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Abstract

Industrial anomaly detection is crucial for quality control and predictive maintenance but is
challenging due to limited training data, varied anomaly types, and changing external factors
affecting object appearances. Existing methods detect structural anomalies, such as dents
and scratches, by relying on multi-scale features of image patches extracted from a deep
pre-trained network. Nonetheless, extensive memory or computing requirement hinders their
adoption in practice. Furthermore, detecting logical anomalies, such as images with missing
or surplus elements, necessitates understanding spatial relationships beyond traditional
patch-based methods. Our work focuses on Deep Feature Reconstruction (DFR), which offers
a memory- and compute-efficient way of detecting structural anomalies. Moreover, we extend
DFR to develop a unified framework for detecting structural and logical anomalies, called
ULSAD. Specifically, we improve the training objective of DFR to enhance the capability to
detect structural anomalies and introduce an attention-based loss using a global autoencoder-
like network for detecting logical anomalies. Empirical results on five benchmark datasets
demonstrate the effectiveness of ULSAD in the detection and localization of both structural
and logical anomalies compared to eight state-of-the-art approaches. Moreover, an in-depth
ablation study showcases the importance of each component in enhancing overall performance.
Our code can be accessed here: https://anonymous.4open.science/r/ULSAD-2024.

1 Introduction
Anomaly detection (AD) is a widely studied problem in machine learning that is used to identify rare events
or unusual patterns (Salehi et al., 2022). It enables the detection of abnormalities, potential threats, or
critical system failures across diverse applications such as predictive maintenance (PdM) (Tang et al., 2020;
Choi et al., 2022), fraud detection (Ahmed et al., 2016; Hilal et al., 2022), and medicine (Tibshirani & Hastie,
2007; Fernando et al., 2021). Despite its importance and widespread applicability, it remains a challenging
task as the anomalous samples are not known a priori (Ruff et al., 2021). Typically, AD is therefore addressed
as an unsupervised representation learning problem (Pang et al., 2020) where the training data contains
predominantly normal samples. Therefore, the aim is to learn the normal behaviour using the samples in the
training set and identify anomalies as deviations from this normal behaviour. This setting is also known as
one-class classification (Ruff et al., 2018).

Our study concentrates on Industrial Anomaly Detection (IAD) (Bergmann et al., 2019), specifically targeting
the detection and localization of anomalies in images from industrial manufacturing processes. Over the years,
it has garnered attention in both industry and academia as AD can be used for various tasks like quality control
or predictive maintenance, which are of primal interest to industries. Despite the necessity, addressing IAD is
difficult given the following challenges: (i) evolving processes resulting in different manifestations of anomaly
(Gao et al., 2023), and (ii) varying object appearances due to external factors such as background, lighting
conditions and orientation (Jezek et al., 2021). Furthermore, the anomalies in IAD can be broadly categorized
into: (i) structural anomalies where subtle localized structural defects can be observed (Bergmann et al.,
2019), and (ii) logical anomalies where violations of logical constraints result in anomalies (Bergmann
et al., 2022). Examples of both structural and logical anomalies can be seen in Figure 1.

Methods proposed for the detection of structural anomalies leverage multi-scale features of image patches
obtained using deep convolutional neural networks (Salehi et al., 2021). PatchCore (Roth et al., 2022) and
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Figure 1: Types of anomalies. (Left) First, two normal samples are shown from the categories “breakfast
box” and “pushpin” of the MVTecLOCO dataset. Then, we show examples of structural (Middle) and logical
anomalies (Right) with the anomalies highlighted in blue and red, respectively.

CFA(Lee et al., 2022) achieved state-of-the-art (SOTA) performance by storing the extracted features in a
memory bank and comparing the features of the test image with their closest neighbour from the memory
bank. However, such approaches require considerable storage to accumulate the extracted features, which
can be challenging for large-scale datasets. The first alternative is knowledge distillation-based approaches
(Bergmann et al., 2020; 2022), where a student network is trained to mimic the teacher for normal samples.
During inference, anomalies are identified based on the discrepancy between the student and teacher output.
A key requirement of these distillation-based approaches is that the student network must be less expressive
than the teacher to prevent it from mimicking the teacher on anomalous samples. Thus, regularization
methods, such as penalty based on an external dataset or hard-mining loss (Batzner et al., 2024) are applied,
which slows down the training and increases the requirement of computing resources. Moreover, excessive
regularization also prevents learning representations for normal images. The second alternative is to model
the features of normal images using a multivariate Gaussian distribution (Defard et al., 2021) or learn to
reconstruct the features using a deep feature reconstruction (DFR) network (Yang et al., 2020).

Besides structural anomalies, logical anomalies occur when elements in the images are missing, misplaced,
in surplus or violate geometrical constraints (Bergmann et al., 2022). Methods relying on multi-scale features
of image patches would fail as they would still be considered normal. It is the combination of objects in
the image that makes the image anomalous. Thus, to detect such logical anomalies, it is necessary to look
beyond image patches and develop a global understanding of the spatial relationships within normal images.
Distillation-based methods, which are predominantly used for the detection of logical anomalies, rely on an
additional network to learn the spatial relationships between items in the normal image (Batzner et al., 2024).

In this paper, we focus on DFR, the benefits of which are four-fold. First, it does not need large memory for
storing the features, unlike PatchCore (Roth et al., 2022). Second, unlike PaDiM (Defard et al., 2021), it
does not make any assumption about the distribution of features. Third, learning to reconstruct features
in the latent space of a pre-trained network is less impacted by the curse of dimensionality than learning
to reconstruct high-dimensional images. Fourth, deep networks trained to reconstruct normal images using
the per-pixel distance suffer from the loss of sharp edges of the objects or textures in the background. As a
consequence, AD performance deteriorates due to an increase in false positives, i.e., the number of normal
samples falsely labelled anomalies. On the contrary, using the distance between the multi-scale features and
their corresponding reconstructions during training is less likely to result in such errors (Assran et al., 2023).

We revisit DFR to develop a unified framework for the detection of structural and logical anomalies. First,
to improve the performance of DFR for the detection of structural anomalies, we modify the training
objective by considering a combination of ℓ2 and cosine distances between each feature and the corresponding
reconstruction. The incorporation of the cosine distance addresses the curse of dimensionality, where high-
dimensional features become uniformly distant from each other in Euclidean space (Aggarwal et al., 2001).
Second, to allow for the detection of logical anomalies, we introduce an attention-based loss using a global
autoencoder-like network. We empirically demonstrate that with our proposed improvements, not only do
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the detection and localization capabilities of DFR improve for structural anomalies, but also it delivers
competitive results on the detection of logical anomalies. Our contributions can be summarized as:

• We propose Unified framework for Logical and Structural Anomaly Detection referred as ULSAD, a
framework for identifying and localizing both structural and logical anomalies building on DFR.

• We improve DFR for structural AD by considering the angular difference between the extracted and
reconstructed feature vectors in addition to the difference in values.

• For learning the logical constraints, we propose a novel attention-based loss for learning the features
of an autoencoder which improves the detection and localization of logical anomalies during inference.

• We demonstrate the effectiveness of ULSAD by comparing it with 8 SOTA methods across 5 widely
adopted IAD benchmark datasets.

• Through extensive ablation study, we show the effect of each component of ULSAD on the overall
performance of the end-to-end architecture.

2 Related Work
Several methods have been proposed over the years for addressing Industrial AD (Bergmann et al., 2019; 2022;
Jezek et al., 2021). They can be broadly categorized into feature-embedding based and reconstruction-based
methods. We briefly highlight some relevant works in each of the category. For an extended discussion on the
prior works we refer the readers to the survey by Liu et al. (2024).

Feature Embedding-based There are mainly three different types of IAD methods which utilize feature
embeddings from a pre-trained deep neural network: memory bank (Defard et al., 2021; Roth et al., 2022;
Lee et al., 2022), student-teacher (Zhang et al., 2023; Batzner et al., 2024), and density-based (Gudovskiy
et al., 2021; Yu et al., 2021). The main idea of memory bank methods is to extract features of nominal
images and store them in a memory bank during the training phase. During the testing phase, the feature
of a test image is used as a query to match the stored nominal features. There are two main constraints
in these methods: how to learn useful features and how to reduce the size of the memory bank. PatchCore
(Roth et al., 2022) introduces a coreset selection algorithm to reduce the memory bank size. CFA (Lee et al.,
2022) proposes contrastive supervision based on a coupled hypersphere to learn target-oriented features and a
compression scheme to reduce memory size. The performance of the memory bank methods heavily depends
on the completeness of the memory bank, which requires a large number of nominal images. Moreover, the
memory size is often related to the number of training images, which makes these methods not preferable
for large datasets or very high-dimensional images. In the student-teacher approach, the student network
learns to extract features of the nominal samples, similar to the teacher model. For anomalous images, the
features extracted by the student network should be different from the teacher network. Batzner et al. (2024)
propose to use an autoencoder model in addition to the student network to identify logical anomalies. For
leveraging the multiscale feature from the teacher network to detect anomalies at various scales, Deng & Li
(2022) propose a reverse-distillation approach. Zhang et al. (2023) extended it by proposing to utilize two
student networks to deal with structural and logical anomalies. Yang et al. (2020) propose to learn a deep
neural network for learning to reconstruct the features of the normal images extracted using the pre-trained
backbone. On the other hand, density-based methods detect anomalies based on the likelihood of an extracted
feature of the test sample, given the estimated distribution of the features of the normal samples. PaDiM
(Defard et al., 2021) uses a multivariate Gaussian to learn the probabilistic representation of the nominal
class while FastFlow (Yu et al., 2021) and CFLOW (Gudovskiy et al., 2021) utilize normalizing flows.

Reconstruction-based methods. Reconstruction-based methods assume that encoder-decoder models
trained on normal samples will exhibit poor performance for anomalous samples. However, relying solely
on the reconstruction objective can result in the model collapsing to an identity mapping. To address
this, structural assumptions are made regarding the data generation process. One such assumption is the
Manifold Assumption, which posits that the observed data resides in a lower-dimensional manifold within
the data space. Methods leveraging this assumption impose a bottleneck by restricting the encoded space
to a lower dimensionality than the actual data space. Common deep reconstruction models used include
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Figure 2: Overview of the end-to-end architecture of ULSAD

AE or VAE-based approaches. Advanced strategies encompass techniques like reconstruction by memorised
normality (Gong et al., 2019), model architecture adaptation (Lai et al., 2019) and partial/conditional
reconstruction (Yan et al., 2021; Nguyen et al., 2019). Generative models like GANs are also widely employed
for anomaly detection, as the discriminator inherently calculates reconstruction loss for samples (Zenati
et al., 2018). Variants of GANs, such as denoising GANs (Sabokrou et al., 2018) and class-conditional GANs
(Perera et al., 2019), improve anomaly detection performance by increasing the challenge of reconstruction.
Some methods utilize the reconstructed data from GANs in downstream tasks to enhance the amplification of
reconstruction errors for anomaly detection (Zhou et al., 2020). Lastly, DRÆM (Zavrtanik et al., 2021) trains
an additional discriminative network alongside a reconstruction network to improve the AD performance.

In this paper, we focus on feature embedding-based methods motivated by their effectiveness in the current
SOTA methods. Specifically, we build on DFR (Yang et al., 2020), which has several benefits. First, it is
memory-efficient as it does not rely on a memory bank of extracted features, unlike (Roth et al., 2022).
Second, unlike (Defard et al., 2021), it does not make any assumption about the distribution of the extracted
features. Third, it is computationally efficient and less impacted by the curse of dimensionality as it operates
in the lower-dimensional latent space of a deep neural network. Last, by avoiding the use of per-pixel distance
in its reconstruction objective, it is less prone to false positives (Assran et al., 2023).

3 The ULSAD Framework for Anomaly Detection
We propose ULSAD, a framework for simultaneously detecting and localising anomalies in images as shown
in Figure 2. Firstly, we utilize a feature extractor network for extracting low-dimensional features from
high-dimensional images, which we discuss in Section 3.1. Then, for the detection of structural and logical
anomalies, we rely on a dual-branch architecture. The local branch detects structural anomalies with the
help of a feature reconstruction network applied to the features corresponding to patches in the input image.
We elaborate on this in Section 3.2. Conversely, the global branch, as discussed in Section 3.3, detects logical
anomalies using an autoencoder-like network, which takes as input the entire image. Lastly, we provide an
overview of the training algorithm of ULSAD in Section 3.4 followed by a discussion on the inference process
in Section 3.5.

We consider a dataset D = {(Xi, yi)}ni=1 with n samples where Xi ∈ X is an input and yi ∈ Y := {0, 1} is
the corresponding label. It is important to note that for this work, we specifically focus on image-based AD
where each input Xi is an image. We refer to the normal class with the label 0 and the anomalous class with
the label 1. The samples belonging to the anomalous class can contain either logical or structural anomalies
or a combination of both. We denote the disjoint train and test partitions of D as Dtrain and Dtest. The
training set contains only normal samples, i.e., yi = 0. Therefore, for the sake of simplicity, we refer to it as
DN = {Xi | (Xi, yi) ∈ Dtrain}. The test set Dtest includes both normal and anomalous samples.
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3.1 Feature Extractor

High-dimensional images pose a significant challenge for AD (Reiss et al., 2022). Recent studies have shown
that deep convolutional neural networks (CNNs) trained on ImageNet (Russakovsky et al., 2015) capture
discriminative features for several downstream tasks. Typically, AD methods (Salehi et al., 2021; Defard et al.,
2021; Yoon et al., 2023) leverage such pre-trained networks to extract features corresponding to partially
overlapping regions or patches in the images. A key factor determining the efficiency of such networks is
the size of the image patches being used, as anomalies can occur at any scale. To overcome this challenge,
features are extracted from multiple layers of the CNNs and fused together (Salehi et al., 2021; Roth et al.,
2022; Yang et al., 2020). As features from each layer have a different receptive field, each element of the
extracted feature would correspond to a patch of a different size in the image. Thus, combining features from
multiple layers results in multi-scale features of image patches, referred to as patch feature.

Similar to DFR, we extract low-dimensional feature maps by combining features from multiple layers of a
pre-trained network θ. However, with the increasing number of layers, the computation becomes increasingly
expensive as the resulting tensor becomes high-dimensional. In order to overcome this, we consider two
intermediate or mid-level features. Our choice is guided by the understanding that the initial layers of such
deep networks capture generic image features, while the latter layers are often biased towards the pre-training
classification task (Roth et al., 2022). We denote the features extracted at a layer j for an image Xi as
θj(Xi). Following this convention, we express the feature map Ui ∈ U = Rc

∗×h∗×w∗ produced by the Feature
Aggregator (FA) as a concatenation of θj(Xi) and θj+1(Xi) obtained from layers j and j+1 of θ. Furthermore,
to facilitate the concatenation of features extracted from multiple layers of the extractor θ, the features at
the lower resolution layer j + 1 are linearly rescaled by FA to match the dimension of the features at layer
j. Furthermore, we define an invertible transformation f : Rc

∗×h∗×w∗ → Rc
∗×(h∗×w∗). Now, using f , we

express Zi = f(Ui). Moreover, Zi[:, k] = Ui[:, h, w] with k = (h − 1) × w∗ + w where h ∈ {1, 2, . . . , h∗},
w ∈ {1, 2, . . . , w∗}, and k ∈ {1, 2, . . . , h∗ × w∗}. The function f can be computed in practice by reshaping
the tensor to obtain a 2D matrix.

3.2 Detecting Structural Anomalies

Given a transformed feature map Zi as described in the previous section, we elaborate on the local branch
of ULSAD for the detection of structural anomalies. Specifically, our goal is to train a neural network to
reconstruct the patch features given the dataset DN comprising solely of normal images. Therefore, we can
identify the structural anomalies when the network fails to reconstruct a patch feature during inference.

We refer to each vector in the feature map Zi as zik = Zi[:, k] ∈ Rc
∗×1. Now, recall that θ is a CNN with

multiple convolutional and pooling layers. Therefore, each c∗-dimensional feature vector zik of the output
feature map Zi has a receptive field greater than one. In other words, each feature vector zik corresponds to
a patch on the original image Xi and hence can be considered as a patch feature. The size of the patch in the
original image is determined by the receptive field of θ.

Figure 3: Feature Reconstruction Network

Feature Reconstruction Network (FRN). ULSAD uti-
lizes a convolutional encoder-decoder architecture with a
lower-dimensional bottleneck for learning to reconstruct
the feature map Ui given the normal images in training
dataset DN , as illustrated in Figure 3. First, the encoder
network ψe compresses the feature Ui to a lower dimen-
sional space, which induces the information bottleneck. It
acts as an implicit regularizer, preventing generalization to
features corresponding to anomalous images. The encoded
representation is then mapped back to the latent space
using a decoder network ψd. Therefore, we can express
the FRN as ψ = ψe ◦ψd. The output of FRN is Ũi = ψ(Ui) ∈ R2c∗×h∗×w∗ . Note that the number of channels
is doubled to simultaneously generate two feature maps Ũ

′
i and Ũ

′′
i , both having dimension c∗ × h∗ ×w∗. For

the local objective, we utilize Ũ
′
i, while Ũ

′′
i is used in the global objective. Inspired by Salehi et al. (2021), we

consider the difference between patch feature and their corresponding reconstruction considering both the
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value and direction in the local loss, which is defined as

Lpl(Z̃ ′
i,Zi) = 1

h∗ × w∗

h∗w∗∑
k=1

lv(z̃′
ik, zik) + λl ld(z̃′

ik, zik), (1)

where Z̃ ′
i = f(Ũ

′
i), Zi = f(Zi) and λl ≥ 0 is a hyperparameter. Furthermore, lv(z̃′

ik, zik) measures the
difference in values between the vectors zik and z̃′

ik, while ld(z̃′
ik, zik) measures the angular distance between

them. We define lv and ld as

lv(z̃′
ik, zik) = 1

c∗ ∥z̃
′
ik − zik∥2

2, and ld(z̃′
ik, zik) = 1− (z̃′

ik)Tzik
∥z̃′
ik∥2∥zik∥2

. (2)

3.3 Detecting Logical Anomalies
Although the feature reconstruction task discussed in Section 3.2 allows us to detect structural anomalies, it
is not suited for identifying logical anomalies that violate the logical constraints of normal images. Recall
that such violations appear in the form of misplaced, misaligned, or surplus objects found in normal images.
If we consider the example of misaligned objects, the previously discussed approach will fail as it focuses on
the individual image patches, which would be normal. It is the overall spatial arrangement of objects in the
image which is anomalous. Thus, to identify such anomalies, our goal is to learn the spatial relationships
among the objects present in the normal images of the training dataset DN . We achieve this with the global
branch of ULSAD, shown in Figure 4, which leverages the entire image and not just its individual patches.

Figure 4: Global Branch of ULSAD

In order to achieve our goal, we start with
an observation of the features extracted using
the pre-trained network θ. Pre-trained CNNs
tend to have similar activation patterns for se-
mantically similar objects (Tung & Mori, 2019;
Zagoruyko & Komodakis, 2017). In Figure 5,
we visualize four attention maps computed from
the features of a pre-trained Wide-Resnet50-2
network. It can be seen that in the first map,
all the items for the semantic class “fruits” re-
ceive a high attention score. The remaining
attention maps focus on individual semantic
concepts like “oranges”, “cereal” and “plate”,
respectively.

Based on this observation and inspired by the attention-transfer concept for knowledge distillation (Zagoruyko
& Komodakis, 2017; Tung & Mori, 2019), we propose to learn the spatial relationships (Dosovitskiy et al.,
2021) among the feature vectors in Ui obtained from normal images. Recall that each feature vectors
correspond to a patch in the original image. Therefore, learning the spatial relationships among the feature
vectors would allow us to learn the same among the patches in the original image. Starting from Zi = f(Ui),
we first compute the self-attention weight matrix Wi ∈ R(h∗×w∗)×(h∗×w∗), such that

Wi[p, q] =
exp(zTip ziq/

√
c∗)∑h∗×w∗

r=1 exp(zTir ziq/
√
c∗)

. (3)

Then, the attention map Ai ∈ Rc
∗×(h∗×w∗) is computed as Ai = ZiWi. For learning the spatial relations

using Ai as our target, we use a convolutional autoencoder-like network ϕ = ϕe ◦ ϕd where ϕe is the encoder
and ϕd is the decoder. Similar to a standard autoencoder, ϕe compresses the input image Xi to a lower
dimensional space. However, ϕd maps the encoded representation to the feature space U , which has a lower
dimension than the input space X . We denote the output of ϕ as Ûi = ϕ(Xi).

A direct approach would be to compute the self-attention map for Ûi and minimize its distance from Ai.
However, it makes the optimization problem computationally challenging as each vector in Ûi is coupled
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Figure 5: (First) Example image belonging to the category “breakfast box” in the MVTecLOCO dataset.
(Rest) Visualization of attention maps computed using the intermediate features from a pre-trained model.

with every other vector by the network weights ϕ (Zhang et al., 2023). To overcome this, we compute the
cross-attention map Âi ∈ Rc

∗×(h∗×w∗) between Ui and Ûi, by first computing Ŵi using Ẑi = f(Ûi) as

Ŵi[p, q] =
exp(zTip ẑiq/

√
c∗)∑h∗×w∗

r=1 exp(zTir ẑiq/
√
c∗)

. (4)

Then, the attention map Âi can be computed as Âi = ZiŴi. Given, the self-attention map Ai and the
cross-attention map Âi, the global loss is defined as

Lpg(Âi,Ai) = 1
h∗ × w∗

h∗w∗∑
k=1

lv(âik,aik) + λg ld(âik,aik), (5)

where aik = Ai[:, k], âik = Âi[:, k] and λg ≥ 0 is a hyperparameter. It is important to note that the loss in
Equation 5 is minimized when the attention map Âi is the mean over all the training samples. As a result,
the global branch is prone to false positives in the presence of sharp edges or heavily textured surfaces due to
the loss of high-frequency details (Dosovitskiy & Brox, 2016; Assran et al., 2023). To address this, we utilize
the FRN ψ in the local branch to learn the output Ûi. Recall that the output of FRN Ũ ∈ R2c∗×h∗×w∗ has
2c∗ number of channels to simultaneously generate two feature maps Ũ

′
i and Ũ

′′
i , both having dimension

c∗ × h∗ × w∗. Out of which, Ũ
′
i is used for learning the patch features. Here, we define the loss Llg to relate

the local feature map Ũ
′′
i with the global feature map Ûi as

Llg(Z̃ ′′
i , Ẑi) = 1

h∗ × w∗

h∗w∗∑
k=1

lv(z̃′′
ik, ẑik) + λg ld(z̃′′

ik, ẑik), (6)

where Z̃ ′′
i = f(Ũ

′′
i ). Therefore, during inference, a difference between the Ũ

′′
i and Ûi indicates the presence of

logical anomalies with fewer false positives. The benefits of such a framework are two-fold: (1) it allows for
learning the spatial relationships in the normal images while minimizing false positives, and (2) doubling the
channels in the decoder allows sharing the encoder architecture, reducing the computational costs.

3.4 Algorithmic Overview
An overview of ULSAD is outlined in Algorithm 1, which can simultaneous detect structural and logical
anomalies. Firstly, we pass a normal image Xi from the training dataset DN through the feature extractor θ
to obtain multi-scale feature Ui. We normalize the features (line 4, Algorithm 1) with the channel-wise mean
µ and standard deviation σ computed over all the features. We do not include this step in Algorithm 1 as
the calculation is trivial. Instead, we consider the values µ and σ to be given as input parameters for the
sake of simplicity. Secondly, we obtain Ũi by passing Ui through the feature reconstruction network ψ (line
7, Algorithm 1). Recall that, Ũi has a dimension 2c∗ × h∗ × w∗ which can be decomposed into two feature
maps Ũ

′
i and Ũ

′′
i each with a dimension c∗ × h∗ × w∗. The feature reconstruction loss Lpl is then computed
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Algorithm 1: Unified Logical and Structural AD (ULSAD) // Local branch Global branch
Require: Training dataset DN , Feature extractor θ, Feature reconstruction network ϕ
Global autoencoder ψ, Number of epochs e, Learning rate η, Pretrained feature statictics µ, σ

1 for (epoch ∈ 1, · · · , e) and (Xi ∈ DN ) do
2 Extract normalized features maps using the pre-trained network:
3 Ui ← θ(Xi)
4 Ui ← (Ui − µ)/σ
5 Zi ← f(Ui)
6 Reconstruct the features maps using the local branch:
7 Ũi ← ψ(Ui)
8 Z̃i ← f(Ui)
9 Compute local loss (Eq. 1):

10 ll ← Lpl(Z̃ ′
i,Zi)

11 Obtain the output of the global autoencoder:
12 Ûi ← ϕ(Xi)
13 Ẑi ← f(Ûi)
14 Compute global loss (Eq. 5):
15 lg ← Lpg(Ẑi,Zi)
16 Compute local-global loss (Eq. 6):
17 llg ← Llg(Ẑi, Z̃

′′
i )

18 Compute overall loss:
19 l← ll + lg + llg
20 Update model parameters:
21 ϕ← ϕ− η∇ϕl
22 ψ ← ψ − η∇ψl
23 end
Return: ϕ, ψ

between Zi and Z̃ ′
i, where Zi = f(Ui) and Z̃ ′

i = f(Ũ
′
i). Thirdly, we obtain the features Ûi by passing the

input sample Xi through the autoencoder ϕ. Then for learning the spatial relationships from the normal
images, we compute Lpg between the self-attention map of Zi and the cross-attention map between Zi and
Ẑi = f(Ûi) (line 15, Algorithm 1). In the fourth step, we compute the loss Llg between Ẑi and Z̃ ′′

i = f(Ũ
′′
i ).

Finally, the model parameters ψ and ϕ are updated based on the gradient of the total loss (line 21 − 22,
Algorithm 1). The end-to-end pipeline is illustrated in Figure 2.

3.5 Anomaly Detection and Segmentation

First, the local anomaly map M l
i ∈ Rh

∗×w∗ is computed between the output of the local branch Ũ
′
i and the

feature Ui, such that

M l
i [h,w] = lv(Ũ

′
i[:, h, w], Ui[:, h, w]) + λl ld(Ũ

′
i[:, h, w], Ui[:, h, w]), (7)

where Ũ
′
i = f−1(Z̃ ′

i) and Ui = f−1(Zi). Similarly, the global anomaly map Mg
i is calculated using the

output from the global autoencoder Ẑi and the local reconstruction branch Z̃ ′′
i :

Mg
i [h,w] = lv(Ũ

′′
i [:, h, w], Ûi[:, h, w]) + λg ld(Ũ

′′
i [:, h, w], Ûi[:, h, w]), (8)

Recall that λl and λg are hyperparameters. To obtain the final anomaly map mi for the image xi, the local
and global anomaly maps are averaged. As local and global anomaly maps can have different ranges of
anomaly scores, prior to averaging, each map is normalized individually. Besides ensuring a similar range of
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scores for both maps, it prevents noise from one of the maps, making the anomaly detected from the other
map indistinguishable. In this work, we follow a quantile-based normalization. The benefit is that it does not
make any assumptions about the distribution of anomaly scores.

First, we generate two sets of anomaly maps: Ml = {M l
i |Xi ∈ Dvalid} and Mg = {Mg

i |Xi ∈ Dvalid} utilizing
images from the validation dataset Dvalid. Subsequently, we calculate the quantiles at significance levels α and
β for each of these sets. The quantiles corresponding to the scores in Mg are denoted as qgα and qgβ , whereas
those for the scores in Ml are represented as qlα and qlβ . Ultimately, employing these computed quantiles,
we establish two linear transformations, tg(·) and tl(·), for the global and local anomaly maps, respectively.
These transformations map the quantile at level α to an anomaly score of 0 and at β to a score of 0.1, as

tl(M l
i ) = 0.1

(
M l

i −

(
qlα

qlβ − qlα

)
1h∗×w∗

)
, and tg(Mg

i ) = 0.1
(

Mg
i −

(
qgα

qgβ − q
g
α

)
1h∗×w∗

)
, (9)

where 1h∗×w∗ is a matrix of all ones. During inference, the global and local anomaly maps for each sample in
Dtest are averaged after normalizing them with their respective transformations, which can be expressed as

Mi = tl(M l
i ) + tg(Mg

i )
2 .

For AD, the image anomaly score
si = max

h,w
Mi(h,w) (10)

is computed as the maximum value in the combined anomaly map Mi. We follow Batzner et al. (2024) in
mapping the destination values to 0 and 0.1 as they result in colour maps suitable for 0-to-1 colour scales. It
should be noted that the choice of mapping the quantile values has no impact on the AU-ROC scores as it
depends solely on the ranking of the scores.

4 Experimental Evaluation
In this section, we answer the following three questions: (i) How does ULSAD perform as compared to the
SOTA methods? (ii) How effective is the local and global branch for the detection of structural and logical
anomalies? (iii) How does each component in ULSAD impact the overall performance?

4.1 Setup
Benchmark Datasets. We evaluate our method on the following five IAD benchmarking datasets:

[1] MVTec AD (Bergmann et al., 2019). It consists of images from industrial manufacturing across 15
categories comprised of 10 objects and 5 textures. In totality, it contains 3,629 normal images for training.
For evaluation, 1,258 anomalous images with varying pixel level defects and 467 normal images.

[2] MVTec-Loco (Bergmann et al., 2022). An extension of MVTec dataset, it encompasses both local
structural anomalies and logical anomalies violating long-range dependencies. It consists of 5 categories, with
1,772 normal images for training and 304 normal images for validation. It also contains 1568 images, either
normal or anomalous, for evaluation.

[3] BTAD (Mishra et al., 2021). It includes 3 categories with 1,799 normal images for training. It also
consists of 290 anomalous images and 451 normal images for testing.

[4] MPDD (Jezek et al., 2021). It focuses on metal part fabrication defects. The images are captured in
variable spatial orientation, position, and distance of multiple objects concerning the camera at different light
intensities and with a non-homogeneous background. It consists of 6 classes of metal parts with 888 training
images. For evaluation, the dataset has 176 normal and 282 anomalous images.

[5] VisA (Zou et al., 2022). It contains 10,821 high-resolution images (9,621 normal and 1,200 anomalous
images) across 12 different categories. The anomalous images contain different types of anomalies such as
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Table 1: Average Detection Performance in AUROC (%). Style: best and second best

Method BTAD MPDD MVTec MVTec-LOCO VisA
PatchCore (Roth et al., 2022) 93.27 93.27 98.75 81.49 91.48
CFLOW (Gudovskiy et al., 2021) 93.57 87.11 94.47 73.62 93.57
DRÆM (Zavrtanik et al., 2021) 73.42 74.14 75.26 62.35 73.42
EfficientAD (Batzner et al., 2024) 88.26 85.42 98.23 80.62 91.21
FastFlow (Yu et al., 2021) 91.68 65.03 90.72 71.00 91.68
PaDiM (Defard et al., 2021) 93.20 68.48 91.25 68.38 93.20
Reverse Distillation (Deng & Li, 2022) 83.87 79.62 79.65 61.56 83.87
DFR (Yang et al., 2020) 94.60 79.75 93.54 72.87 94.60
ULSAD (Ours) 96.17 ± 0.45 95.73 ± 0.45 97.65 ± 0.38 84.1 ± 0.86 92.46 ± 0.45

Table 2: Average Segmentation Performance in AUROC (%) and AUPRO (%). Style: best and second best

Method BTAD MPDD MVTec MVTec-LOCO VisA
PatchCore (Roth et al., 2022) 96.85 | 71.48 98.07 | 90.84 97.71 | 91.15 75.77 | 69.09 97.93 | 85.12
CFLOW (Gudovskiy et al., 2021) 96.60 | 73.11 97.42 | 88.56 97.17 | 90.14 76.99 | 66.93 98.04 | 85.29
DRÆM (Zavrtanik et al., 2021) 59.04 | 22.48 86.96 | 70.04 75.01 | 49.72 63.69 | 40.06 71.31 | 54.68
EfficientAD (Batzner et al., 2024) 82.13 | 54.37 97.03 | 90.44 96.29 | 90.11 70.36 | 66.96 97.51 | 84.45
FastFlow (Yu et al., 2021) 96.15 | 75.27 93.60 | 76.89 96.44 | 88.79 75.55 | 53.04 97.32 | 81.70
PaDiM (Defard et al., 2021) 97.07 | 77.80 94.51 | 81.18 96.79 | 91.17 71.32 | 67.97 97.09 | 80.80
Reverse Distillation (Deng & Li, 2022) 97.85 | 81.47 97.83 | 91.86 97.25 | 93.12 68.55 | 66.28 98.68 | 91.77
DFR (Yang et al., 2020) 97.62 | 59.06 97.33 | 90.46 94.93 | 89.42 61.72 | 69.78 97.90 | 91.72

96.73 | 75.41 97.45 | 92.02 97.61 | 91.67 80.06 | 73.73 98.24 | 87.12
ULSAD (Ours)

± 0.51 | ± 3.95 ± 0.99 | ± 2.64 ± 0.64 | ± 1.36 ± 0.20 | ± 0.35 ± 0.20 | ± 0.89

scratches, bent, cracks, missing parts or misplacements. For each type of defect, there are 15-20 images, and
an image can depict multiple defects.

Evaluation metrics. We measure the image-level anomaly detection performance via the area under the
receiver operator curve (AUROC) based on the assigned anomaly score. To measure the anomaly localization
performance, we use pixel-level AUROC and area under per region overlap curve (AUPRO). Furthermore,
following prior works (Roth et al., 2022; Gudovskiy et al., 2021; Bergmann et al., 2019), we compute the
average metrics over all the categories for each of the benchmark datasets. Moreover, for ULSAD, we report all
the results over 5 runs with different random seeds.

Baselines. We compare our method with existing state-of-the-art unsupervised AD methods, namely
PatchCore (Roth et al., 2022), PaDim (Defard et al., 2021), CFLOW (Gudovskiy et al., 2021), FastFLOW (Yu
et al., 2021), DRÆM (Zavrtanik et al., 2021), Reverse Distillation (Deng & Li, 2022) and DFR (Yang et al.,
2020). In this study, we only consider baselines that are capable of both anomaly detection and localization.

Implementation details. ULSAD is implemented in PyTorch (Paszke et al., 2019). For the baselines, we
followed the implementation in Anomalib (Akcay et al., 2022), a widely used AD library for benchmarking.
In ULSAD, we used a Wide-ResNet50-2 pre-trained on ImageNet (Zagoruyko & Komodakis, 2016) similar
to PathCore (Roth et al., 2022). We used a convolutional autoencoder-like network in the global branch ϕ
and the feature prediction network ψ. It consists of convolution layers with LeakyReLU activation in the
encoder and deconvolution layers in the decoder. The exact architecture is provided in the Appendix A.
Unless otherwise stated, for all the experiments, we considered an image size of 256× 256. We train ULSAD
over 200 epochs for each category using an Adam optimizer with a learning rate of 0.0002 and a weight decay
of 0.00002. For the baselines, we used the hyperparameters mentioned in the respective paper.

4.2 Evaluation Results
We summarize the anomaly detection performance of ULSAD in Table 1 and the localization performance in
Table 2. On the BTAD dataset, we improve over the DFR by approximately 2% in detection. Inspecting the
images from the dataset, we hypothesize that the difference stems from the use of a global branch in ULSAD
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Figure 6: Example of anomaly maps obtained from global and local branches along with the combined map.

as the structural imperfections are not limited to small regions. For localization, reverse distillation performs
better owing to the use of multi-scale anomaly maps. We can observe similar improvements over DFR on
MVTec dataset. Although PatchCore provides superior performance on MVTec, it should be noted that
even without using a memory bank, ULSAD provides comparable results. Then, we focus on more challenging
datasets such as MPDD and MVTecLOCO. While MPDD contains varying external conditions such as
lighting, background and camera angles, MVTecLOCO contains both logical and structural anomalies. We
can observe improvements over DFR (∼ 12− 16%) in both datasets. This highlights the effectiveness of our
method. We visualize the anomaly maps for samples from the “pushpin” and “juice bottle” categories in
Figure 6. We provide anomaly maps obtained from different methods in Figure 9. It can be seen that while
the global branch is more suited to the detection of logical anomalies, the local branch is capable of detecting
localized structural anomalies. Extended versions of Table 1 and 2 are provided in the Appendix B.

4.3 Ablation study
Table 3: Ablation of the main components of ULSAD.

Local Branch Global Branch Performance (%)
λl λg Llg Ld

pg Lpg IAUROC | PAUROC | PAUPRO

0.0 - - - - 77.67 | 75.17 | 73.37
0.0 0.0 - ✓ - 77.69 | 79.77 | 75.26
0.0 0.0 - - ✓ 71.67 | 73.92 | 67.22
0.0 0.0 ✓ ✓ - 81.40 | 82.12 | 77.47
0.0 0.0 ✓ - ✓ 81.08 | 81.97 | 76.45
0.5 - - - - 79.14 | 76.57 | 73.41
0.5 0.5 - ✓ - 80.50 | 81.85 | 77.35
0.5 0.5 - - ✓ 74.51 | 76.59 | 69.01
0.5 0.5 ✓ ✓ - 82.19 | 81.25 | 75.50
0.5 0.5 ✓ - ✓ 84.15 | 79.78 | 73.68

84.10 | 80.06 | 73.730.5 0.5 ✓ - ✓
± 0.86 | ± 0.20 | ± 0.35

Analysis of main components. We
investigate the impact of the key com-
ponents in ULSAD by sequentially adding
them. For the ablations, we report the
detection and localization performance on
the MVTecLOCO dataset in Table 3. In
the initial set of experiments, we set both
λl and λg to 0. This results in the use of
only the difference in values while comput-
ing the global and local objectives. The
first row of the table corresponds to the
use of only the local branch. We observe
a slight improvement in both detection
and localization performance when con-
sidering the global branch in addition to the local branch. For the sake of completeness, we also consider
here a variant of the global loss Lpg where we compute the ℓ2 distance between the feature maps instead of
computing the self- and cross-attention maps. We refer to the alternative in the table as Ldpg. It can be seen
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(a) Image AUROC (b) Pixel AUROC (c) Pixel AUPRO

Figure 7: Ablation of α and β.

that when using the cross-attention map without considering the difference in direction, the performance
drops compared to using Ldpg. On incorporation of the loss term that relates the global and local branches
Ldlg, we see a significant boost in the overall performance. Further, the difference in performance between the
two variants of the global loss becomes negligible. Considering the difference of direction in both the global
and local objectives, we observe improvements over just using the difference in values, as seen in the last five
rows of the table. Overall, the best performance is obtained by incorporating both the local-global loss term
and the attention-based global objective.

Effect of normalization. We analyze the impact of the quantile-based normalization on the performance
metrics by considering multiple values for α and β. The results are shown in the Figure 7. It can be seen that
the final performance is robust to the choice of α and β. For our experiments, we set α = 0.9 and β = 0.995.

Figure 8: Ablation study of the backbone network

Effect of backbone. We investigate the impact
of using different pre-trained backbones in ULSAD
in Figure 8. It is observed that the overall best
performance is obtained by using a Wide-ResNet101-
2 architecture in both detection and localization.
More specifically, for detection, Wide-ResNet vari-
ants are more effective than the ResNet architec-
tures, whereas, for localization performance mea-
sured using Pixel AUROC, the deeper networks such
as ResNet152 and Wide-ResNet101-2 seem to have
precedence over their shallower counterparts. Over-
all, we can see that performance is robust to the
choice of pre-trained model architecture. In our experiments, we utilize a Wide-ResNet50-2 architecture
which is used by most of our baselines for fair comparison.

5 Conclusion
Our study focuses on Deep Feature Reconstruction (DFR), which offers a memory- and compute-efficient
way of detecting structural anomalies. We develop ULSAD, a unified framework for detecting structural and
logical anomalies, which utilizes a dual-branch architecture by extending DFR. Specifically, we improve the
training objective of DFR to enhance the capability to detect structural anomalies, which we refer to as the
local branch. Furthermore, the bottleneck used in FRN at the local branch acts as an implicit regularizer,
preventing the over-expressiveness of the model without using additional computationally expensive methods
of regularization. Additionally, we introduce an attention-based loss using an autoencoder-like network for
detecting logical anomalies in the global branch. Through extensive experimentation across five benchmarking
image AD datasets, we demonstrate that ULSAD can provide competitive performance in the detection and
localization of both structural and logical anomalies compared to eight state-of-the-art methods. Importantly,
it performs well even when compared to memory-intensive retrieval-based methods such as PatchCore (Roth
et al., 2022). Lastly, ablations demonstrate the impact of various components used in ULSAD and the influence
of the pre-trained backbone θ on the overall performance.
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Reproducibility Statement. We provide extensive descriptions of implementation details (in Section 4.1)
and algorithm (in Algorithm 1) to help readers reproduce our results. Every measure is taken to ensure
fairness in our comparisons by adopting the most commonly adopted evaluation settings in the anomaly
detection literature. More specifically, we use the Anomalib library for our experiments, whenever applicable,
for comparing their performance with ULSAD. For methods such as DFR (Yang et al., 2020), which is not
implemented in Anomalib, we refer to the original codebase provided by the authors. We will publicly release
the code upon acceptance.

Ethics Statement. We have read the TMLR Ethics Guidelines (https://jmlr.org/tmlr/ethics.html) and
ensured that this work adheres to it. All benchmark datasets and pre-trained model checkpoints are publicly
available and not directly subject to ethical concerns.
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A Implementation Details

ULSAD is implemented in PyTorch (Paszke et al., 2019). Specifically, we used the Anomalib (Akcay et al., 2022)
library by incorporating our code within it. It helps us have a fair comparison as we use the implementations
of baselines from Anomalib. Moreover, we used a single NVIDIA A4000 GPU for all the experiments. The
architecture of FRN and global autoencoder-like model is provided in Table 4 and 5, respectively.

Table 4: Feature Reconstruction Network of ULSAD.

Layer Name Stride Kernel Size Number of Kernels Padding Activation
Conv-1 2 3× 3 768 1 ReLU
BatchNorm-1 - - - - -
Conv-2 2 3× 3 1536 1 ReLU
BatchNorm-2 - - - - -
Conv-3 1 3× 3 1536 1 ReLU

Encoder

BatchNorm-3 - - - - -
ConvTranspose-1 2 4× 4 768 1 ReLU
BatchNorm-4 - - - - -
ConvTranspose-2 2 4× 4 384 1 ReLU
BatchNorm-5 - - - - -
ConvTranspose-3 1 5× 5 384 1 ReLU

Decoder

BatchNorm-6 - - - - -

Table 5: Global Autoencoder of ULSAD.

Layer Name Stride Kernel Size Number of Kernels Padding Activation
Conv-1 2 4× 4 32 1 ReLU
BatchNorm-1 - - - - -
Conv-2 2 4× 4 32 1 ReLU
BatchNorm-2 - - - - -
Conv-3 2 4× 4 64 1 ReLU
BatchNorm-3 - - - - -
Conv-4 2 4× 4 64 1 ReLU
BatchNorm-4 - - - - -
Conv-5 2 4× 4 64 1 ReLU
BatchNorm-5 - - - - -
Conv-6 1 8× 8 64 1 ReLU

Encoder

BatchNorm-6 - - - - -
Interpolate-1 (31, mode= "bilinear") - - - - -
Conv-1 1 4× 4 64 2 ReLU
BatchNorm-1 - - - - -
Interpolate-2 (8, mode= "bilinear") - - - - -
Conv-2 1 4× 4 64 2 ReLU
BatchNorm-2 - - - - -
Interpolate-3 (16, mode= "bilinear") - - - - -
Conv-3 1 4× 4 64 2 ReLU
BatchNorm-3 - - - - -
Interpolate-4 (32, mode= "bilinear") - - - - -
Conv-4 1 4× 4 64 2 ReLU
BatchNorm-4 - - - - -
Interpolate-5 (64, mode= "bilinear") - - - - -
Conv-5 1 4× 4 64 2 ReLU
BatchNorm-5 - - - - -
Interpolate-6 (32, mode= "bilinear") - - - - -
Conv-6 1 3× 3 64 1 ReLU
BatchNorm-6 - - - - -

Decoder

Conv-7 1 3× 3 384 1 ReLU
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B Extended Results
Extended versions of the Table 1 and 2 are provided in Tables 6-20. It shows the performance of ULSAD per
category of the benchmark datasets for anomaly detection and localization. Additionally, we provide a visual
comparison of the generated anomaly maps using the MVTecLOCO dataset in Figure 9.

Table 6: Anomaly detection based on Image AUROC on MVTec dataset.

CFLOW DRÆM FastFlow PaDiM PatchCore R4AD DFR EffAD ULSADCategory
(2021) (2021) (2021 (2021) (2022) (2022) (2020) (2024) (Ours)

bottle 100.0 94.6 98.57 99.37 100.0 98.10 94.92 100.0 100.0 ± 0.00

cable 93.46 74.29 89.30 86.94 98.54 95.41 79.54 94.61 97.92 ± 0.18

capsule 91.74 65.46 86.04 88.43 97.93 81.01 96.01 95.57 94.61 ± 0.28

carpet 93.26 57.70 98.76 97.31 97.91 57.95 97.59 99.70 98.50 ± 0.17

grid 93.57 76.02 99.08 84.04 97.24 93.07 94.57 100.0 92.67 ± 1.20

hazelnut 100.0 84.43 81.57 86.07 100.0 99.82 100.0 93.39 99.93 ± 0.05

leather 99.97 79.31 100.0 99.66 100.0 42.39 99.46 99.92 100.0 ± 0.00

metal_nut 99.76 45.06 94.53 96.92 99.61 67.20 93.06 99.34 98.88 ± 0.07

pill 90.73 44.65 87.53 88.52 94.35 54.66 92.06 99.08 96.17 ± 0.39

screw 88.30 89.38 66.00 75.24 98.26 94.57 93.69 98.09 95.20 ± 0.15

tile 100.0 90.15 95.42 95.49 98.67 97.37 92.97 99.85 99.99 ± 0.02

toothbrush 83.33 80.28 79.44 93.61 100.0 84.72 100.0 100.0 100.0 ± 0.00

transistor 91.50 88.37 94.42 92.29 100.0 83.29 80.54 96.57 97.65 ± 0.57

wood 98.33 90.96 97.54 98.33 99.30 53.16 98.77 98.13 98.81 ± 0.23

zipper 93.07 68.17 92.54 86.48 99.47 92.04 89.97 99.22 94.36 ± 0.13

Mean 94.47 75.26 90.72 91.25 98.75 79.65 93.54 98.23 97.65 ± 0.38

Table 7: Anomaly segmentation performance based on Pixel AUROC on MVTec dataset.

CFLOW DRÆM FastFlow PaDiM PatchCore R4AD DFR EffAD ULSADCategory
(2021) (2021) (2021 (2021) (2022) (2022) (2020) (2024) (Ours)

bottle 98.58 76.53 97.8 98.3 97.98 98.31 90.83 98.31 96.21 ± 2.21

cable 96.1 66.59 95.71 96.81 98.03 96.37 91.37 98.5 97.71 ± 0.06

capsule 98.71 86.96 98.37 98.67 98.77 98.96 98.46 98.33 98.95 ± 0.03

carpet 98.57 71.95 98.27 98.68 98.67 99.05 98.46 94.83 99.18 ± 0.06

grid 97.49 53.56 98.39 92.82 97.86 99.01 97.41 96.02 95.47 ± 1.09

hazelnut 98.64 84.66 94.79 97.85 98.43 98.91 98.53 96.15 98.81 ± 0.03

leather 99.42 63.32 99.62 99.30 98.87 99.17 99.33 97.5 98.68 ± 0.01

metal_nut 97.97 80.25 97.01 96.71 98.51 97.68 93.02 98.07 97.62 ± 0.03

pill 97.83 77.17 96.38 95.03 97.53 96.96 96.86 98.63 96.67 ± 0.09

screw 97.64 83.38 89.87 97.89 99.19 99.43 99.07 98.50 99.33 ± 0.01

tile 96.68 85.75 93.14 92.42 94.86 95.47 90.82 91.61 95.78 ± 0.05

toothbrush 98.16 90.70 97.50 98.83 98.67 98.99 98.49 96.0 98.42 ± 0.02

transistor 89.91 63.23 96.45 96.85 96.84 86.77 79.11 94.77 98.89 ± 0.05

wood 94.70 71.73 95.71 93.83 93.31 95.06 95.36 90.85 95.20 ± 0.31

zipper 97.08 69.31 97.62 97.82 98.06 98.54 96.85 96.21 97.24 ± 0.07

Mean 97.17 75.01m 96.44 96.79 97.71 97.25 94.93 96.29 97.61 ± 0.64
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Table 8: Anomaly segmentation performance based on Pixel AUPRO on MVTec dataset.

CFLOW DRÆM FastFlow PaDiM PatchCore R4AD DFR EffAD ULSADCategory
(2021) (2021) (2021 (2021) (2022) (2022) (2020) (2024) (Ours)

bottle 94.19 50.05 92.0 95.11 92.28 95.12 83.14 93.84 90.16 ± 3.24

cable 85.85 28.58 86.65 89.65 90.77 90.32 83.09 92.53 88.63 ± 0.48

capsule 90.47 81.11 90.15 92.62 92.4 93.93 96.33 91.09 93.77 ± 0.16

carpet 92.64 48.64 94.63 95.59 92.7 96.41 95.47 90.99 96.39 ± 0.24

grid 90.52 17.71 93.95 82.52 89.46 96.39 91.15 93.14 83.3 ± 3.96

hazelnut 96.12 76.19 93.92 92.95 94.44 96.92 97.17 83.25 94.87 ± 0.3

leather 98.39 52.1 99.06 97.91 96.33 97.97 98.34 97.32 97.44 ± 0.01

metal_nut 88.97 35.79 85.89 90.45 91.9 94.4 87.01 92.97 91.58 ± 0.19

pill 93.67 64.26 91.0 93.88 93.92 94.76 95.86 95.93 94.5 ± 0.08

screw 90.25 53.22 68.6 92.14 95.39 97.05 95.96 96.04 96.45 ± 0.1

tile 91.49 58.48 81.01 78.32 79.64 88.4 79.36 83.54 87.82 ± 0.15

toothbrush 81.05 54.02 80.62 93.52 86.48 92.23 92.93 88.61 86.28 ± 0.46

transistor 78.75 51.37 88.92 89.04 94.06 75.05 64.25 82.82 91.61 ± 0.68

wood 90.5 45.29 93.26 91.39 85.08 92.69 92.48 76.16 91.34 ± 0.29

zipper 89.3 28.98 92.12 92.48 92.43 95.18 88.74 93.48 90.89 ± 0.35

Mean 90.14 49.72 88.79 91.17 91.15 93.12 89.42 90.11 91.67 ± 1.36

Table 9: Anomaly detection performance based on Image AUROC on MVTecLOCO dataset.

CFLOW DRÆM FastFlow PaDiM PatchCore R4AD DFR EffAD ULSADCategory
(2021) (2021) (2021 (2021) (2022) (2022) (2020) (2024) (Ours)

breakfast_box 71.86 70.26 74.04 63.66 85.24 52.69 65.46 74.80 83.54 ± 0.23

juice_bottle 81.70 62.55 78.03 88.42 92.51 76.28 86.81 98.89 97.12 ± 0.10

pushpins 73.43 51.32 61.20 61.30 75.54 50.72 72.68 80.58 86.85 ± 0.94

screw_bag 65.48 59.39 68.04 60.14 69.90 65.15 63.55 67.42 70.71 ± 1.49

splicing_connectors 75.63 68.25 73.71 68.40 84.24 62.95 75.87 81.39 82.30 ± 0.72

Mean 73.62 62.35 71.00 68.38 81.49 61.56 72.87 80.62 84.1 ± 0.86

Table 10: Anomaly segmentation performance based on Pixel AUROC on MVTecLOCO dataset.

CFLOW DRÆM FastFlow PaDiM PatchCore R4AD DFR EffAD ULSADCategory
(2021) (2021) (2021 (2021) (2022) (2022) (2020) (2024) (Ours)

breakfast_box 89.6 63.61 82.73 87.35 88.53 85.78 76.25 80.76 89.14 ± 0.11

juice_bottle 91.37 80.71 86.33 91.99 90.54 90.41 87.06 88.40 89.07 ± 0.10

pushpins 70.66 54.74 82.94 40.72 67.67 41.42 29.42 59.96 75.64 ± 0.36

screw_bag 69.94 65.23 58.07 65.35 62.40 67.33 59.74 61.64 71.35 ± 0.12

splicing_connectors 63.40 54.16 67.69 71.20 69.71 57.82 56.14 61.02 75.10 ± 0.20

Mean 76.99 63.69 75.55 71.32 75.77 68.55 61.72 70.36 80.06 ± 0.20
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Table 11: Anomaly segmentation performance based on Pixel AUPRO on MVTecLOCO dataset.

CFLOW DRÆM FastFlow PaDiM PatchCore R4AD DFR EffAD ULSADCategory
(2021) (2021) (2021 (2021) (2022) (2022) (2020) (2024) (Ours)

breakfast_box 67.27 36.11 63.8 74.28 73.08 69.67 63.56 58.44 71.36 ± 0.38

juice_bottle 80.75 51.51 77.90 88.78 85.42 84.95 82.88 86.51 87.72 ± 0.09

pushpins 61.09 24.68 50.62 52.71 63.52 53.52 59.12 59.25 68.34 ± 0.55

screw_bag 54.39 31.27 38.1 61.42 56.12 59.66 71.66 62.45 66.52 ± 0.33

splicing_connectors 71.15 56.72 34.77 62.64 67.29 63.62 71.67 68.14 74.70 ± 0.25

Mean 66.93 40.06 53.04 67.97 69.09 66.28 69.78 66.96 73.73 ± 0.35

Table 12: Anomaly detection performance based on Image AUROC on MPDD dataset.

CFLOW DRÆM FastFlow PaDiM PatchCore R4AD DFR EffAD ULSADCategory
(2021) (2021) (2021 (2021) (2022) (2022) (2020) (2024) (Ours)

tubes 99.64 61.28 89.36 56.48 87.50 89.67 94.47 95.28 93.39 ± 0.57

metal_plate 97.42 80.05 86.92 42.69 99.72 91.87 68.31 100.0 93.81 ± 0.28

connector 99.52 83.33 52.38 86.07 100.0 93.10 100.0 50.00 96.00 ± 0.82

bracket_white 79.89 84.00 50.78 80.33 89.67 83.67 54.55 96.48 100.0 ± 0.00

bracket_black 96.48 65.36 62.83 66.69 86.97 50.73 72.63 85.45 93.09 ± 0.32

bracket_brown 49.70 70.81 47.89 78.66 95.78 68.70 88.54 85.32 98.08 ± 0.14

Mean 87.11 74.14 65.03 68.48 93.27 79.62 79.75 85.42 95.73 ± 0.45

Table 13: Anomaly segmentation performance based on Pixel AUROC on MPDD dataset.

CFLOW DRÆM FastFlow PaDiM PatchCore R4AD DFR EffAD ULSADCategory
(2021) (2021) (2021 (2021) (2022) (2022) (2020) (2024) (Ours)

tubes 99.15 76.87 98.44 91.35 98.45 99.08 98.62 98.98 98.55 ± 0.10

metal_plate 98.56 96.23 92.99 91.67 98.30 97.50 93.59 96.52 96.77 ± 0.09

connector 97.38 90.01 92.69 97.93 99.11 98.55 98.68 99.32 99.40 ± 0.18

bracket_white 96.74 86.64 90.23 97.21 97.90 98.13 96.63 97.71 98.73 ± 0.1

bracket_black 97.68 95.89 94.39 93.79 97.52 96.40 98.42 97.17 97.43 ± 0.21

bracket_brown 95.04 76.11 92.84 95.13 97.15 97.34 98.06 92.46 93.83 ± 2.41

Mean 97.42 86.96 93.60 94.51 98.07 97.83 97.33 97.03 97.45 ± 0.99

Table 14: Anomaly segmentation performance based on Pixel AUPRO on MPDD dataset.

CFLOW DRÆM FastFlow PaDiM PatchCore R4AD DFR EffAD ULSADCategory
(2021) (2021) (2021 (2021) (2022) (2022) (2020) (2024) (Ours)

tubes 96.76 44.84 94.85 71.53 93.83 95.98 95.20 96.27 94.33 ± 0.33

metal_plate 91.53 82.83 74.62 75.47 92.50 92.00 83.99 83.59 90.07 ± 0.22

connector 91.32 72.06 76.98 92.74 96.89 95.29 95.60 97.77 97.98 ± 0.60

bracket_white 78.66 69.13 49.65 81.16 83.13 84.71 77.02 93.27 95.33 ± 0.37

bracket_black 89.48 93.12 79.65 83.51 93.65 89.14 95.57 89.98 90.17 ± 0.67

bracket_brown 83.62 58.29 85.62 82.69 85.07 94.04 95.37 81.77 84.24 ± 6.38

Mean 88.56 70.04 76.89 81.18 90.84 91.86 90.46 90.44 92.02 ± 2.64
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Table 15: Anomaly detection performance based on Image AUROC on BTAD dataset.

CFLOW DRÆM FastFlow PaDiM PatchCore R4AD DFR EffAD ULSADCategory
(2021) (2021) (2021 (2021) (2022) (2022) (2020) (2024) (Ours)

01 98.64 80.17 94.46 99.51 98.09 92.23 99.51 94.15 100.0 ± 0.00

02 82.12 65.23 84.27 82.17 81.73 61.73 85.68 75.42 88.5 ± 0.78

03 99.95 74.87 96.3 97.92 100.0 97.65 98.62 95.22 100.0 ± 0.00

Mean 93.57 73.42 91.68 93.20 93.27 83.87 94.60 88.26 96.17 ± 0.45

Table 16: Anomaly segmentation performance based on Pixel AUROC on BTAD dataset.

CFLOW DRÆM FastFlow PaDiM PatchCore R4AD DFR EffAD ULSADCategory
(2021) (2021) (2021 (2021) (2022) (2022) (2020) (2024) (Ours)

01 95.44 59.11 93.05 96.54 95.94 96.98 96.93 64.59 95.86 ± 0.03

02 94.81 69.29 96.16 95.11 95.18 96.83 96.77 85.67 94.76 ± 0.88

03 99.55 48.73 99.25 99.56 99.44 99.74 99.12 96.12 99.55 ± 0.02

Mean 96.60 59.04 96.15 97.07 96.85 97.85 97.62 82.13 96.73 ± 0.51

Table 17: Anomaly segmentation performance based on AUPRO on BTAD dataset.

CFLOW DRÆM FastFlow PaDiM PatchCore R4AD DFR EffAD ULSADCategory
(2021) (2021) (2021 (2021) (2022) (2022) (2020) (2024) (Ours)

01 66.79 21.57 60.83 75.76 64.34 79.45 83.77 29.75 72.88 ± 0.12

02 54.32 27.64 67.98 59.19 52.36 66.05 65.58 44.37 55.16 ± 6.83

03 98.21 18.24 96.99 98.45 97.76 98.92 27.83 88.98 98.18 ± 0.08

Mean 73.11 22.48 75.27 77.80 71.48 81.47 59.06 54.37 75.41 ± 3.95

Table 18: Anomaly detection performance based on Image AUROC on VisA dataset.

CFLOW DRÆM FastFlow PaDiM PatchCore R4AD DFR EffAD ULSADCategory
(2021) (2021) (2021 (2021) (2022) (2022) (2020) (2024) (Ours)

candle 94.38 79.43 93.18 86.19 98.59 85.54 89.65 80.52 87.11 ± 0.29

capsules 69.9 72.77 81.05 61.72 69.92 87.37 76.75 63.73 79.61 ± 0.72

cashew 94.7 95.5 87.78 90.94 96.29 85.38 93.80 96.11 94.72 ± 0.16

chewinggum 99.02 83.68 95.18 98.20 99.29 81.92 99.22 98.27 99.49 ± 0.12

fryum 92.98 70.46 92.60 85.06 93.5 77.94 96.58 95.70 95.86 ± 0.14

macaroni1 92.72 72.8 82.48 78.62 91.50 82.06 95.14 95.23 90.66 ± 0.76

macaroni2 63.44 47.85 69.75 70.05 71.36 81.75 86.25 83.82 82.84 ± 1.05

pcb1 91.06 72.27 88.07 87.59 95.08 92.60 97.57 93.78 92.92 ± 0.11

pcb2 79.95 91.17 86.47 83.20 92.46 87.57 91.55 94.95 93.67 ± 0.18

pcb3 82.23 81.29 81.47 72.79 92.46 90.87 97.27 95.92 93.62 ± 0.16

pcb4 96.29 90.44 95.68 95.67 99.20 96.17 97.62 97.89 99.43 ± 0.03

pipe_fryum 96.54 75.32 96.16 89.28 98.07 85.68 98.36 98.59 99.61 ± 0.11

Mean 87.77 77.75 87.49 83.28 91.48 86.24 85.18 91.21 92.46 ± 0.45
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Table 19: Anomaly segmentation performance based on Pixel AUROC on VisA dataset.

CFLOW DRÆM FastFlow PaDiM PatchCore R4AD DFR EffAD ULSADCategory
(2021) (2021) (2021 (2021) (2022) (2022) (2020) (2024) (Ours)

candle 98.75 83.1 97.24 97.68 98.92 99.11 98.41 89.93 97.77 ± 0.03

capsules 96.88 62.39 97.13 90.60 97.62 99.56 99.13 96.93 98.31 ± 0.31

cashew 99.25 74.17 98.57 97.45 98.88 97.23 95.63 98.85 99.49 ± 0.02

chewinggum 99.02 84.11 98.83 98.82 98.72 99.37 99.16 98.69 98.10 ± 0.41

fryum 97.08 85.7 93.20 96.20 94.30 96.33 95.45 96.52 97.38 ± 0.19

macaroni1 98.71 63.95 98.60 97.85 98.13 99.48 99.73 99.59 99.00 ± 0.13

macaroni2 97.35 79.02 94.65 95.40 96.79 99.33 99.43 98.84 98.20 ± 0.28

pcb1 99.05 27.98 99.29 98.67 99.47 99.65 99.30 98.98 99.61 ± 0.01

pcb2 96.40 59.49 97.12 98.12 97.72 98.28 96.13 98.37 98.03 ± 0.09

pcb3 97.23 76.43 97.04 98.06 98.13 98.98 97.99 98.91 98.45 ± 0.05

pcb4 97.97 83.42 97.51 97.00 97.83 98.29 96.58 95.49 95.22 ± 0.27

pipe_fryum 98.79 75.99 98.72 99.19 98.68 98.6 97.97 98.99 99.29 ± 0.03

Mean 98.04 71.31 97.32 97.09 97.93 98.68 97.90 97.51 98.24 ± 0.20

Table 20: Anomaly segmentation performance based on AUPRO on VisA dataset.

CFLOW DRÆM FastFlow PaDiM PatchCore R4AD DFR EffAD ULSADCategory
(2021) (2021) (2021 (2021) (2022) (2022) (2020) (2024) (Ours)

candle 92.7 80.29 91.65 92.77 94.08 95.30 95.56 77.31 92.49 ± 0.15

capsules 74.64 34.4 81.8 48.42 68.88 92.20 92.09 83.8 82.76 ± 1.18

cashew 93.0 48.33 85.54 82.36 88.01 91.81 90.51 91.57 91.85 ± 1.15

chewinggum 89.58 62.66 84.69 84.33 83.86 88.57 85.52 74.87 84.34 ± 1.0

fryum 85.62 71.94 72.39 75.54 78.25 84.8 92.08 82.93 85.47 ± 0.66

macaroni1 89.46 63.37 91.89 88.55 91.74 95.53 97.59 96.06 92.8 ± 0.74

macaroni2 78.74 56.69 71.94 75.76 87.49 94.01 94.23 89.74 88.29 ± 1.89

pcb1 87.24 27.43 85.89 86.39 89.07 95.0 93.55 90.53 90.22 ± 0.28

pcb2 77.83 33.99 77.99 83.68 83.00 89.17 87.26 90.43 84.53 ± 0.53

pcb3 75.03 71.9 71.33 81.37 79.69 90.89 92.48 92.08 85.86 ± 0.38

pcb4 86.53 73.26 83.41 82.47 84.91 89.17 84.38 75.25 73.37 ± 0.81

pipe_fryum 93.14 31.86 81.89 87.99 92.42 94.76 95.46 68.77 93.49 ± 0.08

Mean 85.29 54.68 81.70 80.80 85.12 91.77 91.72 84.45 87.12 ± 0.89
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Figure 9: Visualization of anomaly maps on anomalous images from MVTecLOCO dataset.
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C Extended Ablations
In this section, we provide additional ablations on the local branch in Table 21 and the total architecture in
Table 22. Lastly, in Table 23 we provide the per-category results for the ablation on the pretrained backbone
which is summarized in Figure 8.

Table 21: Abalations for local branch. Style: I-AUROC | P-AUROC | P-AUPRO.

category λl = 0 λl = 0.01 λl = 0.5 λl = 0.9 λl = 1.0
breakfast_box 78.64 | 88.28 | 74.22 79.2 | 88.51 | 74.35 77.86 | 87.79 | 71.27 77.95 | 86.89 | 67.06 79.44 | 86.96 | 65.36
juice_bottle 97.82 | 92.14 | 89.24 97.76 | 92.23 | 89.38 97.56 | 88.78 | 88.16 97.36 | 84.39 | 84.63 97.08 | 83.61 | 83.47
pushpins 72.4 | 69.81 | 65.69 72.77 | 69.84 | 65.68 79.92 | 74.49 | 69.03 76.98 | 74.35 | 63.17 76.53 | 73.69 | 65.18
screw_bag 66.42 | 66.6 | 64.39 67.18 | 68.47 | 65.92 68.06 | 69.13 | 66.22 67.56 | 69.33 | 63.61 66.34 | 69.31 | 62.09
splicing_connectors 73.05 | 59.04 | 73.3 72.84 | 59.15 | 73.29 72.29 | 62.66 | 72.39 72.79 | 64.33 | 70.74 72.36 | 64.5 | 70.57
Mean 77.67 | 75.17 | 73.37 77.95 | 75.64 | 73.72 79.14 | 76.57 | 73.41 78.53 | 75.86 | 69.84 78.35 | 75.61 | 69.33

Table 22: Abalations for total architecture. Style: I-AUROC | P-AUROC | P-AUPRO.

category Ldpg Ldpg; Llg Lpg Lpg; Llg
λl = λg = 0.0

breakfast_box 77.29 | 90.41 | 77.16 82.82 | 89.85 | 76.92 66.01 | 87.36 | 67.5 85.08 | 90.19 | 75.36
juice_bottle 96.48 | 92.01 | 88.82 97.93 | 91.82 | 89.26 91.2 | 91.98 | 85.38 97.29 | 92.0 | 89.18
pushpins 70.89 | 80.89 | 70.67 78.66 | 88.09 | 79.11 74.67 | 77.37 | 58.75 74.61 | 85.86 | 76.33
screw_bag 65.48 | 65.87 | 64.04 63.02 | 68.13 | 65.51 61.14 | 59.51 | 57.75 66.93 | 68.67 | 65.35
splicing_connectors 78.29 | 69.68 | 75.61 84.55 | 72.71 | 76.54 65.31 | 53.4 | 66.74 81.5 | 73.11 | 76.01
Mean 77.69 | 79.77 | 75.26 81.4 | 82.12 | 77.47 71.67 | 73.92 | 67.22 81.08 | 81.97 | 76.45

λl = λg = 0.5
breakfast_box 79.22 | 90.87 | 78.32 82.45 | 88.49 | 71.03 71.36 | 87.64 | 67.38 83.36 | 89.34 | 72.36
juice_bottle 96.3 | 91.17 | 88.89 98.08 | 87.06 | 88.05 91.14 | 91.84 | 85.92 97.46 | 88.81 | 87.71
pushpins 79.86 | 84.89 | 77.97 82.46 | 87.62 | 80.49 78.64 | 81.14 | 65.12 88.07 | 74.22 | 66.45
screw_bag 66.58 | 68.83 | 66.11 65.11 | 70.04 | 62.81 62.09 | 67.32 | 62.92 70.6 | 71.58 | 67.01
splicing_connectors 80.53 | 73.47 | 75.44 82.85 | 73.03 | 75.13 69.33 | 55.02 | 63.69 81.27 | 74.94 | 74.89
Mean 80.5 | 81.85 | 77.35 82.19 | 81.25 | 75.5 74.51 | 76.59 | 69.01 84.15 | 79.78 | 73.68

Table 23: Abalations for backbone on MvTec-LOCO. Style: I-AUROC | P-AUROC | P-AUPRO.

Class ResNet50 ResNet152 Wide-ResNet50-2 Wide-ResNet100-2
breakfast_box 82.41 | 89.74 | 73.09 | 61.38 85.11 | 91.15 | 72.0 | 60.06 84.46 | 89.18 | 72.21 82.37 | 89.25 | 74.02 | 62.96
juice_bottle 96.9 | 92.23 | 89.38 | 61.31 97.64 | 91.66 | 89.78 | 61.89 97.11 | 88.9 | 87.94 98.74 | 92.87 | 91.07 | 62.28
pushpins 81.79 | 79.49 | 75.15 | 41.26 73.28 | 76.49 | 63.71 | 23.29 85.48 | 75.46 | 67.82 82.48 | 76.55 | 70.67 | 24.1
screw_bag 66.46 | 69.14 | 67.01 | 21.61 68.06 | 68.63 | 66.97 | 21.2 71.14 | 71.57 | 66.82 73.1 | 68.99 | 66.88 | 21.6
splicing_connectors 80.88 | 72.76 | 74.39 | 34.45 83.53 | 76.31 | 77.24 | 35.9 82.59 | 75.21 | 75.05 84.71 | 79.95 | 78.65 | 42.88
Mean 81.79 | 79.49 | 75.15 | 41.26 81.52 | 80.85 | 73.94 | 40.47 84.16 | 80.06 | 73.97 84.28 | 81.52 | 76.26 | 42.76

24


	Introduction
	Related Work
	The ULSAD Framework for Anomaly Detection
	Feature Extractor
	Detecting Structural Anomalies
	Detecting Logical Anomalies
	Algorithmic Overview
	Anomaly Detection and Segmentation

	Experimental Evaluation
	Setup
	Evaluation Results
	Ablation study

	Conclusion
	Implementation Details
	Extended Results
	Extended Ablations

