
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BEYOND CROPPING AND ROTATION: AUTOMATED
EVOLUTION OF POWERFUL TASK-SPECIFIC AUGMEN-
TATIONS WITH GENERATIVE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Data augmentation has long been a cornerstone for reducing overfitting in vision
models, with methods like AutoAugment automating the design of task-specific
augmentations. Recent advances in generative models, such as conditional diffu-
sion and few-shot NeRFs, offer a new paradigm for data augmentation by syn-
thesizing data with significantly greater diversity and realism. However, unlike
traditional augmentations like cropping or rotation, these methods introduce sub-
stantial changes that enhance robustness but also risk degrading performance if the
augmentations are poorly matched to the task. In this work, we present EvoAug,
an automated augmentation learning pipeline, which leverages these generative
models alongside an efficient evolutionary algorithm to learn optimal task-specific
augmentations. Our pipeline introduces a novel approach to image augmentation
that learns stochastic augmentation trees that hierarchically compose augmenta-
tions, enabling more structured and adaptive transformations. We demonstrate
strong performance across fine-grained classification and few-shot learning tasks.
Notably, our pipeline discovers augmentations that align with domain knowledge,
even in low-data settings. These results highlight the potential of learned genera-
tive augmentations, unlocking new possibilities for robust model training.

1 INTRODUCTION

Generative AI has rapidly advanced across multiple domains. In computer vision, diffusion models
now surpass GANs in producing realistic images and videos from simple prompts (Dhariwal &
Nichol, 2021). In language, models like GPT generate human-like text and code, achieving high
scores on standardized tests (OpenAI et al., 2024). Similar breakthroughs extend to generative
audio (Schneider, 2023) and 2D-to-3D shape generation (Karnewar et al., 2023). These advances
raise an important question: to what extent can AI-generated content improve AI itself (Yang et al.,
2023b)? While far from true self-improvement, generative models are increasingly influencing their
own training processes.

A key challenge in leveraging synthetic data is the syn-to-real gap—the discrepancy between gener-
ated and real-world data. Poorly matched synthetic augmentations degrade performance rather than
enhance it. For example, diffusion models still struggle with fine details such as realistic fingers
(Narasimhaswamy et al., 2024). Thus, a model trained on data augmented by flawed synthetic im-
ages may reinforce errors. Similarly, a language model could amplify its own biases by training on
text that it generated itself. This issue is particularly critical in tasks requiring fine-grained distinc-
tions, such as image classification, or in low-data settings like few-shot learning. Addressing this
gap is essential for generative augmentations to contribute meaningfully to AI training.

Hence, methods that use synthetic or simulated data must balance the tradeoff between data variabil-
ity and fidelity. This can be achieved by constraining data generation to closely match the real-world
distribution, thereby reducing its variability while improving its fidelity. This approach has been suc-
cessful in fields like robotics (Lu et al., 2024) and autonomous vehicles (Song et al., 2024). However,
it has only seen limited application in synthetic image generation for computer vision. This work
tackles the challenge of fine-grained few-shot classification. Due to the lack of real samples, syn-
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thetic data provides an attractive option for boosting performance. Since fine-grained distinctions
between classes can be easily missed, a carefully designed image generation pipeline is required.

We propose using generative AI not for data creation, but for data augmentation—a paradigm shift.
Instead of generating data from scratch, we condition the process on real data, thereby ensuring that
it preserves the semantic priors and underlying structure of the original distribution while introduc-
ing meaningful and novel variations. While this approach constrains synthetic data to resemble real
data, it also provides stronger guarantees of its validity, effectively overcoming the syn-to-real gap.

Motivated by this vision, we design EvoAug, a pipeline that automatically learns a powerful aug-
mentation strategy. Our work makes use of evolutionary algorithms, which have been shown to work
in a variety of domains and still remain more sample-efficient and straightforward than other meth-
ods (Ho et al., 2019; Wang et al., 2023). This is especially important when dealing with complex
augmentation operators like conditional diffusion and NeRF models, where evaluation is expensive,
gradients are very difficult to approximate, and sample efficiency is paramount.

As part of our pipeline, we construct an augmentation tree—a binary tree that applies a series of aug-
mentation operators in accordance with learned branching probabilities. The augmentation tree can
then be used to produce synthetic or augmented variations of the images in the dataset by stochasti-
cally following root-to-leaf paths. Our trees include nodes that perform either classical or generative
augmentations. To produce accurate synthetic data, we condition the diffusion models on exist-
ing structural and appearance-based information rather than solely relying on prompt-based image
generation. Our approach is powerful enough to work even with very small datasets and provides
promising results on fine-grained and few-shot classification tasks across multiple datasets.

Our main contributions are the following:

1. The first automated augmentation strategy to leverage both modern augmentation operators
like controlled diffusion and NeRFs, along with traditional augmentation operators like
cropping and rotation

2. Strong results on fine-grained few-shot learning, a challenging domain where prior work
has failed to preserve the minor semantic details that distinguish the classes

3. Novel unsupervised strategies that scale as low as the one-shot setting, where no supervi-
sion to evaluate augmentations is available

4. Constructing an augmentation pipeline from only open-source, pre-trained diffusion mod-
els, without requiring domain-specific fine-tuning

2 RELATED WORK

Data augmentation reduces model overfitting by applying image transformations that preserve the
original semantics while introducing controlled diversity into the training set. Traditional augmenta-
tions include rotations, random cropping, mirroring, scaling, and other basic transformations. These
straightforward techniques remain fundamental in state-of-the-art image augmentation pipelines.
More advanced methods—such as erasing (Zhong et al., 2020; Chen et al., 2020; Li et al., 2020;
DeVries & Taylor, 2017), copy-pasting (Ghiasi et al., 2021), image mixing (Zhang et al., 2017;
Yun et al., 2019), and data-driven augmentations like AutoAugment (Cubuk et al., 2018) and its
simplified variant RandAugment (Cubuk et al., 2020)—have expanded the augmentation toolbox.

Another approach involves generating synthetic data using generative models (Figueira & Vaz,
2022). Early work explored GANs (Besnier et al., 2020; Jahanian et al., 2021; Brock et al., 2018),
VAEs (Razavi et al., 2019), and CLIP (Ramesh et al., 2022), achieving strong results (Engelsma
et al., 2022; Skandarani et al., 2023). Recently, diffusion models, particularly for text-to-image syn-
thesis, have surpassed GANs in producing photorealistic images (Nichol et al., 2021; Ramesh et al.,
2022; Saharia et al., 2022b; Yang et al., 2025). Trained on large-scale internet data (Schuhmann
et al., 2022), diffusion models have been used for augmentation (Azizi et al., 2023; Sarıyıldız et al.,
2023; He et al., 2022; Shipard et al., 2023; Rombach et al., 2022; Islam et al., 2025; 2024), often
relying on class names or simple class agnostics prompts to guide generation. Despite promising
initial results, synthetic data remains inferior to real data, highlighting the persistent domain gap
between the two (Yamaguchi & Fukuda, 2023).
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To address this gap, recent approaches have incorporated conditioning the generative process on
real data. Some popular methods involve projecting the original images to the diffusion latent space
(Zhou et al., 2023), fine-tuning diffusion models on real data (Azizi et al., 2023), leveraging multi-
modal LLMs to obtain detailed, custom image captions for high-quality text prompting(Yu et al.,
2023), and employing image-to-image diffusion models that enable direct conditioning on a spe-
cific image (Saharia et al., 2022a; Meng et al., 2021; Zhang et al., 2023; He et al., 2022; Trabucco
et al., 2025). Controlled diffusion, a subset of these methods, introduces a more powerful paradigm,
furthering the efficient use of both text and image priors (Fang et al., 2024; Islam & Akhtar, 2025)
with applications in segmentation (Trabucco et al., 2023) and classification (Goldfeder et al., 2024)
problems.

Given such a wide range of augmentation operators, an important problem is knowing which aug-
mentations to use for a specific task, without the use of domain knowledge. This task, of automati-
cally learning augmentation policies, falls under the class of meta learning and bi-level optimization
problems, where we seek to learn a component of the learning algorithm itself (Hospedales et al.,
2021). These algorithms generally fall under one of the following categories: gradient-based opti-
mization, RL-based optimization, Bayesian optimization, and evolution-based optimization.

In the context of learning augmentation policies, all these methods have seen success (Yang et al.,
2023a). Differentiable methods often train a neural network to produce augmentations (Lemley
et al., 2017), sometimes in a generative adversarial setup (Shrivastava et al., 2017; Tran et al., 2017).
By far the most notable method, AutoAugment (Cubuk et al., 2018), employs reinforcement learn-
ing. While RL is traditionally sample inefficient, improvements upon vanilla RL strategies have
leveraged Bayesian methods (Lim et al., 2019), evolutionary strategies (Ho et al., 2019; Wang et al.,
2023), or approximate gradient estimation for first-order optimization (Hataya et al., 2020).

Learning augmentation policies is especially challenging in low data settings, as full data policies
are usually not transferable to the few-shot case. Various approaches have been considered, includ-
ing proposing K-fold validation as a method of retaining the data while still performing validation
(Naghizadeh et al., 2021). However, this method does not scale to one-shot settings. Utilizing clus-
tering as a label-efficient evaluation method, where augmentations are designed to stay within their
corresponding class cluster, can address this limitation (Abavisani et al., 2020).

3 METHODS

3.1 AUGMENTATION OPERATORS

Figure 1: Example image augmentations using our pipeline. Classical augmentations include color
jitter, rotation, and random cropping. Canny, color, depth, and segment use existing image informa-
tion to steer a ControlNet diffusion model. NeRF uses a zero-shot NeRF to perform a 3D rotation.
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Figure 2: Mutation and Crossover for Augmentation Trees

The generative augmentation operators are based on both diffusion and NeRFs. For diffusion-based
operators, we use ControlNet (Zhang et al., 2023), an architecture which allows rapid customization
of diffusion models without fine-tuning. To condition the model, we extract edges using Canny
edge detection (Canny, 1986), segmentations using Segment Anything (Kirillov et al., 2023), depth
maps using MiDaS (Ranftl et al., 2020), and color palettes by simply downsampling the image.
This gives four diffusion-based augmentation operators, termed ”Canny”, ”Segment”, ”Depth” and
”Color”. We use Zero123 (Liu et al., 2023b) for NeRF-based augmentation. This model creates
a 3D reconstruction of an image from a single shot, allowing for 3D rotation. We then rotate 15
degrees left or right when performing an augmentation using this model. We term this operator
”NeRF”. Next, we include another augmentation operator, termed ”Classical.” This includes the
full set of traditional augmentations: random crop, translation, scale, rotation, color jitter, and flip.
This operator allows the evolution process to decide whether to include and build on the traditional
classical augmentation pipeline or exclude it. Sometimes, all augmentations can be harmful, so we
also included a ”NoOp” operator that simply duplicates the existing image. Figure 1 gives examples
of these operators.

3.2 EVOLUTIONARY STRATEGY

For our augmentation policy learning pipeline, we choose an evolutionary approach. This choice is
motivated by practical considerations: diffusion and NeRF based augmentation is considerably more
expensive to evaluate than traditional augmentations, so pipeline efficiency is crucial. Population-
based evolutionary strategies have been shown to be as effective as RL approaches, with less than
one percent of the computational effort (Ho et al., 2019). While gradient approximation methods
have been shown to be even more efficient in some cases(Hataya et al., 2020), those results are for
approximating gradients of simpler transformations, and do not translate to our pipeline, which can
handle arbitrary generative modules. Further, recent work has shown evolution to be effective for
searching for augmentation polices even in very complex augmentation spaces (Wang et al., 2023).

We define an augmentation tree as a binary tree, where each node represents an augmentation oper-
ator. The edges of our tree represent transition probabilities to each child node, summing to 1. This
structure is chosen as it serves as a common genome for evolutionary algorithms.

Mutation Illustrated in figure 2, mutation can occur at either the node level or the edge level. An
edge mutation reassigns the probabilities of a transition between two child nodes. A node mutation
switches the augmentation operator of that node (eg. Depth node becomes a Canny node).

Crossover Also illustrated in figure 2, crossover is the other basic evolutionary operator. Two par-
ents are selected, a child is created by splicing the branches of the parents together.

We thus define a population P of size n, of initial trees. In each generation, we use mutation and
crossover to generate c children Pnew, that are appended to P . Finally, the population is evaluated
with a fitness function f , and the top n are kept for the next generation. Mutation and crossover
probability are parameterized by pm and pc respectively. Algorithm 1 describes this process.
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Figure 3: Tree Learning Pipelines. (a) K-Fold applies when there is more than one example per
class. (b) We can measure cluster quality for the 1-shot case. (c) We can duplicate the image and
assume the problem to be 2-shot instead of 1-shot (d) We can simply use training loss, though it is
risky to assume that lower train loss equates to better performance.

3.3 FITNESS FUNCTIONS

The goal of our augmentation strategy is to improve downstream model robustness, and thus the
fitness function we choose to evaluate augmentation trees should either directly reflect what we seek
to achieve or be a strong proxy. Note that in a full data setting, training data can be split into a train
and validation. An augmentation tree can be evaluated by simply training a model with generated
augmentations on the training data and measuring performance on the previously unseen evaluation
data. We divide our discussion into two, more difficult, settings.

3.3.1 LOW DATA SETTING

In the low-data and few-shot case, the challenge becomes managing the noise of the evaluation
function. We can no longer rely on a single train/val split to accurately measure the performance of
a tree as low-data settings introduce high variability in splits. Thus, we use K-fold cross-validation.

In addition, directly using accuracy as our metric is no longer appropriate, as our validation set
remains small enough that accuracy becomes coarse-grained and unstable. As a result, to align
with the convention of higher fitness values corresponding to better candidates in the population, we
use the negative validation loss as the fitness function in these settings. Algorithm 2 describes this
process. The pipeline can be seen in figure 3a.

Algorithm 1 Evolutionary Search for Augmentation Trees
Require: Population size p, number of generations g, fitness function f , number of children c,

mutation probability pm, crossover probability pc
1: P ← InitializePopulation(p)
2: for i = 1 to g do
3: Pnew ← MutateAndCrossover(P, c, pm, pc)
4: P ← P ∪ Pnew
5: Evaluate fitness f(T ) for each tree T ∈ P
6: P ← SelectBest(P, p) ▷ Keep top p trees
7: end for
8: Tbest ← BestTree(P )
9: return Tbest

3.3.2 ONE-SHOT SETTING

In the most extreme case, we only have one image per class. Thus, proposed methods involving K-
fold validation will not be able to span the full class range of the dataset (Naghizadeh et al., 2021).
To address this problem, we devised the following strategies:

5
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Algorithm 2 K-Fold Cross Validation Tree Fitness Function
Require: Dataset D, augmentation tree T , number of folds k

1: Split D into k folds: D1, D2, . . . , Dk

2: Initialize M ← 0
3: for i = 1 to k do
4: Dval ← Di

5: Dtrain ← D \Di

6: Daug ← ApplyAugmentationTree(T,Dtrain)
7: Train model Mi on Daug
8: mi ← Evaluate(Mi, Dval)
9: M ←M +mi

10: end for
11: m̄← M

k
12: return m̄

Label-Efficient Clustering Our goal is to find augmentations that preserve important class-specific
characteristics while still providing novel data. Thus, when evaluating on a validation set is not
possible, we can switch to a clustering approach. To find these novel, true-to-class augmentations,
our intuition is to search for clusters that are wide, but still distinct from each other. Abavisani et al.
proposed using this type of evaluation for augmentation pipelines in low-data and one-shot settings
(Abavisani et al., 2020). They adopted Deep Subspace Clustering (Ji et al., 2017) and optimized the
Silhouette coefficient as a measure of cluster quality. We improve upon this work in three ways:

1. We simplify the clustering process by using a pre-trained network to generate image em-
beddings which we then cluster, thus eliminating the need for a Deep Subspace Clustering
network and requiring no training.

2. Prior work employed k-means to form clusters (Douzas et al., 2018), adding computational
complexity. We simplify this by directly using known class labels as clusters. This al-
lows us to evaluate explicitly whether augmentations form meaningful, class-based clusters
rather than merely measuring separability.

3. When evaluating augmentation quality via clustering, traditional metrics like the Silhouette
coefficient reward cohesion but do not penalize small or redundant clusters. This can cause
the evolutionary algorithm to favor augmentation trees that produce minimal or trivial vari-
ations, which lack diversity and generalization potential. To avoid this pitfall, we introduce
an additional penalty term based on average cluster radius, balancing cohesion with cluster
size and separability. This modified metric thus encourages the formation of clusters that
are both cohesive and sufficiently distinct, promoting better generalization. Experiments
supporting these conclusions are presented in Appendix A.5.

This process is given in Algorithm 3. The pipeline can be seen in figure 3b.

Double Augmentation This strategy is simple yet effective. We apply classical augmentations—
which reliably introduce meaningful variations—to expand the original one-shot dataset. The aug-
mented dataset is then divided into k splits, and the negative validation losses are averaged across
splits, as detailed in Algorithm 4 and illustrated in Figure 3c. This approach allows us to increase
augmentations while minimizing the risk of degrading dataset quality or relevance through unin-
tended variations introduced by generative models.

Algorithm 4 1-Shot Double Augmentation Fitness Function
Require: One-shot dataset D, augmentation tree T , number of folds k

1: D′ ← ∅
2: for each image x ∈ D do
3: A(x) = {ClassicAug(x)1, . . . ,ClassicAug(x)k}
4: D′ ← D′ ∪A(x)
5: end for
6: return KFOLDFITNESS(D′, T , k) ▷ Refer to Alg. 2

6
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Algorithm 3 1-Shot Clustering Fitness Function
Require: Image dataset D, augmentation tree T , embedding model E

1: Daug ← ApplyAugmentationTree(T,D)
2: Initialize embedding list L← ∅
3: for each image x ∈ Daug do
4: e← E(x)
5: Append e to L
6: end for
7: C ← Cluster(L)
8: S ← ComputeSilhouetteScore(C)
9: d← ComputeMeanClusterDistance(C)

10: s← αS − 1−α
d

11: return s

Training Loss We can also simply use training loss as a proxy in the one-shot case. We augment
all the images, and train a model. We then evaluate trees based on how low the training loss is after
a fixed number of epochs. While this should encourage minor augmentations, and also makes use
of train loss to estimate eval loss, a very erroneous assumption, it still works well in practice. The
pipeline can be seen in figure 3d.

4 RESULTS

4.1 EXPERIMENT SETUP

We perform our experiments on six datasets: Caltech256 (Griffin et al., 2007), Oxford IIIT-Pets
(Parkhi et al., 2012), Oxford 102 Flowers (Nilsback & Zisserman, 2008), Stanford Cars (Krause
et al., 2013), Stanford Dogs (Khosla et al., 2011), and Food101 (Bossard et al., 2014). To highlight
how powerful our method is, even in few-shot settings when the fine-grained semantic distinctions
are minor, we deliberately searched for few-shot images and classes that were the most challenging.

For an n-way k-shot classification task, we do this as follows. First, we randomly select n classes
from the original dataset. Then we randomly selected k images from each class. We fine-tune a
pretrained Resnet50 model (He et al., 2016) on these images and record the accuracy. We repeat
this procedure 10 times, gathering 10 different subsets of the classes with different images for each
dataset. Afterwards, we note which subset of classes from the dataset had the lowest baseline test
accuracy, and we choose this subset as the setting for our augmentation benchmarks.

For our genetic algorithm, we initialize a population of 14. For each of the seven augmentation
operators, we initialize two trees whose root nodes use that operator, creating a balanced population.
This broadens the solution space exploration and avoids the pitfalls of random initialization on a
small population. We set the mutation probability to 10% and include 6 crossovers per generation.
We restrict tree depth to 2, allowing the composition of at most 2 operations per augmentation. For
each of the 10 generations, we generate 8 children. In the 2 and 5-shot cases, we use K-fold fitness,
choosing folds such that the classes remained balanced. To evaluate augmentation trees, we train
the models for 20 epochs and observe the corresponding loss. In the one-shot case, we examine the
three other fitness functions (double augmentation, training loss, and clustering) proposed above.

Once the best tree is chosen, we generate augmentations and evaluate the downstream classification
accuracy against several baselines:

1. Naive Baseline: We randomly apply classical augmentations (cropping, scaling, transla-
tion, horizontal/vertical flipping, color jitter, rotation)

2. RandAugment: We perform a grid search over the number of operations (num ops) and
magnitude parameters, selecting the configuration with the lowest validation loss using
cross-validation on a train/validation split; this best-performing configuration is then eval-
uated on the full test set.

3. AutoAugment: We apply the ImageNet-learned AutoAugment policy to our datasets.

7
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In all downstream classification tasks, training proceeds for 200 epochs. In the 1-shot setting, we
augment each image in the original dataset 2 times, in the 2-shot setting 5 times, and in the 5-shot
setting 2 times. We also evaluate our methods and baselines against augmentations generated from
random trees in the ResNet experiments to ensure that our evolutionary search was an important
part of creating true-to-class augmentations. Each experiment is performed at least three times with
varying seeds, and the average and standard deviation are reported. We evaluate using a pre-trained
ResNet50, ViT-Small (Dosovitskiy et al., 2021), or MobileNetV2 (Sandler et al., 2019) model. Mod-
els are fine-tuned using Adam (Kingma & Ba, 2017), with a learning rate of 1e-3. We use NVIDIA
GeForce RTX 4090 chips with 24 GB of memory. Each experiment took between 2 and 24 hours to
complete, depending on the number of ways and shots.

4.2 FEW-SHOT RESULTS

Dataset Model Naive Baseline Random Tree RandAugment AutoAugment Learned

Caltech256
ResNet50 79.78 ± 0.73 81.42 ± 7.64 84.71 ± 0.01 86.78 ± 0.00 88.28 ± 1.75
MobileNet 80.95 ± 1.08 - 86.04 ± 0.01 84.45 ± 0.01 84.18 ± 0.75
ViT-Small 73.30 ± 6.61 - 81.85 ± 0.01 81.74 ± 0.02 79.83 ± 9.90

Flowers102
ResNet50 70.49 ± 1.08 78.59 ± 2.11 83.65 ± 0.00 86.60 ± 0.00 73.73 ± 3.70
MobileNet 77.00 ± 1.83 - 79.54 ± 0.01 81.75 ± 0.01 73.21 ± 4.75
ViT-Small 97.89 ± 1.43 - 99.37 ± 0.00 98.63 ± 0.00 94.30 ± 3.85

Stanford Dogs
ResNet50 78.44 ± 0.13 83.76 ± 6.42 80.76 ± 0.01 82.23 ± 0.00 85.15 ± 2.73
MobileNet 75.34 ± 0.99 - 73.72 ± 0.02 75.26 ± 0.00 77.51 ± 0.63
ViT-Small 83.67 ± 1.38 - 86.95 ± 0.02 83.97 ± 0.02 80.61 ± 2.01

Stanford Cars
ResNet50 30.90 ± 1.68 36.94 ± 6.48 37.20 ± 0.01 34.68 ± 0.01 40.40 ± 3.07
MobileNet 35.35 ± 1.05 - 36.30 ± 0.01 36.95 ± 0.01 37.36 ± 0.15
ViT-Small 40.64 ± 5.43 - 43.83 ± 0.01 42.74 ± 0.02 46.32 ± 1.43

Oxford-IIIT Pet
ResNet50 86.57 ± 0.60 84.97 ± 3.08 85.25 ± 0.01 86.57 ± 0.00 88.34 ± 1.72
MobileNet 84.41 ± 0.53 - 87.27 ± 0.01 86.08 ± 0.00 89.21 ± 2.93
ViT-Small 88.52 ± 0.55 - 91.28 ± 0.01 90.60 ± 0.01 91.44 ± 2.06

Food101
ResNet50 47.82 ± 0.57 42.61 ± 4.56 46.23 ± 0.00 51.32 ± 0.00 49.78 ± 4.21
MobileNet 39.93 ± 1.46 - 43.49 ± 0.00 44.82 ± 0.00 42.97 ± 2.61
ViT-Small 55.66 ± 3.22 - 62.20 ± 0.02 64.14 ± 0.02 64.18 ± 2.13

Table 1: 5-way, 2-shot classification accuracy (%) with standard deviation across 6 datasets and 3
downstream image classification architectures. Bolded values indicate the best performance per row.

Dataset Model Naive Baseline Random Tree RandAugment AutoAugment Learned

Caltech256
ResNet50 88.15 ± 0.25 92.22 ± 0.93 92.55 ± 0.00 93.31 ± 0.00 91.48 ± 1.11
MobileNet 88.80 ± 0.19 - 89.51 ± 0.00 91.41 ± 0.00 90.05 ± 0.98
ViT-Small 85.75 ± 1.04 - 90.32 ± 0.01 90.70 ± 0.01 92.33 ± 1.27

Flowers102
ResNet50 82.61 ± 0.96 79.51 ± 2.69 89.04 ± 0.01 89.92 ± 0.01 84.95 ± 1.15
MobileNet 88.82 ± 0.69 - 91.47 ± 0.00 89.26 ± 0.01 86.60 ± 1.07
ViT-Small 99.78 ± 0.19 - 99.89 ± 0.00 99.89 ± 0.00 99.34 ± 0.33

Stanford Dogs
ResNet50 88.69 ± 0.65 90.81 ± 1.08 89.21 ± 0.00 91.24 ± 0.00 91.35 ± 0.72
MobileNet 82.88 ± 0.72 - 81.49 ± 0.00 83.10 ± 0.00 83.40 ± 0.27
ViT-Small 88.73 ± 0.46 - 89.73 ± 0.00 87.99 ± 0.00 84.66 ± 0.85

Stanford Cars
ResNet50 52.97 ± 0.80 53.75 ± 1.44 54.63 ± 0.00 51.48 ± 0.01 57.98 ± 3.20
MobileNet 50.79 ± 1.39 - 55.41 ± 0.01 55.93 ± 0.01 48.87 ± 1.71
ViT-Small 58.12 ± 2.73 - 63.00 ± 0.02 66.67 ± 0.01 59.25 ± 2.23

Oxford-IIIT Pet
ResNet50 92.07 ± 0.44 93.12 ± 0.74 92.91 ± 0.01 93.61 ± 0.00 93.63 ± 0.43
MobileNet 88.56 ± 0.85 - 90.32 ± 0.00 90.14 ± 0.00 90.53 ± 0.76
ViT-Small 94.95 ± 0.56 - 95.44 ± 0.01 95.37 ± 0.01 93.54 ± 0.53

Food101
ResNet50 54.09 ± 0.58 56.88 ± 2.60 56.72 ± 0.00 58.28 ± 0.00 58.75 ± 1.60
MobileNet 51.88 ± 0.59 - 52.00 ± 0.00 54.05 ± 0.00 54.19 ± 1.36
ViT-Small 75.40 ± 2.22 - 79.59 ± 0.00 78.25 ± 0.00 76.49 ± 0.75

Table 2: 5-way, 5-shot classification accuracy (%) with standard deviation across 6 datasets and 3
downstream image classification architectures. Bolded values indicate the best performance per row.

The few-shot results are shown in Tables 1 and 2. We measure the accuracy on the test set for models
trained using the baseline strategies, random augmentation trees, and the augmentation trees learned
from our pipeline. While EvoAug consistently outperforms the Naive Baseline, results are mixed
when evaluated against AutoAugment and RandAugment. Notably, EvoAug is much better on the
Stanford Dogs and Oxford-IIIT Pets datasets, but marginally worse on Flowers102.
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Dataset Model Naive Baseline NoOp / Classical Tree Random Tree RandAugment AutoAugment Learned (Clustering)

Caltech256
ResNet50 65.77 ± 1.29 78.67 ± 2.00 81.57 ± 6.44 81.63 ± 0.01 82.92 ± 0.01 83.65 ± 4.92
MobileNet 67.28 ± 2.56 - - 71.97 ± 0.01 71.47 ± 0.01 80.09 ± 4.73
ViT-Small 66.72 ± 3.53 - - 75.60 ± 0.03 75.38 ± 0.03 82.12 ± 3.64

Flowers102
ResNet50 61.48 ± 0.78 66.15 ± 0.90 63.03 ± 3.95 63.97 ± 0.00 65.84 ± 0.01 66.75 ± 2.34
MobileNet 57.11 ± 1.30 - - 53.17 ± 0.01 58.46 ± 0.01 60.78 ± 2.58
ViT-Small 94.60 ± 1.88 - - 96.26 ± 0.03 93.98 ± 0.02 95.47 ± 2.19

Stanford Dogs
ResNet50 70.30 ± 0.58 75.79 ± 0.29 76.58 ± 3.84 75.86 ± 0.01 77.22 ± 0.02 78.86 ± 3.21
MobileNet 60.58 ± 2.66 - - 65.19 ± 0.02 67.73 ± 0.01 69.70 ± 2.37
ViT-Small 75.55 ± 1.61 - - 78.47 ± 0.01 77.83 ± 0.02 79.70 ± 3.12

Stanford Cars
ResNet50 21.31 ± 0.80 28.11 ± 0.43 29.77 ± 1.83 32.84 ± 0.01 31.84 ± 0.03 29.66 ± 2.62
MobileNet 30.43 ± 1.12 - - 30.18 ± 0.01 30.35 ± 0.02 29.05 ± 3.18
ViT-Small 31.10 ± 5.56 - - 36.15 ± 0.02 34.66 ± 0.01 37.35 ± 3.37

Oxford-IIIT Pet
ResNet50 79.68 ± 1.50 82.44 ± 0.55 81.47 ± 6.34 78.17 ± 0.01 82.71 ± 0.00 86.16 ± 1.19
MobileNet 72.18 ± 1.45 - - 76.31 ± 0.00 74.17 ± 0.01 80.43 ± 1.87
ViT-Small 76.10 ± 5.44 - - 83.88 ± 0.02 79.61 ± 0.04 84.58 ± 3.22

Food101
ResNet50 30.90 ± 0.57 30.06 ± 0.31 32.83 ± 2.42 30.38 ± 0.00 30.46 ± 0.00 34.28 ± 0.83
MobileNet 28.78 ± 0.63 - - 25.52 ± 0.01 26.15 ± 0.01 34.61 ± 1.74
ViT-Small 43.74 ± 2.51 - - 48.17 ± 0.02 45.44 ± 0.01 44.89 ± 2.30

Table 3: 5-way, 1-shot classification accuracy (%) with standard deviation across 6 datasets and 3
downstream image classification architectures. Bolded values indicate the best performance per row.

4.3 ONE-SHOT RESULTS

Our 1-shot results are shown in Table 3. Here, we include our clustering-based fitness function
learning strategy. Results for our double augmentation and training loss strategies are included in
the appendix. EvoAug consistently outperforms the Naive Baseline, and often outperforms Ran-
dAugment and AutoAugment, achieving strong performance in scarce data settings. We also run
our pipeline restricting nodes to just classical or NoOp transformations and find that these restricted
trees perform worse than our normal trees. This supports the conclusion that generative augmenta-
tion operators are an important part of performance.

5 CONCLUSION

We present an automated augmentation strategy that leverages advanced generative models, specif-
ically controlled diffusion and NeRF operators, in combination with classical augmentation tech-
niques. By employing an evolutionary search framework, our method automatically discovers task-
specific augmentation policies that significantly improve performance in fine-grained few-shot and
one-shot classification tasks. Experimental results on a diverse set of datasets demonstrate that our
approach not only outperforms standard baselines but also identifies augmentation strategies that
effectively preserve subtle semantic details, which are crucial in low-data scenarios.

Our work introduces novel unsupervised evaluation metrics and proxy objectives to reliably guide
augmentation policy search in settings where labeled data is scarce. While the computational over-
head associated with evaluating complex generative augmentations remains a challenge, the sub-
stantial gains in classification accuracy validate the potential of our approach. Overall, our findings
suggest that integrating generative models with automated policy learning can play a pivotal role in
enhancing the robustness of vision systems, particularly in environments with limited data.

5.1 LIMITATIONS

A potential limitation of our method is its ability to extend to a full dataset recognition task, as
directly scaling our pipeline to learn semantic priors from the full dataset is not efficient. Preliminary
work, however, has shown that using a text conditioned process to augment images does improve
the performance of models on image classification tasks against a classical augmentation baseline
(discussion in Appendix A.6). We believe that a more careful augmentation learning strategy that
efficiently learns augmentations that match the dataset may be able to further improve this accuracy.

Other avenues of interest are extending this framework to other vision tasks such as object detection
and segmentation and further refining the balance between diversity and fidelity in generated aug-
mentations. Preliminary work on these tasks has shown that our pipeline has the ability to improve
model performance when compared to a baseline of classically augmented images (discussion in
Appendix A.6).
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A APPENDIX

We provide additional results for our method in the 5-way 1-shot setting, as well as a study on the
one-shot clustering fitness function. We also examine how our method might scale to be used on
full datasets and object detection/segmentation tasks.
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A.1 FITNESS FUNCTION CHOICE IN ONE-SHOT SETTING

Carefully crafting a fitness function which can enable robust downstream classification is a difficult
task. Our three main approaches were using augmented images themselves as a part of the validation
set for models, using heuristics from the training loss to determine optimal learning, and an involved
clustering approach which tried to capture the spread within a class and between classes. Our results
are summarized in Table 4, which show that the clustering approach seemed to be a consistently
good strategy for guiding our augmentation scoring.

Dataset Model Learned (Double Aug) Learned (Train Loss) Learned (Clustering)

Caltech256
ResNet50 80.27 ± 6.50 76.21 ± 5.58 83.65 ± 4.92
MobileNet 75.04 ± 6.68 68.57 ± 2.85 80.09 ± 4.73
ViT-Small 73.53 ± 4.31 68.57 ± 10.44 82.12 ± 3.64

Flowers102
ResNet50 55.95 ± 5.72 65.73 ± 6.54 66.75 ± 2.34
MobileNet 57.70 ± 1.45 64.38 ± 2.99 60.78 ± 2.58
ViT-Small 88.27 ± 2.42 86.11 ± 1.85 95.47 ± 2.19

Stanford Dogs
ResNet50 78.46 ± 2.27 68.26 ± 2.19 78.86 ± 3.21
MobileNet 66.40 ± 2.56 67.25 ± 2.49 69.70 ± 2.37
ViT-Small 74.73 ± 4.08 67.57 ± 1.55 79.70 ± 3.12

Stanford Cars
ResNet50 22.34 ± 2.92 28.36 ± 0.86 29.66 ± 2.62
MobileNet 25.29 ± 4.40 26.70 ± 1.88 29.05 ± 3.18
ViT-Small 24.79 ± 0.63 36.73 ± 0.80 37.35 ± 3.37

Oxford-IIIT Pet
ResNet50 76.07 ± 2.26 78.30 ± 1.44 86.16 ± 1.19
MobileNet 75.76 ± 2.58 74.45 ± 4.54 80.43 ± 1.87
ViT-Small 75.69 ± 4.36 80.58 ± 3.62 84.58 ± 3.22

Food101
ResNet50 30.40 ± 1.56 30.49 ± 3.22 34.28 ± 0.83
MobileNet 28.44 ± 0.89 29.38 ± 2.32 34.61 ± 1.74
ViT-Small 38.17 ± 1.53 39.53 ± 4.35 44.89 ± 2.30

Table 4: 5-way, 1-shot classification accuracy (%) with standard deviation across 6 datasets and 3
downstream architectures, showing only the three Learned methods. Bolded values indicate the best
performance per row.

A.2 ENCODER PERFORMANCE COMPARISON

The one-shot clustering fitness function results only use a single image encoder, a pre-
trained ResNet50. We begin this analysis by benchmarking various pre-trained image en-
coders—responsible for projecting augmented images into embedding space—for their effectiveness
in the clustering-based fitness function. We explore two variants of Vision Transformers (Dosovit-
skiy et al., 2021) in addition to a ResNet50. Table 5 provides the results of the encoder performance
comparison. The two vision transformer variants outperform the baseline on all datasets. Notably,
however, there is no single best decoder that performs consistently the best across all datasets.

Table 5: Accuracy for 5-way 1-shot clustering fitness function across various image encoders

Dataset Baseline ResNet50 ViT-224 ViT-B/16

Caltech256 65.77± 1.29 81.83 ± 7.60 79.56± 1.10 72.28± 1.98
Flowers102 61.48± 0.78 56.70± 4.19 62.41± 2.38 64.38 ± 3.30
Stanford Dogs 70.30± 0.58 71.54± 2.70 75.45 ± 2.25 72.72± 2.42
Stanford Cars 21.31± 0.80 24.50± 3.00 25.71 ± 2.74 24.38± 1.32
Oxford-IIIT Pet 79.68± 1.50 85.21± 1.14 83.08± 2.81 85.88 ± 0.66
Food101 30.90± 0.57 33.97 ± 1.63 32.21± 0.41 32.62± 0.67
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Figure 4: Success Case: ViT-B/16-Flowers

A.3 SUCCESS AND FAILURE ANALYSIS

We look at low-dimensional cluster visualizations of encoded augmentations from strong and weak-
performing learned trees for success and failure cases using UMAP (McInnes et al., 2018). This
motivates the desired and non-desired qualities of clusters. We examine the clusters of the embed-
dings of two encoders on the Flower dataset, shown in Figure 4 and Figure 5. We select a single
dataset to establish domain consistency when comparing success and failure cases, as well as against
the handcrafted tree study in the following section. The Flowers102 dataset is particularly interesting
as it is the most fine-grained among those benchmarked. Unlike other datasets, where shape or size
may be primary distinguishing features between classes, flowers are primarily defined by their color.
As a result, applying augmentations that alter color can significantly degrade model performance.

For the success case – ViT-B/16 on Flowers102 – which performed 3% better than baseline, there are
distinct clusters for all five classes, all of which are very tight. Clusters are also very well separated.
For the failure case – ResNet50 on Flowers102 – which performed 5% worse than baseline, the
classes are not clustered very accurately, with augmentations overlapping heavily between classes.

A.4 HANDCRAFTED AUGMENTATION TREES

We handcraft an ”ideal” augmentation tree for the Flowers102 dataset, shown in Table 6, to compare
to the clusters of the EvoAug learned trees in the success and failure cases. The hypothesized ideal
augmentation tree is structured as follows: the head node as Color, the left node as NeRF, and the
right node as no augmentation, with a 0.5 probability of moving to either child node. We guarantee
a Color node, as it uses Color ControlNet to preserve the color palette in augmentations. We also
use a NeRF node, which performs a 3D rotation for an augmentation, yet not affecting color.
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Figure 5: Failure Case: ResNet50-Flowers

Table 6: Handcrafted tree performance on the Flowers102 dataset. Tree structure format: (Head,
pL, Left, pR, Right).

Name Tree Structure Accuracy (%)

Ideal (Color, 0.5, NeRF, 0.5, None) 66.98± 6.56
Inferior (Depth, 0.5, Depth, 0.5, Segmentation) 60.85± 2.30

We also handcraft an ”inferior” augmentation tree as a sanity check and counterexample, allowing us
to compare clusters and better isolate critical features to reward when designing the clustering fitness
score. We use Depth and Segmentation nodes for augmentations, as neither augmentation operation
preserves color, which we hypothesize to be the most important feature for flower classification.

The handcrafted ideal augmentation tree performs better than all other augmentation trees learned
from any image encoder, suggesting that the EvoAug pipeline is not learning the best augmenta-
tion tree through the clustering score fitness function. The ideal handcrafted tree in Figure 6 and
the learned tree success case in Figure 4 both display very well-separated clusters for each class.
However, the clusters for the success case are noticeably tighter than those of the handcrafted tree

Image Encoder S− 1
d S− 2

d S 1
DB

ViT-B/16 64.382± 3.302 67.497± 2.827 61.059± 0.44 61.059± 0.44

Table 7: One-shot clustering results across different fitness functions for Flowers102 subset 50
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Figure 6: Handcrafted Ideal Tree

clusters. If we compare this to Figure 5 or 7, we can see larger clusters formed from a variety of
different classes, with fewer clusters that distinctly correspond to a single class.

These observations give rise to two interpretations: (1) the original fitness function may have under-
valued the importance of large clusters, because the better performing handcrafted ideal tree resulted
in larger yet still distinct clusters and (2) that the original fitness function may have overvalued the
importance of large clusters at the expense of cluster separability, as the failure case and handcrafted
inferior tree demonstrate. This motivates an exploration of alternative fitness functions that may
better capture cluster dynamics.

A.5 CLUSTERING FITNESS FUNCTION MODIFICATIONS

Table 7 compares the performance of different clustering metrics as the fitness function in the
EvoAug pipeline, where S is the Silhouette coefficient, d is the average cluster radius, DB is the
Davies-Boudlin Index (Davies & Bouldin, 1979). We conduct experiments using the Flowers102
dataset and use ViT-B/16 encoder as it performs the best on this dataset.

We test a fitness function of just S as a baseline, but using only the Silhouette Coefficient results in
a learned tree of None nodes, causing all generated augmentations to be exact copies of the original
image. This is expected, as the Silhouette Coefficient scores clusters of the same embedding as a
perfect score of 1, due to the small intra-cluster distances. The same result occurs with the 1

DB fitness
function, confirming that Davies-Bouldin is functionally the same as the Silhouette Coefficient.

We modify the original proposed fitness function by doubling the penalty to small clus-
ter sizes. Under this setting, the learned augmentation tree is (Head, pL,Left, pR,Right) =
(None, 0.51,None, 0.49,NeRF). This tree results in the best downstream classification performance
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Figure 7: Handcrafted Inferior Tree

across all experiments, including those from handcrafted trees, demonstrating that this fitness func-
tion was able to learn better trees than human intuition. This learned tree was likely favored in the
evolutionary algorithm, as NeRF preserves colors and edges, two features we believe are vital for
classifying flowers. These results strengthen the interpretation that a large intra-cluster distance is
important may help in model generalization. Future work will seek to substantiate this claim in other
settings and datasets.

A.6 GENERALIZATION TO FULL DATASETS, DETECTION, AND SEGMENTATION

While the main body of our work focuses on the few shot setting, there are also experiments done
which have indicated that conditioned generation is beneficial in the full dataset setting (Anony-
mous, 2024). The method used in these experiments employs LLaVa2 (Liu et al., 2023a) generated
captions to condition the augmentation of images in the dataset. We believe that with more intelli-
gent conditioning (by learning augmentation trees which match the dataset), we can achieve better
performance.

We reproduce the relevant summary statistics below in Table 8 for completeness. The results show
that conditioned generation consistently achieves higher accuracy than a classically augmented base-
line across six datasets: Caltech256 (Griffin et al., 2007), Stanford Cars (Krause et al., 2013), FGVC
Aircraft (Maji et al., 2013), Stanford Dogs (Khosla et al., 2011), Oxford IIIT-Pets (Parkhi et al.,
2012); and eight model architectures: ResNet (He et al., 2016), VGG (Simonyan & Zisserman,
2014), EfficientNet (Tan & Le, 2019), Visformer (Chen et al., 2021), Swin Transformer (Liu et al.,
2021), MobileNet (Howard et al., 2017), DenseNet (Iandola et al., 2014), and ViT (Dosovitskiy
et al., 2021).
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We have also done some 5-way, 2-shot experiments on the PASCAL VOC dataset (Everingham et al.,
2010). For these experiments, we fine-tuned a Faster R-CNN (Ren et al., 2015) with a ResNet-50-
FPN backbone (Lin et al., 2017) pretrained on COCO (Lin et al., 2014). Our results show that a
baseline strategy which only uses classical augmentations achieves a performance of 18.77 ± 5.95
percent, while our generative augmentation pipeline achieves a performance of 21.53±7.20 percent.
This indicates that our generative augmentation pipeline can also benefit dense prediction tasks.

Table 8: Accuracy on full datasets for various models

Dataset Setting RN50 RN101 VGG19 EN Visformer Swin MN DN

Caltech Baseline 72.37 73.62 67.40 71.79 68.83 63.95 66.48 75.74
Conditioned 76.49 77.64 70.82 73.85 73.15 69.55 68.33 78.10

Cars Baseline 86.78 88.16 87.22 86.75 83.37 75.43 80.80 91.08
Conditioned 91.02 90.95 89.61 88.56 87.40 82.32 82.70 92.20

Aircraft Baseline 75.23 75.91 88.80 81.25 72.61 60.88 70.24 80.53
Conditioned 82.33 81.10 88.20 81.76 74.67 71.74 74.17 83.29

Dogs Baseline 66.49 70.15 68.63 64.17 64.65 52.10 58.60 70.44
Conditioned 68.74 70.40 66.05 62.45 64.36 56.50 58.30 70.21

Pets Baseline 69.22 70.72 83.17 73.59 73.02 58.54 67.35 80.16
Conditioned 71.07 74.03 81.28 74.41 76.24 61.00 68.46 79.34
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