dependencies in varying
contexts, which diminishes the model’s capacity. Further, they suffer from the exponential explosion
issue, making them unsuitable for scenarios with numerous features or high orders. Different from
them, we utilize the attentive rotations to model complicated interactions, which can adaptively cap-
ture the feature dependencies and surpass the scale limits of the interaction order in existing studies.

Representation Learning with Complex Vectors. In the literature, numerous approaches are pro-
posed to learn the relations in the complex vector space for enhancing the representations. Espe-
cially, WaveMLP (Tang et al., 2022) represents each image patch as a wave to capture the dynamic
vision semantics. Additionally, RotatE (Sun et al., 2019) defines each relation of a knowledge graph
as a rotation from the source entity to the target entity. RoPE (Su et al., 2021) and XPOS (Sun et al.,
2022) leverage a two-dimensional pairwise rotation method to improve the position embedding of
Transformers. In the area of feature interaction learning, EulerNet (Tian et al., 2023) proposes uti-
lizing Euler’s formula to adaptively learn the arbitrary-order feature interactions. These approaches
provide a new way to enhance representation learning in a variety of machine learning tasks.

6 CONCLUSION

In this paper, we propose a novel Rotative Factorization Machine (RFM) for better modeling feature
interactions in the prediction tasks. Unlike prior work, RFM represents each feature as a polar angle
in the complex plane and converts the interactions into the complex rotations, avoiding the expo-
nential explosion of the interaction terms. In RFM, the rotation coefficients are modeled through a
rotation-based attention mechanism, which can adaptively learn the interaction orders from different
interaction contexts. Moreover, we propose a modulus amplification network to learn the modulus
of the complex features for further enhancing the feature interaction learning. As the main contribu-
tion, we propose a novel self-attentive rotation function to model complicated feature interactions,
providing a way to learn the unbounded interaction orders adaptively from the corresponding inter-
action contexts. As future work, we consider extending the RFM to handle sequential, spatial, and
other forms of structured data, and deploy it across multiple domains and tasks.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Mathieu Blondel, Akinori Fujino, Naonori Ueda, and Masakazu Ishihata. Higher-order factorization
machines. Advances in Neural Information Processing Systems, 29, 2016.

Andreas Buja, Werner Stuetzle, and Yi Shen. Loss functions for binary class probability estimation
and classification: Structure and applications. Working draft, November, 3:13, 2005.

Shaofeng Cai, Kaiping Zheng, Gang Chen, HV Jagadish, Beng Chin Ooi, and Meihui Zhang. Arm-
net: Adaptive relation modeling network for structured data. In Proceedings of the 2021 Interna-
tional Conference on Management of Data, pp. 207–220, 2021.

Wenqiang Chen, Lizhang Zhan, Yuanlong Ci, Minghua Yang, Chen Lin, and Dugang Liu. Flen:
leveraging field for scalable ctr prediction. arXiv preprint arXiv:1911.04690, 2019.

Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi Aradhye,
Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al. Wide & deep learning for recom-
mender systems. In Proceedings of the 1st workshop on deep learning for recommender systems,
pp. 7–10, 2016.

Weiyu Cheng, Yanyan Shen, and Linpeng Huang. Adaptive factorization network: Learning
adaptive-order feature interactions. In Proceedings of the AAAI Conference on Artificial Intel-
ligence, volume 34, pp. 3609–3616, 2020.

Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. Deepfm: a factorization-
machine based neural network for ctr prediction. arXiv preprint arXiv:1703.04247, 2017.

Xiangnan He and Tat-Seng Chua. Neural factorization machines for sparse predictive analytics. In
Proceedings of the 40th International ACM SIGIR conference on Research and Development in
Information Retrieval, pp. 355–364, 2017.

Tongwen Huang, Zhiqi Zhang, and Junlin Zhang. Fibinet: combining feature importance and bilin-
ear feature interaction for click-through rate prediction. In Proceedings of the 13th ACM Confer-
ence on Recommender Systems, pp. 169–177, 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Zekun Li, Zeyu Cui, Shu Wu, Xiaoyu Zhang, and Liang Wang. Fi-gnn: Modeling feature interac-
tions via graph neural networks for ctr prediction. In Proceedings of the 28th ACM International
Conference on Information and Knowledge Management, pp. 539–548, 2019.

Jianxun Lian, Xiaohuan Zhou, Fuzheng Zhang, Zhongxia Chen, Xing Xie, and Guangzhong Sun.
xdeepfm: Combining explicit and implicit feature interactions for recommender systems. In
Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data
mining, pp. 1754–1763, 2018.

Jorge M Lobo, Alberto Jiménez-Valverde, and Raimundo Real. Auc: a misleading measure of the
performance of predictive distribution models. Global ecology and Biogeography, 17(2):145–
151, 2008.

Wantong Lu, Yantao Yu, Yongzhe Chang, Zhen Wang, Chenhui Li, and Bo Yuan. A dual input-
aware factorization machine for ctr prediction. In Proceedings of the Twenty-Ninth International
Conference on International Joint Conferences on Artificial Intelligence, pp. 3139–3145, 2021.

Alexander Miller, Adam Fisch, Jesse Dodge, Amir-Hossein Karimi, Antoine Bordes, and Ja-
son Weston. Key-value memory networks for directly reading documents. arXiv preprint
arXiv:1606.03126, 2016.

Junwei Pan, Jian Xu, Alfonso Lobos Ruiz, Wenliang Zhao, Shengjun Pan, Yu Sun, and Quan Lu.
Field-weighted factorization machines for click-through rate prediction in display advertising. In
Proceedings of the 2018 World Wide Web Conference, pp. 1349–1357, 2018.

10

Under review as a conference paper at ICLR 2024

Yanru Qu, Han Cai, Kan Ren, Weinan Zhang, Yong Yu, Ying Wen, and Jun Wang. Product-based
neural networks for user response prediction. In 2016 IEEE 16th International Conference on
Data Mining (ICDM), pp. 1149–1154. IEEE, 2016.

Steffen Rendle. Factorization machines. In 2010 IEEE International conference on data mining, pp.
995–1000. IEEE, 2010.

Matthew Richardson, Ewa Dominowska, and Robert Ragno. Predicting clicks: estimating the click-
through rate for new ads. In Proceedings of the 16th international conference on World Wide Web,
pp. 521–530, 2007.

Weiping Song, Chence Shi, Zhiping Xiao, Zhijian Duan, Yewen Xu, Ming Zhang, and Jian Tang.
Autoint: Automatic feature interaction learning via self-attentive neural networks. In Proceed-
ings of the 28th ACM International Conference on Information and Knowledge Management, pp.
1161–1170, 2019.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding. arXiv preprint arXiv:2104.09864, 2021.

Yang Sun, Junwei Pan, Alex Zhang, and Aaron Flores. Fm2: Field-matrixed factorization machines
for recommender systems. In Proceedings of the Web Conference 2021, pp. 2828–2837, 2021.

Yutao Sun, Li Dong, Barun Patra, Shuming Ma, Shaohan Huang, Alon Benhaim, Vishrav
Chaudhary, Xia Song, and Furu Wei. A length-extrapolatable transformer. arXiv preprint
arXiv:2212.10554, 2022.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. Rotate: Knowledge graph embedding
by relational rotation in complex space. arXiv preprint arXiv:1902.10197, 2019.

Yehui Tang, Kai Han, Jianyuan Guo, Chang Xu, Yanxi Li, Chao Xu, and Yunhe Wang. An im-
age patch is a wave: Phase-aware vision mlp. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 10935–10944, 2022.

Zhen Tian, Ting Bai, Wayne Xin Zhao, Ji-Rong Wen, and Zhao Cao. Eulernet: Adaptive feature
interaction learning via euler’s formula for ctr prediction. In Proceedings of the 46th International
ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1376–1385,
2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Fangye Wang, Yingxu Wang, Dongsheng Li, Hansu Gu, Tun Lu, Peng Zhang, and Ning Gu. Enhanc-
ing ctr prediction with context-aware feature representation learning. In Proceedings of the 45th
International ACM SIGIR Conference on Research and Development in Information Retrieval,
pp. 343–352, 2022.

Ruoxi Wang, Rakesh Shivanna, Derek Cheng, Sagar Jain, Dong Lin, Lichan Hong, and Ed Chi. Dcn
v2: Improved deep & cross network and practical lessons for web-scale learning to rank systems.
In Proceedings of the Web Conference 2021, pp. 1785–1797, 2021.

Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European conference on
computer vision (ECCV), pp. 3–19, 2018.

Bo Xiao and Izak Benbasat. E-commerce product recommendation agents: Use, characteristics, and
impact. MIS quarterly, pp. 137–209, 2007.

Lanling Xu, Zhen Tian, Gaowei Zhang, Junjie Zhang, Lei Wang, Bowen Zheng, Yifan Li, Jiakai
Tang, Zeyu Zhang, Yupeng Hou, et al. Towards a more user-friendly and easy-to-use bench-
mark library for recommender systems. In Proceedings of the 46th International ACM SIGIR
Conference on Research and Development in Information Retrieval, pp. 2837–2847, 2023.

11

Under review as a conference paper at ICLR 2024

Feng Yu, Zhaocheng Liu, Qiang Liu, Haoli Zhang, Shu Wu, and Liang Wang. Deep interaction
machine: A simple but effective model for high-order feature interactions. In Proceedings of the
29th ACM International Conference on Information & Knowledge Management, pp. 2285–2288,
2020.

Weinan Zhang, Jiarui Qin, Wei Guo, Ruiming Tang, and Xiuqiang He. Deep learning for click-
through rate estimation. arXiv preprint arXiv:2104.10584, 2021.

Wayne Xin Zhao, Shanlei Mu, Yupeng Hou, Zihan Lin, Yushuo Chen, Xingyu Pan, Kaiyuan Li,
Yujie Lu, Hui Wang, Changxin Tian, et al. Recbole: Towards a unified, comprehensive and effi-
cient framework for recommendation algorithms. In Proceedings of the 30th ACM International
Conference on Information & Knowledge Management, pp. 4653–4664, 2021.

Wayne Xin Zhao, Yupeng Hou, Xingyu Pan, Chen Yang, Zeyu Zhang, Zihan Lin, Jingsen Zhang,
Shuqing Bian, Jiakai Tang, Wenqi Sun, et al. Recbole 2.0: Towards a more up-to-date recom-
mendation library. In Proceedings of the 31st ACM International Conference on Information &
Knowledge Management, pp. 4722–4726, 2022.

12

Under review as a conference paper at ICLR 2024

A THEORETICAL ANALYSIS

A.1 TENSOR-FORM ATTENTION CALCULATION

In this section, we prove that the tensor-form calculation of Eq. 5 equivalent to Eq. 9. Note that the
element in the j-th row and l-th column can be given as:

Aj,l = Sigmoid

(
Re
[(

exp(iQ)diag(w)
)
exp(−iK)⊤

])
j,l

= Sigmoid

(
Re
[(

exp(iQ)diag(w)
)
exp(−iK)⊤

]
j,l

)

= Sigmoid

(
Re
[(

exp(iQ)diag(w)
)
j

(
exp(−iK)l

)⊤])

= Sigmoid

(
Re
[(

exp(iQj)⊙w⊤
)
exp(−iKl)

⊤
])

= Sigmoid

(
Re
[
w⊤
(
exp(iQj)⊙ exp(−iKl)

)⊤])

= Sigmoid

(
Re
[
w⊤ cos(Q⊤

j −K⊤
l) + iw⊤ sin(Q⊤

j −K⊤
l)
])

= Sigmoid
(
w⊤ cos(θQ

j − θK
l)
)
= αj,l.

Therefore, the matrix A calculates all pairwise attention scores of {αj,l|∀j, l ∈ {1, ...,m}}.

A.2 PROOF OF THEORME 3.1

We first investigate the properties in the high-dimensional vector space:

Lemma A.1. If d-dimensional embeddings {θj}mj=1 are L2-regularized such that ||θj ||2 ≤ 1,∀j ∈
{1, ...,m}, let |θm| = maxj,l |θj,l| denote the max absolute element of the embeddings. Then we
have Pr(|θm| ≤ (

√
(4 ln d)/(d− 1)) ≥ 1−O(m/d).

Proof. Since ||θj ||2 ≤ 1,∀j ∈ [1,m], it indicates that all embeddings are bounded in a d-
dimensional unit ball. Let V (d) denote the volume of the d-dimensional unit ball. We first calculate
Pr(|θ| > O(

√
(4 ln d)/(d− 1)). The upper bound of this volume can be given as:

V =

∫ 1

√
(4 ln d)/(d−1)

(1− x2)
d−1
2 V (d− 1)dx

≤
∫ 1

√
(4 ln d)/(d−1)

x
√
d− 1√
4 ln d

(1− x2)
d−1
2 V (d− 1)dx

≤ V (d− 1)√
4(d− 1) ln d

e−
4 ln d

2

=
V (d− 1)

2d2
√
(d− 1) ln d

.

Obviously, the cylinder with a height of 1 and radius of
√
1− 1

d−1 is bounded within a d-
dimensional hemisphere (volume of D), and thus we have:

D ≥ V (d− 1)(1− 1

d− 1
)

d−1
2

1√
d− 1

≥ V (d− 1)

2
√
d− 1

.

13

Under review as a conference paper at ICLR 2024

Therefore, we have:

Pr(|θ| > (
√
(4 ln d)/(d− 1))) =

V
D

≤ 1

d2
√
ln d

< O(
1

d2
),

Pr(|θm| ≤ (
√
(4 ln d)/(d− 1))) = 1− Pr

(⋃
j,l

|θ|j,l > (
√
(4 ln d)/(d− 1))

)
≥ 1−

∑
j,l

Pr(|θ|j,l > (
√
(4 ln d)/(d− 1)))

= 1−md · O(
1

d2
) = O(1− m

d
).

Lemma A.2. For any given order vector α ∈ {0, 1}m and any input features {θj}mj=1 ∈ Rm×d, the
rotation-based interaction pattern ∆G = H(eiα1θ1 ⊙ eiα2θ2 ⊙ · · · ⊙ eiαmθm) can be degenerated
to the inner product based interaction ∆F = eα1

1 ⊙ eα2
2 ⊙ · · · eαm

m with a max error of R =
max(|∆G −∆F |) ≤ O(

∑m
j=1 αj |θm|), where H(z) = Re(z) + Im(z).

Proof. Note that |H(z)| ≤ ||Re(z)| + |Im(z)|| and cos(αjθj) = cosαj (θj) if αj ∈ {0, 1}. Let
ej := cos(θj) ∈ Rd, and we have:

|∆G −∆F | = |H(eiα1θ2 ⊙ eiα2θ2 ⊙ · · · ⊙ eiαmθm)− eα1
1 ⊙ eα2

2 ⊙ · · · eαm
m |

=

∣∣∣∣∣H
(

m∏
j=1

(
cos(αjθj) + i sin(αjθj)

))
−

m∏
j=1

cosαj (θj)

∣∣∣∣∣
=

∣∣∣∣∣H
(

m∏
j=1

(
cos(αjθj) + i sin(αjθj)

))
−

m∏
j=1

cos(αjθj)

∣∣∣∣∣
=

∣∣∣∣∣H
(

m∑
l=1

∑
p∈Cl

m

m∏
t=1

(
ipt cos1−pt(αtθt) sin

pt(αtθt)
))

+

m∏
j=1

cos(αjθj)−
m∏
j=1

cos(αjθj)

∣∣∣∣∣
=

∣∣∣∣∣H
(

m∑
l=1

∑
p∈Cl

m

m∏
t=1

(
ipt cos1−pt(αtθt) sin

pt(αtθt)
))

+ 1− 1

∣∣∣∣∣
≤

∣∣∣∣∣
(

m∑
l=1

∑
p∈Cl

m

m∏
t=1

(
| cos1−pt(αtθt)| ⊙ | sinpt(αtθt)|

))
+ 1− 1

∣∣∣∣∣
≤

∣∣∣∣∣
(

m∑
l=1

∑
p∈Cl

m

m∏
t=1

(
1⊙ | sinpt(αtθt)|

))
+ 1− 1

∣∣∣∣∣
=

∣∣∣∣∣
m∏
j=1

(
1+ | sin(αjθj)|

)
− 1

∣∣∣∣∣
Here Cl

m denotes the set of indices representing the combinations that select l elements from a set
of size m, e.g., C2

3 = {[0, 1, 1], [1, 0, 1], [1, 1, 0]}. Therefore, we have:

R ≤ max(

∣∣∣∣∣
m∏
j=1

(
1+ | sin(αjθj)|

)
− 1

∣∣∣∣∣) ≤
∣∣∣∣∣(1 + |θm|

)∑m
j=1 αj

− 1

∣∣∣∣∣ = O(

m∑
j=1

αj |θm|).

As discussed in the Section 2, for the j-th feature field, each feature is represented as a one-hot
vector xj ∈ {0, 1}nj , where nj is the feature number in the j-th field, and N =

∑m
j=1 nj is the

14

Under review as a conference paper at ICLR 2024

total number of features. Afterwards, the embedding look-up operation E(·) is employed to map
the one-hot vector xj to a low-dimensional embedding ej , i.e., ej = E(xj). Formally, the one-hot

encoded vector xj of the l-th feature in the j-th field is defined as xj [k] =

{
1, k = l
0, k ̸= l

, and we

define the index of the l-th feature in the j-th field as ID(xj) =
∑j−1

k=1 nk + l, its inverse function
as OneHot(

∑j−1
k=1 nk + l) = xj , and the function G(s) = argminj

∑j
k=1 nk ≥ s returns the field

index of the global index s. We place all features along an axis, and the truth table T of the feature
dependency function f is denoted as a matrix T ∈ {0, 1}N×N , where:

T (s, t) =

 f

(
E
(
OneHot(s)

)
, E
(
OneHot(t)

))
, G(s) ̸= G(t)

0, G(s) = G(t)
Given the input feature embeddings {θj}mj=1, and their one-hot representations {xj}mj=1, we can
obtain the relation vector rj of the feature xj :

rj [k] =

{
T
(
k, ID(xj)

)
, G(k) ̸= j

1
2 + 1

2 · xj [k −
∑j−1

l=1 nk], G(k) = j

where k ∈ {1, ..., N}. The vector rj measures the relation between the feature ej and the features
from other fields. Meanwhile, the feature dimensions of the same field are naturally masked with 1

2 ,
except for itself, which has a value of 1. We use the vector rj as the auxiliary dimensions for the
input features, θ̃j = [θj , ϵ · rj], where ϵ is a sufficiently small number. We construct the matrix M
as follows:

M =

[
ON×d

π
ϵ · IN×N

]
∈ RN×(d+N).

Here O is an all-zero matrix. We have Mθ̃j = π · rj . Here we set all query matrices and key
matrices as WQ

j = WK
j = M ,∀j = {1, 2, ...,m}, and set all the value matrices W V

j as the
identity matrix I . We construct m attention heads, each measuring the relationship between the
features in the j-th field (j ∈ [1,m]) and all the other features. Formally, the projection matrices
HQ

j , HK
j , HV

j are defined as:

HQ
j = HK

j =
[
Onj×n1 · · · Inj×nj · · · Onj×nm

]⊤ ∈ RN×nj ,

HV
j =

[
Id×d Od×n1

· · · Od×nj
· · · Od×nm

]⊤ ∈ R(d+N)×d

In this way, the values are projected to the original features V (j) = {θk}mk=1. The queries and keys
of the j-th head are projected to the following: Q(j) = K(j) = {π · r(j)k }mk=1. Assume that the
one-hot vector xj = [0, 0, · · · , 1︸︷︷︸

l−th element

, 0, 0, · · ·]⊤, the projected vector r(j)k takes the following

form:

r
(j)
k =

[12 ,

1
2 , · · · , 1︸︷︷︸

l−th element

, 1
2 ,

1
2 , · · ·]

⊤, k = j

[0, 1, · · · , 1︸︷︷︸
T
(
ID(xj),ID(xk)

), 0, 1, · · ·]⊤, k ̸= j

We set the weight vector w = [S, ..., S]⊤, and S > 0 is a sufficiently large number. Note that
cos(±π

2) = 0. Considering the attention score from j-th query in j-th attention head, we have:

αRFM
j,l = Sigmoid

(
w⊤ cos(π · r(j)j − π · r(j)l)

)
= Sigmoid

(
S · cos

(
π − π · T

(
ID(xj), ID(xl)

)))
= T

(
ID(xj), ID(xl)

)
= f(ej , el).

15

Under review as a conference paper at ICLR 2024

According to Eq. 7, we have:

θ̂j =

m∑
l=1

αRFM
j,l θV

l =

m∑
l=1

f(ej , el)θl.

In this scheme, we only consider the j-th query in the j-th attention head (j ∈ [1,m]), and set the
weight u (See in Eq. 19) as the identity matrix I . According to Eq. 17, omitting the activation
function yields the following expression for the output of RFM:

ŷ = u⊤(cos(θ̂j) + sin(θ̂j))

= cos(

m∑
l=1

f(ej , el)θl) + sin(

m∑
l=1

f(ej , el)θl)

= H
(
cos(

m∑
l=1

f(ej , el)θl) + i sin(

m∑
l=1

f(ej , el)θl)
)

= H
(
exp(i

m∑
l=1

f(ej , el)θl)
)

= H(eif(ej ,e1)θ1 ⊙ eif(ej ,e2)θ2 ⊙ · · · ⊙ eif(ej ,em)θm).

Since the construction of the order is independent of the input features {ej = θj}mj=1, the theo-
rem 3.1 is proved by combining lemma A.1 and lemma A.2.

A.3 FIELD-AWARE AND INSTANCE-AWARE INTERACTION LEARNING

The proof is equivalent to proving the following two lemmas:
Lemma A.3. If embeddings {θj}mj=1 are L2-regularized such that ||θj ||2 ≤ 1,∀j ∈ {1, ...,m},
then for any given order α ∈ {0, 1}m, RFM can model the interaction pattern ∆F = eα1

1 ⊙ eα2
2 ⊙

· · · eαm
m .

Proof. We add an auxiliary dimension to the input features, θ̃j = [θj , ϵ], where ϵ is a sufficiently
small number. We construct two types of matrices: N = O(d+1)×(d+1) is an all-zero matrix with a
shape of (d+ 1)× (d+ 1), and M is defined by the following:

M =

[0 · · · 0
...

. . .
...

0 · · · π
ϵ

]
∈ R(d+1)×(d+1).

In this way, we have Mθ̃j = [0, ..., π]⊤ and Nθ̃j = [0, ..., 0]⊤. Here, we set all query matrices as
WQ

j = N ,∀j = {1, 2, ...,m}. Given the order vector α, the key matrices are set by the following
rule:

WK
j =

{
M , αj = 0
N , αj = 1

In this way, the matrices of the queries are mapped to a zero space, i.e., θQ
j = WQ

j θ̃j = Nθ̃ = 0.
As for the keys, when j satisfies αj = 0, the transformed vector θK

j = WK
j θ̃j = Mθ̃j =

[0, ..., π]⊤; when j satisfies αj = 1, θK
j = WK

j θ̃j = Nθ̃j = 0. We set the weight vector
w = S · [0, ..., 1]⊤, and S > 0 is a sufficiently large number. Consider the attention score from j-th
query, we have:

αRFM
j,l = RotAtt(Qj ,Kl) = Sigmoid

(
w⊤ cos(θQ

j − θK
l)
)
=

{
Sigmoid(−S) = 0, αl = 0
Sigmoid(S) = 1, αl = 1

Therefore, we have αRFM
j = α. Furthermore, we define the value matrix as follows:

W V
j =

[1 · · · 0 0
...

. . .
...

...
0 · · · 1 0

]
∈ Rd×(d+1).

16

Under review as a conference paper at ICLR 2024

Therefore θV
j = W V

j θ̃j = θj . According to Eq. 7, we have:

θ̂j =

m∑
l=1

αRFM
j,l θV

l =

m∑
l=1

αlθl.

In this scheme, all θ̂j are the same, and we only consider a single output of rotated angles. We
remove the amplification network, and set the weight u (See Eq. 19) as the identity matrix I . Ac-
cording to Eq. 17, when omitting the activation function, the output of RFM can be given as:

ŷ = u⊤(cos(θ̂l) + sin(θ̂l))

= cos(

m∑
l=1

αlθl) + sin(

m∑
l=1

αlθl)

= H
(
cos(

m∑
l=1

αlθl) + i sin(

m∑
l=1

αlθl)
)

= H
(
exp(i

m∑
l=1

αlθl)
)

= H(eiα1θ1 ⊙ eiα2θ2 ⊙ · · · ⊙ eiαmθm).

Therefore, Lemma A.3 is proved by combining Lemma A.1 and Lemma A.2.

Lemma A.4. If embeddings {θj}mj=1 are L2-regularized such that ||θj ||2 ≤ 1,∀j ∈ {1, ...,m},
RFM can model the interaction pattern ∆I = eα1

1 ⊙ eα2
2 ⊙ · · · eαm

m , where αj = f(ej) and
f : Rd → {0, 1} is an instance importance function.

Proof. Given the set of input feature embeddings {ej = θj}mj=1, we add an auxiliary dimension to
the input features, θ̃j = [θj , ϵ · f(ej)], where ϵ is a sufficiently small number. We construct two
types of matrices: N = O(d+1)×(d+1) is an all-zeros matrix with the shape of (d + 1) × (d + 1),
and M is defined by the following:

M =

[0 · · · 0
...

. . .
...

0 · · · π
ϵ

]
∈ R(d+1)×(d+1).

We have Mθ̃j = [0, ..., π · f(ej)]⊤ and Nθ̃j = [0, ..., 0]⊤. Here we set all query matrices as
WQ

j = N ,∀j = {1, 2, ...,m} and key matrices as WK
j = M ,∀j = {1, 2, ...,m}. We set

the weight vector w = [0, ...,−S]⊤, and S > 0 is a sufficiently large number. In this way, the
matrices for the queries are mapped into a zero space, i.e., θQ

j = WQ
j θ̃j = Nθ̃ = 0, and the

keys are θK
j = WK

j θ̃j = Mθ̃j = [0, ..., π · f(ej)]⊤. Since f(ej) ∈ {0, 1}, thus we have

Sigmoid
(
− S · cos

(
π · f(ej)

))
= f(ej). Consider the attention score from j-th query, we have:

αRFM
j,l = Sigmoid

(
w⊤ cos(θQ

j − θK
l)
)
= Sigmoid

(
− S · cos

(
π · f(el)

))
= f(el).

Further, we set the value matrices as the following:

W V
j =

[1 · · · 0 0
...

. . .
...

...
0 · · · 1 0

]
∈ Rd×(d+1).

Therefore θV
j = W V

j θ̃j = θj . According to Eq. 7, we have:

θ̂j =

m∑
l=1

αRFM
j,l θV

j =

m∑
l=1

αlθl.

17

Under review as a conference paper at ICLR 2024

In this scheme, all θ̂j are the same; we only consider a single output of rotated angles and set the
weight u (See Eq. 19) as the identity matrix I . According to Eq. 17, when the activation function is
omitted, the output of RFM can be given as:

ŷ = u⊤(cos(θ̂l) + sin(θ̂l))

= cos(

m∑
l=1

αlθl) + sin(

m∑
l=1

αlθl)

= H
(
cos(

m∑
l=1

αlθl) + i sin(

m∑
l=1

αlθl)
)

= H
(
exp(i

m∑
l=1

αlθl)
)

= H(eiα1θ1 ⊙ eiα2θ2 ⊙ · · · ⊙ eiαmθm)

= H(eif(e1)θ1 ⊙ eif(e2)θ2 ⊙ · · · ⊙ eif(em)θm).

Since the construction of the order is independent of the input features {ej = θj}mj=1, lemma A.4 is
proven by combining lemma A.1 and lemma A.2.

A.4 GRADIENT ANALYSIS

In this section, we analyze and compare the gradient properties of RFM with traditional feature
interaction methods. Specifically, we examine the gradient with respect to the number of feature
fields (i.e., denoted as m in Eq. 1). In the subsequent theoretical analysis, we will prove that our
method exhibits, at most, linear growth in the gradient with respect to the field number. Conversely,
in traditional feature interaction approaches, the gradient exhibits exponential growth with respect
to the field number . For ease of analysis, we formulate the learning function of our approach as:

G = Attention(Q,K,V)

= σ
(
Re
[
(exp(iQ) diag(ω)) exp(−iK)⊤

])
· V

y = f(cos(G)) + f(sin(G))

For ease of mathematical illustration, we use the notation Xj to denote the original input feature
embedding ej . We first calculate the gradient of our approach, i.e., ∂y

∂X .

Let X =

X1

X2

. . .
Xm

 ∈ Rdm×m,

[
WQ

1 , · · · ,WQ
m

]
= B̃ ∈ Rd×dm[

WK
1 , · · · ,WK

m

]
= C̃ ∈ Rd×dm[

WV
1 , · · · ,WV

m

]
= D̃ ∈ Rd×dm

.

So Q = (B̃X)⊤ K = (C̃X)⊤ V = (D̃X)⊤.

Remark Re
[
exp (Q)diag(ω) exp (− iK)⊤

]
as 1⃝.

According to Euler’s formula, we have:

1⃝ = Re
{
(cosQ+ i sinQ)diag(ω)

[
cos
(
−K⊤)+ i sin

(
−K⊤)]}

= Re
{
(cosQ+ i sinQ)diag(ω)

[
cos
(
K⊤)− i sin

(
K⊤)]}

= cosQdiag(ω) cos
(
K⊤)+ sinQdiag(ω) sin

(
K⊤)

= cos
(
X⊤B̃⊤

)
diag(ω) cos (C̃X) + sin

(
X⊤B̃T

)
diag(ω) sin (C̃X)

dG = d[σ(1⃝) · V] = [dσ(1⃝)]V + σ(1⃝) · dV

dV = d
[
(D̃X)⊤

]
= d

(
X⊤D̃⊤

)
= (dX)⊤D̃⊤

18

Under review as a conference paper at ICLR 2024

dσ(1⃝) = σ
′
(1⃝)⊙ d 1⃝

d 1⃝ = d
[
cos
(
X⊤B̃⊤

)
diag(ω) cos (C̃X) + sin

(
X⊤B̃⊤

)
diag(ω) sin (C̃X)

]
= d

{[
cos
(
X⊤B̃⊤

)
diag(ω)

]
· cos (C̃X)

}
+ d

{[
sin
(
X⊤B̃⊤

)
diag(ω)

]
· sin (C̃X)

}
=
{
d
[
cos
(
X⊤B̂⊤

)
diag(ω)

]}
· cos (C̃X) + cos

(
X⊤B̂⊤

)
diag(ω) · d cos (C̃X)

+
{
d
[
sin
(
XB̃⊤

)
diag(ω)

]}
· sin

(
C̃X

)
+ sin

(
X⊤B̃⊤

)
diag(ω) · d sin (C̃X)

=
[
d cos

(
X⊤B̃⊤

)]
· diag(ω) · cos (C̃X) + cos

(
X⊤B̃⊤

)
· diag(ω) · [d cos (C̃X)]

+
[
d sin

(
X⊤B̃⊤

)]
· diag(ω) · sin (C̃X) + sin

(
X⊤B̃⊤

)
diag(ω) · [d sin (C̃X)]

=
[
− sin

(
X⊤B̃⊤

)
⊙ d

(
X⊤B̃⊤

)]
· diag(ω) · cos (C̃X) + cos

(
X⊤B̃⊤

)
· diag(ω)

· [− sin (C̃X)⊙ d(C̃X)] +
[
cos
(
X⊤B̃⊤

)
⊙ d

(
X⊤B̃⊤

)]
· diag(ω) · sin (C̃X)

+ sin
(
X⊤B̃⊤

)
· diag(ω) · [cos (C̃X)⊙ d(C̃X)]

dy = tr

[(
∂y

∂G

)⊤

dG

]

= tr

((
∂y

∂G

)⊤

·
{[

σ
′
(1⃝)⊙ d 1⃝

]
V + σ(1⃝) ·

[
(dX)⊤D̃⊤

]})

= tr

{(
∂y

∂G

)⊤

·
[
σ

′
(1⃝)⊙ d 1⃝

]
· V

}
+ tr

[(
∂y

∂G

)⊤

· σ(1⃝) · (dX)⊤D̃⊤

]

tr

[(
∂y

∂G

)⊤

· σ(1⃝) · (dX)⊤D̃⊤

]
= tr

[
D̃⊤

(
∂y

∂G

)⊤

· σ(1⃝)(dX)⊤

]

For A, since tr(A) = tr(A⊤) =⇒ = tr

(dX)

[
D̃⊤

(
∂y

∂G

)⊤

σ(1⃝)

]⊤
For A,B, tr(AB) = tr(BA) =⇒ = tr

[
D̃⊤

(
∂y

∂G

)⊤

σ(1⃝)

]⊤
dX

Remark tr

{(
∂y

∂G

)⊤

·
[
σ

′
(1⃝)⊙ d 1⃝

]
· V

}
= part1 + part2 + part3 + part4

part1 = tr

((
∂y

∂G

)⊤ {
σ

′
(1⃝)⊙

[[
− sin

(
X⊤B̃⊤

)
⊙ d

(
X⊤B̃⊤

)]
diag(ω) cos (C̃X)

]}
V

)

= tr

(
V

(
∂y

∂G

)⊤ {
σ

′
(1⃝)⊙

[[
− sin

(
X⊤B̃⊤

)
⊙ d

(
X⊤B̃⊤

)]
diag(ω) cos (C̃X)

]})

= tr(

{[(
∂y

∂G

)
V ⊤

]
⊙ σ

′
(1⃝)

}⊤

·
{[

− sin
(
X⊤B̃⊤

)
⊙ d

(
X⊤B̃⊤

)]
· diag(ω) · cos (C̃X)

}
)

19

Under review as a conference paper at ICLR 2024

= tr(diag(ω) · cos (C̃X) ·
{[(

∂y

∂G

)
V ⊤

]
⊙ σ

′
(1⃝)

}⊤

·
[
− sin

(
X⊤B̃⊤

)
⊙ d

(
X⊤B̃⊤

)]
)

= tr(

{[[(
∂y

∂G

)
V ⊤

]
⊙ σ

′
(1⃝)[diag(ω) · cos (C̃X)]⊤

]
⊙
[
− sin

(
X⊤B̃⊤

)]}⊤

· d
(
X⊤B̃⊤

)
)

= −tr(

{[[(
∂y

∂G

)
V ⊤

]
⊙ σ

′
(1⃝) · [diag(ω) · cos (C̃X)]⊤

]
⊙ sin

(
X⊤B̃⊤

)}⊤

· (dX)⊤B̃⊤)

Remark F =

{[[(
∂y

∂G

)
V ⊤

]
⊙ σ

′
(1⃝) · [diag(ω) · cos (C̃X)]⊤

]
⊙ sin

(
X⊤B̃⊤

)}⊤

So part1 = −tr
(
F (dX)⊤B̃⊤

)
= −tr

(
B̃⊤F (dX)⊤

)
= −tr

(
dX ·

(
B̃⊤F

)⊤)
= −tr

((
B̃⊤F

)⊤
dX

)
= tr

(
−
(
B̃⊤F

)⊤
dX

)

part2 = tr(

(
∂y

∂G

)⊤

·
{
σ

′
(1⃝)⊙

[
cos
(
X⊤B̃⊤

)
· diag(ω) · [− sin (C̃X)⊙ d(C̃X)]

]}
· V)

= tr(

{[(
∂y

∂G

)
V ⊤

]
⊙ σ

′
(1⃝)

}⊤

·
{
cos
(
X⊤B̃⊤

)
· diag(ω) ·

[
− sin (C̃X)⊙ d

(
C̃X

)]}
)

= tr(

({[(∂y

∂G

)
V ⊤

]
⊙ σ

′
(1⃝)

}⊤

· cos
(
X⊤B̃⊤

)
· diag(ω)

)⊤

⊙ [− sin (C̃X)]

⊤

· d(C̃X))

Remark N =

({[(∂y

∂G

)
V ⊤

]
⊙ σ

′
(1⃝)

}⊤

cos
(
X⊤B̃⊤

)
· diag(ω)

)⊤

⊙ [− sin (C̃X)]

⊤

So part2 = tr(NC̃dX) = tr

([
(NC̃)⊤

]⊤
dX

)
= tr

[(
C̃⊤N⊤

)⊤
dX

]

part3 = tr

(
V

(
∂y

∂G

)⊤

·
{
σ

′
(1⃝)⊙

[[
cos
(
X⊤B̃⊤

)
⊙ d

(
X⊤B̃⊤

)]
diag(ω) sin (C̃X)

]})

= tr

([[(
∂y

∂G

)
V ⊤

]
⊙ σ

′
(1⃝)

]⊤
·
[
cos
(
X⊤B̃⊤

)
⊙ d

(
X⊤B̃⊤

)]
diag(ω) sin (C̃X)

)

= tr

(
diag(ω) sin (C̃X)

[[(
∂y

∂G

)
V ⊤

]
⊙ σ

′
(1⃝)

]⊤ [
cos
(
X⊤B̃⊤

)
⊙ d

(
X⊤B̃⊤

)])

= tr(

[diag(ω) · sin (C̃X) ·
[[(

∂y

∂G

)
V ⊤

]
⊙ σ

′
(1⃝)

]⊤]⊤
⊙ cos

(
X⊤B̃⊤

)⊤

· d
(
X⊤B̃⊤

)
)

20

Under review as a conference paper at ICLR 2024

Remark R =

[diag(ω) · sin (C̃X) ·
[[(

∂y

∂G

)
V ⊤

]
⊙ σ

′
(1⃝)

]⊤]⊤
⊙ cos

(
X⊤B̃⊤

)⊤

So part3 = tr
(
B̃⊤R(dX)⊤

)
= tr

(
dX

(
B̃⊤R

)⊤)
= tr

((
B̃⊤R

)⊤
dX

)

part4 = tr

(
V

(
∂y

∂G

)⊤

·
{
σ

′
(1⃝)⊙

[
sin
(
X⊤B̃⊤

)
· diag(ω) · [cos (C̃X)⊙ d(C̃X)]

]})

= tr

({[(
∂y

∂G

)
V ⊤

]
⊙ σ

′
(1⃝)

}⊤ {
sin
(
X⊤B̃⊤

)
diag(ω) · [cos (C̃X)⊙ d(C̃X)]

})

= tr(

[{[(

∂y

∂G

)
V ⊤

]
⊙ σ

′
(1⃝)

}⊤

· sin
(
X⊤B̃⊤

)
· diag(ω)

]⊤
⊙ cos (C̃X)

⊤

· C̃dX)

Remark J =

[{[(

∂y

∂G

)
V ⊤

]
⊙ σ

′
(1⃝)

}⊤

· sin
(
X⊤B̃⊤

)
· diag(ω)

]⊤
⊙ cos (C̃X)

⊤

So part4 = tr

((
C̃⊤J⊤

)⊤
dX

)
(

∂y

∂X

)⊤

=

[
D̃⊤

(
∂y

∂G

)⊤

σ(1⃝)

]
+
(
−B̃⊤F

)
+ C̃⊤N⊤ + B̃⊤R+ C̃⊤J⊤

F =

{[[(
∂y

∂G

)
V ⊤

]
⊙ σ

′
(1⃝) · [diag(ω) · cos (C̃X)]⊤

]
⊙ sin

(
X⊤B̃⊤

)}⊤

=

{[(
∂y

∂G

)
V ⊤

]
⊙ σ

′
(1⃝) · [diag(ω) · cos (C̃X)]⊤

}⊤

⊙ sin (B̃X)

=

{
diag(ω) · cos (C̃X) ·

[[(
∂y

∂G

)
V ⊤

]
⊙ σ

′
(1⃝)

]⊤}
⊙ sin

(
Q⊤)

=

{
diag(ω) · cos

(
K⊤) ·([V (∂y

∂G

)⊤
]
⊙
[
σ

′
(1⃝)

]⊤)}
⊙ sin

(
Q⊤)

= {diag(ω)Re
(
exp

(
iK⊤))

·

[[
V

(
∂y

∂G

)⊤
]
⊙ σ

′ (
Re
[
exp (− iK)diag(ω) exp

(
iQ⊤)])]} ⊙ Im

[
exp

(
iQ⊤)]

N⊤ =

{[[(
∂y

∂G

)
V ⊤

]
⊙ σ

′
(1⃝)

]⊤
· cos

(
X⊤B̃⊤

)
· diag(ω)

}⊤

⊙ [− sin (C̃X)]

=

{[[
V

(
∂y

∂G

)⊤
]
⊙ σ

′
(

1⃝⊤
)]

· cos
(
X⊤B̃⊤

)
· diag(ω)

}⊤

·
[
− sin

(
K⊤)]

=

{
diag(ω) · cos (B̃X) ·

[[(
∂y

∂G

)
V ⊤

]
⊙ σ

′
(1⃝)

]}
⊙
[
− sin

(
K⊤)]

= {diag(ω)Re
[
exp

(
iQ⊤)]

·

[[(
∂y

∂G

)⊤

V ⊤

]
⊙ σ

′ (
Re
[
exp (iQ)diag(ω) exp (− iK)⊤

])]
} ⊙

{
−Im

[
exp

(
iK⊤)]}

21

Under review as a conference paper at ICLR 2024

R =

[
diag(ω) sin (C̃X) ·

[[(
∂y

∂G

)
V ⊤

]
⊙ σ

′
(1⃝)

]⊤]⊤
⊙ cos

(
X⊤B̃⊤

)
⊤

=

[
diag(ω) sin

(
K⊤) [[V (∂y

∂G

)⊤
]
⊙ σ

′
(1⃝⊤)

]]⊤
⊙ cos

(
X⊤B̃⊤

)
⊤

=

[
diag(ω) sin

(
K⊤) [[V (∂y

∂G

)⊤
]
⊙ σ

′
(1⃝⊤)

]]
⊙ cos (B̃X)

= {diag(ω)Im
[
exp

(
iK⊤)]

·

[[
V

(
∂y

∂G

)⊤
]
⊙ σ

′ (
Re
[
exp (− iK)diag(ω) exp

(
iQ⊤)])]} ⊙ Re

[
exp

(
iQ⊤)]

J⊤ =

[[[(
∂y

∂G

)
V ⊤

]
⊙ σ

′
(1⃝)

]⊤
· sin

(
X⊤B̃⊤

)
· diag(ω)

]⊤
⊙ cos (C̃X)

=

{
diag(ω) sin (B̃X)

[[(
∂y

∂G

)
V ⊤

]
⊙ σ

′
(1⃝)

]}
⊙ cos

(
K⊤)

= {diag(ω)Im
[
exp

(
iQ⊤)]

·
[[(

∂y

∂G

)
V ⊤

]
⊙ σ

′ (
Re
[
exp (iQ)diag(ω) exp (− iK)⊤

])]
} ⊙ Re

[
exp

(
iK⊤)]

∂y

∂X
= D̃⊤

(
∂y

∂G

)⊤

σ
(
Re
[
exp (iQ)diag(ω) exp (− iK)⊤

])
− B̃⊤({diag(ω) · Re

[
exp

(
iK⊤)]

·

[[
V

(
∂y

∂G

)⊤
]
⊙ σ

′ (
Re
[
exp (− iK)diag(ω) exp

(
iQ⊤)])]} ⊙ Im

[
exp

(
iQ⊤)])

− C̃⊤({ diag(ω) · Re
[
exp

(
iQ⊤)]

·
[[(

∂y

∂G

)
V ⊤

]
⊙ σ

′ (
Re
[
exp (iQ)diag(ω) exp (− iK)⊤

])]
} ⊙ Im

[
exp

(
iK⊤)])

+ B̃⊤({diag(ω) · Im
[
exp

(
iK⊤)]

·

[[
V

(
∂y

∂G

)⊤
]
⊙ σ

′ (
Re
[
exp (− iK)diag(ω) exp

(
iQ⊤)])]} ⊙ Re

[
exp

(
iQ⊤)])

+ C̃⊤({diag(ω) · Im
[
exp

(
iQ⊤)]

·
[[(

∂y

∂G

)
V ⊤

]
⊙ σ

′ (
Re
[
exp (iQ)diag(ω) exp (− iK)⊤

])]
} ⊙ Re

[
exp

(
iK⊤)])

Correspondingly, we remark the equation as: ∂y
∂X = PARTI − PARTII − PARTIII + PARTIV +

PARTV.

For a matrixA, we define the infinite norms of matrices as: ∥ A ∥∞= max
i

∑n
j=1 |aij |.

Since we can learn B̃, C̃, D̃,diag(ω),X and ∂y
∂G , we assume:

∥ B̃⊤ ∥∞< α, ∥ C̃⊤ ∥∞< β, ∥ diag(ω) ∥∞< ζ,

∥ D̃⊤ ∥∞< γ1, ∥ D̃ ∥∞< γ2, let γ = max
i

{γ1, γ2}, then ∥ D̃⊤ ∥∞< γ, ∥ D̃ ∥∞< γ,

Similarily, ∥ (∂y
∂G)⊤ ∥∞< θ, ∥ (∂y

∂G) ∥∞< θ.

22

Under review as a conference paper at ICLR 2024

Note that each row of X can have at most one non-zero element due to the inherent sparsity of X .
We suppose the absolute value of every element in X is smaller than η, so we have ∥ X ∥∞< η
and ∥ X⊤ ∥∞< dη. According to the compatibility of this norm:

PARTI =

∥∥∥∥∥D̃⊤
(

∂y

∂G

)⊤

σ
(
Re
[
exp (iQ)diag(ω) exp (− iK)T

])∥∥∥∥∥
∞

≤
∥∥∥D̃⊤

∥∥∥
∞

· ∥
(

∂y

∂G

)⊤

∥∞·∥σ
(
Re
[
exp (iQ)diag(ω) exp (− iK)⊤

])
∥∞

≤ γ · θ ·m

PARTII ≤
∥∥B⊤∥∥

∞ ∥ diag (ω) ∥∞∥Re
[
exp

(
iKT

)]
∥∞ ∥V ∥∞

∥∥∥∥∥
(

∂y

∂G

)⊤
∥∥∥∥∥
∞

1

4

≤ α · ζ ·m · d · η · γ · θ · 1
4
=

αγηθζdm

4

Similarily, PARTIII ≤ βζγηθm
4 ,PARTIV ≤ αζηγθdm

4 ,PARTV ≤ βζθγηm
4 .∥∥∥∥ ∂y

∂X

∥∥∥∥
∞

≤ γθm+
αζηγθdm

4
+

βζγηθm

4
+

αζηγθdm

4
+

βζγηθm

4

= γθm+
αζηγθdm

2
+

βζγηθm

2

Remark γθ +
αζηγθd

2
+

βζγηθ

2
= C1, thus,

∥∥∥∥ ∂y

∂X

∥∥∥∥
∞

≤ C1m.

Note that C1 is independent of the field number m. It can be seen that under certain regularity
conditions, the gradient terms grow at most linearly with m.

For the traditional feature interaction algorithms, their gradients can be formulated as:

g = Xα1
1 ⊙Xα2

2 ⊙ · · · ⊙Xαm
m

∂g

∂Xi
= Xα1

1 ⊙Xα2
2 ⊙ · · · ⊙ αiX

αi−1
i ⊙X

αi+1

i+1 ⊙ · · · ⊙Xαm
m , y = f(g).

We suppose there exists j, for all i we all have Xij ≥ M − ε, thus:∣∣∣∣ ∂g

∂Xij

∣∣∣∣ ≥ αi · (M − ε)
∑m

i=1 αi−1∣∣∣∣ ∂y

∂Xij

∣∣∣∣ ≥ αi · (M − ε)
∑m

i=1 αi−1

∥∥∥∥∂y∂g
∥∥∥∥
∞

Let t = min
i
{αi}, thus we have:∣∣∣∣ ∂g

∂Xij

∣∣∣∣ ≥ αi · (M − ε)mt−1

∥∥∥∥∂y∂g
∥∥∥∥
∞

We can clearly see that the gradient terms of traditional feature interaction algorithms exponentially
grow with the field number m.

23

Under review as a conference paper at ICLR 2024

B DATASETS

We evaluate RFM with five real-world classification datasets on representative tasks, including
app recommendation (Frappe2), movie recommendation (MovieLens-1M3, MovieLens-Tag4), click-
through prediction (Criteo5, Avazu6).

• The Criteo dataset is recognized as a prominent benchmark in the domain of Click-Through Rate
(CTR) prediction, encompassing user logs over a span of seven days. It exhibits a balanced distri-
bution of labels, maintaining a positive to negative ratio of approximately 1:3. The pre-processing
approach adopted for managing this dataset can be found in EulerNet Tian et al. (2023).

• Avazu was utilized in the Avazu Click-Through Rate (CTR) prediction challenge, aiming to esti-
mate the likelihood of a mobile advertisement being clicked. The Avazu dataset presents a positive
to negative ratio of approximately 1:5. For preprocessing the dataset, the method delineated in
EulerNet Tian et al. (2023) was adopted.

• ML-1M dataset is widely recognized as a prominent choice in the realm of recommendation sys-
tems research. Each training instance consists of a triplet of features representing users, movies, and
ratings. Following the approach in EulerNet Tian et al. (2023), ratings of 1 and 2 are transformed
to 0, ratings of 4 and 5 are converted to 1, and ratings of 3 are excluded. The dataset includes 7
categorical fields without multiple values, which are utilized and represented using embeddings.

• ML-Tag encompasses movie tagging data recorded by users across different time spans. Building
on the approach by the work Cheng et al. (2020), our emphasis lies on tailoring tag recommendations
to individual users. To achieve this, we structure the dataset in the (user id, movie id, tag id) format.

• Frappe serves as a practical application recommendation dataset, featuring a context-aware log
of app usage. It generates two negative tuples for each positive app usage log. The objective is to
forecast app usage based on the context of usage, encompassing 10 semantic attributes like previous
app usage count, weather, time, location, and more. To preprocess the dataset, we adopt the approach
outlined in the work Cheng et al. (2020).

C BASELINES

We consider the following baseline methods for performance comparison:

First-Order:

• LR Richardson et al. (2007) utilizes the original field features as input for prediction, merely
combining these features using corresponding weights.

Second-Order:

• FwFM Pan et al. (2018) takes into account the semantic significance among distinct feature fields
and introduces a scalar weight to eliminate insignificant feature interactions.

• FmFM Sun et al. (2021) enhances FwFM by substituting the single scalar field weight with a
matrix, and it computes the kernel product on the feature embeddings to capture significant feature
interdependencies.

High-Order:

• NFM He & Chua (2017) NFM aggregates the result of the element-wise multiplication of input
feature vectors, which is then processed through fully connected layers.

• CIN Lian et al. (2018) generates high-order cross features through the computation of outer prod-
ucts of feature vectors across various orders.

2https://www.baltrunas.info/research-menu/frappe
3https://grouplens.org/datasets/movielens/
4https://grouplens.org/datasets/movielens/
5https://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset/
6https://www.kaggle.com/c/avazu-ctr-prediction

24

Under review as a conference paper at ICLR 2024

• CrossNet Wang et al. (2021) models feature interactions explicitly through the calculation of the
kernel product of input feature vectors.

• PNN Qu et al. (2016) capture feature interactions by combining inner or outer products of input
feature vectors in a pairwise manner.

Ensemble:

• AutoInt Song et al. (2019) utilizes Multi-head Self-Attention to autonomously construct high-order
characteristics. It stands as the pioneering endeavor to utilize Transformers for acquiring high-order
feature interplays.

• DeepFM Guo et al. (2017) integrates classical factorization machines with a multilayer perceptron
(MLP) to improve the modeling of high-order feature interactions.

• xDeepFM Lian et al. (2018) integrates the CIN model with an MLP.

• DCNV2 Wang et al. (2021) integrates the CrossNet model with an MLP.

Adaptive-Order:

• AFN Cheng et al. (2020) transforms features into a logarithmic space to flexibly grasp arbitrary-
order feature interactions. The AFN+ enhancement involves the utilization of an MLP to enhance
the underlying model.

• ARM-Net Cai et al. (2021) introduces a gated attention mechanism that adapts to instances to
dynamically learn the orders of feature interactions. On the other hand, ARM-Net+ enhances the
underlying model by incorporating an MLP.

• EulerNet Tian et al. (2023) employs Euler’s formula to capture arbitrary-order feature interactions
in the complex vector space, thus overcoming the non-negativity constraints present in the AFN.

These models compared in our experiments encompass various forms of feature interaction tech-
niques. LR, as the most straightforward approach, utilizes feature weights for direct prediction
development. FmFM and FwFM are relatively simple models that capture only second-order fea-
ture interactions. NFM, CIN, CrossNet, and PNN have the capacity to model higher-order feature
interactions. AutoInt+, DeepFM, xDeepFM, and DCNV2 are ensemble methods that incorporate an
MLP to enhance high-order feature interactions. AFN+, ARM-Net+, and EulerNet have the capacity
to learn adaptive-order feature interactions.

D IMPLEMENTATION DETAILS

We reuse the baseline models and implement our models based on RecBole (Zhao et al., 2021; 2022;
Xu et al., 2023), an open-source library7. For each method, extensive grid search is applied to find
the optimal settings. Our evaluation follows the same experimental settings as EulerNet (Tian et al.,
2023), by setting the size feature embedding to 16, and batch size to 1024. We set the learning rate
from 1e-1 to 1e-4 on a log scale and then narrowed down to 5e-4 on a linear scale. The regularization
parameter λ is in {1e-3, 1e-5, 1e-7}. The optimizer is Adam (Kingma & Ba, 2014). For RFM, the
number of self-attentive rotation layers is in {1, 2, 3}, the number of attention heads is in {1, 2, 4,
8}, and attention dimension is in {16, 32, 48, 64, 80}. The architecture of the amplification network
is in {48, 128, 256× 256}. The hidden dimension of the group normalization is in {2, 4, 8, 16}. We
have provided our source code in the supplementary materials.

Next, we detail the hyperparameters of each model, with the search space defined based on prior
research Wang et al. (2021); Tian et al. (2023). For each baseline method, the MLP component’s
hidden size is selected from {64, 128, 256, 512}, the layer count from {1, 2, 3}, and the dropout
rate from {0.0, 0.1, 0.2, 0.3, 0.4}. In the case of FwFM and FmFM, we employ field-wise linear
weights. CIN and xDeepFM have layer sizes in {100, 200}, depth in {2, 3, 4}, identity activation,
and direct or indirect computation. CrossNet and DCNV2 vary in cross-layer numbers from 1 to 4.
Regarding PNN, we explore IPNN, OPNN, and different kernel types such as full matrix, vector,
and number. AutoInt (Transformer) involves attention layer counts of 2 to 4, attention embedding
sizes of {20, 32, 40}, attention head numbers of 2 to 3. For AFN, logarithmic neuron counts span

7https://recbole.io/

25

Under review as a conference paper at ICLR 2024

{40, 400, 800, 1000}. ARM-Net incorporates α sparsity values in [1.0, 2.0, 3.0], attention head
numbers in {1, 2, 4, 8}, and exponential neurons per head in {8, 16, 32, 64}. EulerNet experiments
with Euler interaction layer counts in {1, 2, 3, 4} and order vector numbers in {10, 20, 30, 40}.

E COMPLEXITY ANALYSIS

For ease of analysis, we assume that the hidden size of different components is set to the same num-
ber. Let m denote the number of feature fields, h denote the head number, d denote the embedding
dimension, d′ denote the total attention dimension, dh denote the attention dimension of a single
head, and T denote the MLP hidden size of the amplification network.

Time Complexity. Within each self-attentive rotation layer, calculating attention weights for one
head takes O(mddh+m2dh) time. As for multi-head rotation, we use dh = d′/h. Because we have
h heads, it takes O(mdd′ + m2d′) time altogether. The time complexity of a N -layer network is
O(mNdd′ +m2Nd′). As for an L-layer amplification network, the time complexity is O(md′T +
LT 2). Therefore, the time complexity of the RFM is of the same order as the Transformer.

Space Complexity. The embedding layer, which is a shared component in neural network-based
methods, contains nd parameters, where n is the dimension of sparse representation of input fea-
ture and d is the embedding size. As a self-attentive rotation layer contains the following weight:
{WQ

j ,WK
j ,W V

j }mj=1 ∈ Rd×d′
, and w ∈ Rd′

. In the multi-head rotation, since we follow the
implementation of Transformer, which sets dh = d′/h and conducts the split operation to imple-
ment the head projection matrix (i.e., HQ

j in Eq. 11), the total parameter number is equal to that
of the single-head case. Due to the reduced dimension of each head, the total computational cost
is similar to that of a single-head attention with full dimensionality. The space complexity of a N -
layer network is O(mNdd′). As for an L-layer amplification network, there are O(md′T + LT 2)
parameters.

F HYPER-PARAMETER STUDY

We study how the hyper-parameters impact the performance of RFM. We mainly focus on three
hyper-parameters: the attention dimension, the number of attention heads and the number of atten-
tion layers.

Influence of Different Attention Dimensions. We investigate the performance with respect to the
attention dimension d′ in the self-attentive rotation layer. As shown in Figure 5, on the Criteo and
Avazu datasets, we can see that the performance increases as the attention dimension increases from
16 to 32. Whereas, on the Frappe dataset, RFM achieves the best performance as the attention
dimension increases to 48. Continuously increasing the attention dimension does not yield a sus-
tained improvement in model performance. The reason is that the model overfits when too many
parameters are incorporated.

16 32 48 64 80
Attention Dimension

0.81300
0.81325
0.81350
0.81375
0.81400
0.81425
0.81450
0.81475
0.81500

AU
C

AUC
LogLoss

0.4370

0.4375

0.4380

0.4385

0.4390

0.4395

Lo
gL

os
s

The attention dimension

(a) Criteo

16 32 48 64 80
Attention Dimension

0.7870

0.7875

0.7880

0.7885

0.7890

0.7895

AU
C

AUC
LogLoss

0.37450
0.37475
0.37500
0.37525
0.37550
0.37575
0.37600
0.37625
0.37650

Lo
gL

os
s

The attention dimension

(b) Avazu

16 32 48 64 80
Attention Dimension

0.9810
0.9815
0.9820
0.9825
0.9830
0.9835
0.9840
0.9845
0.9850

AU
C

AUC
LogLoss

0.146
0.147
0.148
0.149
0.150
0.151
0.152
0.153

Lo
gL

os
s

The attention dimension

(c) Frappe

Figure 5: The performance w.r.t. the attention dimension d′.

Influence of Different Attention Heads. As mentioned in Section 3.1.2, the attention heads num-
ber h controls the number of feature interaction terms. As shown in Figure 6, we can see that the
performance increases as the attention head number increases from 2 to 4 on the Criteo and Avazu

26

Under review as a conference paper at ICLR 2024

datasets, showing the effectiveness of incorporating more feature interactions. The results are dif-
ferent on the Frappe dataset; the model performance varies significantly across different attention
head numbers. The reason is that this data set is small, introducing too many interaction terms may
introduce irrelevant noise that hurts the model performance.

2 4 6 8 10
Attention Head

0.81300
0.81325
0.81350
0.81375
0.81400
0.81425
0.81450
0.81475
0.81500

AU
C

AUC
LogLoss

0.43700
0.43725
0.43750
0.43775
0.43800
0.43825
0.43850
0.43875
0.43900

Lo
gL

os
s

The attention head

(a) Criteo

2 4 6 8 10
Attention Head

0.7880
0.7882
0.7884
0.7886
0.7888
0.7890
0.7892
0.7894

AU
C

AUC
LogLoss

0.3746
0.3748
0.3750
0.3752
0.3754
0.3756
0.3758
0.3760

Lo
gL

os
s

The attention head

(b) Avazu

2 4 6 8 10
Attention Head

0.9810
0.9815
0.9820
0.9825
0.9830
0.9835
0.9840
0.9845
0.9850

AU
C

AUC
LogLoss

0.146
0.148
0.150
0.152
0.154
0.156
0.158
0.160
0.162

Lo
gL

os
s

The attention head

(c) Frappe

Figure 6: The performance w.r.t. the attention head number h.

Influence of Different Attention Layer Number. RFM is designed by stacking L self-attentive
rotation layers. To analyze the influence of L, we vary L in the range of 1 to 5 to report the results in
Figure 7. We can observe that the performance of RFM increases with the attention layer number at
the beginning. However, model performance degrades when the attention layer number is set greater
than 2 on the Criteo and Avazu dataset, whereas RFM achieves the best performance with a single
layer. In practice, the layer number of RFM is usually set to 1 or 2, thereby ensuring the efficiency
of our approach.

1 2 3 4 5
The Number of Layers

0.8125

0.8130

0.8135

0.8140

0.8145

0.8150

AU
C

AUC
LogLoss

0.4370

0.4375

0.4380

0.4385

0.4390

0.4395

Lo
gL

os
s

The Number of Layers

(a) Criteo

1 2 3 4 5
The Number of Layers

0.7865

0.7870

0.7875

0.7880

0.7885

0.7890

AU
C

AUC
LogLoss

0.3745

0.3750

0.3755

0.3760

0.3765

0.3770

Lo
gL

os
s

The Number of Layers

(b) Avazu

1 2 3 4 5
The Number of Layers

0.980

0.981

0.982

0.983

0.984
AU

C
AUC
LogLoss

0.150
0.155
0.160
0.165
0.170
0.175
0.180

Lo
gL

os
s

The Number of Layers

(c) Frappe

Figure 7: The performance w.r.t. the attention head number h.

G MORE ABLATION STUDIES

In this section, we conduct ablation studies to investigate the effectiveness of other components in
RFM. The results are presented in Table 6.

Projection Matrices. As mentioned in Section 3.1.2, we employ a set of field-specific projection
matrices (i.e., {WQ

j ,WK
j ,W V

j ∈ Rd′×d}mj=1) to map the original feature embeddings into a set of
queries, keys and values (i.e., Q,K,V). To verify its effectiveness, we compare it with the mapping
approach of traditional transformers, i.e., all fields use shared matrices WQ,WK ,W V . We can
observe that the model performance has a decrease when a shared projection matrix is incorporated
for mapping the features from all fields. It demonstrates that our proposed approach is more suitable
for capturing the field-specific semantics that improve the model’s capacities.

Activation Function. Our proposed self-attentive rotation mechanism adopts the sigmoid as the
activation function to quantify the feature relationships. It can be seen that the performance drops
when replacing the sigmoid function with other commonly used activation functions (i.e., softmax,
ReLU and Tanh). The sigmoid function squashes the orders into a range between 0 and 1 without
additional constraints (e.g., the orders add up to 1 in softmax function). Therefore, the sigmoid func-
tion is more suitable for quantifying the relationships and capturing the useful feature interactions.

27

Under review as a conference paper at ICLR 2024

Amplification Network. As introduced in Section 3.2, RFM feeds the real and imaginary parts of
the complex features into a shared MLP for enhancing the representations. Our aim is to ensure
the consistency of complex vector operations, i.e., the real and imaginary parts of a complex vector
should have the same weights (e.g., W (r + ip) = Wr + iWp). To verify its effectiveness,
the variant ”Splited MLP” feeds the real and imaginary vectors into two different MLPs which are
independently learned during training. We can see that the model performance decreases when using
splited MLPs. It shows that the consistency of complex vector operations has a large impact on the
performance. Meanwhile, the shared architecture also improves the efficiency of our approach.

Table 6: More ablation study results. ’LL’ denotes the LogLoss
Models Criteo Avazu ML-1M ML-Tag Frappe

AUC LL AUC LL AUC LL AUC LL AUC LL
Base RFM 0.8147 0.4374 0.7890 0.3749 0.9026 0.3090 0.9667 0.2049 0.9843 0.1506
Shared matrices 0.8138 0.4381 0.7877 0.3761 0.8997 0.3130 0.9661 0.2063 0.9825 0.1595
Softmax 0.8142 0.4381 0.7886 0.3754 0.8927 0.3249 0.9653 0.2076 0.9836 0.1537
ReLU 0.8141 0.4383 0.7887 0.3752 0.8972 0.3148 0.9641 0.2183 0.9838 0.1473
Tanh 0.8139 0.4384 0.7882 0.3754 0.9011 0.3123 0.9657 0.2091 0.9831 0.1603
Splited MLP 0.8139 0.4382 0.7887 0.3751 0.9022 0.3093 0.9652 0.2081 0.9828 0.1664

H EFFECT OF MODULUS AMPLIFICATION NETWORK

To study the effectiveness of the proposed modulus amplification network (See Section 3.2), we
visualize the representations before and after modulus amplification in the complex plane. The
results on the Frappe, ML-Tag, Criteo and Avazu datasets are shown in Figure 8. We can observe
that, before the modulus amplification procedure, the feature representations are distributed on a
unit circle with a fixed modulus of 1. Specifically, the angular representations learned in RFM
vary from [−π, π] on the ML-Tag, Criteo and Avazu datasets. Whereas on the Frappe datasets, due
to its smaller scale, the range is narrowed to [−π/10, π/10]. After amplification, the features are
distributed at various areas in the complex plane, and they have different modulus. Specially, we
can also see that most transformed representations have the same real part or imaginary part. Such
distributions make the varies of angle have a remarkable influence on the predicted result, which
enables RFM to capture the useful feature relationships and improves the model’s capabilities.

(a) Frappe Before (b) Frappe After (c) ML Before (d) ML After

(e) Criteo Before (f) Criteo After (g) Avazu Before (h) Avazu After

Figure 8: Visualization of the feature representations before and after the amplification.

I HIGH-ORDER INTERACTION LEARNING ANALYSIS

As discussed in Section 3.3, our proposed method can be degenerated to the traditional inner-
product-based methods. To study the effectiveness of the proposed rotation-based interaction in
learning high-order feature interactions, we create synthetic datasets with increasing difficulty as:

fm(E) = e1 ⊙ e2 ⊙ · · · ⊙ em. (19)

28

Under review as a conference paper at ICLR 2024

where the set E = {e1, e2, · · · , em}, and each ej is uniformly sampled from [-1, 1]. We compare
the prediction result learned in RFM and a complex MLP, and utilize fitting deviation to evaluate
the difference between the prediction results of the models and the ground-truth high-order feature
interactions (i.e., fm). As shown in Figure 9, we can observe that the fitting deviation continuously
decreases as dimensions increase. As the task difficulty increases (the order m increases), the fitting
deviation also grows. This is consistent with the theoretical analysis in Section 3.3. On the other
hand, the deviation of RFM is very small (10−2), which is almost 100 times smaller than it in the
Complex MLP model, showing the approximately lossless fitting capability of RFM in learning
high-order feature interactions.

0 50 100 150 200 250
Dimension

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

De
vi

at
io

n

RFM
Complex MLP

(a) m = 5

0 50 100 150 200 250
Dimension

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

De
vi

at
io

n

RFM
Complex MLP

(b) m = 10

0 50 100 150 200 250
Dimension

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

De
vi

at
io

n

RFM
Complex MLP

(c) m = 15

Figure 9: The fitting deviation curves of different learning models.

29

	Introduction
	Preliminary
	Methodology
	Relation-Aware Feature Interaction Learning
	Angular Representation of Features
	Self-Attentive Rotation

	Modulus Amplification for Enhanced Feature Interaction Learning
	Discussion

	Experiment
	EXPERIMENTAL SETTING
	Overall Performance
	Further Study

	Related Work
	Conclusion
	Theoretical Analysis
	Tensor-form attention calculation
	PROOF OF Theorme 3.1
	Field-Aware and Instance-Aware Interaction Learning
	Gradient Analysis

	Datasets
	Baselines
	Implementation Details
	Complexity Analysis
	Hyper-Parameter Study
	More Ablation Studies
	Effect of Modulus Amplification Network
	High-Order Interaction Learning Analysis

