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Abstract

Machine unlearning aims to remove the influence of problematic training data after a model
has been trained. The primary challenge in machine unlearning is ensuring that the process
effectively removes specified data without compromising the model’s overall performance on
the remaining dataset. Many existing machine unlearning methods address this challenge
by carefully balancing gradient ascent on the ‘unlearn’ data with the gradient descent on a
‘retain’ set that represents the training data. However, in many cases the training dataset
is not fully available when we wish to unlearn some concepts, because models are released
without their training datasets, and one may only have access to a small part of a training
set. Here, we propose OrthoGrad, a novel approach that mitigates interference between the
unlearn set and a small retain set rather than competing ascent and descent processes. Our
method projects the gradient of the unlearn set onto the subspace orthogonal to all gradients
in the retain batch, effectively avoiding any gradient interference. We demonstrate the
effectiveness of OrthoGrad on multiple machine unlearning benchmarks, including automatic
speech recognition, outperforming competing methods.

1 Introduction

Foundation models are trained on web-scale datasets, which may contain undesirable data: illegal, proprietary,
or privacy-infringing. For example, Github Copilot (Dakhel et al.l 2023; |Siros et al., [2024]) faced criticism
for generating code snippets directly from open-source repositories without attribution, and the LAION-5B
dataset (Schuhmann et al., [2022) had to be temporarily removed when it was discovered it contained CSAM
images (Thiel, |2023). Another type of undesirable data is the case were users may ask to ‘opt out’ and
to not be recognized by the system. For example, a user might want a speech recognition system to not
transcribe his audio recordings. In all these cases, one is interested to “remove” or “forget” information from
a pre-trained model, either general knowledge or specific information.

These challenges led to a growing recent interest in machine unlearning (Liu et al {2024} [Nguyen et al.l [2022).
In this setup, we wish to remove the effects of a given part of the training data on a pretrained model while
preserving its generalization performance. In practice, we are given an unlearn set that we wish to forget and
a retain set that represents the training data. Many existing methods (Kurmanji et al., 2024; [Lin et al.l |2024])
combine gradient ascent on an unlearn set — for degrading performance on selected data, with gradient
descent on a retain set — for preserving accuracy elsewhere.

Very often however, models are released without their full training dataset, and one may only have access a
small fraction of the training data to serve as a retain set. For instance, Whisper large-V3 (Radford et al.|
2023), an ASR foundation model, was trained on a proprietary dataset comprising over 5 million hours of
labeled audio recordings. Although this private dataset cannot serve as a retain set, small-scale publicly
available ASR datasets such as LibriSpeech can be used as substitutes. The key observation of this paper is
that leading unlearning methods average over the retain set. However, when the retain set is small, one aims
to go beyond averages and extract as much information as possible from the retain set.

In this work, we tackle the challenge of machine unlearning with a limited retain set. We propose a novel
algorithm named OrthoGrad, which enables effective unlearning while minimizing the impact on the model’s
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generalization performance. The key idea is to use the gradients over the retain set to estimate a subspace of
gradients that should be maintained. This way, rather than relying heavily on the retain set to offset the
negative effects of the unlearning process, our method directly mitigate interference by taking update steps
that are orthogonal to the retain subspace.

To motivate our approach, we begin with a theoretical analysis under simplifying assumptions. The ideal
objective of unlearning is to modify performance on the unlearn set while preserving performance on the
retain set. This can be framed as an optimization problem constrained to the manifold of parameters that
leave all retain-set points unaffected. We show that the gradient restricted to this manifold is equivalent to
projecting the unlearning gradient onto the subspace orthogonal to the per-sample gradients of the retain
batch. Inspired by this insight, we develop an algorithm that efficiently approximates the corresponding
optimization trajectory. Unlike prior methods that rely on the average retain-set gradient, our approach
adopts a per-sample gradient perspective, yielding a more robust solution to unlearning (Figure [1]).

Our experiments focus on the challenging regime of small retain sets. These settings highlight the practical
constraints often encountered in real-world applications of machine unlearning. We thoroughly evaluate the
effectiveness of our approach, OrthoGrad, across several challenging tasks, including image classification and
automatic speech recognition. Additionally, we evaluate our approach across diverse unlearning regimes,
including random data removal, class-specific forgetting, and a proxy-retain setting where the retain set is
drawn from a related but distinct distribution, demonstrating versatility when the original training data are
unavailable. Our results consistently show that OrthoGrad achieves reliable unlearning while maintaining the
overall model performance better than other leading unlearning methods.

This paper makes the following contributions: (i) We propose OrthoGrad — a new machine unlearning
method, tailored for a limited amount of retain data. (ii) From a geometric perspective, we provide a
theoretical motivation for our approach. (iii) We demonstrate the effectiveness of OrthoGrad through
extensive experiments spanning multiple datasets, modalities, and unlearning setups.

2 Related Work

The development of efficient machine unlearning meth-
ods (Cao & Yang, 2015; Fan et al., |2025; (Ginart et al.
2019; [Goel et al.] [Zhang et all [2024; Romero et al.
2007; Mehta et al [2022} [Huang et all, [2025) has gained
significant attention, addressing a range of applications
across domains such as regression tasks (Thudi et al
2022), federated learning (Liu et al., [2021D} [2022; Wang
et al) 2022)), graph neural network (Chen et al [2022; Figure 1: Illustration of the gradient orthogo-
Cheng et al. 2023). Retraining the model from scratch, nalization process. The retain gradients g!, g2,
widely regarded as the gold standard for unlearning [Fan| and g? span a subspace (gray triangle). The
, guarantees the complete removal of data projection vector p is obtained by applying QR
influence. However, this approach is often impractical decomposition on the retain gradients. The un-
in production environments due to the extensive com- learn gradient g, is projected using p to form
putational resources, especially for large-scale datasets. unlearning gradient which is orthogonal to the
Alternatively, fine-tuning a model for a new task may in- retain subspace, g.-.

duce catastrophic forgetting (Lopez-Paz & Ranzatol [2017)),

but this mechanism fails to ensure the precise removal of specific data influences.

Most machine unlearning methods leverage techniques like influence functions (Guo et all |2019; Neel et al.
2021} [Wu et al. [2022; Wu & Harandi, [2025} [Sekhari et al., 2021)), probabilistic approaches (Golatkar et al.
2020b; |2021). However, these methods often face inherent limitations that reduce their practical effectiveness,
particularly in defending against membership inference attacks (Dwork et al.,|2006; \Graves et al., [2021). As a
result, the focus has shifted toward developing more effective and efficient unlearning strategies
let al., 2020a; Becker & Liebig) [2022} |Jia et al.l |2023}; |Chen et al., 2023). While these approaches represent
significant advancements in machine unlearning, many rely on assumptions or techniques that limit their
practicality in real-world scenarios.
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Cluster-based unlearning (DUCK (Cotogni et all 2023)), SCAR (Bonato et all 2024))), differing mainly
in clustering metrics, lack adaptation to auto-regressive models, limiting applicability to sequential tasks.
SCRUB (Kurmanji et al., [2024), a teacher—student framework, removes specific influences but struggles to

generalize (e.g., forgetting random samples). GDR-GMA (Lin et al. [2024) relies on orthogonal projections
of averaged gradients, ignoring per-sample variability and leaving residual influence. Most methods target

classification; (Fan et all |[2023) highlights limitations for image generation, crucial for copyright and safety.

Conflicting Gradients in Multi-Task Learning: Multi-task learning (MTL) aims to improve model
generalization by optimizing multiple related tasks (Crawshawl [2020} [Zhang & Yang| [2021)). However,
different tasks often compete for model capacity and produce gradients pointing in opposite directions during
training . This phenomenon, known as gradient interference or conflict, occurs when a gradient
that benefits one task degrades the performance of others. Addressing this issue by mitigating these conflicts
has become crucial for training MTL systems, with early works focusing on analyzing conflict patterns and
their relationships (Sener & Koltun [2018} |Chen et al.l [2018)). Various optimization-based approaches have
been proposed, including gradient projection and dropping to reduce task interference (Chen et al. 2020}
\Wang et al., [2021; Liu et al., 2021a} |Achituve et al. [2024). Recently, geometric and game-theory perspectives
have led to methods seeking optimal Pareto solutions in the MTL optimization landscape (Navon et al., 2022;
Javaloy & Valera, |2021). Other studies proposed architectural solutions, including progressive networks (Rusu|

et al.,|2016), attention-based routing (Ma et al.,2019), and dynamic architecture adaptation (Sun et al.,2020).

Another line of works focuses on dynamic loss weighting, with methods like uncertainty weighting (Kendall
and DWA automatically balancing task losses based on pre-defined criteria. In
the related field of continual learning, several projection-based methods constrain updates to avoid interfering
with previously learned knowledge. For example, GEM/A-GEM enforce constraints using gradients on a small
episodic memory of past data and project the current gradient accordingly [Saha et al|(2021)); |[Chaudhry et al.|
, while orthogonality-based approaches explicitly encourage gradient directions that are orthogonal
to protected subspaces [Farajtabar et al.| (2019); [Zeng et al| (2019). These ideas closely connect to machine
unlearning, which likewise requires an update that achieves forgetting while minimally degrading performance
on retained data.

In this work, we focus on evaluating machine unlearning across various setups in the contexts of image
classification and Automatic Speech Recognition (ASR). By exploring different unlearning scenarios, we
aim to test the generalization capabilities of all methods, particularly in handling large-scale datasets and
scenarios with restricted access to the original training data.

3 Background

We consider a training dataset D = {(x;,;)}Y., with each data point representing a pair of input vector z;
and its corresponding label y;. A machine learning model f(+; ), parameterized by parameters 6, is optimized
to minimize a loss function £(¢). Formally, we define the loss function as £(6) = ZZJ\;I O(f(x;;0),y;), where

¢ is the cross-entropy loss. The model parameters trained on D are denoted as ¢, representing the pretrained
Ny

i=1>
N, data points to be unlearned. (ii) Retain set D, = {(z;, ;) }.7,, with N, samples representing the training
data to aid retain the model’s performance. We assume these two datasets are disjoint, i.e., D, N D, = (). The
primary goal of machine unlearning is to modify the model’s weights to obtain 8, resulting in an unlearned
model f(-;60,). This modification process aims to remove the knowledge of the original model of D,,. At the

same time, the model must maintain its predictive performance on unseen data.

model. In machine unlearning, we are given two datasets: (i) Unlearn set D,, = {(x;, y;)} containing the

One major challenge in machine unlearning is how to define if the unlearn set was successfully unlearned.
While theoretically, we want our model to be indistinguishable from a model trained from scratch without the
unlearn set, this is hard to verify without actually retraining from scratch. In this work, similar to
, we aim for the performance on the unlearn set to match the original models’ performance on the
test set as a proxy. This also has the added benefit of making the comparison between different unlearning
methods straightforward. As we care about both unlearn set performance and test set performance, by
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normalizing the unlearn set performance of all models (up to some tolerance), we can directly compare using
a single metric, i.e., the test set performance.

4 Method

We introduce OrthoGrad, a novel machine unlearning approach designed to address unlearning with limited
retain data. We observe that current unlearning methods perform gradient ascent for unlearning and gradient
descent for retention. Such approaches excessively depend on the retain set, because in a sense, we are
simultaneously forgetting and retraining during the unlearning phase. Such mixed objectives are known to
be harder to stabilize and optimize. Considering this, our approach aims to mitigate the negative effect of
the unlearning step instead of fixing it using the retain set. We propose to use a small retain set in a more
efficient way, by computing a subspace of gradients that should not interfere with the retained data.

4.1 Geometric Motivation

To motivate our method, we start by analyzing theoretically how we would perform ideal unlearning under
strong simplifying assumptions. This will then guide the design of our practical algorithm. Intuitively, we
are interested in the set of parameter vectors # € R? that maintains a constant loss over the retain set D,..
Formally, let £,.(0) = (¢1(0), ..., £x, (8)) define the vector of losses over the retain set, we are interested in

performing unlearning in the level set © := {# € R? | £,.(9) = L-(8p)}, ie., unlearning without changing the
loss on elements of the retain set.

Claim 1. Assuming that (i) The loss £ is continuously differentiable, and (ii) The Jacobian of the retain loss
VL,.eRN*? s of full rank for all €O then © is a smooth manifold of dimension d — N,

Proof Sketch. To see that, we define for #’ € © the function f : RY — RN by fo) = L.(0) — L,(6,).
From our assumptions, f is continuously differentiable, and the Jacobian of f, Vf = V., has full rank at ¢'.
Thus, as a direct result of the implicit function theorem, the set © is locally diffeomorphic to an open ball in
RN~ O

Considering continuous parameter updates, to minimize the unlearn loss while remaining in ©, we follow the
gradient flow restricted to the manifold. This requires projecting the Euclidean gradient of our objective onto
the tangent space TypO, ensuring the flow stays on the manifold.

Claim 2. The tangent space To© to © at 0’ is given by the null space of the Jacobian Ve L,, that is, the
set of directions in parameter space that are orthogonal to the subspace spanned by the retain gradients,
Te® ={veR?| VL v=0}

Proof Sketch. To show that T9’é = Ker(VgrE_,,)7 we first note that Tp© C Ker(Vgrﬁ_,,): Let v € Ty O and
let (-) be a smooth curve in © with y(0) = ¢’ and 4(0) = v, we have 0 = £ f(7(t)) [;=o= Vo' L,v, and so
v € Ker(Vg L,). Finally, we get the equality Ty © = Ker(Vg L,) following a dimension counting argument

since dim(Ty ©) = dim(Ker(Vg L)) = d — N,. O
To algorithmically perform this gradient flow we would need to compute the standard gradient, project it
to the space orthogonal to the gradients of the entire retain set, and then update the parameters along
the exponential map, or update and then project back to the manifold. This, however, is very demanding
computationally, as we need to compute and store the gradients on the entire retain set, as well as compute
the exponential map or projection step.

4.2 Practical Algorithm

While performing the exact gradient flow on the retain set is too computationally expensive to run in practice,
it inspires the design of our simple and practical unlearning algorithm OrthoGrad. At each optimization step,
we simply project the unlearn gradient to the space orthogonal to all individual gradients of the retain batch.
Specifically, at each step, we sample a batch of examples from the unlearn set D, and calculate the mean
gradient vector on this batch. We denote this gradient vector as g,,. Next, we sample a batch from the retain
set D,.. For the retain batch with k samples, we compute the per-sample gradient matrix G, = [g}, ¢, ..., g¥],
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where each column g'. corresponds to the gradient vector for sample 7 in the batch. Importantly, we note that
this can be achieved efficiently using modern automatic differentiation libraries, such as PyTorch (Paszke
et al., 2019)), which allow us to obtain per-sample gradients in a single forward-backward pass. To ensure
orthogonality between g, and the column space of G, we employ QR decomposition (Francis, [1961) on
G,. This yields an orthonormal basis Q = [¢}, ¢?, ..., "] that spans this subspace. Once the retain gradient
subspace is defined, we project the unlearn gradient onto this subspace to compute its projection w.r.t each
subspace vector. For a single retain gradient g’, the projection is calculated as: g = g, — Zfd(gu, qi)ql.
We note that while previous algorithms, for example [Lin et al.[ (2024), do try to mitigate interference between
the unlearn and the retain set gradients, they achieve this on the batch-level average gradients and not on
the gradients of the individual data points. We found in our experiments that the more strict per-element
constraint, instead of working on the mean gradient gives a stronger performance (Section .

We now discuss two modifications of our method that
we found to provide large empirical gains. First, instead Algorithm 1 OrthoGrad

of changing the entire weight space, we use low-rank Input: Forget set Dy, retain set Dy, learning rate 1,
adaptation (LoRA) (Hu et al., 2021) to limit further  combination parameter o

the effect that unlearning has on the overall test perfor- Output: Updated model parameters 6,
mance. We note that in general parameter parameter- Apply LoRA modules to the pretrained model:
efficient fine-tuning (PEFT) is a rapidly evolving field, 6, = LoRA(6))

and how to utilize it for unlearning best have yet to repeat

be thoroughly explored. Second, while our method is Sample a batch B, C D, and B, C D

Compute the gradient g, from B,

Compute the retain batch per-sample gradient ma-
trix:

Gr =lgr,9%,...,gF] from B,

Perform QR decomposition on G, to extract sub-
space:

robust to retain-set size, it may underuse it; linearly
combining retain and unlearn gradients improves the
performance of the unlearned model compared to solely
performing gradient ascent in the direction of the un-
learn gradient. Therefore, we define the update gradi-

ent as: g = ag, —(1—a)gy- where g, = % Zle gl is the Q=QR(G,), Q=I[¢ . ...d"

retain gradient averaged over the batch, and « € [0, 1] Project g, onto the retain gradient subspace:
is a hyperparameter that controls the trade-off between pi = (Gu, ¢V ¢t

forgetting and retaining. Finally, we update the model Compute the orthogonalized unlearn gradient:
parameters 6 using the update rule: 6; < 6; —ng. The G = Gu — Zlepi

step-by-step procedure is presented in Algorithm [I] E?omplutzezghe mean retain gradient:

In summary, OrthoGrad enforces orthogonality be- gCOmbkine Zg};girents to form a unified update direc-
tween the unlearn and retain gradients, minimizing the tion:

interference between the updates of the unlearn set and g=oag-— (1 —a)gr

retain set. OrthoGrad is designed for low-data regimes Update model parameters:

(small retain sets), because unlike previous methods, 01 + 00 —ng

until Convergence or maximum number of iterations
Merge LoRA modules:
0, = Merge(0p,0;)

it takes into account the subspace of gradients defined
by the retain set, rather than average aggregates only.
We demonstrate OrthoGrad effectiveness on various
datasets and model architectures in the next section.

5 Experiments

We evaluate OrthoGrad and compare it with recent machine unlearning approaches. We use several datasets,
model architectures, and unlearning setups to demonstrate the effectiveness and versatility of OrthoGrad in
the regime of a limited number of retain data points. To encourage future research and reproducibility, we
will make our code publicly available. Additional experimental results are presented in Appendix[A] including
insightful analyses, ablation studies on key hyperparameters, and a detailed discussion of evaluation metrics.

Baselines. We compare OrthoGrad with recent machine unlearning baselines. (1) Retrain - retraining
from scratch without the unlearn set. We note that this baseline is inappropriate in the low data regime since
it overfits the retain data, but we include it for completeness. (2) Finetune - finetune the pretrained model
solely with the retain set. (3) NegGrad (Graves et al. [2021; Thudi et al., 2022)) - a naive approach that
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performs gradient ascent steps on the unlearn set. (4) NegGrad+ (Kurmanji et al.| [2024) - NegGrad with the
additional goal of minimizing retain loss and preserving the model’s knowledge on the retain dataset. (5)
FISHER (Golatkar et al 2020al) - adds additive noise to the pretrained weights with a constraint on the
fisher information matrix. (6) Influence (Koh & Liang, [2017} Izzo et al.;|2021) - utilizes influence functions to
identify the parameters most critical to the data being unlearned and perturb them by adding additive noise.
(7) SCRUB (Kurmanji et al., 2024)) - A knowledge distillation approach that incorporates a regularization
term into the unlearning objective. (8) DUCK (Cotogni et al.l [2023)) - uses metric learning to minimize the
distance between feature vectors of the data to be forgotten and the nearest centroid of a different class. (9)
SCAR (Bonato et al., [2024]) - similar to DUCK, it uses Mahalanobis distance as the objective to minimize.
(10) SSD (Foster et al., |2024) - uses Fisher information to identify parameters tied to the forget set and
selectively dampens them. We note that SCAR and SSD rely less on the retain set. (11) GDR-GMA (Lin
et al.l |2024)) - projecting conflicting gradients onto an orthonormal plane and dynamically adjusting the
magnitude of update gradients.

Evaluation. We report the two common evaluation metrics in the field: (1) unlearning accuracy (A,) on
the data to be forgotten, and (2) test accuracy (Agest) on the held-out test set. For completeness, we also
report retain accuracy (A,) on the retain data. This is comparable to train accuracy in standard learning
and should not be used for comparison. In all experiments, we perform early stopping based on A, reaching
a specific target (normally the original test accuracy). This is easier to compare because the main difference
is in Ayess- Stopping criteria are crucial in machine unlearning to ensure the process reaches a proper balance
between effective forgetting with retained functionality.

As machine unlearning involves multiple objectives, we propose the following Unlearning Impact Score (UIS)
for easier comparison. Our metric is defined as:

p _ u p _ u
UIS = (|'Atest - Atest 4 |'Atest ‘Au|) /2 ,

p
test test

where the up scripts p and u denote pretrained and unlearned models respectively. In UIS we average two
components: the relative change in test accuracy, and how close the performance on the unlearning set is to
its target, A7 ;. A lower UIS score indicates better unlearning, as it suggests the model has successfully
forgotten the unlearn data while maintaining its performance on held-out data. Additional results with the
MIA metric are in the appendix.

5.1 Automatic Speech Recognition

Automatic Speech Recognition (ASR) is the process of converting spoken language into written text, a
fundamental component in many real-world applications (Malik et al., |2021; |Alharbi et al., |2021). ASR
foundation models like Whisper (Radford et all [2023)) are trained on extensive datasets of transcribed
web audio containing many hours of speech recordings. These models may inadvertently retain sensitive
or proprietary information. Furthermore, individuals may request that an ASR system cannot accurately
transcribe their voice as a way to preserve their privacy and identity.

Table 1: Ablation Study. Evaluation of OrthoGrad variants on ASR unlearning. Values are word-error-rates
averaged over 5 different speakers.

Wretain Wunlearn Wspeaker Wtest
OrthoGrad Mean 2723 £11.36 96.67 £6.02 64.25 +35.48 29.42 + 14.07
OrthoGrad Per-sample 18.71 +£4.04 100.00 = 0.00  96.40 + 7.04 26.87 £ 0.60
OrthoGrad Mean + Lora 23.77 £9.62 92.124+7.34 63.27 +35.43 41.21 £ 25.67
OrthoGrad Per-sample + Lora 12.73+1.43  98.30+250 81.16+23.97 16.36 +0.32
OrthoGrad 12.11 + 0.65 96.24 £+ 8.06 98.53 £3.28 13.98 £0.58
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Speaker unlearning. We focus on the task of forgetting audio data associated with a particular speaker,
using Whisper-Tiny (Radford et al, [2023)) architecture and LibriSpeech (Panayotov et al., [2015) dataset,
containing 1K hours of English speech recordings. We establish the unlearning setup by selecting a single
speaker from the training set to serve as the unlearn set. We randomly allocate 10% from the unlearn set
to evaluate our model on the unlearned speaker. Additionally, we randomly sample 10% of the remaining
training set to form the retain set. The test set is taken directly from the original LibriSpeech dataset.

Eval metrics. We evaluate performance using word error rate (WER), a standard metric that measures the
percentage of words incorrectly transcribed by the model. We report WER for 4 sets: unlearn (Wyniearn ),
retain Wyetain), test (Wiest), and speaker held out (Wspeaker). The speaker held-out dataset comprises of
unseen audio recordings of the unlearned speaker. Since Whisper tends to hallucinate (Koenecke et al.| |2024])
by predicting unwanted words, we clip the WER at a maximum of 100%.

5.1.1 Ablation Study

We begin with an ablation study to evaluate the relative contribution of each component in our approach.
We run the unlearning process for 30 epochs with an early stopping when Wyniearn reaches 75%. WER tends
to jump significantly during the last epochs, which can lead to a final WER that is much higher than our
stopping criteria. Although the exact threshold is somewhat arbitrary, we observed a rapid increase in WER
beyond a certain point. We illustrate this behavior empirically in Appendix which plots Wy nicarn across
epochs and shows a clear late-stage jump. Consequently, the metric typically crosses reasonable thresholds
within a single step, making the stopping choice relatively insensitive.

In this experiment, we compare 5 variants. (i) OrthoGrad Mean; Projecting the unlearn gradient to be
orthogonal to the average retain gradient, (ii) OrthoGrad Per-sample; Projecting the unlearn gradient to the
space orthogonal to all individual sample gradients, (iii) OrthoGrad Mean/Per-sample+LoRA; The latter
methods when the update is restricted to low-rank adapters. (iv) OrthoGrad; Our full method that combines
gradient descent on the retain set.

Table [1| shows the results. Per-sample orthogonalization has two benefits. It reduces the mean Word-Error-
Rate W;est and also reduces its variance by an order of magnitude. We observed that OrthoGrad Mean
is very unstable: it may work well with some speakers but performs poorly on others. As seen in Table []
restricting per-sample unlearning of OrthoGrad to LoRA adapters improves Wiy significantly. However,
this is not the case for OrthoGrad Mean due to instability. We note that all methods passed the 75% WER
threshold on the unlearn set with a large margin, but the OrthoGrad Mean performance on unseen audio
from the speaker, Wypeaker, Was below the target threshold. This means the unlearning did not generalize
well to new recordings of the unlearned speaker. Finally, we see that adding the retain gradient can offer an
additional improvement, but this improvement is somewhat limited.

Table 2: Automatic Speech Recognition. ASR speaker unlearning results on the LibriSpeech dataset. Values
are word-error-rates averaged over 5 different speakers.

Method Wretain Wunlearn Wspeaker Wtest

Original 9.99 +0.15 11.12+£4.91 10.06 + 6.39 11.08 + 0.00
Finetune 0.06 £0.01 13.39 +£5.26 12.54 +7.48 13.67 £ 0.04
NegGrad+  72.87+19.18 77.08+35.99 94.89+6.78 85.90 + 10.72
SCRUB 100.00 £0.00 100.00 £0.00 100.00 £0.00  100.00 4 0.00

GDR-GMA  17.38+9.69  93.28 £7.58  94.76 £ 6.23 32.52 +5.72
OrthoGrad  12.11+0.65  96.24 £8.06 98.53 £3.28 13.98 £0.58
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Table 3: Proxy-Retain with ResNet18 architecture. Performance is measured under two unlearning scenarios:
random sampling of training data (3-seed average) and class removal (3-class average).

Random Sampling Class Forgetting
Method Ay A, Atest UIS ({) A A, Atest UIS ({)
Original 96.10 £0.28 49.454+1.09 81.97 £0.00 - 97.31+1.21 48.55+1.71 81.97£0.00 -
Retrain 29.95+3.11 99.70 £0.43 30.48 £2.65 - 0.00+0.00 99.94+0.09 28.18+1.94 -
FT 78.61 £1.38 72.30+£0.56 67.78 £1.17 - 29.23 £14.15 99.95+0.05 64.26 £0.45 -

NegGrad 43.63 £32.62 24.30+13.96 37.24 £26.17 0.507 £ 0.359 0.27+£046 20.43+10.87 29.41+21.75 0.322+0.130
NegGrad+ 21.43+2.64 2836+1.67 19.89+1.95 0.748+0.028 0.76 £0.45  42.07+4.62 51.15+13.24 0.193 £0.080
FISHER 10.53 £0.60 10.28 £0.34 10.18 £0.30  0.874 +0.005 71.15+£32.00 39.01+2.03 63.81+0.49 0.545+0.196
Influence 10.224+£0.55 10.094+0.10 10.00 £0.00  0.877 £ 0.003 72.01 £32.84 41.43+£5.55 73.97£7.63 0.488+£0.154
SCRUB 40.21 £6.51 4256 +£5.88 38.63+4.30 0.519 & 0.066 1.20+1.19 64.81+1.02 52.364+2.05 0.188 £ 0.019
DUCK 53.22+£5.82  99.474+0.18 46.43£4.01 0.392 £ 0.060 0.00£0.00 42.53£2.76 22.94+6.53 0.360 £ 0.040
GDR-GMA  79.934+0.70 93.97+0.89 67.024+0.45 0.104 4+ 0.007 0.00£0.00 51.74+7.53 56.69£6.11 0.154 £0.037
SSD - - - - 96.59 £2.14 48.12+0.95 81.104+1.57  0.595 £ 0.005
SCAR 78.05£4.29 42.79+£2.29 68.32+3.60 0.107 £ 0.048 0.09£0.09 48.74+0.80 64.44+£6.22 0.107 £0.037

OrthoGrad 80.99+1.21 61.69+0.71 68.41+0.79 0.089 +0.012 0.46 £0.42 59.58+1.36 68.94+3.81 0.082+0.021

5.1.2 ASR Speaker Unlearning Results

For speaker unlearning, we compare OrthoGrad to SCRUB [Kurmanji et al.| (2024)), GDR-GMA |Lin et al.
(2024), and NegGrad+ [Kurmanji et al. (2024). We exclude metric learning methods (DUCK and SCAR)
as they are designed for classification and are unsuitable for ASR. Also, SSD relies on trained parameters,
making it unsuitable for optimizing LoRA in this unlearning setup. See technical details and hyperparameter
selection in Appendix B2}

The results are shown in Table 2] All methods, except for the finetune baseline, successfully unlearned the
target speaker. We hypothesize that the high W, values for both NegGrad+ and SCRUB arise from the
fact that they do not take into account the conflict between the unlearn and retain gradients. In contrast,
OrthoGrad and GDR-GMA, which consider this conflict, perform well on this benchmark. OrthoGrad
significantly outperforms GDR-GMA, on test WER.

5.2 Unlearning with Proxy Data

In practice, the original training data are usually unavailable, especially for foundation models trained on
copyrighted or proprietary data. As a result, practitioners who wish to perform unlearning must curate a
small proxy retain set that approximates the original data distribution. To simulate this scenario, we evaluate
OrthoGrad in a proxy-retain setting using CINIC-10 (Darlow et al., 2018, which merges CIFAR-10 with
resized ImageNet images from the same classes. We first train a ResNet-18 on CIFAR-10. During unlearning,
we construct the retain set exclusively from the ImageNet-derived portion of CINIC-10, uniformly sampling
10% of this pool. We use CIFAR-10 examples as both the forget set and the test set. This protocol enforces
a distribution shift between retain and forget/test while preventing any retain-set leakage from CIFAR-10.
Results are reported in Table |3} Additionally, we visualize the unlearning (A4,) and generalization (Agegst)
trade off in Figure 7]

OrthoGrad achieves the lowest UIS in both random-sampling and class-forgetting, lowering A, while keeping
Agest near the pretrained model despite the proxy (distribution-shifted) retain set. In contrast, baselines leave
residual memorization (high A,,) or cause large drops in A, or Atest. Other methods effectively fail to unlearn;
for example, SSD did not achieve any unlearning in the random-forgetting setup, even after hyperparameter
tuning. These results suggest that orthogonalizing updates to the retain gradient subspace provides better
unlearning with scarce proxy data.

5.3 Image Classification

Image classification tasks are commonly used benchmarks for evaluating machine unlearning algorithms.
These benchmarks have two variations: class-wise forgetting and random data forgetting. Class-wise forgetting
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focuses on removing the influence of an entire image class, while random data forgetting targets the removal
of randomly selected data points from the training set. In the standard experimental setup, the entire training
set, except for the unlearn set, is used as the retain set. We, however, are interested in the scenario where we
have access to a limited retain set, and therefore subsample a portion of the training set to be our retain set.

Our evaluation is conducted on the ImageNet (Deng et all |2009)) image classification dataset on both random
sampling and class forgetting benchmarks. In the random unlearning setting, the unlearn set consists of 5K
images sampled uniformly from the training data. In the class unlearning setting, the unlearn set comprises
all training images belonging to the unlearn class. In both setups, we draw 10K images for the retain set
and evaluate on the original test set. We use ResNet-18 (He et al., |2016)) and ViT (Dosovitskiy, |2020) as
our base classifiers. The stopping criteria used in the random forgetting experiments follow |Cotogni et al.
(2023)), i.e., we stop when the unlearn accuracy is within a defined threshold (0.5%) or lower than the test
accuracy of the pretrained model. For class-wise forgetting, we stopped when the model’s accuracy on the
unlearned classes dropped below 1%, indicating that the class had been effectively forgotten. In both cases, if
the unlearning algorithm does not reach the target within a specific number of epochs, we report the results
of the last epoch.

Table 4: ImageNet using ResNet18. Results are shown for two scenarios: random sampling (averaged over 3
seeds) and class forgetting (averaged over 3 classes).

Random Sampling Class Forgetting
IVIethOd .Au Ar Atest UIS (\L) .Au .Ar .Atest UIS (\L)
Original 79.04+£0.68 79.2+£0.49 69.76 + 0.00 - 91.76 £4.79 79.15+0.00 69.76 £ 0.00 —
Retrain 5.72+0.16 95.90+0.32 5.72+0.35 - 0.00+0.00 84.60+1.35 5.34+£0.14 -
FT 76.81+0.83 94.59+0.08 67.85+0.03 - 78.02+18.48 94.28 £0.03 67.39 4 0.03 -

NegGrad 69.94+0.14 7043+£1.52 62.5+£0.70 0.053+0.003 22.53+£16.39 74.81£2.09 66.11+2.12 0.187£0.129
NegGrad+ 78.98+0.56 79.23+0.37 69.74+0.00 0.066 £ 0.004 28.92+21.62 75.94+£1.72 67.1+£1.78 0.226+0.177
FISHER 78.85£0.70 78.96+0.44 69.59 £0.09 0.066 £ 0.005 91.64 £4.87 79.03+£0.00 69.64 £0.00 0.657 £ 0.034
Influence 78.98 £0.68 79.224+0.45 69.74 £0.02 0.066 £ 0.004 78.82+18.09 78.90 £0.17 69.52+0.12 0.566 £ 0.128
SCRUB 78.86 £ 0.70 84.03 £0.48 69.47+0.11 0.067 & 0.006 0.53£0.55 83.61£0.01 69.424+0.09 0.006 + 0.004

DUCK 67.224+1.29 99.88+£0.00 61.87+0.01 0.074+0.011 0.00£0.00 99.94+£0.00 61.37+0.74 0.060 % 0.006
GDR-GMA 67.35+1.32 99.97+0.02 66.98+0.38 0.037 +0.011 0.74£0.29 99.22+£0.22 64.744+0.38 0.043 £ 0.000
SSD 76.28 £1.61 76.17+£0.85 67.14£0.90 0.065 £ 0.005 0.00£0.00 78.65£0.31 69.14+0.23 0.004 £ 0.001
SCAR 64.41 +£8.89 75.51£3.52 61.20+6.33 0.100 £ 0.109 0.00£0.00 76.47£0.40 65.17+0.65 0.033 £ 0.005

OrthoGrad 69.95+0.15 82.27 £0.87 67.59 +0.48 0.016 = 0.002 048 £0.40 77.24+£1.22 67.254+1.24 0.021 +£0.005

The results are presented in Tables[d] [f] These experiments show that our method consistently meets the
unlearning target and achieves superior performance in most settings, particularly under random sampling.
OrthoGrad also generalizes effectively across different scenarios, performing competitively in class-forgetting
tasks. In contrast, several baselines, such as SSD, SCRUB, and SCAR, lack consistency, performing well
in one setup but poorly in another. Additionally, SCAR and DUCK are designed specifically for image
classification (see Section , and SCAR is only practical when a moderate amount of retain data is available
(see Section . In conclusion, OrthoGrad delivers the most robust performance in both unlearning setups
while being task-agnostic.

5.3.1 Robustness to retain size

Here, we assess the robustness of our method to variations in the retain set size. To do so, we revisit the
random sampling image classification setup from Section Specifically, we experiment with varying retain
dataset sizes, ranging from 1K to 200K samples, reporting the UIS values. The results are presented in
Figure 2] We note that NegGrad is not affected by the size of the retain set since it only performs gradient
ascent in the direction of the unlearn set. Additionally, we exclude SCAR from this experiment, as it involves
inverting a covariance matrix, which results in a non-invertible matrix in the extreme case of 1K samples,
and leads to memory overflow for 150K and 200K samples. Our model consistently outperforms baseline
methods across all retain set sizes.
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Table 5: ImageNet with ViT architecture. Performance is measured under two unlearning scenarios: random
sampling of training data (3-seed average) and class removal (3-class average).

Random Sampling Class Forgetting
Method A A, Aiest UIS (i) A A, Atest UIS (J,)
Original 94.26 +0.19 94.04+£0.24 81.06 + 0.00 — 98.1+1.62 94.17+0.00 81.06 +0.00 —
Retrain 3.36 £0.04 98.724+0.06 3.4240.04 — 0.00£0.00 95.08+0.15 3.29+0.16 -
FT 89.96 £ 0.56 99.94+0.01 75.03 +0.30 - 91.97 £8.18 99.924+0.02 74.07 +0.05 -

NegGrad 24.24+13.23 24.26 £13.46 21.06 +14.06 0.720 + 0.186 041+£0.34 89.63+3.84 76.53+£4.16 0.030£0.028
NegGrad+ 78.75£3.09 87.63+5.34 72.16+4.53 0.069 £ 0.051 0.05+£0.07 90.67+4.22 77.17+£4.73 0.024 £0.028
FISHER 94.36 £0.09 94.01£0.19 81.00+0.05 0.082 £ 0.000 98.02£1.82 94.144+0.00 80.9940.00 0.605=+0.011
Influence 89.08+1.90 91.61+1.78 77.48+1.68 0.071+0.001 15.28 £20.76 91.54+2.21 78.13+£2.06 0.112+0.121
SCRUB 94.54 £0.15 96.00£0.11 80.76 £0.05 0.084 £ 0.001 45.82£37.8 96.18+£2.91 75.81+£4.13 0.314£0.286

DUCK 76.75£0.47 100.00 £0.00 69.45+£0.49 0.097 £ 0.000 0.00£0.00 99.39£0.02 70.68£0.29 0.064 & 0.001
GDR-GMA 80.41+£0.34 99.344+0.05 75.47+0.16 0.038 +0.003 0.15£0.16 97.56 +0.18 77.03£0.28 0.025 £ 0.001
SSD 93.5+£0.19 93.38+0.29 80.35+0.17 0.081 £ 0.000 0.00£0.00 94.224+0.03 80.9+0.03 0.001 +0.000
SCAR 71.49+£1.34 93.53+0.17 77.83+£0.15 0.079 £ 0.009 0.00£0.00 93.264+0.14 76.85+£0.24 0.026 £ 0.001

OrthoGrad 81.04 £0.13 97.594+0.11 78.224+0.13 0.018 £+ 0.001 0.10+£0.14 94.26+0.04 80.73+£0.05 0.002 + 0.000

ImageNet Random Sampling ResNet18 ImageNet Random Sampling ViT
______________________________________ —e— DUCK . 10° —e— DUCK
—e— GDR-GMA ~ TTTTTTTT TR T O Tt —o— GDR-GMA
10-1 —e— SSD —e— SSD

~o— OrthoGrad
== NegGrad

~o— OrthoGrad
== NegGrad

N N
0 % 10
> > \‘\/_/
1072
1K 10K 50K 100K 150K 200K 1K 10K 50K 100K 150K 200K
Number of Retain Samples Number of Retain Samples

Figure 2: Varying retain samples. We report UIS values across varying numbers of retained samples.

6 Runtime limitation

In this work, we focus on the low-data regime, where OrthoGrad yields consistent improvements over prior
baselines. At the same time, OrthoGrad relies on per-sample gradients for the retain batch, which can increase
GPU memory consumption and introduce additional compute overhead compared to methods that only
use averaged gradients. To that end, we revisit the ImageNet ViT experiment from Section [5.3]and report
end-to-end wall-clock times for both class forgetting and random forgetting in Table [f] Overall, OrthoGrad
remains in the same order of magnitude as other iterative gradient-based approaches (e.g., GDR-GMA),
while being substantially faster than clustering-based methods (DUCK/SCAR) in this setup. Despite these
considerations, OrthoGrad presents a compelling solution for data-constrained unlearning settings.

6.1 OrthoGrad FLOPs Analysis

To understand the computational profile of OrthoGrad, we report the per-step compute cost in TFLOPs
for the ImageNet with ViT-B16 architecture experiment (Table . Without LoRA, OrthoGrad requires
29.84 TFLOPs per step, while LoRA reduces this to 17.72 TFLOPs, a 1.68x reduction (40% savings). The
savings come from two sources: (1) the backward pass only computes gradients for LoRA adapters (884K vs.
86M parameters), reducing backward FLOPs by ~2x, and (2) the QR decomposition operates on smaller
gradient matrices, dropping from 2.86 to 0.03 TFLOPs (~98x reduction) since its complexity is O(K - B?)

10
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Table 6: ImageNet with ViT architecture. Wall-clock runtime (seconds) for random sampling and class
forgetting.

Method Random (sec) Class (sec)

NegGrad 1,531 1,201
NegGrad+ 2,112 594
FISHER 44,467 23,366
Influence 778 743
SCRUB 927 819
DUCK 6,302 3,916
GDR-GMA 1,105 654
SSD 623 643
SCAR 11,829 4,917
OrthoGrad 2,657 1,239

where K is the number of trainable parameters. These results demonstrate that LoRA provides substantial
computational benefits beyond memory savings for OrthoGrad.

Table 7: ImageNet with ViT architecture. FLOPs breakdown (TFLOPs) for a single OrthoGrad update step
with and without LoRA.

Method Grad QR Total
OrthoGrad 26.98 2.86 29.84
OrthoGrad + LoRA  17.68 0.03 17.72
Reduction 1.53x  97.85x  1.68x

7 Conclusions

In this work, we focus on machine unlearning in the low data regime, where access to the retain data is
limited. We present OrthoGrad, a novel machine unlearning method that projects the aggregated unlearn
gradient onto the subspace orthogonal to the individual gradients of the retain batch. We demonstrated the
benefit of using per-sample gradient in the retain batch instead of averaging the retain gradients. Then, we
demonstrate through various datasets, architectures, and unlearning setups the superiority of OrthoGrad
over existing machine unlearning methods. Since OrthoGrad works well even without access to a large retain
set, it can be applied in real-life use-cases where training data availability is constrained.

Impact statement

We emphasize that our approach does not introduce additional risks to individuals, as experiments are
conducted exclusively on publicly available benchmark datasets. We do not process any personally identifiable
or sensitive information. By facilitating efficient unlearning, this work may strengthen user rights and promote
greater accountability in machine learning systems.
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A Additional Results

A.1 Image classification

We revisit Section 5.3l and evaluate OrthoGrad on CIFAR-10 with a ResNet-18 backbone. In the random-
sampling setting, we draw 5,000 images as the retain set and define the unlearn set as another 5,000 images
sampled uniformly from the training data. In the class-forgetting setting, the unlearn set contains all training
images from the designated unlearn class. In both cases, evaluation is performed on the standard test set.
Results in Table [§] mirror our earlier findings: OrthoGrad reliably attains the unlearning objective, achieving
superior performance in the class-forgetting setting while remaining comparable under random sampling.

Table 8: CIFAR10 with ResNet18. Performance is evaluated across two unlearning scenarios: random
sampling (3-seed average) and class forgetting (3-class average).

Random Sampling Class Forgetting

Method Ay Ay Atest UIS ({) Ay A, Abest UIS (4)
Original 96.1+0.28 96.38£0.33 81.97+0.00 — 97.3+1.21 95.91 +0.22 81.97 £ — —
Retrain 60.43 £0.22 100.00 £0.00 61.04 £0.35 - 0.00 £0.00 100.00 +0.00 55.55+ 1.03 -

FT 85.94+6.34 88494744 T71.52+£6.61 - 93.79 £ 2.36  100.00 £0.00 82.86 £0.18 -
NegGrad 40.39 £ 22.59 39.78 £23.17 34.94 £22.87 0.540 £+ 0.308 0.00£0.00 18.724+10.03 15.43+9.40 0.405 £ 0.057
NegGrad+ 81.42+0.63 83.00+0.59 69.25+1.08 0.082+ 0.009 24.54 + 33.85 70.56 +25.45 56.42 £24.31 0.305 4+ 0.164
FISHER 7229+£6.59 72.57+6.55 61.60£6.75 0.183 £ 0.089 84.98 £21.79 69.08 £5.77 61.33+£1.92 0.645+0.143
Influence 11.55+1.42 11.59+1.30 11.31+1.48 0.860 £ 0.019 43.07£29.16 66.72 +31.99 54.53 £25.95 0.431 £ 0.043
SCRUB 40.18 £5.37 42.514+£4.88 38.58£4.30 0.519+0.066 1.75£1.61 87.32 £ 3.09 64.7 £1.70 0.116 + 0.022
DUCK 86.46 + 0.19 99.5 £+ 0.29 78.02+0.35  0.051 £+ 0.002 0.00 4 0.00 41.28 £4.25 35.351+4.82 0.284 £ 0.029
GDR-GMA 81.754+0.40 99.08 £ 0.41 71.6 £0.28 0.065 %+ 0.002 0.19 +£0.19 89.88+5.31 66.79 £3.30 0.093 £ 0.021
SSD 96.10£0.23 96.38 £0.27 81.97£0.00 0.090 = 0.000 0.040£0.06 80.49+2.60 61.99+1.41 0.122=+0.008
SCAR 81.38+1.15 96.07+0.17 78.92+£0.84 0.024 +0.010 0.00 £+ 0.00 91.39+3.09 7248 £3.41 0.058 +0.021
OrthoGrad  81.18 +22.92 93.27+0.71 73.35+0.41  0.058 4 0.005 0.36 +0.35 97.57+0.43 74.87+1.05 0.045 £ 0.006

A.2 Ablation study - image classification

In this section, we analyze the individual contributions of each component in OrthoGrad, following a similar
procedure to Section Specifically, we revisit the image classification unlearning setup described in
Section [5.3] and compare the following variants: OrthoGrad Mean, OrthoGrad Per-sample, OrthoGrad
Mean/Per-sample+LoRA, and the full OrthoGrad approach. The experiments are conducted using a
ResNet18 model trained on the CIFAR10 dataset for the unlearning task. The results, averaged over 3
seeds, are presented in Table [0} Notably, OrthoGrad achieves higher test accuracy and lower UIS values,
indicating superior unlearning effectiveness without sacrificing generalization. This highlights the importance
of combining both per-sample gradient components and the low-ranking optimization strategy.

Table 9: Image classification ablation study. Fvaluation of OrthoGrad variants on CIFAR10 random unlearning.
Values are averaged over 3 different seeds.

Method Au Ar Atest UIS (\L)

OrthoGrad mean 82.47+0.51 84.33+0.45 70.06 +0.19 0.076 4+ 0.002
OrthoGrad Per sample 82.10+£0.21 83.21 +£0.45 71.75£0.42 0.064 £+ 0.002
OrthoGrad Mean + LORA 82.07+0.25 84.83+1.03 71.42 £0.72 0.066 + 0.004
OrthoGrad Per sample + LORA 82.01 £0.26 82.86 = 0.45 72.04 £0.27 0.062 + 0.002
OrthoGrad 81.35+1.2 87.44+1.27 73.34+1.32 0.058+0.015

A.3 The relation between retain and unlearn gradients

Here, we explore the relationship between the retain and unlearn gradients, which plays a central role in
the effectiveness of our method. A natural concern is that if the gradients of the unlearn and retain sets are
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highly aligned, the orthogonal component of the unlearn gradient used in our projection step could be small.
This may potentially weaken the unlearning effect. To address this concern, we analyze the cosine similarity
between the retain and unlearn gradients over the course of training. Specifically, we repeat the class and
random forgetting experiments on the ImageNet dataset using the ResNet18 architecture and report the
cosine similarity between the unlearn and retain gradients. The results are presented in Figure [3] The results
show that, for the majority of the unlearning process, the gradients are not highly aligned—indicated by
consistently non-zero cosine similarity values. These observations highlight the importance of the projection
step in OrthoGrad.

ImageNet Random Forgetting ResNet18 ImageNet Class Forgetting ResNet18
03
0.2
. 0.1

0.0

Cosine Similarity
€ o
S

Cosine Similarity

0 100 200 300 400 500 0 20 40 60 80 100 120
sample Index Sample Index

Figure 3: Cosine similarity between retain and unlearn gradients during the unlearning process on ImageNet
using ResNet18. The non-zero similarity values throughout training indicate that the gradients are not highly
aligned, validating the importance of the projection step in OrthoGrad.

A.4 Robustness to «

In Section [£.2] we describe the unlearning update direction defined by OrthoGrad. This update rule
incorporates a balancing parameter «, which interpolates between the unlearn and retain gradients. Here,
we conduct an ablation study to assess the robustness of our method w.r.t «. Specifically, we run the class
forgetting experiment on Imagenet using the ViT-b16 architecture across varying values a € {0,0.3,0.7,0.9}.
The results are presented in Figure 4| Notably, similar to the approach in [Bonato et al.| (2024), OrthoGrad
is also capable of operating solely based on the unlearn gradient by setting a=0. In this case, the update
reduces to performing gradient ascent without relying on the retain set.

A.5 MIA as machine unlearning metric

MIA can serve as a useful metric for evaluating machine unlearning. However, MIA has fundamental
limitations that make it insufficient as a standalone measure of unlearning quality. Notably, an MIA score of
0, often interpreted as a perfect result, can indicate that the model has undergone catastrophic forgetting. In
such cases, the model may not only forget the targeted data but also lose generalization capabilities. This
shortcoming has been highlighted in prior work. [Foster et al.| (2024]) point out that low MIA accuracy may
result from aggressive dampening that leads to degraded model performance. Similarly, Hayes et al.| (2024])
emphasized that relying solely on MIA can produce a misleading sense of unlearning efficacy, particularly
when models are overly perturbed or when forgetting extends beyond the target data. Given these limitations,
we believe MIA should be considered alongside other metrics that directly measure the trade-off between
forgetting and retention. For completeness, we revisited the class forgetting benchmark on ImageNet using
the ViT architecture and report the corresponding MIA scores. The results are presented in Table

A.6 Benefits of Integrating LoRA into OrthoGrad

In Section we detail the steps of OrthoGrad, including the integration of LoRA modules. Here, we
further elaborate on the motivation behind this design choice and highlight the specific benefits LoRA
brings to scalable machine unlearning. One key advantage of using LoRA is its ability to localize parameter
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Figure 4: Comparison across different values of a for OrthoGrad on the ImageNet class forgetting setup using
ViT.

Table 10: ImageNet using ViT-b16. The results on class sampling setup are averaged over 3 classes.

Method .Au ./47- Atest UIS (i,) MIA (\l,)
Original 94.26 £0.19 94.04£0.24 81.06 £0.00 - -
Retrain 0.00£0.00 95.08+0.15 3.29+£0.16 - —

FT 91.97 £8.18 99.92£0.02 74.07 £ 0.05 - -
NegGrad 041+£0.34 89.63+3.84 76.53+4.16 0.030+0.028 0.23 £0.39
NegGrad+ 0.05+0.07 90.67+4.22 77.17£4.73 0.024+0.028 0.38 =0.12
FISHER 98.02+1.82 94.14+£0.00 80.994+0.00 0.605%0.011 0.83£0.00
Influence 15.28+20.76 91.54+2.21 78.13+2.06 0.112+0.121 0.04 £0.06
SCRUB 45.82£3780 96.18£2.91 75.81+4.13 0.314£0.286 0.84+0.01
DUCK 0.00£0.00 99.394£0.02 70.684+0.29 0.0644+0.001 0.11£0.17
GDR-GMA  0.15£0.16 9756 £0.18 77.03+0.28 0.025+0.001 0.54 £0.41
OrthoGrad 0.10£0.14 94.26+0.04 80.73+0.05 0.002+0.000 0.30=+0.24

updates, which intuitively helps reduce unintended interference with retained knowledge. By limiting the
impact of unlearning to a low-rank subspace, LoRA allows for more controlled and precise modifications,
which aligns well with the goal of minimizing collateral forgetting. Additionally, LoRA is significantly more
parameter-efficient than fine-tuning full model weights. This not only leads to reduced memory usage but
also lowers the computational cost, making the approach viable for large-scale models like Whisper. These
advantages collectively make LoRA a natural fit for OrthoGrad, enabling both effective unlearning and
practical deployment in real-world systems.

A.7 Standard Machine Unlearning Setup

This work addresses the low-data regime, where the available retain dataset is limited in size. We evaluate
OrthoGrad within the standard machine unlearning framework, in which the retain set coincides with the
original training set used for the pretrained model. The experiments are conducted on the CIFAR10 dataset
using the ResNet18 architecture, considering both random sampling and class forgetting scenarios. The
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results are presented in Table We show that OrthoGrad remains effective even when the retain set is
relatively large, as further discussed in Section [5.3.1

Table 11: CIFAR10 with ResNet18. Performance is evaluated across two unlearning scenarios: random
sampling (3-seed average) and class forgetting (3-class average).

Random Sampling Class Forgetting
Method Ay Ay Atest UIS ({) Ay A, Agest UIS (1)
Original 96.38 £ 0.37 96.09 +0.04 81.97 £ 0.00 — 97.3+1.21 95.98+0.13  81.97+0.00 —
Retrain 82.09 +£ 0.3 99.9+0.1 82.6 +0.63 — 0.00£0.00 99.67+0.31 74.224+1.56 —

NegGrad T7AT£211 T7.84+1.76 64.43+£1.4 0.13440.024 0.00 £0.00 19.23 £11.41 16.17 £10.59 0.401 4 0.064
NegGrad+  96.28 £0.07 96.05+0.34 81.98+0.2 0.088 £ 0.002 18.69 £25.85 68.64 £25.74 54.26 £24.24 0.283 £0.120
FISHER 96.3 £0.48 96.00£0.04 81.83+0.1 0.088 £0.002 0.06 £0.05  11.54+0.36 10.37 £0.265 0.437 4 0.001
Influence 96.31+£0.4 96.07£0.04 81.96+£0.05 0.087 £ 0.002 17.54 £12.92 63.74 £23.27 50.92+£17.18 0.296 £ 0.084

SCRUB 55.58 22.26  56.73 £2.37 55.23 £3.14 0.324 4 0.036 0.02 £ 0.00 94.024+£2.3 7291+£0.76 0.055+ 0.004
DUCK 81.71+£1.43 89.34+2.06 82.03+1.40 0.015+ 0.009 0.00£0.00 79.12+13.5 66.93+9.75 0.091+0.072
GDR-GMA  81.1+0.70 86.18+3.26 73.16+2.59 0.059 £ 0.020 0.00+£0.00 87.99+433 67.94+£525 0.08540.032
SSD 25.35+£39.73 94.95+1.22 74.23+£1.77 0.200 £ 0.230 25.35+32.44 9495+£1.00 74.23+1.44 0.2024+0.189
SCAR 80.11+£1.65 91.06+1.10 79.21 £1.28 0.029 4+ 0.016 0.00+£0.00 87.71£0.85 70.75+1.32 0.068 4 0.008

OrthoGrad  81.35+1.2 87.44+1.27 73.34+1.32 0.058£0.015 0.67 £+ 0.29 96.94+0.32 75.67+£0.93 0.042+ 0.007

A.8 Effectiveness of OrthoGrad in the presence of larger forget sets

To evaluate OrthoGrad on larger forget sets, we extend the class forgetting setup to simultaneously remove
three classes. Using the ResNet-18 architecture on CIFAR-10, we repeat the experiment across three different
class combinations and report the mean and standard deviation of the results (Table . The retain set
consists of 5K images, consistent with the original setup.

Table 12: Image classification unlearning results. Comparison of OrthoGrad and GDR-GMA on CIFAR10
class unlearning. Values are averaged over 3 different combinations of classes.

Method Ay A, Asest Atest (w/0 unlearned classes) UIS (4) UIS (w/o unlearned classes) ({)
GDR-GMA 0.48 £0.04 95.80 + 2.58 56.94 + 0.41 81.20 + 0.57 0.155 + 0.002 0.024 +0.014
OrthoGrad 0.0+0.0 97.15+1.13 59.11+2.82 84.43 +4.21 0.139 +0.014 0.014 + 0.004

The overall accuracy is naturally lower because of the removal of three classes. Therefore, we also report the
accuracy of the original test set after removing the samples of the unlearned classes. Nevertheless, OrthoGrad
achieves better unlearning performance and higher test accuracy compared to GDR-GMA.

Additionally, we conduct random forgetting experiments on ImageNet with the ResNet-18 architecture. The
unlearn sets contain 50K, 150K, and 200K samples, corresponding to 10x, 30x, and 40x the size of the
unlearn set in our main experiments. The retain set is fixed at 10K samples. The results are shown in
Table [13]

Table 13: Random unlearning on ImageNet with varying unlearn set sizes. Evaluation of OrthoGrad vs.
GDR-GMA on ImageNet with 50K, 150K, and 200K unlearn sets. Values shown are averaged over 3 seeds.

Method 50K samples 150K samples 200K samples
Au AT Atest UIS Au Ar Atest UIS Au Ar Atest UIS
Original 79.26  79.17 69.76 - 79.32  79.17 69.76 - 79.31 79.17 69.76 -

GDR-GMA 68.43 100.0 63.33 0.05566 68.85 100.0 62.13 0.06123 68.60 100.0 61.75 0.06573
OrthoGrad  70.09 89.41 63.53 0.04700 69.48 91.45 62.21 0.05608 69.75 91.11 62.35 0.05317

These results show that OrthoGrad remains effective with larger unlearn sets in the random forgetting setup.
Compared to GDR-GMA, it achieves unlearn accuracy closer to the original model’s test accuracy, leading to
better overall unlearning process.
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A.9 Batch Composition

Here, we conduct an ablation study to examine the effect of retain set batch composition. Specifically, we
compare the random batch sampling used in our main experiments with an alternative strategy in which each
retain batch is restricted to a single class. To this end, we revisit the CIFAR10 class forgetting experiment
and evaluate OrthoGrad under both settings: (i) the original random sampling and (ii) single-class retain
batches (excluding the forget class). Results are reported in Table

Table 14: Ablation on batch composition. Performance of OrthoGrad with and without sampling from
same-class batches.

Method Au Ar Atest UIS (\l,)
OrthoGrad same class batch  0.28 £20.20 94.28 +£1.26 72.91+0.04 0.057 £ 0.001
OrthoGrad 0.36 £0.35 97574+0.43 74.87+1.05 0.045 4+ 0.006

The results suggest that using shuffled retain batches leads to better performance for OrthoGrad. We
hypothesize that this is because shuffled batches enable smoother optimization. In contrast, projecting the
unlearn gradient onto the subspace spanned by a single class may constrain the optimization dynamics.

A.10 Projection-Induced Signal Loss

A potential concern with our approach is that by projecting the unlearn gradient away from the retain

gradient directions, part of the unlearning signal could be lost. To study this, we measure the ratio between
llga

gull?

gk is its projection component. This ratio indicates how much of the unlearning signal is preserved after

projection.

the projection component and the unlearn gradient where g, is the gradient from the forget set and

We conduct experiments on CIFAR-10 with ResNet-18 under two setups: class forgetting and random
forgetting. In each case, we track the projection ratio reporting its mean, standard deviation, and range.
The results indicate that while part of the signal is removed during projection, the ratio remains consistently
above zero, showing that sufficient unlearning signal is retained to remain effective. Specifically, in the class
forgetting setting, we obtain 0.241 £ 0.036 (min: 0.181, max: 0.597), and in the random forgetting setting
0.229 4+ 0.028 (min: 0.176, max: 0.535). The evolution of this ratio over training steps is illustrated in

Figure [
A.11 Sensitivity to the WER Stopping Threshold

In our ASR unlearning experiments, we use an early-stopping rule based on the unlearn-set WER, stopping
once Wanlearn reaches a target threshold of 75% and selecting the corresponding checkpoint. To empirically
justify that the precise threshold value is not critical within a reasonable range, we visualize the evolution of
Wanlearn Over training. As shown in Fig. @ Wanlearn typically remains relatively stable for the first epochs
and then exhibits a sharp jump in the final stages of training. This jump-like behavior implies that crossing
a threshold (e.g., between 60%-80%) often occurs within a single optimization epoch, so nearby threshold
choices select checkpoints with very similar training dynamics. Overall, this provides empirical support that
our ASR unlearning results are relatively insensitive to the exact WER stopping threshold, as long as it is
chosen within a reasonable range.

B Experimental details

B.1 Image classification

We provide additional details about the image classification machine unlearning setup, including general
information and the hyperparameter search performed for each method. This setup leverages the splits from
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Figure 5: Measured ratio between the projection component and the unlearn gradient conducted on CIFAR-10
with ResNet-18 under two setups class forgetting and random forgetting.

the CIFAR10 and ImageNet datasets, focusing on either random unlearning samples or specific class samples.
Results are reported across three random seeds or three different classes. All methods are trained for 30
epochs, with each setup utilizing its corresponding stopping criteria as explained in [5.3]

Retrain. We performed grid search for learning rate (), and batch size for D,.. Specifically, for n, we
searched over {le — 3,1e — 2,1e — 1, 3e — 2}, and for retain batch size, we searched over {256,128}. For ViT
architecture The optimal parameters for random and class forgetting respectively n = (3¢ — 2, 3e — 2), retain
batch size = (128,128). For ResNet18 architecture on ImageNet The optimal parameters for random and
class forgetting respectively n = (le — 1, le — 1), retain batch size = (128,128). For ResNet18 architecture
on CIFAR-10 The optimal parameters for random and class forgetting respectively n = (le — 2, le — 2),
retain batch size = (128,128). Training was performed for 100 epochs for ImageNet-based models and 30
epochs for CIFAR-10.

OrthoGrad. We performed grid search for the combination («) and learning rate (1), and batch sizes for
D, and D,.. We apply LoRA modules to all linear layers within the self-attention and cross-attention layers.
We set the rank to 8 and the scaling factor to 32. Specifically, for a, we searched over {0.9,0.8}, and for
7, we searched over {0.001,0.01}. For the retain batch size, we considered {256,128}, and for the unlearn
batch size, we searched over {256,128}. For ViT architecture The optimal parameters for random and
class forgetting respectively a = (0.9,0.8), n = (0.001,0.001), retain batch size = (128, 256), unlearn batch
size = (128,256). For ResNet18 architecture The optimal parameters for random and class forgetting
respectively o = (0.9,0.8), n = (0.001,0.001), retain batch size = (256, 256), unlearn batch size = (128, 256).

NegGrad. We performed grid search for learning rate (n), and batch size for D,,. Specifically, for 7, we
searched over {le — 3,1e — 4,1e — 5,1e — 6}, and for unlearn batch size, we searched over {256, 128}. For
ViT architecture The optimal parameters for random and class forgetting respectively n = (le — 4, le — 4),
unlearn batch size = (256,128). For ResNet18 architecture The optimal parameters for random and class
forgetting respectively n = (1le — 5, 1e — 5), unlearn batch size = (128, 256).

NegGrad+. We performed grid search for learning rate (n), and batch sizes for D,, and D,. Specifically,
for n, we searched over {le — 3,1e — 4,1e — 5, 1e — 6}. For the retain batch size, we considered {256, 128},
and for unlearn batch size, we searched over {256, 128}. For ViT architecture The optimal parameters for
random and class forgetting respectively n = (le — 3, le — 3), retain batch size = (128, 256), unlearn batch
size = (128,256). For ResNetl18 architecture The optimal parameters for random and class forgetting
respectively n = (le — 6, le — 5), retain batch size = (256, 256), unlearn batch size = (256, 256).

Fisher. We performed grid search for («), and batch size for D,. Specifically, for «, we searched over
{le — 7,1e — 8,1e — 9}, and for retain batch size, we searched over {128,256}. For ViT architecture
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Figure 6: Unlearn WER across epochs for ASR Figure 7: Proxy-retain evaluation under random sam-
speaker unlearning with Whisper using OrthoGrad. pling with a ResNet-18 model. Illustrating the trade-
The metric remains low in early epochs and exhibits a off between forgetting (lower A,,) and retained gener-
sharp increase at later epochs, highlighting the phase- alization (higher Ayest).

transition behavior observed across methods.

The optimal parameters for random and class forgetting respectively n = (le — 9,1e — 9), retain batch
size = (128,256). For ResNet18 architecture The optimal parameters for random and class forgetting
respectively n = (le — 9, le — 9), retain batch size = (128, 256).

Influence. We performed grid search for («), and batch sizes for D,, and D,.. Specifically, for «, we searched
over {1,0.1,0.01,1e — 3}. For the retain batch size, we considered {64,128,256}, and for unlearn batch
size, we searched over {64,128,256}. For ViT architecture The optimal parameters for random and class
forgetting respectively n = (1, 1), retain batch size = (256, 128) and for unlearn batch size = (128,128). For
ResNet18 architecture The optimal parameters for random and class forgetting respectively n = (0.001, 1),
retain batch size = (64, 256) and for unlearn batch size = (256, 128).

SCRUB. We performed grid search for learning rate (1), and batch sizes for D, and D,.. Specifically, for n,
we searched over {5e — 2,5e — 5 — 3,5¢ — 4}. For the retain batch size, we considered {256,512}, and for
unlearn batch size, we searched over {256,512}. For ViT architecture n = 5e — 3 retain batch size = 256,
unlearn batch size = 512. For ResNet18 architecture n = 5e — 4 retain batch size = 256, unlearn batch
size = 512.

DUCK. We performed grid search for learning rate (7), and batch sizes for D, and D,.. Specifically, for 7,
we searched over {2e —4,5¢ — 4, 5¢ — 5}. For the retain batch size, we considered {128,1024}, and for unlearn
batch size, we searched over {128,1024}. For ViT architecture \;y; = (1.5,0.5), Arer = (1.5,1.5), batch
ratio = (5, 30), n = (be — 5, 2e — 4), retain and unlearn batch size = (128,128), 7 = (3,3). For ResNet18
architecture Ay = (1.5,0.5), Arer = (1.5,1.5), batch ratio = (5,30), n = (5e — 4, 2e — 4), retain and unlearn
batch size = (1024, 1024), temperature = (3, 3).

SCAR. We performed grid search for learning rate (). Specifically, for 7, we searched over {le — 4,5¢ —
4,1e — 3}. In addition, to ensure a fair comparison and maintain consistency with prior work, we adopted the
remaining hyperparameters as reported in Bonato et al.| (2024) (refer to Table 9 in |Bonato et al.| (2024]) for
details).

SSD. We performed grid search for («), and batch sizes for D,, and D,. Specifically, for «, we searched
over {1.1,1.3,1.5,1.7,5,10,30,50}. For the retain batch size, we considered {64,128,256}, and for unlearn
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batch size, we searched over {64,128,256}. For ViT architecture The optimal parameters for random
and class forgetting respectively n = (1.3, 30), retain batch size = (128,128) and for unlearn batch size =
(128,256). For ResNet18 architecture The optimal parameters for random and class forgetting respectively
n = (10, 10), retain batch size = (128,128) and for unlearn batch size = (256, 256).

GDR-GMA. We performed grid search for learning rate (n), and batch sizes for D,, and D,. Specifically,
for 1, we searched over {le — 3,1e — 4, 1e — 5}. For the retain batch size, we considered {128,256}, and for
unlearn batch size, we searched over {128,256}. For all setups and architectures 77 = le — 4 retain batch size
= 256, unlearn batch size = 256.

B.2 Automatic Speech Recognition

Here, we present additional details about the ASR machine unlearning setup. This includes both general
information about the setup and the hyperparameter search conducted for each method. In this setup, we
utilized the train-100 split from the LibriSpeech dataset, targeting unlearning samples from a single speaker.
The results are reported across 5 randomly sampled speakers. For all methods, we utilize a batch size of
48 for the retain and unlearn sets and 30 epochs with early stopping. In addition, we use the well-known
Adam Kingma) (2014) as the optimizer.

OrthoGrad. - We performed grid search for the combination («) and learning rate () parameters.
Specifically for a we searched over {0.05,0.2,0.35,0.5} and {le — 5,5¢ — 6,1e — 6} for . We apply LoRA
modules to all linear layers within the self-attention and cross-attention layers. We set the rank to 8 and the
scaling factor to 32.

Finetune. We performed a grid search for the learning rate parameter. Specifically, we explored learning
rates in the range {le — 5,5e¢ — 6, 1e — 6}, and the optimal learning rate chosen is n = le — 5.

NegGrad+. - We performed a grid search for the learning rate parameter. Specifically we searched over
{le — 5,5e — 6,2.5¢ — 5,1e — 6,5e — 7,1e — 7}, and the optimal learning rate chosen is 5e — 6.

SCRUB. We performed a grid search for the learning rate and the number of epochs in which SCRUB
performs unlearning steps. We searched over the range [le —4, le — 7] with a step size of 0.5 in multiplication,
as well as {10, 20,30} for the number of unlearning epochs. We observed that SCRUB either failed to achieve
unlearning entirely or caused the model to collapse, resulting in poor generalization. We report the results
with le — 5 learning and 20 unlearning epochs. We also used temperature rescaling of 4 in the knowledge
distillation loss and 5e — 4 weight decay.

GDR-GMA. We performed a grid search for the learning rate and learning rate scheduling factor parameters.
We searched over the range [le — 4, le — 7] with a step size of 0.5 in multiplication, and found the optimal
learning rate to be le — 4. We explored learning rate scheduling factors in the set {10, 50,100,200} and
identified 100 as the optimal value.

B.3 Data preprocessing

We adopt the data preprocessing approach outlined by Radford et al.| (2023). The audio samples are
resampled to 16 kHz, and log-magnitude Mel-spectrograms are generated. Specifically, we compute 80-channel
Mel-spectrograms using 25-millisecond windows with a 10-millisecond stride.

C Limitations

This work focuses on the low-data regime, showing strong gains over baselines in this setting. However,
per-sample gradient handling increases GPU memory use. Despite these limitations, OrthoGrad presents a
compelling solution in data-constrained environments.
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D LLM Usage

We used large language models to improve the readability of the manuscript, including grammar and clarity.
All research ideas, experiments, and analyses were conducted and developed by the authors.
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