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ABSTRACT

With the increasing interest in Quantum Machine Learning, Quantum Neural Net-
works (QNNs) have emerged and gained significant attention. These models have,
however, been shown to be notoriously difficult to train, which we hypothesize is
partially due to the architectures, called ansatzes, that are hardly studied at this
point. Therefore, in this paper, we take a step back and analyze ansatzes. We
initially consider their expressivity, i.e., the space of operations they are able to
express, and show that the closeness to being a 2-design, the primarily used mea-
sure, fails at capturing this property. Hence, we look for alternative ways to char-
acterize ansatzes, unrelated to expressivity, by considering the local neighborhood
of the model space, in particular, analyzing model distinguishability upon small
perturbation of parameters. We derive an upper bound on their distinguishability,
showcasing that QNNs using the Hardware Efficient Ansatz with few parame-
ters are hardly discriminable upon update. Our numerical experiments support
our bounds and further indicate that there is a significant degree of variability,
which stresses the need for warm-starting or clever initialization. Altogether, our
work provides an ansatz-centric perspective on training dynamics and difficulties
in QNNs, ultimately suggesting that iterative training of small quantum models
may not be effective, which contrasts their initial motivation.

1 INTRODUCTION

With the increasing computational requirements of state-of-the-art ML models, the limitations of
classical hardware, as theorized by Moore’s law (Shalf, 2020), are becoming increasingly preva-
lent (Schulz et al., 2021; Reed et al., 2022). Therefore, alternative computing paradigms are heavily
studied and the immense potential of Quantum Computing, combined with recent advances in quan-
tum hardware, have made Quantum Machine Learning (QML) a promising candidate.

Within that framework, Quantum Neural Networks (QNNs) are heavily studied, as they are suitable
for near-term hardware. Besides initial successes, however, the Barren Plateau phenomenon has
been proven under various circumstances, meaning that gradients vanish exponentially in the number
of qubits, leading to essentially flat loss landscapes that affect trainability (Cerezo et al., 2021a).

In light of these issues, we hypothesize that the architectures, called ansatzes, are part of the problem.
QNN ansatzes consist of fixed and trainable gates, however, due to hardware limitations, currently
mainly so-called Hardware Efficient Ansatzes (HEAs) (Kandala et al., 2017) are used, meaning they
are built primarily based on hardware constraints. Therefore, we hypothesize that executing the
circuit does not lead to a meaningful feature representation.

Currently, it is unclear how individual operations affect the model space, or, when including data,
the data representation. There are no standardized ansatzes for Machine Learning (ML) and, due to
the many degrees of freedom, ansatz tuning poses an optimization problem with intractable search
space. Further, there is little research on the ansatzes themselves, i.e., independently of data and
loss, and it is non-obvious how feature extraction works in a QNN.

In particular, in classical ML, a vanilla CNN is ultimately designed to consider local features in lower
layers, before considering global features in deeper layers, independently of the dataset. Transform-
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ers (Vaswani et al., 2017) work similarly, however, the trainable one-qubit and fixed two-qubit gates
that are used in QNNs do not allow drawing intuitive conclusions about how features are extracted.

Therefore, the goal of this paper is to analyze and characterize QNN architectures. We aim to take
a first step at exploring ansatzes and the model space, initially by considering the expressivity of
ansatzes. Using tools from Quantum Information Theory and extensive numerics, we later analyze
how the quantum circuit, i.e., the applied operation, changes upon parameter update, thus, providing
insights into the model space beyond ansatz expressivity. Our contributions are as follows.

• Based on literature, we argue that closeness to a 2-design, a widely used measure for ansatz
expressivity, does not adequately represent the possible set of unitary operations.

• To investigate the model space, we study how an ansatz changes upon parameter update for
different HEAs. In particular, we introduce a measure for the distinguishability of an ansatz
upon parameter update and provide an upper bound. It shows that many parameters are
required to be able to distinguish the two operations, contrasting with the initial framework.

• We provide evidence that HEAs are hardly distinguishable upon parameter update in (1)
random perturbations and (2) during training, even in early stages, with larger updates.

• The observed behavior has remarkable similarities to Barren Plateaus, thus, insinuating
that the architectures, independently of the data or loss used, may be flawed and play a
fundamental role in the trainability problems observed today.

The paper is structured as follows. In Section 2, we provide background information on QNNs,
existing expressivity measures and related work1. In Section 3, we discuss the closeness to being
a 2-design as a measure of expressivity and Section 4 introduces a measure of distinguishability of
quantum channels. We elaborate on our experimental setup in Section 5, and present our results in
Section 6. Finally, Section 7 discusses implications of our results and Section 8 concludes the paper.

2 BACKGROUND

2.1 QUANTUM NEURAL NETWORKS

The small systems and the noise in today’s Noisy Intermediate-Scale Quantum (NISQ) technol-
ogy (Preskill, 2018), prevents execution of large-scale circuits. Consequently, so-called Variational
Quantum Circuits (VQC) are applied, which are hybrid models with classical and quantum parts.

Simply put, a QNN consists of (1) an input state |ψX⟩, (2) an ansatz U(ϑ), (3) a loss function, and
(4) an optimizer. The features are encoded onto the quantum state by means of a unitary feature
encoding method V (X), and the initial state is obtained as |ψX⟩ = V (X) |0⟩⊗n, with n as the
number of qubits. HEAs consists of L layers of trainable one-qubit rotation gates Vi(ϑi) and fixed
two-qubit entangling gates Wi, with i ∈ [1, L], expressed as Equation 1. A measurement is taken
in the end, which is done through a Hamiltonian observable Ô, and the result is expressed as the
expectation value of the ansatz with respect to |ψX⟩ and Ô, as shown in Equation 2.

U(ϑ) =

L∏

i=1

Vi(ϑi)Wi = VL(ϑL)WL . . . V1(ϑ1)W1 (1)

f(X,ϑ) = ⟨ψX |U†(ϑ)ÔU(ϑ) |ψX⟩ (2)

The loss is calculated with a classical loss function (e.g., the mean-squared error) on the predicted
value (the expectation value of the QNN) and the target value, and passed to the classical optimizer.
The optimizer computes the parameter updates and the circuit is again executed on the quantum
computer, until some stopping criterion is fulfilled. As the optimization is done classically, this
approach has the advantage of allowing a shallow quantum circuit, which limits the propagation of
errors during execution in light of the significant amount of noise in today’s hardware.

1For those unfamiliar with quantum computing, we refer to Appendix A.1 for a brief overview.
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While HEAs are shallow, they are highly expressive (Holmes et al., 2022), which is a main promise
of QML stemming from the significantly larger Hilbert space. Recent works, however, uncovered
that loss landscapes of today’s QNNs are plagued by Barren Plateaus (BPs), meaning exponentially
vanishing gradients in problem size, leading to untrainable models (McClean et al., 2018).

2.2 ANSATZ EXPRESSIVITY

We acknowledge a missing clear definition of expressivity in QML for now. It is sensible, therefore,
to transfer it from classical ML, where model expressivity is the range of functions a model can
compute (Raghu et al., 2017). Hence, it is a function of architecture A, input x and parameters ϑ;
FA(x;ϑ). On the contrary, our work lies in data-agnostic characterization of models. To this end,
we will only consider ansatz expressivity; the set of functions generated solely by an ansatz itself.

The most commonly used method to evaluate ansatz expressivity is to compare the probability distri-
bution of the unitaries of the ansatz to the Haar measure2, the uniform distribution over all unitaries
U(d) (Cerezo et al., 2021a). If the probability distribution of the ansatz follows the Haar measure up
to the t-th moment, it is considered a t-design. Their construction requires exponential time (Harrow
& Low, 2009), however, approximate t-designs can be built efficiently (Dankert et al., 2009).

Closeness to a 2-design as a measure of expressivity for ansatzes was first defined for the |0⟩ input
state by Sim et al. (2019). In Holmes et al. (2022), it is expanded to a specific input state (i.e., with
encoded data) and the measurement operator, as shown in Equation 3. There, an ansatz is viewed as
an ensemble of unitary transformations U = {U(ϑ),∀ϑ ∈ Θ} over all possible parameters Θ.

A
(t)
U (·) =

∫

U(d)

dµ(V )V ⊗t(·)(V †)⊗t −
∫

U
dUU⊗t(·)(U†)⊗t ∀ V ∈ U(d) (3)

2.3 RELATED WORK

BPs have been proven for deep (McClean et al., 2018) and shallow circuits with global measure-
ment (Cerezo et al., 2021b), expressivity (Holmes et al., 2022; McClean et al., 2018), noise (Wang
et al., 2021), entanglement (Ortiz Marrero et al., 2021) and it has been linked to cost concentration
and narrow gorges (Arrasmith et al., 2022). Further, even shallow models without BPs have only a
small fraction of local minima close to the global minimum (Anschuetz & Kiani, 2022)3.

The problem has been linked to the curse of dimensionality in Cerezo et al. (2024), therefore, lim-
iting the accessible Hilbert space was proposed. However, they showed that such models can be
simulated classically, given an initial data acquisition phase on a quantum computer. This was ex-
tended to a trade-off between trainability and dequantizability in Gil-Fuster et al. (2024).

Besides that, parameter initialization strategies have been proposed, with some even providing better
bounds on gradient magnitudes (Rad et al., 2022; Wang et al., 2023; Kulshrestha & Safro, 2022;
Grant et al., 2019), however, the results of Herbst et al. (2024) imply that it is not the type of
statistical distribution, but rather the used parameter ranges that could lead to better starting points.

Further, expressivity is commonly discussed to prove a quantum advantage with respect to classical
models. The closeness to being a 2-design is the most widely employed measure, however, others
have been proposed. In particular, Equation 3 is related to the Frame Potential (Gross et al., 2007;
Roberts & Yoshida, 2017; Nakaji & Yamamoto, 2021). Another approach is to analyze the entan-
gling capability as in Sim et al. (2019), i.e., the entanglement of the produced states. Other measures
are the Covering Number from Du et al. (2022), analyzing Fourier coefficients (Schuld et al., 2021;
Caro et al., 2021), or the Effective Dimension from Abbas et al. (2021). Further, one can consider
unitary t-designs, i.e., consider the operations without the input state4. We employ the closeness to
being a 2-design in our study, as it is frequently used, due to its intuitive interpretation. Beyond that,
due to computational complexity, there is little research on properties of the architectures for now.

2We refer to Appendix A.3 for a short introduction to unitary groups and the Haar measure.
3For further information, we refer to Larocca et al. (2024), who published an excellent review on the topic.
4Unitary designs and the difference between unitary and state t-designs are discussed in Appendix A.3.
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Moreover, the field of QML has seen a rise in works on efficient design of ansatzes. Recent works,
such as Leone et al. (2024), have actively highlighted that well-defined ansatzes are a crucial step
for large-scale deployment. In the field of ML, such approaches particularly include the field of
Geometric Quantum Machine Learning (GQML) (Ragone et al., 2023; Larocca et al., 2022; Tüysüz
et al., 2024; Wiersema et al., 2024), or adaptive ansatzes (Bilkis et al., 2023).

Further, the practical utility of the HEA has already been questioned and studied by Leone et al.
(2024). They find that problems with product input states and data that satisfies a volume law of
entanglement should avoid using such ansatzes, whereas area law of entanglement data leads to
optimization landscapes without BPs. Moreover, the necessity of understanding and characterizing
ansatzes has been discussed in Zhang et al. (2024), as well as in Larocca et al. (2023).

Changes in quantum channel or loss landscape upon perturbing parameters has not yet been studied
for QNNs. However, perturbation analysis and sensitivity analysis have emerged as tools in classical
ML. Examples are perturbing the input for explainability (Ivanovs et al., 2021; Pizarroso et al., 2022;
Fel et al., 2023), or checking for stability (Testa et al., 2024). Similarly, weights can be perturbed
for trainability (Wen et al., 2018), or to increase robustness and generalization (Wu et al., 2020; He
et al., 2019; Dumford & Scheirer, 2020). To the best of our knowledge, there is no research on
perturbing parameters to check how the underlying function changes, as, due to the stochasticity of
quantum computing, this research question seems to be much more relevant in the quantum realm.

3 2-DESIGN AS A MEASURE OF EXPRESSIVITY

While 2-designs have turned out to be sufficient for many quantum information processing proto-
cols (Holmes et al., 2022; Harrow & Low, 2009), in this section, we summarize and connect results
from the literature to argue that closeness to a 2-design is an inadequate measure for model expres-
sivity (i.e., the ability to sufficiently approximate the unitary group to a high degree).

For the argument we will use the so-called Welch Bounds which, loosely put, are inequalities related
to evenly distributing a finite number of unit vectors in a vector space. This inequality was addressed
in Welch (1974), where a lower bound on the inner-product between unit vectors was provided.
Intuitively, a smaller lower bound corresponds to more evenly spread vectors in the vector space,
i.e., a more uniform distribution.

Quantum state t-designs reduce integrals of polynomials over all quantum states to averages over a
discrete set (cf. Equation 19). These are probability distributions over pure quantum states that repli-
cate properties of the uniform (Haar) measure on the quantum states up to the t-th moment. We mea-
sure expressivity of 2-design based architectures by comparing (generalized) Welch bound (Scott,
2008) values for state 2-designs against its t-design counterparts, with t > 25. We state the inequality
for a state t-design based architecture:

State t-design Welch bound: The choice of the polynomial function for state t-designs is presented
in Appendix A.4. We state the following inequality for a state in a d-dimensional Hilbert space,
|ψi⟩ ∈ Cd (cf. Appendix B.2 for the derivation):

∑

1≤j,k≤n

|⟨ψj |ψk⟩|2t ≥
n2(

d+t−1
t

) =
n2

(d+t−1)(d+t−2).....d
t!

∀t ∈ N. (4)

It is clear that for an increasing t, the term in the denominator (d+t−1)(d+t−2).....d
t! increases rapidly

(as compared to Equation 24 for 2-designs), yielding a vanishing overlap between the state vec-
tor summands. This makes the inequality in Equation 4 more stringent for increasing t values.
This indicates that higher-order designs (t > 2) approximating the Haar measure up to the t-th or-
der impose stronger constraints, requiring greater separation between a sequence of state vectors
{ψ1,ψ2, ....,ψd} to maintain equality in the bounds. This means that 2-design models have far
fewer degrees of freedom in building complex quantum circuits. On the contrary, t-designs (t > 2)
can more efficiently construct higher-order representations capturing more complex interactions be-
tween quantum states. Thus, evaluating Welch bounds for 2-designs corroborates its inadequacy for
constituting an expressive architecture.

5As mentioned in Appendix A.3, unitary t-designs induce state t-designs when acting on fixed input states.
Thus, our data-agnostic approach is also valid when considering state t-designs in the following.
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An ansatz forming a 2-design is not expressive as following the Haar measure only up to the sec-
ond moment constrains how spread-out (statistical spread) the unitaries must be, however, does not
allow drawing conclusions about how densely it covers U(N). If one were to define expressivity as
the capability of a model to represent all possible set of unitaries, it would be required to go way
beyond second moments (for, e.g., Kurtosis, off-diagonal correlations etc) to ensure the necessary
weights are captured where there is sufficiently dense population. As the moment operator requires
tensor products proportional to the moments, this becomes computationally infeasible very quickly.
It is not clear how to overcome the curse of dimensionality while proposing a measure that captures
expressivity adequately; in fact, most tools from QIT suffer from this very phenomenon, speaking
to the difficulty of designing such a metric. Further, there already exists a line of non-unitary VQA
research (e.g., Cong et al. (2019); Deshpande et al. (2024)), that needs to be considered as well.

As expressivity is currently the most common metric used to describe the ansatzes, our work em-
ploys an alternative approach to analyze the model space, unrelated to expressivity, but highly rele-
vant for trainability and training dynamics. Therefore, we focus on local neighborhoods of the model
space, in particular, we study how the QNN changes upon perturbation of parameters. This allows
analyzing training dynamics and tracking the extent to which the QNN changes during training.

4 CHANNEL SENSITIVITY

Comparison between quantum channels is an important topic in Quantum Information Theory. For
consistency with respect to, e.g., highly entangling operations, however, operator norms need to be
stable under tensor product. Therefore, the diamond norm was proposed in Kitaev (1997) as follows.

Definition 1 The diamond norm of a superoperator T is defined as (Harrow & Low, 2009; Kitaev
et al., 2002).

∥T∥♢ = sup
d
∥T ⊗ idd∥∞ = sup

d
sup
X ̸=0

∥(T ⊗ idd)X∥1
∥X∥1

(5)

Here, ⊗ denotes the tensor product and idd the identity channel on d dimensions, with d ≤ 2n, and
n as the number of qubits. The ∥X∥1 in this context is the Trace norm or Schatten 1-norm, which
is defined as ∥X∥1 = Tr

√
X†X . The diamond norm is defined for any superoperator T , wherein,

superoperators are defined as the set of linear maps acting on a vector space of linear operators. For a
valid quantum channel E1 (a completely positive and trace preserving (CPTP) matrix), the diamond
norm is strictly upper bounded by 1 and lower bounded by 0. When using the diamond norm to
measure the distance between two CPTP quantum channels E1 and E2, the channels are subtracted.
The resulting matrix is not necessarily CPTP, resulting in a revised upper bound of 2.

Operationally, the diamond norm measures the maximum distinguishability between the output
states of the two maps under any input state, i.e., for any input state we will be less or equally
able to distinguish the output. A value of 0, means that they are indistinguishable, whereas a value
of 2 means they are perfectly distinguishable. Computing the diamond norm is non-trivial, however,
can be reduced to a semi-definite program (Watrous, 2009; 2013). We apply the diamond norm
to evaluate the distinguishability of a parametrized unitary U(ϑ), representing a quantum channel,
from the unitary U(ϑ+ δ), where δ is a perturbation of ϑ, as follows.

Definition 2 We define the channel sensitivity as the distinguishability of the quantum channel from
itself upon small perturbation of ϑ by δ.

csU (ϑ, δ) = ∥U(ϑ)− U(ϑ+ δ)∥♢ (6)

We can provide an upper bound on the channel sensitivity through Taylor expansion, which is shown
in Equation 7. Therefore, we establish a direct dependence of the distinguishability of the channels
to the sum of changes applied6. The bound holds if the Hermitian generators of the trainable gates

6For the precise mathematical derivation, we refer to Appendix C.
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Table 1: Employed ansatzes

COMPONENT CONFIGURATIONS

Parameterized [RX , RY , RZ , RXRY , RY RZ , RXRZ , RXRY RZ]
Entangling [CNOT, CZ, CNOT CZ]

are unitary as well, which is relevant for HEAs, as the trainable gates are exponentiations of the
X , Y , and Z Pauli gates. The precision of the bound depends on the magnitude of δ, however,
considering that the models are trained iteratively in small steps, we expect the bound to hold.

∥U(ϑ)− U(ϑ+ δ)∥♢ = ∥U(ϑ)− (U(ϑ) +

dim(δ)∑

j=1

δj
∂U(ϑ)

∂ϑj
+O(δ2))∥♢

≈ ∥ −
dim(δ)∑

j=1

δj
∂U(ϑ)

∂ϑj
∥♢ ≤

∑dim(δ)
j=1 |δj |

2

(7)

Unless the feature encoding is trained as well, the upper bound on distinguishability cannot be
improved by including data. Intuitively, due to the calculation of the diamond being based on the
maximum distinguishability from any input state, it includes any possible unitary data encoding as
well. Mathematically, this property follows from the unitary invariance of the Schatten 1-norm.

Our bound shows that (assuming small parameters updates), there is a direct relationship between
the number of parameters and the distinguishability of the operation. In particular, for small models,
which are used extensively at the moment, it can be expected that subsequent unitaries during train-
ing are hardly distinguishable, hindering effective training. This is, to the best of our knowledge, the
first result attempting to establish a connection between ansatz and trainability issues. To strengthen
our results, we want to, in the following, support our bounds through numerical experiments.

5 EXPERIMENTAL SETUP

Ansatzes We consider layered architectures in our experiments, each consisting of trainable pa-
rameterized and fixed entangling components. For the first, we use rotations around the x- (RX ), y-
(RY ), and z-axis (RZ) of the Bloch sphere, and the controlled-NOT (CNOT) and controlled-Z (CZ)
gates for the latter7, constituting a widely-used gate set for HEAs. For a list of parameterized and
entangling components, we refer to Table 1, and we run our experiments using all combinations.

We do not permute the operators, due to considerations on the expressivity per qubit. That is, if
all rotations are applied, all permutations of RX(α)RY (β)RZ(γ), with α, β, γ ∈ [0, 2π] span the
SU(2), the set of unitary operations on one qubit. Therefore, permuting the operations does not
affect expressivity per layer. Similarly, two rotation operations per layer explore a subspace of the
SU(2) owing to the Lie-algebraic closure relations, e.g., RX(α)RY (β) spans the upper half of the
Bloch sphere, as does RY (α)RX(β). Any permutation allows the same operations per qubit, which
is why we deem all permutations as equal.

Perturbation For the experiments, we uniformly sample parameters in range [0, 2π] and choose a
random 95% of them to perturb their values by ±t% (in our case [0.1, 0.5, 1]). These values were in
no way chosen randomly, rather, by training QNNs and collecting summary statistics on parameter
updates, we found that these are the ranges where updates are performed. Then, we evaluate the
channel sensitivity with the two obtained unitaries. We take 100 samples per parameter involved in
the circuit and consider the distribution of the channel sensitivity we obtain for further analysis.

7We refer to Appendix A.1 for an overview of the operations.
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Figure 1: Training parameter updates

Training Moreover, we want to compare the channel sensitivity for random perturbations and
training runs. Therefore, we train binary classification models on the two largest classes of the
wine and breast cancer datasets and use PCA to reduce the features to 2n, with n as the number of
qubits. Then, the features are normalized and encoded into the amplitudes of the input state. The
measurement is taken in the z-basis of the first qubit, and we use the mean squared error as the loss.

To account for favorable parameter initializations, we train each architecture 50 times. We use 150
iterations, and monitor convergence and parameter changes. We use the Adam optimizer (Kingma
& Ba, 2015) from Pennylane with default parameters (step size: 0.01, beta 1: 0.9, beta 2: 0.99, ep-
silon: 1e-08). Further, we calculate the channel sensitivity in every iteration, to get an operationally
meaningful analysis of how much the model changes. This also allows evaluating whether the model
changes more when updated based on the loss function, rather than by just randomly permuting
parameters. We display aggregated results using confidence intervals with a 95% confidence level.

Qubits Due to the computational complexity involved in solving the diamond norm, we run our
experiments from one to four qubits and one to five layers. Unfortunately, due to matrix dimensions,
it is challenging to scale the diamond norm any further. Nonetheless, the results are relevant, con-
sidering that they (1) provide a first step at analyzing small scale architectures, and (2) have direct
implications for training dynamics that can be expected in the NISQ era.

Today’s QNNs use shallow circuits with a depth in O(log n) and a local cost function, as they
can be shown to be trainable (Cerezo et al., 2021b). Even if favorable loss landscapes were found
for deeper circuits, adding layers results in noisier loss estimates, prohibiting effective learning.
Moreover, scaling in number of qubits is limited due to quantum hardware limitations, or, when
the models are simulated classically, to the curse of dimensionality. Therefore, many recent works
proposing QML to solve a particular problem use few qubits, e.g., Blance & Spannowsky (2021),
with two qubits, or Yano et al. (2020) with three and four qubits.

Further, our main goal is to take initial steps in quantifying and characterizing QNN model behavior.
As has been mentioned before, due to the power of classical ML, we are unlikely to find an advantage
in QML in the near term (Schuld & Killoran, 2022). Therefore, it would be important to focus on
more fundamental questions, such as “how can we exploit quantum mechanics for ML purposes?”,
to explore the potential of quantum computing for data processing. In that sense, understanding how
quantum channels change upon parameter updates is a foundational topic in ansatz design.

Framework Our experiments are implemented using the Python programming language. We use
Pennylane (Bergholm et al., 2022) for obtaining the unitary transformations and QuTIP (Johansson
et al., 2012; 2013) for calculating the diamond norm. Unfortunately, a diamond norm computation
between two operators ∥A−B∥♢ with a finitely-large overlap A†B ≈ I, yields numerical instabili-
ties with the QuTIP package. To account for these numerical issues, the operator can be multiplied
with a global phase, which fixes a gauge (cf. Gauge-Fixing, in Appendix F).

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

6 EXPERIMENTAL RESULTS

We run extensive numerical experiments to validate our bounds. First, we randomly perturb param-
eters, then we compare them to the channel sensitivity we observe during actual training runs.

Initially, we verify the assumptions about the magnitude of parameter changes. In training runs,
the mean parameter change per update in the first 10 iterations is maximum 1.4%, with a mean and
standard deviation of 0.8% ± 0.4%, but it quickly decreases. We visualize this in Figure 1a, with
the iterations on the x-axis, and the mean change in parameters on the y-axis. Architectures with
the same number of qubits are aggregated and show very narrow confidence intervals. Further, it
is also visible that changes in multi-qubit systems tend to be even smaller (less than two orders of
magnitude). Moreover, we observe that almost all parameters are updated in every iteration, which
is shown in Figure 1b, where the y-axis shows the percentage of parameters changed.

6.1 RANDOM PERTURBATION

Based on these observations, we run the random perturbation experiments by changing 95% of
parameters by 1%, 0.5%, and 0.1%. We visualize the results in Figure 2, showing the depth of the
circuit on the x-axis and the obtained channel sensitivity on the y-axis. Per our bounds, the channel
sensitivity strongly depends on the number of parameters in the circuit, hence, we visualize the
results based on the number of parameters per layer.
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Figure 2: Channel sensitivity for random perturbations

The experiments show the same patterns as the bounds predict. In particular, fixing the qubits and
parameters per layer while increasing the depth of the circuit, results in a bigger channel sensitivity.
The same can be observed when fixing the number of layers and increasing the qubits. We observe

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

that increasing channel sensitivity is more prevalent for larger systems than for deeper circuits, e.g,
architectures with 2 qubits, 5 layers and 3 parameters have a smaller channel sensitivity than archi-
tectures with 3 qubits, 5 layers and 2 parameters, despite having the same number of parameters.

The behaviour is expected for ansatzes covering large parts of the search space, as the Hilbert space
of a larger system is significantly bigger, scaling as 2n. This allows more independent search direc-
tions, therefore, potentially more changes in channel upon update. Deeper circuits can explore larger
parts of the Hilbert space too, however, their expressivity stagnates when achieving overparameter-
ization (Larocca et al., 2023). In this regime, more parameters will not result in more independent
search directions, hence, the difference in channel sensitivity is expected to be smaller.

Further, it can be seen that there is a substantial degree of variability in the channel sensitivity. In
the majority of experiments, the channels are hardly distinguishable, however, many outliers can
be observed. This property could be particularly relevant for warm-starting (Puig et al., 2024), i.e.,
starting training from regions with high channel sensitivity might lead to smoother optimization.

6.2 TRAINING UPDATES
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Figure 3: Channel sensitivity during training runs

Additionally, we want to consider how different the quantum channels are when updated based on
loss and optimizer. In particular, it could be possible that changing the parameters during training,
changes the underlying channel a lot more than perturbing in random directions. Upon analysis of
our results, we can confirm the validity of our Taylor expansion even in early stages of iteration, i.e.,
in the 45, 500 models we trained, the bound holds for every single parameter update taken.

We plot the channel sensitivity in Figure 3 for different layers, qubits and parameters per layer. We
can observe that the confidence intervals are very narrow, i.e., even though we collect data from 50
different runs for every model, the observable channel sensitivity hardly varies. Further, the channel
sensitivity is substantially smaller than the bound, speaking to the severity of the issue. The discrep-
ancy grows in particular with the number of qubits, which is visualized in Figure 4 in Appendix D.
While we cannot observe the magnitude of channel sensitivity that the bound predicts, the pattern
of scaling in the number of parameters can be observed. This is in particular visible in Figure 3 for
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early training stages with larger parameter updates, however, it vanishes in later stages, when the
updates are very small. Further, to showcase robustness with respect to the feature encoding (and
different parameter updates that may result thereof), we run our experiments with angle encoding as
well and verify that the magnitude of channel sensitivity does not change. We refer to Figure 5 in
Appendix E for more information.

7 DISCUSSION

Our bound establishes a direct dependence of the distinguishability of the channels during QNN
training to the number of parameters. That is, the maximum distinguishability of two output states of
the quantum channels, scales with (1) the magnitude of changes and (2) the number of parameters.
As iterative updates with small learning rates are applied, which is independent of the number of
parameters in the circuit, the dependence is largely dominated by the number of parameters.

This could significantly contribute to the trainability issues of today’s QNNs. In particular, for
reasonably sized models, the channels may be distinguishable in early training stages, but hardly
distinguishable when fine-tuning the ansatz later. Comparison of our bound to the channel sensitivity
obtained in training runs reveals that during training, the channels are even less distinguishable.
While the channel sensitivity for random permutation is still considerably lower than our bounds
would predict, a lot more variation can be observed.

This confirms our initial motivation of studying the model space independently of the loss and data,
as these are global properties of ansatzes. In particular, we want to draw attention to the remarkable
similarities to the BP phenomenon. It seems that the architectures significantly contribute to the
untrainable models we observe today, independently of data and loss. Our findings have implications
to start a more thorough investigation of the model space of the ansatzes that are currently used, and,
ultimately, stress the need for good initialization and warm-starting. It is, however, non-obvious how
to find such starting points without trial-and-error.

8 CONCLUSION

Altogether, our work provides a first step at exploring the model space of QNNs. In particular, we
provide a picture of the local neighborhood of the model space of an ansatz, which suggest that the
channels, at least for small scale circuits, do not differ significantly upon parameter update. Our
results for random perturbations reveal that there is a substantial degree of variability of the channel
sensitivity depending on the neighborhood, hence, stress the need to study the model space more
thoroughly. This could reveal valuable information for parameter initialization or warm-starting.

Considering that QNNs were designed for NISQ technology, thus limited to shallow, small-scale
circuits due to hardware limitations, the community will be limited to such small instances in the
near-term. Therefore, our findings have direct implications on the meaningfulness of iteratively
optimizing such circuits. While it is true that the models can be scaled to work for larger circuits, we
have overwhelming evidence through works on BPs, that this is inherently difficult. Together with
results on classical simulability and dequantizability in the absence of BPs, this work extends the
evidence that we need a paradigm shift in Variational Quantum Computing or even QML altogether.

REPRODUCIBILITY STATEMENT

We provide the source code for all our experiments in an anonymized GitHub repository8 with exten-
sive documentation and listed dependencies. Upon acceptance, we will make the GitHub repository
publicly available for convenient access.
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A ADDITIONAL BACKGROUND

A.1 QUANTUM COMPUTING

Quantum Computing (QC) works with quantum bits (qubits). While classical bits take either the
value 0 or 1, qubits are in a so-called superposition of the two states, meaning they are in both
states at once, which is shown mathematically in Equation 8, where α and β are called probability
amplitudes. We can do calculations with the superposed qubit, however, once we read out results,
we have to take a measurement, where the qubit will collapse into state |0⟩ with probability |α|2,
and into state |1⟩ with probability |β|2. Due to this inherent non-determinism in QC, executions are
always done multiple times.

|ψ⟩ = α |0⟩+ β |1⟩ s.t. |α|2 + |β|2 = 1 α, β ∈ C (8)

A qubit is characterized by 4 numbers (the real and imaginary parts of α and β), which, when
translated into polar coordinates, gives a convenient geometrical representation on the so-called
Bloch sphere. This plays a significant part in today’s QNNs, as the trainable gates are rotations of
the individual qubits around the x-, y- and z-axis of this sphere.

Multiple qubits form a quantum register, and its associated quantum state represents 2n states at
once, where n is the number of qubits, which can make QC very powerful. A quantum state can be
entangled, meaning that individual qubits can be correlated, such that an action on one qubit affects
the ones it is entangled with as well.

Quantum states are manipulated through unitary transformations or quantum gates (U†U = I,
where U† is the adjoint of U ). Unitary transformations are linear and preserve vector lengths,
i.e., applying a unitary to a quantum state ensures that the squared magnitudes of the probability
amplitudes still sum up to one. Every unitary is generated by a Hermitian generator (H = H†),
i.e., U = e−iH . We describe the action on an initial quantum state as a so-called unitary evolution,
which may involve one or more unitary operations (unitary matrices form a group, hence, are closed
under multiplication). We also refer to this as a quantum channel in the following. While the term
quantum channel encompasses unitary evolutions, it is a broader term, meaning it can also describe
more general dynamics of quantum systems, such as decoherence or noise. It is defined as a linear
map that is completely positive and trace preserving (Watrous, 2018).

Among the most fundamental operations in QC, are the so-called Pauli matrices, which are Hermi-
tian matrices shown in Equation 9. σx applies a NOT (bit-flip) operation (|0⟩ → |1⟩, |1⟩ → |0⟩),
σy changes the phase and bit (|0⟩ → i |1⟩, |1⟩ → −i |0⟩), and σz applies a phase-flip (|0⟩ → |0⟩,
|1⟩ → −1 |1⟩).
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σx =

[
0 1
1 0

]
σy =

[
0 −i
i 0

]
σz =

[
1 0
0 −1

]
(9)

Taking the Pauli matrices as generators, we can rotate a qubit around the x-, y- and z-axis around
the Bloch sphere, arriving at the definition of the RX , RY and RZ rotation in Equation 10.

RX(θ) = e−i
θ
2σx RY (θ) = e−i

θ
2σy RZ(θ) = e−i

θ
2σz (10)

Further, we define the two entangling operations we use, CNOT (or CX) and CZ, in Equation 11. The
operators entangle two qubits i and j, where i is referred to as the control qubit and j is the target
qubit. In general terms, the entangling gates apply σx or σz to the target qubit if the control is in
state |1⟩.

CNOT =



1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 CZ =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


 (11)

A.2 INNER-PRODUCT & OVERLAP BETWEEN VECTORS

An inner-product space is defined as a vector space V over a field F (typically R or C) endowed
with an inner-product map ⟨.|.⟩:

⟨.|.⟩ : V × V → F (12)
The inner-product operation is a generalization of the dot-product between vectors and measures the
overlap or coherence between vectors sampled from a vector space.

A.3 UNITARY GROUPS AND THE HAAR MEASURE

We will provide key information on unitary groups and the Haar measure in this section. For an
excellent tutorial on the topic, we refer to Mele (2024), which we also base this section on. We begin
by defining the unitary group U(d) and the special unitary group SU(d), which are key concepts
when studying quantum computing, as follows.

Definition 3 For d ∈ N, the unitary group U(d) is the group of isometries of d-dimensional complex
Hilbert space Cd. These are canonically identified with the d× d unitary matrices (Cd×d):

U(d) =
{
V ∈ Cd×d|V · V† = V† · V = Id

}
(13)

The unitary group can be decomposed as U(d) = SU(d) × U(1). Here, the subgroup SU(d) is
called the special unitary group, while z = eiθ ∀z ∈ U(1) is a phase restricted on a unit-circle.

Definition 4 For d ∈ N, the special unitary group SU(d) ⊂ U(d) are a group of d × d unitary
matrices (Cd×d) that have a unit determinant:

SU(d) =
{
G ∈ U(d)| det(G) = 1

}
(14)

The Haar measure forms a uniform probability distribution over sets of unitary matrices, in fact, it
is unique for compact groups, such as the U(d).

Definition 5 (Mele, 2024) We define the Haar Measure on the U(d), as the left and right invariant
probability measure µH over the group. That is, for all integrable functions f and ∀V ∈ U(d):

∫

U(d)

f(U)dµH(U) =

∫

U(d)

f(UV )dµH(U) =

∫

U(d)

f(V U)dµH(U) (15)

Thus, the Haar measure assigns an invariant volume measure to subsets of locally compact topologi-
cal groups. Due to properties of a probability measure, it holds that

∫
S
dµH(U) ≥ 0, ∀S ⊆ U(d) and
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∫
U(d)

1dµH(U) = 1. It is therefore possible to set the expectation value with respect to the proba-
bility measure equal to the integral over the Haar measure as EU∼µH

[f(U)] =
∫
U(d)

f(U)dµH(U).
This leads to the definition of the moment operator of the Haar measure.

Definition 6 (Mele, 2024) For all operators O, the t-th moment operator based on probability
measure µH is defined as follows.

M (t)
µH

(O) = EU∼µH
[U⊗tOU†⊗t] (16)

Definition 7 (Mele, 2024) A distribution v over a set of unitaries S ⊆ U(d) is a unitary t-design if
and only if the following holds for all operators O.

EV∼v[V
⊗tOV †⊗t] = EU∼µH

[U⊗tOU†⊗t] (17)

State t-designs are weaker versions of unitary t-designs in the sense that unitary t-designs induce
state t-designs when they act on a fixed input state. These are defined as follows.

Definition 8 (Mele, 2024) A state t-design is a probability distribution η over a set of states S if
and only if the following holds.

E|ψ⟩∼η[|ψ⟩ ⟨ψ|⊗k] = E|ψ⟩∼µH
[|ψ⟩ ⟨ψ|⊗k] (18)

Further, we define an equivalent definition of state t-designs as follows, which will be used as well.

Definition 9 (Hoggar, 1982) Let Cd denote a d-dimensional Hilbert space with orthonormal ba-
sis set {|nk⟩}dk=1. Owing to their redundancy under global phase transformations and normal-
ization, the quantum states in this space correspond to points in the complex-projective space
CPd−1 (Bengtsson & Zyczkowski, 2006). Thus, we define the nontrivial complex-projective t-design
as a set of states S ⊊ CPd−1, sampled according to some probability measure µ, satisfying,

E|ψ⟩∈Sf(|ψ⟩) =
∫

CPd−1

f(|ψ⟩)dψ. (19)

Where, f(|ψ⟩) is a polynomial of at most degree t in its amplitudes and complex-amplitudes of |ψ⟩
respectively. The canonical measure dψ defined on the set of such quantum states, is the unique
unit-normalized volume measure invariant under unitary group action U(d).

Often it is not strictly required to have an exact t-design, but rather a distribution close to a t-design,
which is termed ϵ-approximate t-design.

A.4 CHOICE OF POLYNOMIAL FUNCTION FOR STATE T-DESIGNS:

The function f(|ψ⟩) is a polynomial of at most degree t. For example, 2-designs, correspond to the
average value of a quadratic (second-degree polynomial) function. Hence, a common choice of state
2-design polynomial functions is the overlap (cf. Appendix A.2 for definition) between a collection
of states {ψi}1≤i≤d in the Hilbert space |⟨ψj |ψk⟩|2. Similarly, for an even t > 2, a canonical
choice of the polynomial function f is |⟨ψj |ψk⟩|2t.

B WELCH BOUNDS AND T-DESIGNS

Theorem 1: (Welch bounds) Let n ≥ d. If
{
vi
}
1≤i≤n is a sequence of unit vectors in Cd, then,

max
1≤j,k≤n,j ̸=k

|⟨vj |vk⟩|2t ≥
1

n− 1

[
n(

d+t−1
t

) − 1

]
, ∀t ∈ N, (20a)

implies,

17
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∑

1≤j,k≤n

|⟨vj |vk⟩|2t ≥
n2(

d+t−1
t

)∀t ∈ N. (20b)

The combinatorial (binomial) factor featuring in the denominator of Equation 20a and Equation 20b
can be expanded in terms of the factorials:

(
d+ t− 1

t

)
=

(d+ t− 1)!

(d− 1)! t!
(21)

Here ! corresponds to the factorial symbol, i.e. n! = n(n− 1)(n− 2)...1.

B.1 SIMPLIFICATION OF EQUATION 20A:

Substituting Equation 21 into Equation 20a yields the following.

max
1≤j,k≤n,j ̸=k

|⟨vj |vk⟩|2t ≥
1

n− 1

[ n
(d+t−1)!
(d−1)! t!

− 1
]
=

1

n− 1

[ n
(d+t−1)(d+t−2)....d

t!

− 1
]

(22)

Here in the denominator, we have used the factorial property, (d+ t−1)!/(d−1)! = (d+ t−1)(d+
t− 2)...d(d− 1)!/(d− 1)! = (d+ t− 1)(d+ t− 2)...d.

B.2 SIMPLIFICATION OF EQUATION 20B:

Using Equation 21 it follows that:

∑

1≤j,k≤n

|⟨vj |vk⟩|2t ≥
n2

(d+t−1)(d+t−2)...d
t!

. (23)

For the special case, t = 2, we get the inequality for 2-designs,

∑

1≤j,k≤n

|⟨vj |vk⟩|4 ≥
n2(
d+1
2

) =
n2

(d+ 1)d/2
. (24)

C CHANNEL SENSITIVITY BOUND

C.1 PRELIMINARIES

Before deriving the bound, we want to state some preliminaries for partial derivatives of parame-
terized unitaries. Equation 25 shows the partial derivative of a circuit (Holmes et al., 2022) which
utilizes the convenient representation of a unitary in terms of its generator. The partial derivative
essentially splits the original unitary in two parts, and we define the fractions in Equation 26.

∂jU(ϑ) = − i
2
Uj+1→dim(ϑ)HjU1→j (25)

Ul→m(ϑ) =

m∏

j=l

Vj(ϑj)Wj

=

m∏

j=l

e−i
ϑj
2 HjWj

(26)

C.2 DERIVATION OF THE BOUND

We can now analyze the difference in diamond norm upon slight perturbation of parameters in Equa-
tion 27. We use a Taylor expansion and truncate after the first order. We arrive at Equation 28 after
applying the partial derivative from Equation 25. We use the triangle inequality and homogeneity,
which are both necessary conditions for matrix norms (Horn & Johnson, 1985), to arrive at Equa-
tion 29 and Equation 30 respectively. Arriving at Equation 31 is non-trivial, as, in general, it is

18
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not guaranteed that multiplying hermitian and unitary matrices results in a unitary. However, HEAs
use RX , RY and RZ rotations with generators X , Y and Z respectively, which are known to be
hermitian and unitary. Since unitaries form a group that is closed under multiplication, it forms a
valid quantum channel, which evaluates to 1(Watrous, 2018, Proposition 3.44).

∥U(ϑ)− U(ϑ+ δ)∥♢ = ∥U(ϑ)−
(
U(ϑ) +

dim(δ)∑

j=1

δj
∂U(ϑ)

∂ϑj
+O(δ2)

)
∥♢ (27)

≈ ∥U(ϑ)− (U(ϑ) +

dim(δ)∑

j=1

∂U(ϑ)

∂θj
δj)∥♢ (28)

= ∥ −
dim(δ)∑

j=1

∂U(ϑ)

∂θj
δj∥♢ (29)

= ∥ −
dim(δ)∑

j=1

− i
2
Uj+1→dim(δ)HjU1→jδj∥♢ (30)

≤
dim(δ)∑

j=1

∥ i
2
Uj+1→dim(δ)HjU1→jδj∥♢ (31)

=

dim(δ)∑

j=1

| i
2
δj |∥Uj+1→dim(δ)HjU1→j∥♢ (32)

=

∑dim(δ)
j=1 |δj |

2
(33)

D COMPARISON OF EMPIRICAL CHANNEL SENSITIVITY AND BOUND

We compare the empirical channel sensitivity with the predicted bound in Figure 4. We add this
figure to visualize that experimentally we can observe a large discrepancy, although the magnitude
of this discrepancy makes it hard to read much more from the plot. We also would like to remark
that one should be careful in drawing the conclusion that the bound is thus loose, as there might
still be a point in the model space where taking such a step could achieve the bound. Our extensive
experiments, however, reveal that this will likely not be the case in large areas of the model space.

E ANGLE ENCODING

We visualize the channel sensitivity when encoding the data with angle embedding. We run these ex-
periments to demonstrate robustness of the channel sensitivity with respect to the changed parameter
updates that may occur due the different input states. While the channel sensitivity slightly varies,
we can observe that its magnitude does not differ when comparing it to the results using amplitude
embedding (we observe a maximum distinguishability of approximately 0.5% in both cases).

F GAUGE FIXING

Considering the numerical instabilities whenever A†B ≈ I, we apply a Gauge-Fixing algorithm.
In particular, we adjust the global phases of the two unitaries, which ensures numerical stability
without affecting the diamond norm.
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Algorithm 1 Gauge-fixed diamond norm between difference of quantum channels

1: function DIAMOND NORM(∥A−B∥♢)
2: ifA†B ≈ I then
3: z ∈ C← Tr(A†B)

4: ϑ∗ ∈ R← arctan[ Im(z)
Re(z) ]

5: B ← exp (iϑ∗)B
6: end if
7: return ∥A−B∥♢
8: end function
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