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Abstract

Question answering-based summarization001
evaluation metrics must automatically deter-002
mine whether the QA model’s prediction is003
correct or not, a task known as answer verifi-004
cation. In this work, we benchmark the lexical005
answer verification methods which have been006
used by current QA-based metrics as well007
as two more sophisticated text comparison008
methods, BERTScore and LERC. We find009
that LERC out-performs the other methods010
in some settings while remaining statistically011
indistinguishable from lexical overlap in012
others. However, our experiments reveal that013
improved verification performance does not014
necessarily translate to overall QA-based015
metric quality: In some scenarios, using a016
worse verification method – or using none at017
all – has comparable performance to using018
the best verification method, a result that we019
attribute to properties of the datasets.020

1 Introduction021

A recent trend in summarization metrics is evalu-022

ating the quality of a summary via question an-023

swering (QA; Eyal et al., 2019; Scialom et al.,024

2019, 2021; Durmus et al., 2020; Wang et al., 2020;025

Deutsch et al., 2021a). These metrics compare the026

semantic content of two texts (e.g., the reference027

and candidate summaries) by generating questions028

from one and answering those questions against the029

other. The amount of common semantic content is030

proportional to the number of questions which are031

answered correctly.032

A critical step of QA-based evaluation metrics033

is to verify whether the QA model’s prediction is034

correct, a task known as answer verification (see035

Fig. 1). This helps to both suppress noisy output036

from the QA model as well as identify inconsistent037

information across the texts.038

Answer verification is typically done by compar-039

ing the prediction to the expected answer by the040

exact match or token F1 string comparison methods041

… City in  talks  with Anderlecht chief Roger Vanden 
Stock to complete a deal.

Source Text

BERTScore: 0.28EM: 0.0 F1: 0.0 LERC: 1.0

… He has continued to impress and City have  held 
discussions  with Anderlecht chairman Roger 
Vanden Stock …

Answer Verification Scores

Target Text

What did City have with Anderlecht chief Roger Vanden 
Stock to complete a deal?

Question

Figure 1: In the answer verification task, the evaluation
metrics score how likely two phrases (one the ground-
truth answer and one the QA model’s prediction) from
different contexts have the same meaning.

(Rajpurkar et al., 2016). However, more sophisti- 042

cated text comparison methods have been proposed 043

in recent years, and it is unknown whether they 044

provide a benefit in this particular scenario. 045

In this work, we benchmark various answer 046

verification strategies for QA-based summariza- 047

tion evaluation metrics. Our goal is to understand 048

whether methods that are more advanced than lex- 049

ical overlap are better able to classify phrases as 050

having the same or different meaning as well as 051

whether any such improvements result in the over- 052

all QA-based metric being better at replicating hu- 053

man judgments of summary quality. 054

We analyze four answer verification methods, 055

exact match, token F1, BERTScore (Zhang et al., 056

2020), and LERC, (Chen et al., 2020) in combina- 057

tion with two QA-based metrics, QAEval (Deutsch 058

et al., 2021a) and FEQA (Durmus et al., 2020). 059

Based on a set of human annotations across two 060

datasets, we find that LERC, in general, performs 061

the best at the actual task of answer verification, 062

although in some settings it is statistically indis- 063

tinguishable from token F1 (§4.1). However, our 064

results also show that any such improvement in 065

verification performance does not always translate 066
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to a better QA-based evaluation metric (§4.2).067

We believe these results can be explained by068

properties of the QA metrics and the datasets.069

When the QA model performance is high or the070

verification task is in some sense easy to do, it may071

not be necessary to have a sophisticated verifica-072

tion method or even use one at all. Despite this, our073

recommendation is still to do answer verification074

with LERC as it can only improve performance,075

although token F1 may suffice in some situations.076

2 Related Work & Background077

The majority of summarization evaluation metrics078

can be viewed as estimating how similar in mean-079

ing two pieces of text are. For instance, ROUGE080

(Lin, 2004) does this by calculating the number of081

overlapping n-grams between the two texts.082

Instead of directly comparing the entire texts,083

QA-based metrics identify specific phrases within084

the texts which should be compared, as follows.085

First, a set of questions is automatically generated086

from one text. Then, those questions are automat-087

ically answered against a second text to obtain a088

set of predicted answers. The final score is pro-089

portional to the number of correct predictions, but090

determining whether those predictions are correct –091

the task of answer verification – is done by compar-092

ing the text of the prediction to the expected answer.093

Therefore, instead of directly comparing the entire094

contents of the two texts, QA-based metrics instead095

reduce the scope of the problem to only comparing096

specific pairs of phrases.097

Current QA-based metrics perform the answer098

verification step by lexical comparison, either ex-099

act match or token F1. Such metrics include QA-100

Eval (Deutsch et al., 2021a), FEQA (Durmus et al.,101

2020), and more (Eyal et al., 2019; Wang et al.,102

2020; Scialom et al., 2019, 2021). However, any103

such function which calculates the similarity of104

arbitrary text can be used instead. This includes105

embedding-based methods such as BERTScore106

(Zhang et al., 2020) or metrics which have been107

trained specifically to do this task, such as LERC108

(Chen et al., 2020). Evaluating how these methods109

perform as answer verification methods for QA-110

based metrics compared to the lexical baselines is111

the scope of this work.112

3 Definitions & Methods113

We define the answer verification task as the follow-114

ing: Given a question, answer, the source text from115

which the QA pair was generated, a prediction, and 116

the target text the prediction comes from, score 117

how similar the meanings of the answer and pre- 118

diction are (see Fig. 1 for an example).1 Answer 119

verification is used by QA-based metrics to sup- 120

press noisy outputs from the QA model as well as 121

identify when the QA prediction is correct with re- 122

spect to the target text but incorrect with respect to 123

the expected answer (e.g., unfaithful information). 124

We analyze four different answer verification 125

methods. 126

Exact Match The exact match (EM) method 127

compares the two phrases to see if they are identi- 128

cal (after light normalization). EM assigns a score 129

of 1 if the phrases are identical and 0 otherwise. 130

Token F1 The token F1 comparison calculates an 131

F1 score based on the number of unigrams the two 132

phrases have in common. This is equivalent to the 133

F1 variant of ROUGE-1. 134

BERTScore BERTScore (Zhang et al., 2020) 135

compares two pieces of text by aligning the texts’ 136

tokens according to which pairs have the high- 137

est BERT embedding cosine similarity. We adapt 138

BERTScore to answer verification by encoding 139

the answer and prediction using their respective 140

contexts, then calculating the BERTScore only be- 141

tween the two phrase encodings. Since the output 142

of BERTScore is often in a narrow range of values, 143

we rescale the scores by defining 0 and 1 as the 144

2.5th and 97.5th percentiles of the BERTScores 145

calculated over the whole dataset. 146

LERC Chen et al. (2020) proposed LERC, a 147

learned metric for scoring how similar the expected 148

and predicted answers to a question are conditioned 149

on the question and the target text the prediction 150

comes from. All of the inputs are jointly encoded 151

using a BERT-based classifier, which was fine- 152

tuned on human annotations of meaning similarity. 153

Because it was designed for scoring reading com- 154

prehension predictions, it does not use the source 155

text. We rescale the output from LERC to be in the 156

range [0, 1]. 157

1This is slightly different from the task defined by Chen
et al. (2020) which does not include the source text because no
such text exists in the standard definition of the reading com-
prehension task. However, we include it because the source
text can be used to create a representation for the answer which
may be better than using the question alone.
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4 Experiments158

The answer verification methods are evaluated inde-159

pendently (§4.1) as well as in combination with two160

QA-based metrics (§4.2), QAEval (Deutsch et al.,161

2021a) and FEQA (Durmus et al., 2020). QAEval162

measures the content quality of a summary (does163

the summary contain “summary-worthy” informa-164

tion) by using a reference summary as the source165

text and candidate summary as the target text. In166

contrast, FEQA estimates the faithfulness of the167

summary (does the summary contain information168

consistent with the input) by using the candidate169

summary as the source text and the input document170

as the target text.171

The experiments are run on two datasets,172

TAC’08 (Dang and Owczarzak, 2008) and Summ-173

Eval (Fabbri et al., 2021). These datasets have174

summaries generated by 58 and 16 models for 48175

and 100 inputs, respectively, which are annotated176

with expert judgments. Both QAEval and FEQA177

are evaluated on SummEval because it contains178

annotations for both summary quality and faithful-179

ness, whereas only QAEval is evaluated on TAC’08180

since it does not have faithfulness judgments.2181

4.1 Answer Verification Performance182

First, we examine how well each answer verifica-183

tion method accurately scores manually labeled184

answer pairs from the summarization datasets. For185

each QA metric and dataset combination, we ran186

the metric on the summaries, then randomly sam-187

pled 200 QA predictions (making 600 total). Each188

prediction and expected answer were manually an-189

notated by the authors for whether or not the two190

phrases share the same meaning.191

Ideally, the answer verification methods should192

both successfully classify phrases based on their193

meaning as well as provide a score close to 1 for194

phrases with the same meaning and close to 0 with195

different meanings. These properties are quantified196

by the binary classification accuracy (assigning la-197

bels based on a threshold which maximizes this198

score) as well as the mean squared error (MSE) of199

the predicted scores, show in Table 1.200

We find that LERC is the only method with201

the best (or tied for the best) performance across202

all three metric-dataset combinations. Despite203

LERC’s significant improvement on the SummEval204

data with QAEval predictions, it is statistically in-205

distinguishable from F1 on the same dataset with206

2Our code will be released after publication.

Ans. Verif.
QAEval FEQA

TAC’08 SummEval SummEval
Acc MSE Acc MSE Acc MSE

Majority Cls 51.5 .49 78.5 .22 56.5 .44
EM 64.5 .36 78.5 .46 76.0 .24
F1 84.0 .19 79.5 .25 91.0 .10
BERTScore 81.0 .16 79.5 .20 82.5 .16
LERC 85.0 .13 88.0 .11 88.5 .09

Table 1: The binary accuracies and mean squared errors
of the answer verification methods evaluated on three
metric-dataset combinations with 200 manually labeled
examples each. Underlined values are statistically in-
distinguishable from those in bold under a single-tailed
pairwise permutation test with α = 0.05.

FEQA predictions. We believe this can be ex- 207

plained by which texts are being compared for each 208

metric. FEQA compares the generated summary to 209

the input document. Recent summarization mod- 210

els are known to copy heavily from the input with 211

little high-level abstraction or rephrasing, so com- 212

paring phrases with token F1 is likely to be quite 213

successful. In contrast, QAEval compares the ref- 214

erence and generated summaries. The reference 215

summaries are written by humans, and thus more 216

likely to contain information from the input doc- 217

ument which is expressed differently. In such a 218

scenario, the learned metric, LERC, shows strong 219

improvements over F1. 220

In general, we find that when BERTScore and 221

LERC do improve over F1, they do so by identi- 222

fying paraphrases that have no tokens in common, 223

which sometimes requires world knowledge. Ex- 224

amples of this are included in Appendix B. 225

4.2 Overall Metric Evaluation 226

Next, we investigate whether the differences in clas- 227

sification performance of the verification methods 228

translate to downstream improvements in the over- 229

all quality of the QA-based metrics. To do so, we 230

evaluate different variants of the metrics that use 231

each answer verification method. For both QAEval 232

and FEQA, the final score for the summary is the 233

output of the answer verification method averaged 234

over all of the QA pairs.3 235

QAEval For QAEval, we report the standard 236

system- and summary-level correlations of the met- 237

rics’ scores to human judgments in Table 2 (due to 238

space constraints, we refer the reader to Deutsch 239

3QAEval can also predict a question is unanswerable. In
such cases, the score of the prediction is 0.
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et al. (2021b) for definitions of the correlations).240

We also compare against the standard BERTScore241

and ROUGE metrics as well as a QAEval variant242

which uses no answer verification by always mark-243

ing the phrases as correct if the QA model predicts244

the question is answerable, denoted QAEval-IsAns.245

In general, all of the answer verification meth-246

ods work comparably well, although BERTScore247

and LERC do statistically improve over the lexical248

methods in some settings, but not by large margins.249

We believe the performance of QAEval-IsAns of-250

fers an explanation as follows.251

Answer verification is not necessary if the QA252

model is perfect and the summaries are faithful253

(i.e., the QA prediction is always correct). For254

SummEval, Deutsch et al. (2021a) demonstrated255

that QAEval’s QA performance was reasonable,256

and the summaries are very faithful with an aver-257

age consistency score of 4.7 / 5 according to Fab-258

bri et al. (2021). Therefore, it may be difficult to259

demonstrate an improvement with any answer veri-260

fication method even if it is high quality since the261

need for answer verification is low. Indeed, we see262

QAEval-IsAns statistically ties the best methods.263

On TAC’08, we expect it should be easier to264

show answer verification helps since Deutsch et al.265

(2021a) showed the QA performance is poor, sug-266

gesting answer verification could help to suppress267

noisy predictions. Indeed, we do see QAEval-268

IsAns is statistically out-performed by the veri-269

fication methods. We suspect the improvements270

are larger at the system-level than the summary-271

level because the system quality is estimated over a272

larger number of QA pairs than an individual sum-273

mary’s quality is. A larger number of questions274

reduces any noise introduced by the verification275

methods, resulting in a more accurate estimate of276

summary quality and a better metric.277

FEQA We report the direct correlations between278

the FEQA metrics’ scores and human judgments279

across all of the summaries in Table 3, including280

those for ROUGE, BERTScore, as well as FactCC281

(Kryscinski et al., 2020). FactCC is a learned model282

to predict the factual consistency between two texts283

that was trained on synthetically generated data.284

Among the FEQA variants, F1 is the best or in-285

distinguishable from LERC. This result is expected286

given how similarly they perform at answer verifi-287

cation on this QA metric and dataset split. This is288

again likely due to the fact that the summarization289

models copy heavily from the input documents, so290

Metric
TAC’08 SummEval

Sys Sum Sys Sum

BERTScore .68† .40† .75† .27†

ROUGE-1 .60 .39† .50 .20
ROUGE-2 .67 .39† .43 .14

QAEval-IsAns .63 .37 .70† .26†

QAEval-EM .74† .29 .77† .19
QAEval-F1 .68 .36 .77† .22
QAEval-BERTScore .68† .38† .77† .26†

QAEval-LERC .68† .39† .80† .24†

Table 2: System- and summary-level Kendall’s τ (re-
sults with Pearson and Spearman are included in Ap-
pendix A). Underlined QAEval values are statistically
indistinguishable from the best in bold. Values marked
with † are statistically indistinguishable from the best
metric overall. Statistical testing done using the single-
tailed PERM-BOTH permutation test (Deutsch et al.,
2021b) with α = 0.05.

Metric r ρ τ

ROUGE-1 .13 .13 .11
ROUGE-2 .25 .25 .19
BERTScore .17 .17 .14
FactCC .34† .36† .29†

FactCCX .29 .31 .24

FEQA-EM .17 .14 .11
FEQA-F1 .20 .16 .13
FEQA-BERTScore .15 .12 .10
FEQA-LERC .18 .15 .12

Table 3: The Pearson r, Spearman ρ, and Kendall τ
correlations on the SummEval dataset. Values in bold
are the best FEQA variants with those underlined being
statistically indistinguishable. † marks the best results
across all metrics.

the expected answers and QA model predictions 291

are likely to be quite lexically similar. Overall, the 292

FEQA correlations are still lower than those by 293

FactCC by a large margin. 294

5 Conclusion 295

In this work, we benchmarked four different answer 296

verification methods for QA-based summarization 297

evaluation metrics. Although we were able to iden- 298

tify some methods perform better than others at 299

verification, any such improvement does not neces- 300

sarily translate a better overall metric quality. We 301

hypothesize that several factors, including the qual- 302

ity of the QA model and properties of the datasets, 303

likely explain this result. Despite this, our recom- 304

mendation is that practitioners use LERC, although 305

token F1 may be sufficient in some scenarios. 306
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Figure 2: The distributions of score values for three
metrics on the SummEval dataset for ground-truth an-
swer and QA model prediction pairs from QAEval with
the same (blue) and different (orange) meanings.

A Additional Results396

Fig. 2 contains the distributions of score values for397

token F1, BERTScore, and LERC on the Summ-398

Eval dataset grouped by phrases that have and do399

no have the same meaning. LERC most confidently400

separates the positive and negative examples. F1401

performs similarly, except it fails in a large number402

of cases when the two phrases have no tokens in403

common. BERTScore tends to mix the scores of404

the positive and negative classes, although they are405

separated on average.406

In Table 4, we report the system- and summary-407

level correlations on TAC’08 and SummEval with408

Pearson’s r and Spearman’s ρ correlation coeffi-409

cients in addition to the Kendall’s τ which was pre-410

sented in the main body of the paper. The other co-411

efficients lead to a similar conclusion to that which412

we made with Kendall’s τ : All answer verifica-413

tion methods perform comparably well, and when414

BERTScore or LERC does improve over a lexical415

baseline, it is not by a large margin. Further, us-416

ing no verification method (QAEval-IsAns) largely417

performs equally well as QAEval variants which418

do use a verification step on the SummEval dataset,419

but not on TAC’08.420

B Example BERTScore/LERC421

Improvements422

Table 5 contains example expected answer and QA423

model prediction pairs for which BERTScore and424

LERC improve over exact match and token F1. We425

see that the improvements come from better iden-426

tifying when the phrases are paraphrases of each427

other, which sometimes involves world knowledge.428
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TAC’08 SummEval

Metric System-Level Summary-Level System-Level Summary-Level

r ρ τ r ρ τ r ρ τ r ρ τ

BERTScore .83 .85† .68† .50† .50† .40† .84† .91† .75† .37† .35† .27†

ROUGE-1 .79 .80 .60 .49† .48† .39† .61 .62 .50 .28 .26 .20
ROUGE-2 .83 .87† .67 .48† .48† .39† .64 .60 .43 .23 .19 .14
ROUGE-L .74 .77 .57 .46 .45 .36 .61 .48 .32 .21 .18 .14
ROUGE-SU4 .80 .83 .63 .49† .48† .39† .62 .56 .38 .23 .19 .15
QAEval-IsAns .87 .82 .63 .48† .47 .37 .76 .86† .70† .33† .32† .26†
QAEval-EM .92† .89† .74† .35 .35 .29 .80† .91† .77† .23 .23 .19
QAEval-F1 .90† .86† .68 .46 .45 .36 .82† .91† .77† .30 .29 .22
QAEval-BERTScore .90† .85† .68† .49† .48† .38† .84† .89† .77† .36† .34† .26†
QAEval-LERC .89† .85† .68† .50† .49† .39† .81† .93† .80† .33† .31† .24†

Table 4: System- and summary-level correlations using Pearson’s r, Spearman’s ρ, and Kendall’s τ .

Answer Prediction BSc LERC

EU European Union 0.73 0.84
a smaller leftist guerilla group National Liberation Army 0.48 0.10

six-time Olympic gold medalist Usain Bolt 0.34 0.35
Luis Enrique’s side Barcelona 0.40 0.18

emergency responders paramedics 0.20 0.67
the child toddler 0.38 0.45

Table 5: Examples where BERTScore and LERC improve over F1 (all examples have an F1 score of 0). Suc-
cessfully classing these phrases requires paraphrasing (e.g., “the child” and “toddler”) and, in some cases, world
knowledge (e.g., Usain Bolt had won six gold medals when the article was written).
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