

000 BEYOND CROPPING AND ROTATION: AUTOMATED 001 EVOLUTION OF POWERFUL TASK-SPECIFIC AUGMEN- 002 TATIONS WITH GENERATIVE MODELS 003

004
005
006 **Anonymous authors**
007 Paper under double-blind review
008
009
010
011
012

ABSTRACT

013 Data augmentation has long been a cornerstone for reducing overfitting in vision
014 models, with methods like AutoAugment automating the design of task-specific
015 augmentations. Recent advances in generative models, such as conditional diffu-
016 sion and few-shot NeRFs, offer a new paradigm for data augmentation by syn-
017 thesizing data with significantly greater diversity and realism. However, unlike
018 traditional augmentations like cropping or rotation, these methods introduce sub-
019 stantial changes that enhance robustness but also risk degrading performance if the
020 augmentations are poorly matched to the task. In this work, we present EvoAug,
021 an automated augmentation learning pipeline, which leverages these generative
022 models alongside an efficient evolutionary algorithm to learn optimal task-specific
023 augmentations. Our pipeline introduces a novel approach to image augmentation
024 that learns stochastic augmentation trees that hierarchically compose augmenta-
025 tions, enabling more structured and adaptive transformations. We demonstrate
026 strong performance across fine-grained classification and few-shot learning tasks.
027 Notably, our pipeline discovers augmentations that align with domain knowledge,
028 even in low-data settings. These results highlight the potential of learned genera-
029 tive augmentations, unlocking new possibilities for robust model training.
030

031 1 INTRODUCTION 032

033 Generative AI has rapidly advanced across multiple domains. In computer vision, diffusion models
034 now surpass GANs in producing realistic images and videos from simple prompts (Dhariwal &
035 Nichol, 2021). In language, models like GPT generate human-like text and code, achieving high
036 scores on standardized tests (OpenAI et al., 2024). Similar breakthroughs extend to generative
037 audio (Schneider, 2023) and 2D-to-3D shape generation (Karnewar et al., 2023). These advances
038 raise an important question: to what extent can AI-generated content improve AI itself (Yang et al.,
039 2023b)? While far from true self-improvement, generative models are increasingly influencing their
040 own training processes.

041 A key challenge in leveraging synthetic data is the syn-to-real gap—the discrepancy between gener-
042 ated and real-world data. Poorly matched synthetic augmentations degrade performance rather than
043 enhance it. For example, diffusion models still struggle with fine details such as realistic fingers
044 (Narasimhaswamy et al., 2024). Thus, a model trained on data augmented by flawed synthetic im-
045 ages may reinforce errors. Similarly, a language model could amplify its own biases by training on
046 text that it generated itself. This issue is particularly critical in tasks requiring fine-grained distinc-
047 tions, such as image classification, or in low-data settings like few-shot learning. Addressing this
048 gap is essential for generative augmentations to contribute meaningfully to AI training.

049 Hence, methods that use synthetic or simulated data must balance the tradeoff between data variabil-
050 ity and fidelity. This can be achieved by constraining data generation to closely match the real-world
051 distribution, thereby reducing its variability while improving its fidelity. This approach has been suc-
052 cessful in fields like robotics (Lu et al., 2024) and autonomous vehicles (Song et al., 2024). However,
053 it has only seen limited application in synthetic image generation for computer vision. This work
tackles the challenge of fine-grained few-shot classification. Due to the lack of real samples, syn-

054 thetic data provides an attractive option for boosting performance. Since fine-grained distinctions
 055 between classes can be easily missed, a carefully designed image generation pipeline is required.
 056

057 We propose using generative AI not for data creation, but for data augmentation—a paradigm shift.
 058 Instead of generating data from scratch, we condition the process on real data, thereby ensuring that
 059 it preserves the semantic priors and underlying structure of the original distribution while introducing
 060 meaningful and novel variations. While this approach constrains synthetic data to resemble real
 061 data, it also provides stronger guarantees of its validity, effectively overcoming the syn-to-real gap.
 062

063 Motivated by this vision, we design *EvoAug*, a pipeline that automatically learns a powerful aug-
 064 mentation strategy. Our work makes use of evolutionary algorithms, which have been shown to work
 065 in a variety of domains and still remain more sample-efficient and straightforward than other meth-
 066 ods (Ho et al., 2019; Wang et al., 2023). This is especially important when dealing with complex
 067 augmentation operators like conditional diffusion and NeRF models, where evaluation is expensive,
 068 gradients are very difficult to approximate, and sample efficiency is paramount.
 069

070 As part of our pipeline, we construct an augmentation tree—a binary tree that applies a series of aug-
 071 mentation operators in accordance with learned branching probabilities. The augmentation tree can
 072 then be used to produce synthetic or augmented variations of the images in the dataset by stochasti-
 073 cally following root-to-leaf paths. Our trees include nodes that perform either classical or generative
 074 augmentations. To produce accurate synthetic data, we condition the diffusion models on existing
 075 structural and appearance-based information rather than solely relying on prompt-based image
 076 generation. Our approach is powerful enough to work even with very small datasets and provides
 077 promising results on fine-grained and few-shot classification tasks across multiple datasets.
 078

079 Our main contributions are the following:
 080

- 081 1. The first automated augmentation strategy to leverage both modern augmentation operators
 082 like controlled diffusion and NeRFs, along with traditional augmentation operators like
 083 cropping and rotation
 084
- 085 2. Strong results on fine-grained few-shot learning, a challenging domain where prior work
 086 has failed to preserve the minor semantic details that distinguish the classes
 087
- 088 3. Novel unsupervised strategies that scale as low as the one-shot setting, where no supervi-
 089 sion to evaluate augmentations is available
 090
- 091 4. Constructing an augmentation pipeline from only open-source, pre-trained diffusion mod-
 092 els, without requiring domain-specific fine-tuning
 093

094 2 RELATED WORK

095 Data augmentation reduces model overfitting by applying image transformations that preserve the
 096 original semantics while introducing controlled diversity into the training set. Traditional augmenta-
 097 tions include rotations, random cropping, mirroring, scaling, and other basic transformations. These
 098 straightforward techniques remain fundamental in state-of-the-art image augmentation pipelines.
 099 More advanced methods—such as erasing (Zhong et al., 2020; Chen et al., 2020; Li et al., 2020;
 100 DeVries & Taylor, 2017), copy-pasting (Ghiasi et al., 2021), image mixing (Zhang et al., 2017;
 101 Yun et al., 2019), and data-driven augmentations like AutoAugment (Cubuk et al., 2018) and its
 102 simplified variant RandAugment (Cubuk et al., 2020)—have expanded the augmentation toolbox.
 103

104 Another approach involves generating synthetic data using generative models (Figueira & Vaz,
 105 2022). Early work explored GANs (Besnier et al., 2020; Jahanian et al., 2021; Brock et al., 2018),
 106 VAEs (Razavi et al., 2019), and CLIP (Ramesh et al., 2022), achieving strong results (Engelsma
 107 et al., 2022; Skandarani et al., 2023). Recently, diffusion models, particularly for text-to-image syn-
 108 thesis, have surpassed GANs in producing photorealistic images (Nichol et al., 2021; Ramesh et al.,
 109 2022; Saharia et al., 2022b; Yang et al., 2025). Trained on large-scale internet data (Schuhmann
 110 et al., 2022), diffusion models have been used for augmentation (Azizi et al., 2023; Sarıyıldız et al.,
 111 2023; He et al., 2022; Shipard et al., 2023; Rombach et al., 2022; Islam et al., 2025; 2024), often
 112 relying on class names or simple class agnostics prompts to guide generation. Despite promising
 113 initial results, synthetic data remains inferior to real data, highlighting the persistent domain gap
 114 between the two (Yamaguchi & Fukuda, 2023).
 115

108 To address this gap, recent approaches have incorporated conditioning the generative process on
 109 real data. Some popular methods involve projecting the original images to the diffusion latent space
 110 (Zhou et al., 2023), fine-tuning diffusion models on real data (Azizi et al., 2023), leveraging multi-
 111 modal LLMs to obtain detailed, custom image captions for high-quality text prompting (Yu et al.,
 112 2023), and employing image-to-image diffusion models that enable direct conditioning on a spe-
 113 cific image (Saharia et al., 2022a; Meng et al., 2021; Zhang et al., 2023; He et al., 2022; Trabucco
 114 et al., 2025). Controlled diffusion, a subset of these methods, introduces a more powerful paradigm,
 115 furthering the efficient use of both text and image priors (Fang et al., 2024; Islam & Akhtar, 2025)
 116 with applications in segmentation (Trabucco et al., 2023) and classification (Goldfeder et al., 2024)
 117 problems.

118 Given such a wide range of augmentation operators, an important problem is knowing which aug-
 119 mentations to use for a specific task, without the use of domain knowledge. This task, of automati-
 120 cally learning augmentation policies, falls under the class of meta learning and bi-level optimization
 121 problems, where we seek to learn a component of the learning algorithm itself (Hospedales et al.,
 122 2021). These algorithms generally fall under one of the following categories: gradient-based opti-
 123 mization, RL-based optimization, Bayesian optimization, and evolution-based optimization.

124 In the context of learning augmentation policies, all these methods have seen success (Yang et al.,
 125 2023a). Differentiable methods often train a neural network to produce augmentations (Lemley
 126 et al., 2017), sometimes in a generative adversarial setup (Shrivastava et al., 2017; Tran et al., 2017).
 127 By far the most notable method, AutoAugment (Cubuk et al., 2018), employs reinforcement learning.
 128 While RL is traditionally sample inefficient, improvements upon vanilla RL strategies have
 129 leveraged Bayesian methods (Lim et al., 2019), evolutionary strategies (Ho et al., 2019; Wang et al.,
 130 2023), or approximate gradient estimation for first-order optimization (Hataya et al., 2020).

131 Learning augmentation policies is especially challenging in low data settings, as full data policies
 132 are usually not transferable to the few-shot case. Various approaches have been considered, includ-
 133 ing proposing K-fold validation as a method of retaining the data while still performing validation
 134 (Naghizadeh et al., 2021). However, this method does not scale to one-shot settings. Utilizing clus-
 135 tering as a label-efficient evaluation method, where augmentations are designed to stay within their
 136 corresponding class cluster, can address this limitation (Abavisani et al., 2020).

137

138 3 METHODS

139

140 3.1 AUGMENTATION OPERATORS

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

Figure 1: Example image augmentations using our pipeline. Classical augmentations include color jitter, rotation, and random cropping. Canny, color, depth, and segment use existing image informa-
 tion to steer a ControlNet diffusion model. NeRF uses a zero-shot NeRF to perform a 3D rotation.

Figure 2: Mutation and Crossover for Augmentation Trees

The generative augmentation operators are based on both diffusion and NeRFs. For diffusion-based operators, we use ControlNet (Zhang et al., 2023), an architecture which allows rapid customization of diffusion models without fine-tuning. To condition the model, we extract edges using Canny edge detection (Canny, 1986), segmentations using Segment Anything (Kirillov et al., 2023), depth maps using MiDaS (Ranftl et al., 2020), and color palettes by simply downsampling the image. This gives four diffusion-based augmentation operators, termed "Canny", "Segment", "Depth" and "Color". We use Zero123 (Liu et al., 2023b) for NeRF-based augmentation. This model creates a 3D reconstruction of an image from a single shot, allowing for 3D rotation. We then rotate 15 degrees left or right when performing an augmentation using this model. We term this operator "NeRF". Next, we include another augmentation operator, termed "Classical." This includes the full set of traditional augmentations: random crop, translation, scale, rotation, color jitter, and flip. This operator allows the evolution process to decide whether to include and build on the traditional classical augmentation pipeline or exclude it. Sometimes, all augmentations can be harmful, so we also included a "NoOp" operator that simply duplicates the existing image. Figure 1 gives examples of these operators.

3.2 EVOLUTIONARY STRATEGY

For our augmentation policy learning pipeline, we choose an evolutionary approach. This choice is motivated by practical considerations: diffusion and NeRF based augmentation is considerably more expensive to evaluate than traditional augmentations, so pipeline efficiency is crucial. Population-based evolutionary strategies have been shown to be as effective as RL approaches, with less than one percent of the computational effort (Ho et al., 2019). While gradient approximation methods have been shown to be even more efficient in some cases (Hataya et al., 2020), those results are for approximating gradients of simpler transformations, and do not translate to our pipeline, which can handle arbitrary generative modules. Further, recent work has shown evolution to be effective for searching for augmentation policies even in very complex augmentation spaces (Wang et al., 2023).

We define an augmentation tree as a binary tree, where each node represents an augmentation operator. The edges of our tree represent transition probabilities to each child node, summing to 1. This structure is chosen as it serves as a common genome for evolutionary algorithms.

Mutation Illustrated in figure 2, mutation can occur at either the node level or the edge level. An edge mutation reassigns the probabilities of a transition between two child nodes. A node mutation switches the augmentation operator of that node (e.g. Depth node becomes a Canny node).

Crossover Also illustrated in figure 2, crossover is the other basic evolutionary operator. Two parents are selected, a child is created by splicing the branches of the parents together.

We thus define a population P of size n , of initial trees. In each generation, we use mutation and crossover to generate c children P_{new} , that are appended to P . Finally, the population is evaluated with a fitness function f , and the top n are kept for the next generation. Mutation and crossover probability are parameterized by p_m and p_c respectively. Algorithm 1 describes this process.

Figure 3: Tree Learning Pipelines. (a) K-Fold applies when there is more than one example per class. (b) We can measure cluster quality for the 1-shot case. (c) We can duplicate the image and assume the problem to be 2-shot instead of 1-shot (d) We can simply use training loss, though it is risky to assume that lower train loss equates to better performance.

3.3 FITNESS FUNCTIONS

The goal of our augmentation strategy is to improve downstream model robustness, and thus the fitness function we choose to evaluate augmentation trees should either directly reflect what we seek to achieve or be a strong proxy. Note that in a full data setting, training data can be split into a train and validation. An augmentation tree can be evaluated by simply training a model with generated augmentations on the training data and measuring performance on the previously unseen evaluation data. We divide our discussion into two, more difficult, settings.

3.3.1 LOW DATA SETTING

In the low-data and few-shot case, the challenge becomes managing the noise of the evaluation function. We can no longer rely on a single train/val split to accurately measure the performance of a tree as low-data settings introduce high variability in splits. Thus, we use K-fold cross-validation.

In addition, directly using accuracy as our metric is no longer appropriate, as our validation set remains small enough that accuracy becomes coarse-grained and unstable. As a result, to align with the convention of higher fitness values corresponding to better candidates in the population, we use the negative validation loss as the fitness function in these settings. Algorithm 2 describes this process. The pipeline can be seen in figure 3a.

Algorithm 1 Evolutionary Search for Augmentation Trees

Require: Population size p , number of generations g , fitness function f , number of children c , mutation probability p_m , crossover probability p_c

- 1: $P \leftarrow \text{InitializePopulation}(p)$
- 2: **for** $i = 1$ to g **do**
- 3: $P_{\text{new}} \leftarrow \text{MutateAndCrossover}(P, c, p_m, p_c)$
- 4: $P \leftarrow P \cup P_{\text{new}}$
- 5: Evaluate fitness $f(T)$ for each tree $T \in P$
- 6: $P \leftarrow \text{SelectBest}(P, p)$ ▷ Keep top p trees
- 7: **end for**
- 8: $T_{\text{best}} \leftarrow \text{BestTree}(P)$
- 9: **return** T_{best}

3.3.2 ONE-SHOT SETTING

In the most extreme case, we only have one image per class. Thus, proposed methods involving K-fold validation will not be able to span the full class range of the dataset (Naghizadeh et al., 2021). To address this problem, we devised the following strategies:

270 **Algorithm 2** K-Fold Cross Validation Tree Fitness Function
 271 **Require:** Dataset D , augmentation tree T , number of folds k
 272 1: Split D into k folds: D_1, D_2, \dots, D_k
 273 2: Initialize $M \leftarrow 0$
 274 3: **for** $i = 1$ to k **do**
 275 4: $D_{\text{val}} \leftarrow D_i$
 276 5: $D_{\text{train}} \leftarrow D \setminus D_i$
 277 6: $D_{\text{aug}} \leftarrow \text{ApplyAugmentationTree}(T, D_{\text{train}})$
 278 7: Train model M_i on D_{aug}
 279 8: $m_i \leftarrow \text{Evaluate}(M_i, D_{\text{val}})$
 280 9: $M \leftarrow M + m_i$
 281 10: **end for**
 282 11: $\bar{m} \leftarrow \frac{M}{k}$
 283 12: **return** \bar{m}

284

285 **Label-Efficient Clustering** Our goal is to find augmentations that preserve important class-specific
 286 characteristics while still providing novel data. Thus, when evaluating on a validation set is not
 287 possible, we can switch to a clustering approach. To find these novel, true-to-class augmentations,
 288 our intuition is to search for clusters that are wide, but still distinct from each other. Abavisani et al.
 289 proposed using this type of evaluation for augmentation pipelines in low-data and one-shot settings
 290 (Abavisani et al., 2020). They adopted Deep Subspace Clustering (Ji et al., 2017) and optimized the
 291 Silhouette coefficient as a measure of cluster quality. We improve upon this work in three ways:
 292

293 1. We simplify the clustering process by using a pre-trained network to generate image em-
 294 beddings which we then cluster, thus eliminating the need for a Deep Subspace Clustering
 295 network and requiring no training.
 296 2. Prior work employed k-means to form clusters (Douzas et al., 2018), adding computational
 297 complexity. We simplify this by directly using known class labels as clusters. This al-
 298 lows us to evaluate explicitly whether augmentations form meaningful, class-based clusters
 299 rather than merely measuring separability.
 300 3. When evaluating augmentation quality via clustering, traditional metrics like the Silhouette
 301 coefficient reward cohesion but do not penalize small or redundant clusters. This can cause
 302 the evolutionary algorithm to favor augmentation trees that produce minimal or trivial vari-
 303 ations, which lack diversity and generalization potential. To avoid this pitfall, we introduce
 304 an additional penalty term based on average cluster radius, balancing cohesion with cluster
 305 size and separability. This modified metric thus encourages the formation of clusters that
 306 are both cohesive and sufficiently distinct, promoting better generalization. Experiments
 307 supporting these conclusions are presented in Appendix A.5.

308 This process is given in Algorithm 3. The pipeline can be seen in figure 3b.
 309

310 **Double Augmentation** This strategy is simple yet effective. We apply classical augmentations—
 311 which reliably introduce meaningful variations—to expand the original one-shot dataset. The aug-
 312 mented dataset is then divided into k splits, and the negative validation losses are averaged across
 313 splits, as detailed in Algorithm 4 and illustrated in Figure 3c. This approach allows us to increase
 314 augmentations while minimizing the risk of degrading dataset quality or relevance through unin-
 315 tended variations introduced by generative models.
 316

317 **Algorithm 4** 1-Shot Double Augmentation Fitness Function

318 **Require:** One-shot dataset D , augmentation tree T , number of folds k
 319 1: $D' \leftarrow \emptyset$
 320 2: **for** each image $x \in D$ **do**
 321 3: $A(x) = \{\text{ClassicAug}(x)_1, \dots, \text{ClassicAug}(x)_k\}$
 322 4: $D' \leftarrow D' \cup A(x)$
 323 5: **end for**
 6: **return** $\text{KFOLDFITNESS}(D', T, k)$

▷ Refer to Alg. 2

324 **Algorithm 3** 1-Shot Clustering Fitness Function325 **Require:** Image dataset D , augmentation tree T , embedding model E

 326 1: $D_{\text{aug}} \leftarrow \text{ApplyAugmentationTree}(T, D)$
 327 2: Initialize embedding list $L \leftarrow \emptyset$
 328 3: **for** each image $x \in D_{\text{aug}}$ **do**
 329 4: $e \leftarrow E(x)$
 330 5: Append e to L
 331 6: **end for**
 332 7: $C \leftarrow \text{Cluster}(L)$
 333 8: $S \leftarrow \text{ComputeSilhouetteScore}(C)$
 334 9: $d \leftarrow \text{ComputeMeanClusterDistance}(C)$
 335 10: $s \leftarrow \alpha S - \frac{1-\alpha}{d}$
 336 11: **return** s

 337
 338 **Training Loss** We can also simply use training loss as a proxy in the one-shot case. We augment
 339 all the images, and train a model. We then evaluate trees based on how low the training loss is after
 340 a fixed number of epochs. While this should encourage minor augmentations, and also makes use
 341 of train loss to estimate eval loss, a very erroneous assumption, it still works well in practice. The
 342 pipeline can be seen in figure 3d.
 343

344 4 RESULTS

345 4.1 EXPERIMENT SETUP

 346 We perform our experiments on six datasets: Caltech256 (Griffin et al., 2007), Oxford IIIT-Pets
 347 (Parkhi et al., 2012), Oxford 102 Flowers (Nilsback & Zisserman, 2008), Stanford Cars (Krause
 348 et al., 2013), Stanford Dogs (Khosla et al., 2011), and Food101 (Bossard et al., 2014). To highlight
 349 how powerful our method is, even in few-shot settings when the fine-grained semantic distinctions
 350 are minor, we *deliberately searched* for few-shot images and classes that were the most challenging.
 351

 352 For an n -way k -shot classification task, we do this as follows. First, we randomly select n classes
 353 from the original dataset. Then we randomly selected k images from each class. We fine-tune a
 354 pretrained Resnet50 model (He et al., 2016) on these images and record the accuracy. We repeat
 355 this procedure 10 times, gathering 10 different subsets of the classes with different images for each
 356 dataset. Afterwards, we note which subset of classes from the dataset had the lowest baseline test
 357 accuracy, and we choose this subset as the setting for our augmentation benchmarks.
 358

 359 For our genetic algorithm, we initialize a population of 14. For each of the seven augmentation
 360 operators, we initialize two trees whose root nodes use that operator, creating a balanced population.
 361 This broadens the solution space exploration and avoids the pitfalls of random initialization on a
 362 small population. We set the mutation probability to 10% and include 6 crossovers per generation.
 363 We restrict tree depth to 2, allowing the composition of at most 2 operations per augmentation. For
 364 each of the 10 generations, we generate 8 children. In the 2 and 5-shot cases, we use K-fold fitness,
 365 choosing folds such that the classes remained balanced. To evaluate augmentation trees, we train
 366 the models for 20 epochs and observe the corresponding loss. In the one-shot case, we examine the
 367 three other fitness functions (double augmentation, training loss, and clustering) proposed above.
 368

 369 Once the best tree is chosen, we generate augmentations and evaluate the downstream classification
 370 accuracy against several baselines:
 371

1. Naive Baseline: We randomly apply classical augmentations (cropping, scaling, translation, horizontal/vertical flipping, color jitter, rotation)
2. RandAugment: We perform a grid search over the number of operations (num_ops) and magnitude parameters, selecting the configuration with the lowest validation loss using cross-validation on a train/validation split; this best-performing configuration is then evaluated on the full test set.
3. AutoAugment: We apply the ImageNet-learned AutoAugment policy to our datasets.

In all downstream classification tasks, training proceeds for 200 epochs. In the 1-shot setting, we augment each image in the original dataset 2 times, in the 2-shot setting 5 times, and in the 5-shot setting 2 times. We also evaluate our methods and baselines against augmentations generated from random trees in the ResNet experiments to ensure that our evolutionary search was an important part of creating true-to-class augmentations. Each experiment is performed at least three times with varying seeds, and the average and standard deviation are reported. We evaluate using a pre-trained ResNet50, ViT-Small (Dosovitskiy et al., 2021), or MobileNetV2 (Sandler et al., 2019) model. Models are fine-tuned using Adam (Kingma & Ba, 2017), with a learning rate of 1e-3. We use NVIDIA GeForce RTX 4090 chips with 24 GB of memory. Each experiment took between 2 and 24 hours to complete, depending on the number of ways and shots.

4.2 FEW-SHOT RESULTS

Dataset	Model	Naive Baseline	Random Tree	RandAugment	AutoAugment	Learned
Caltech256	ResNet50	79.78 \pm 0.73	81.42 \pm 7.64	84.71 \pm 0.01	86.78 \pm 0.00	88.28 \pm 1.75
	MobileNet	80.95 \pm 1.08	-	86.04 \pm 0.01	84.45 \pm 0.01	84.18 \pm 0.75
	ViT-Small	73.30 \pm 6.61	-	81.85 \pm 0.01	81.74 \pm 0.02	79.83 \pm 9.90
Flowers102	ResNet50	70.49 \pm 1.08	78.59 \pm 2.11	83.65 \pm 0.00	86.60 \pm 0.00	73.73 \pm 3.70
	MobileNet	77.00 \pm 1.83	-	79.54 \pm 0.01	81.75 \pm 0.01	73.21 \pm 4.75
	ViT-Small	97.89 \pm 1.43	-	99.37 \pm 0.00	98.63 \pm 0.00	94.30 \pm 3.85
Stanford Dogs	ResNet50	78.44 \pm 0.13	83.76 \pm 6.42	80.76 \pm 0.01	82.23 \pm 0.00	85.15 \pm 2.73
	MobileNet	75.34 \pm 0.99	-	73.72 \pm 0.02	75.26 \pm 0.00	77.51 \pm 0.63
	ViT-Small	83.67 \pm 1.38	-	86.95 \pm 0.02	83.97 \pm 0.02	80.61 \pm 2.01
Stanford Cars	ResNet50	30.90 \pm 1.68	36.94 \pm 6.48	37.20 \pm 0.01	34.68 \pm 0.01	40.40 \pm 3.07
	MobileNet	35.35 \pm 1.05	-	36.30 \pm 0.01	36.95 \pm 0.01	37.36 \pm 0.15
	ViT-Small	40.64 \pm 5.43	-	43.83 \pm 0.01	42.74 \pm 0.02	46.32 \pm 1.43
Oxford-IIIT Pet	ResNet50	86.57 \pm 0.60	84.97 \pm 3.08	85.25 \pm 0.01	86.57 \pm 0.00	88.34 \pm 1.72
	MobileNet	84.41 \pm 0.53	-	87.27 \pm 0.01	86.08 \pm 0.00	89.21 \pm 2.93
	ViT-Small	88.52 \pm 0.55	-	91.28 \pm 0.01	90.60 \pm 0.01	91.44 \pm 2.06
Food101	ResNet50	47.82 \pm 0.57	42.61 \pm 4.56	46.23 \pm 0.00	51.32 \pm 0.00	49.78 \pm 4.21
	MobileNet	39.93 \pm 1.46	-	43.49 \pm 0.00	44.82 \pm 0.00	42.97 \pm 2.61
	ViT-Small	55.66 \pm 3.22	-	62.20 \pm 0.02	64.14 \pm 0.02	64.18 \pm 2.13

Table 1: 5-way, 2-shot classification accuracy (%) with standard deviation across 6 datasets and 3 downstream image classification architectures. Bolded values indicate the best performance per row.

Dataset	Model	Naive Baseline	Random Tree	RandAugment	AutoAugment	Learned
Caltech256	ResNet50	88.15 \pm 0.25	92.22 \pm 0.93	92.55 \pm 0.00	93.31 \pm 0.00	91.48 \pm 1.11
	MobileNet	88.80 \pm 0.19	-	89.51 \pm 0.00	91.41 \pm 0.00	90.05 \pm 0.98
	ViT-Small	85.75 \pm 1.04	-	90.32 \pm 0.01	90.70 \pm 0.01	92.33 \pm 1.27
Flowers102	ResNet50	82.61 \pm 0.96	79.51 \pm 2.69	89.04 \pm 0.01	89.92 \pm 0.01	84.95 \pm 1.15
	MobileNet	88.82 \pm 0.69	-	91.47 \pm 0.00	89.26 \pm 0.01	86.60 \pm 1.07
	ViT-Small	99.78 \pm 0.19	-	99.89 \pm 0.00	99.89 \pm 0.00	99.34 \pm 0.33
Stanford Dogs	ResNet50	88.69 \pm 0.65	90.81 \pm 1.08	89.21 \pm 0.00	91.24 \pm 0.00	91.35 \pm 0.72
	MobileNet	82.88 \pm 0.72	-	81.49 \pm 0.00	83.10 \pm 0.00	83.40 \pm 0.27
	ViT-Small	88.73 \pm 0.46	-	89.73 \pm 0.00	87.99 \pm 0.00	84.66 \pm 0.85
Stanford Cars	ResNet50	52.97 \pm 0.80	53.75 \pm 1.44	54.63 \pm 0.00	51.48 \pm 0.01	57.98 \pm 3.20
	MobileNet	50.79 \pm 1.39	-	55.41 \pm 0.01	55.93 \pm 0.01	48.87 \pm 1.71
	ViT-Small	58.12 \pm 2.73	-	63.00 \pm 0.02	66.67 \pm 0.01	59.25 \pm 2.23
Oxford-IIIT Pet	ResNet50	92.07 \pm 0.44	93.12 \pm 0.74	92.91 \pm 0.01	93.61 \pm 0.00	93.63 \pm 0.43
	MobileNet	88.56 \pm 0.85	-	90.32 \pm 0.00	90.14 \pm 0.00	90.53 \pm 0.76
	ViT-Small	94.95 \pm 0.56	-	95.44 \pm 0.01	95.37 \pm 0.01	93.54 \pm 0.53
Food101	ResNet50	54.09 \pm 0.58	56.88 \pm 2.60	56.72 \pm 0.00	58.28 \pm 0.00	58.75 \pm 1.60
	MobileNet	51.88 \pm 0.59	-	52.00 \pm 0.00	54.05 \pm 0.00	54.19 \pm 1.36
	ViT-Small	75.40 \pm 2.22	-	79.59 \pm 0.00	78.25 \pm 0.00	76.49 \pm 0.75

Table 2: 5-way, 5-shot classification accuracy (%) with standard deviation across 6 datasets and 3 downstream image classification architectures. Bolded values indicate the best performance per row.

The few-shot results are shown in Tables 1 and 2. We measure the accuracy on the test set for models trained using the baseline strategies, random augmentation trees, and the augmentation trees learned from our pipeline. While EvoAug consistently outperforms the Naive Baseline, results are mixed when evaluated against AutoAugment and RandAugment. Notably, EvoAug is much better on the Stanford Dogs and Oxford-IIIT Pets datasets, but marginally worse on Flowers102.

	Dataset	Model	Naive Baseline	NoOp / Classical Tree	Random Tree	RandAugment	AutoAugment	Learned (Clustering)
432 433 434	Caltech256	ResNet50	65.77 \pm 1.29	78.67 \pm 2.00	81.57 \pm 6.44	81.63 \pm 0.01	82.92 \pm 0.01	83.65 \pm 4.92
		MobileNet	67.28 \pm 2.56	-	-	71.97 \pm 0.01	71.47 \pm 0.01	80.09 \pm 4.73
		ViT-Small	66.72 \pm 3.53	-	-	75.60 \pm 0.03	75.38 \pm 0.03	82.12 \pm 3.64
435 436 437	Flowers102	ResNet50	61.48 \pm 0.78	66.15 \pm 0.90	63.03 \pm 3.95	63.97 \pm 0.00	65.84 \pm 0.01	66.75 \pm 2.34
		MobileNet	57.11 \pm 1.30	-	-	53.17 \pm 0.01	58.46 \pm 0.01	60.78 \pm 2.58
		ViT-Small	94.60 \pm 1.88	-	-	96.26 \pm 0.03	93.98 \pm 0.02	95.47 \pm 2.19
438 439 440	Stanford Dogs	ResNet50	70.30 \pm 0.58	75.79 \pm 0.29	76.58 \pm 3.84	75.86 \pm 0.01	77.22 \pm 0.02	78.86 \pm 3.21
		MobileNet	60.58 \pm 2.66	-	-	65.19 \pm 0.02	67.73 \pm 0.01	69.70 \pm 2.37
		ViT-Small	75.55 \pm 1.61	-	-	78.47 \pm 0.01	77.83 \pm 0.02	79.70 \pm 3.12
441 442 443	Stanford Cars	ResNet50	21.31 \pm 0.80	28.11 \pm 0.43	29.77 \pm 1.83	32.84 \pm 0.01	31.84 \pm 0.03	29.66 \pm 2.62
		MobileNet	30.43 \pm 1.12	-	-	30.18 \pm 0.01	30.35 \pm 0.02	29.05 \pm 3.18
		ViT-Small	31.10 \pm 5.56	-	-	36.15 \pm 0.02	34.66 \pm 0.01	37.35 \pm 3.37
444 445 446	Oxford-IIIT Pet	ResNet50	79.68 \pm 1.50	82.44 \pm 0.55	81.47 \pm 6.34	78.17 \pm 0.01	82.71 \pm 0.00	86.16 \pm 1.19
		MobileNet	72.18 \pm 1.45	-	-	76.31 \pm 0.00	74.17 \pm 0.01	80.43 \pm 1.87
		ViT-Small	76.10 \pm 5.44	-	-	83.88 \pm 0.02	79.61 \pm 0.04	84.58 \pm 3.22
447 448 449	Food101	ResNet50	30.90 \pm 0.57	30.06 \pm 0.31	32.83 \pm 2.42	30.38 \pm 0.00	30.46 \pm 0.00	34.28 \pm 0.83
		MobileNet	28.78 \pm 0.63	-	-	25.52 \pm 0.01	26.15 \pm 0.01	34.61 \pm 1.74
		ViT-Small	43.74 \pm 2.51	-	-	48.17 \pm 0.02	45.44 \pm 0.01	44.89 \pm 2.30

Table 3: 5-way, 1-shot classification accuracy (%) with standard deviation across 6 datasets and 3 downstream image classification architectures. Bolded values indicate the best performance per row.

4.3 ONE-SHOT RESULTS

Our 1-shot results are shown in Table 3. Here, we include our clustering-based fitness function learning strategy. Results for our double augmentation and training loss strategies are included in the appendix. EvoAug consistently outperforms the Naive Baseline, and often outperforms RandAugment and AutoAugment, achieving strong performance in scarce data settings. We also run our pipeline restricting nodes to just classical or NoOp transformations and find that these restricted trees perform worse than our normal trees. This supports the conclusion that generative augmentation operators are an important part of performance.

5 CONCLUSION

We present an automated augmentation strategy that leverages advanced generative models, specifically controlled diffusion and NeRF operators, in combination with classical augmentation techniques. By employing an evolutionary search framework, our method automatically discovers task-specific augmentation policies that significantly improve performance in fine-grained few-shot and one-shot classification tasks. Experimental results on a diverse set of datasets demonstrate that our approach not only outperforms standard baselines but also identifies augmentation strategies that effectively preserve subtle semantic details, which are crucial in low-data scenarios.

Our work introduces novel unsupervised evaluation metrics and proxy objectives to reliably guide augmentation policy search in settings where labeled data is scarce. While the computational overhead associated with evaluating complex generative augmentations remains a challenge, the substantial gains in classification accuracy validate the potential of our approach. Overall, our findings suggest that integrating generative models with automated policy learning can play a pivotal role in enhancing the robustness of vision systems, particularly in environments with limited data.

5.1 LIMITATIONS

A potential limitation of our method is its ability to extend to a full dataset recognition task, as directly scaling our pipeline to learn semantic priors from the full dataset is not efficient. Preliminary work, however, has shown that using a text conditioned process to augment images does improve the performance of models on image classification tasks against a classical augmentation baseline (discussion in Appendix A.6). We believe that a more careful augmentation learning strategy that efficiently learns augmentations that match the dataset may be able to further improve this accuracy.

Other avenues of interest are extending this framework to other vision tasks such as object detection and segmentation and further refining the balance between diversity and fidelity in generated augmentations. Preliminary work on these tasks has shown that our pipeline has the ability to improve model performance when compared to a baseline of classically augmented images (discussion in Appendix A.6).

486 REFERENCES
487

488 Mahdi Abavisani, Alireza Naghizadeh, Dimitris Metaxas, and Vishal Patel. Deep subspace clus-
489 tering with data augmentation. *Advances in Neural Information Processing Systems*, 33:10360–
490 10370, 2020.

491 Shekoofeh Azizi, Simon Kornblith, Chitwan Saharia, Mohammad Norouzi, and David J Fleet.
492 Synthetic data from diffusion models improves imagenet classification. *arXiv preprint*
493 *arXiv:2304.08466*, 2023.

494 Victor Besnier, Himalaya Jain, Andrei Bursuc, Matthieu Cord, and Patrick Pérez. This dataset does
495 not exist: training models from generated images. In *ICASSP 2020-2020 IEEE International*
496 *Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 1–5. IEEE, 2020.

497 Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101–mining discriminative compo-
498 nents with random forests. In *Computer Vision–ECCV 2014: 13th European Conference, Zurich,*
499 *Switzerland, September 6–12, 2014, Proceedings, Part VI 13*, pp. 446–461. Springer, 2014.

500 Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity natural
501 image synthesis. *arXiv preprint arXiv:1809.11096*, 2018.

502 John Canny. A computational approach to edge detection. *IEEE Transactions on pattern analysis*
503 *and machine intelligence*, (6):679–698, 1986.

504 Pengguang Chen, Shu Liu, Hengshuang Zhao, and Jiaya Jia. Gridmask data augmentation. *arXiv*
505 *preprint arXiv:2001.04086*, 2020.

506 Zhengsu Chen, Lingxi Xie, Jianwei Niu, Xuefeng Liu, Longhui Wei, and Qi Tian. Visformer:
507 The vision-friendly transformer. In *Proceedings of the IEEE/CVF international conference on*
508 *computer vision*, pp. 589–598, 2021.

509 Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. Autoaugment:
510 Learning augmentation policies from data. *arXiv preprint arXiv:1805.09501*, 2018.

511 Ekin D. Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V. Le. Randaugment: Practical automated
512 data augmentation with a reduced search space. In *Proceedings of the IEEE/CVF Conference on*
513 *Computer Vision and Pattern Recognition Workshops (CVPRW)*, pp. 702–703, 2020.

514 David L. Davies and Donald W. Bouldin. A cluster separation measure. *IEEE Transactions on*
515 *Pattern Analysis and Machine Intelligence*, PAMI-1(2):224–227, 1979. doi: 10.1109/TPAMI.
516 1979.4766909.

517 Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural networks
518 with cutout. *arXiv preprint arXiv:1708.04552*, 2017.

519 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *Advances*
520 *in neural information processing systems*, 34:8780–8794, 2021.

521 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
522 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
523 and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
524 scale, 2021. URL <https://arxiv.org/abs/2010.11929>.

525 Georgios Douzas, Fernando Bacao, and Felix Last. Improving imbalanced learning through a
526 heuristic oversampling method based on k-means and smote. *Information Sciences*, 465:1–
527 20, 2018. ISSN 0020-0255. doi: <https://doi.org/10.1016/j.ins.2018.06.056>. URL <https://www.sciencedirect.com/science/article/pii/S0020025518304997>.

528 Joshua James Engelsma, Steven Grosz, and Anil K Jain. Printsgan: synthetic fingerprint generator.
529 *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45(5):6111–6124, 2022.

530 Mark Everingham, Luc Van Gool, Christopher K. I. Williams, John Winn, and Andrew Zisserman.
531 The pascal visual object classes (voc) challenge. *International Journal of Computer Vision*, 88
532 (2):303–338, 2010.

540 Haoyang Fang, Boran Han, Shuai Zhang, Su Zhou, Cuixiong Hu, and Wen-Ming Ye. Data augmentation
 541 for object detection via controllable diffusion models. In *Proceedings of the IEEE/CVF*
 542 *Winter Conference on Applications of Computer Vision*, pp. 1257–1266, 2024.

543

544 Alvaro Figueira and Bruno Vaz. Survey on synthetic data generation, evaluation methods and gans.
 545 *Mathematics*, 10(15):2733, 2022.

546 Golnaz Ghiasi, Yin Cui, Aravind Srinivas, Rui Qian, Tsung-Yi Lin, Ekin D Cubuk, Quoc V Le, and
 547 Barret Zoph. Simple copy-paste is a strong data augmentation method for instance segmentation.
 548 In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp.
 549 2918–2928, 2021.

550

551 Judah A Goldfeder, Patrick Minwan Puma, Gabriel Guo, Gabriel Guerra Trigo, and Hod Lipson.
 552 Learning via imagination: Controlled diffusion image augmentation. In *NeurIPS 2024 Workshop*
 553 *on Compositional Learning: Perspectives, Methods, and Paths Forward*, 2024.

554

555 Gregory Griffin, Alex Holub, and Pietro Perona. Caltech-256 object category dataset. 2007.

556

557 Ryuichiro Hataya, Jan Zdenek, Kazuki Yoshizoe, and Hideki Nakayama. Faster autoaugment:
 558 Learning augmentation strategies using backpropagation. In *Computer Vision–ECCV 2020: 16th*
 559 *European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXV 16*, pp. 1–16.
 Springer, 2020.

560

561 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recogni-
 562 tion. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
 563 770–778, 2016.

564

565 Ruifei He, Shuyang Sun, Xin Yu, Chuhui Xue, Wenqing Zhang, Philip Torr, Song Bai, and Xiao-
 566 juan Qi. Is synthetic data from generative models ready for image recognition? *arXiv preprint*
 567 *arXiv:2210.07574*, 2022.

568

569 Daniel Ho, Eric Liang, Xi Chen, Ion Stoica, and Pieter Abbeel. Population based augmentation:
 570 Efficient learning of augmentation policy schedules. In *International conference on machine*
 571 *learning*, pp. 2731–2741. PMLR, 2019.

572

573 Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. Meta-learning in neural
 574 networks: A survey. *IEEE transactions on pattern analysis and machine intelligence*, 44(9):
 575 5149–5169, 2021.

576

577 Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
 578 Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
 579 mobile vision applications. *arXiv preprint arXiv:1704.04861*, 2017.

580

581 Forrest Iandola, Matt Moskewicz, Sergey Karayev, Ross Girshick, Trevor Darrell, and Kurt Keutzer.
 582 Densenet: Implementing efficient convnet descriptor pyramids. *arXiv preprint arXiv:1404.1869*,
 583 2014.

584

585 Khawar Islam and Naveed Akhtar. Context-guided responsible data augmentation with diffusion
 586 models, 2025. URL <https://arxiv.org/abs/2503.10687>.

587

588 Khawar Islam, Muhammad Zaigham Zaheer, Arif Mahmood, and Karthik Nandakumar. Diffusemix:
 589 Label-preserving data augmentation with diffusion models, 2024. URL <https://arxiv.org/abs/2405.14881>.

590

591 Khawar Islam, Muhammad Zaigham Zaheer, Arif Mahmood, Karthik Nandakumar, and Naveed
 592 Akhtar. Genmix: Effective data augmentation with generative diffusion model image editing,
 593 2025. URL <https://arxiv.org/abs/2412.02366>.

594

595 Ali Jahanian, Xavier Puig, Yonglong Tian, and Phillip Isola. Generative models as a data source for
 596 multiview representation learning. *arXiv preprint arXiv:2106.05258*, 2021.

597

598 Pan Ji, Tong Zhang, Hongdong Li, Mathieu Salzmann, and Ian Reid. Deep subspace clustering
 599 networks. *Advances in neural information processing systems*, 30, 2017.

594 Animesh Karnewar, Andrea Vedaldi, David Novotny, and Niloy J. Mitra. Holodiffusion: Training a
 595 3d diffusion model using 2d images. In *Proceedings of the IEEE/CVF Conference on Computer*
 596 *Vision and Pattern Recognition (CVPR)*, pp. 18423–18433, June 2023.

597

598 Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng Yao, and Fei-Fei Li. Novel dataset for fine-
 599 grained image categorization: Stanford dogs. In *Proc. CVPR workshop on fine-grained visual*
 600 *categorization (FGVC)*, volume 2. Citeseer, 2011.

601 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL
 602 <https://arxiv.org/abs/1412.6980>.

603

604 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
 605 Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In *Proceed-
 606 ings of the IEEE/CVF international conference on computer vision*, pp. 4015–4026, 2023.

607

608 Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
 609 categorization. In *Proceedings of the IEEE international conference on computer vision work-
 610 shops*, pp. 554–561, 2013.

611 Joseph Lemley, Shabab Bazrafkan, and Peter Corcoran. Smart augmentation learning an optimal
 612 data augmentation strategy. *Ieee Access*, 5:5858–5869, 2017.

613

614 Pu Li, Xiangyang Li, and Xiang Long. Fencemask: a data augmentation approach for pre-extracted
 615 image features. *arXiv preprint arXiv:2006.07877*, 2020.

616 Sungbin Lim, Ildoo Kim, Taesup Kim, Chiheon Kim, and Sungwoong Kim. Fast autoaugment.
 617 *Advances in neural information processing systems*, 32, 2019.

618

619 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 620 Dollár, and C. Lawrence Zitnick. Microsoft coco: Common objects in context. In *European*
 621 *Conference on Computer Vision (ECCV)*, pp. 740–755. Springer, 2014.

622

623 Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie.
 624 Feature pyramid networks for object detection. In *IEEE Conference on Computer Vision and*
 625 *Pattern Recognition (CVPR)*, pp. 2117–2125, 2017.

626

627 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
 628 tuning. *arXiv preprint arXiv:2310.03744*, 2023a.

629

630 Ruoshi Liu, Rundi Wu, Basile Van Hoorick, Pavel Tokmakov, Sergey Zakharov, and Carl Vondrick.
 631 Zero-1-to-3: Zero-shot one image to 3d object, 2023b.

632

633 Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
 634 Swin transformer: Hierarchical vision transformer using shifted windows. In *Proceedings of the*
 635 *IEEE/CVF international conference on computer vision*, pp. 10012–10022, 2021.

636

637 Wenquan Lu, Yufei Xu, Jing Zhang, Chaoyue Wang, and Dacheng Tao. Handrefiner: Refining
 638 malformed hands in generated images by diffusion-based conditional inpainting, 2024. URL
 639 <https://arxiv.org/abs/2311.17957>.

640

641 Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained
 642 visual classification of aircraft. *arXiv preprint arXiv:1306.5151*, 2013.

643

644 Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon.
 645 Sdedit: Guided image synthesis and editing with stochastic differential equations. *arXiv preprint*
 646 *arXiv:2108.01073*, 2021.

647

648 Alireza Naghizadeh, Dimitris N Metaxas, and Dongfang Liu. Greedy auto-augmentation for n-shot
 649 learning using deep neural networks. *Neural Networks*, 135:68–77, 2021.

648 Supreeth Narasimhaswamy, Uttaran Bhattacharya, Xiang Chen, Ishita Dasgupta, Saayan Mitra, and
 649 Minh Hoai. Handifuser: Text-to-image generation with realistic hand appearances. In *2024*
 650 *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 2468–2479.
 651 IEEE, June 2024. doi: 10.1109/cvpr52733.2024.00239. URL <http://dx.doi.org/10.1109/CVPR52733.2024.00239>.

653 Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew,
 654 Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing with
 655 text-guided diffusion models. *arXiv preprint arXiv:2112.10741*, 2021.

656

657 Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
 658 of classes. In *2008 Sixth Indian conference on computer vision, graphics & image processing*, pp.
 659 722–729. IEEE, 2008.

660 OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
 661 cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red
 662 Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Moham-
 663 mad Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher
 664 Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
 665 man, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann,
 666 Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis,
 667 Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey
 668 Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux,
 669 Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila
 670 Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
 671 Simón Posada Fishman, Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian Gib-
 672 son, Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan
 673 Grafstein, Scott Gray, Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hal-
 674 lacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes Heidecke, Chris Hesse, Alan
 675 Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu,
 676 Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
 677 Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Ka-
 678 malı, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook
 679 Kim, Christina Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie Kiros, Matt Knight, Daniel
 680 Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen
 681 Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel
 682 Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie Lin, Mateusz Litwin, Theresa Lopez,
 683 Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam Manning, Todor Markov, Yaniv
 684 Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob McGrew, Scott Mayer McKinney,
 685 Christine McLeavey, Paul McMillan, Jake McNeil, David Medina, Aalok Mehta, Jacob Menick,
 686 Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
 687 Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély, Ashvin Nair, Reiichiro Nakano, Ra-
 688 jeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Long Ouyang, Cullen O’Keefe,
 689 Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano, Giambattista Parascandolo, Joel
 690 Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe
 691 de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto, Michael, Pokorny,
 692 Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power, Elizabeth Proehl,
 693 Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis Real, Kendra
 694 Rimbach, Carl Ross, Bob Rotstetd, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted Sanders,
 695 Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel Sel-
 696 sam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor,
 697 Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
 698 Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang,
 699 Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Preston
 700 Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya,
 701 Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Workman, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao

702 Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report, 2024. URL
 703 <https://arxiv.org/abs/2303.08774>.

704

705 Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In *2012
 706 IEEE conference on computer vision and pattern recognition*, pp. 3498–3505. IEEE, 2012.

707

708 Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
 709 conditional image generation with clip latents. *arxiv* 2022. *arXiv preprint arXiv:2204.06125*,
 710 2022.

711

712 René Ranftl, Katrin Lasinger, David Hafner, Konrad Schindler, and Vladlen Koltun. Towards robust
 713 monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. *IEEE transac-
 714 tions on pattern analysis and machine intelligence*, 44(3):1623–1637, 2020.

715

716 Ali Razavi, Aaron Van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images with
 717 vq-vae-2. *Advances in neural information processing systems*, 32, 2019.

718

719 Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
 720 detection with region proposal networks. In *Advances in Neural Information Processing Systems
 721 (NeurIPS)*, volume 28, 2015.

722

723 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 724 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 725 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

726

727 Chitwan Saharia, William Chan, Huiwen Chang, Chris Lee, Jonathan Ho, Tim Salimans, David
 728 Fleet, and Mohammad Norouzi. Palette: Image-to-image diffusion models. In *ACM SIGGRAPH
 729 2022 conference proceedings*, pp. 1–10, 2022a.

730

731 Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
 732 Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
 733 text-to-image diffusion models with deep language understanding. *Advances in neural informa-
 734 tion processing systems*, 35:36479–36494, 2022b.

735

736 Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
 737 bilenetv2: Inverted residuals and linear bottlenecks, 2019. URL <https://arxiv.org/abs/1801.04381>.

738

739 Mert Bülent Sarıyıldız, Karteek Alahari, Diane Larlus, and Yannis Kalantidis. Fake it till you make
 740 it: Learning transferable representations from synthetic imagenet clones. In *Proceedings of the
 741 IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 8011–8021, 2023.

742

743 Flavio Schneider. Archisound: Audio generation with diffusion, 2023. URL <https://arxiv.org/abs/2301.13267>.

744

745 Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
 746 Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An
 747 open large-scale dataset for training next generation image-text models. *Advances in Neural
 748 Information Processing Systems*, 35:25278–25294, 2022.

749

750 Jordan Shipard, Arnold Wiliem, Kien Nguyen Thanh, Wei Xiang, and Clinton Fookes. Diversity
 751 is definitely needed: Improving model-agnostic zero-shot classification via stable diffusion. In
 752 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 769–
 753 778, 2023.

754

755 Ashish Shrivastava, Tomas Pfister, Oncel Tuzel, Joshua Susskind, Wenda Wang, and Russell Webb.
 756 Learning from simulated and unsupervised images through adversarial training. In *Proceedings
 757 of the IEEE conference on computer vision and pattern recognition*, pp. 2107–2116, 2017.

758

759 Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
 760 recognition. *arXiv preprint arXiv:1409.1556*, 2014.

761

762 Youssef Skandarani, Pierre-Marc Jodoin, and Alain Lalande. Gans for medical image synthesis: An
 763 empirical study. *Journal of Imaging*, 9(3):69, 2023.

756 Zhihang Song, Zimin He, Xingyu Li, Qiming Ma, Ruibo Ming, Zhiqi Mao, Huaxin Pei, Lihui Peng,
 757 Jianming Hu, Danya Yao, and Yi Zhang. Synthetic datasets for autonomous driving: A survey.
 758 *IEEE Transactions on Intelligent Vehicles*, 9(1):1847–1864, January 2024. ISSN 2379-8858. doi:
 759 10.1109/tiv.2023.3331024. URL <http://dx.doi.org/10.1109/TIV.2023.3331024>.

760 Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural net-
 761 works. In *International conference on machine learning*, pp. 6105–6114. PMLR, 2019.

762 Brandon Trabucco, Kyle Doherty, Max Gurinas, and Ruslan Salakhutdinov. Effective data augmen-
 763 tation with diffusion models. *arXiv preprint arXiv:2302.07944*, 2023.

764 Brandon Trabucco, Kyle Doherty, Max Gurinas, and Ruslan Salakhutdinov. Effective data augmen-
 765 tation with diffusion models, 2025. URL <https://arxiv.org/abs/2302.07944>.

766 Toan Tran, Trung Pham, Gustavo Carneiro, Lyle Palmer, and Ian Reid. A bayesian data augmenta-
 767 tion approach for learning deep models. *Advances in neural information processing systems*, 30,
 768 2017.

769 Gary Wang, Ekin D Cubuk, Andrew Rosenberg, Shuyang Cheng, Ron J Weiss, Bhuvana Ramabhad-
 770 ran, Pedro J Moreno, Quoc V Le, and Daniel S Park. G-augment: Searching for the meta-structure
 771 of data augmentation policies for asr. In *2022 IEEE Spoken Language Technology Workshop*
 772 (SLT), pp. 23–30. IEEE, 2023.

773 Shin’ya Yamaguchi and Takuma Fukuda. On the limitation of diffusion models for synthesizing
 774 training datasets. *arXiv preprint arXiv:2311.13090*, 2023.

775 Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Wentao Zhang,
 776 Bin Cui, and Ming-Hsuan Yang. Diffusion models: A comprehensive survey of methods and
 777 applications, 2025. URL <https://arxiv.org/abs/2209.00796>.

778 Zihan Yang, Richard O Sinnott, James Bailey, and QiuHong Ke. A survey of automated data augmen-
 779 tation algorithms for deep learning-based image classification tasks. *Knowledge and Information
 780 Systems*, 65(7):2805–2861, 2023a.

781 Zuhao Yang, Fangneng Zhan, Kunhao Liu, Muyu Xu, and Shijian Lu. Ai-generated images as data
 782 source: The dawn of synthetic era. *arXiv preprint arXiv:2310.01830*, 2023b.

783 Zhuoran Yu, Chenchen Zhu, Sean Culatana, Raghuraman Krishnamoorthi, Fanyi Xiao, and Yong Jae
 784 Lee. Diversify, don’t fine-tune: Scaling up visual recognition training with synthetic images.
 785 *arXiv preprint arXiv:2312.02253*, 2023.

786 Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
 787 Cutmix: Regularization strategy to train strong classifiers with localizable features. In *Proceed-
 788 ings of the IEEE/CVF international conference on computer vision*, pp. 6023–6032, 2019.

789 Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
 790 risk minimization. *arXiv preprint arXiv:1710.09412*, 2017.

791 Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
 792 diffusion models. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*,
 793 pp. 3836–3847, 2023.

794 Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. Random erasing data augmen-
 795 tation. In *Proceedings of the AAAI conference on artificial intelligence*, volume 34, pp. 13001–
 796 13008, 2020.

797 Yongchao Zhou, Hshmat Sahak, and Jimmy Ba. Training on thin air: Improve image classification
 798 with generated data. *arXiv preprint arXiv:2305.15316*, 2023.

800 **A APPENDIX**

801
 802 We provide additional results for our method in the 5-way 1-shot setting, as well as a study on the
 803 one-shot clustering fitness function. We also examine how our method might scale to be used on
 804 full datasets and object detection/segmentation tasks.

810 A.1 FITNESS FUNCTION CHOICE IN ONE-SHOT SETTING
811

812 Carefully crafting a fitness function which can enable robust downstream classification is a difficult
813 task. Our three main approaches were using augmented images themselves as a part of the validation
814 set for models, using heuristics from the training loss to determine optimal learning, and an involved
815 clustering approach which tried to capture the spread within a class and between classes. Our results
816 are summarized in Table 4, which show that the clustering approach seemed to be a consistently
817 good strategy for guiding our augmentation scoring.

Dataset	Model	Learned (Double Aug)	Learned (Train Loss)	Learned (Clustering)
Caltech256	ResNet50	80.27 ± 6.50	76.21 ± 5.58	83.65 ± 4.92
	MobileNet	75.04 ± 6.68	68.57 ± 2.85	80.09 ± 4.73
	ViT-Small	73.53 ± 4.31	68.57 ± 10.44	82.12 ± 3.64
Flowers102	ResNet50	55.95 ± 5.72	65.73 ± 6.54	66.75 ± 2.34
	MobileNet	57.70 ± 1.45	64.38 ± 2.99	60.78 ± 2.58
	ViT-Small	88.27 ± 2.42	86.11 ± 1.85	95.47 ± 2.19
Stanford Dogs	ResNet50	78.46 ± 2.27	68.26 ± 2.19	78.86 ± 3.21
	MobileNet	66.40 ± 2.56	67.25 ± 2.49	69.70 ± 2.37
	ViT-Small	74.73 ± 4.08	67.57 ± 1.55	79.70 ± 3.12
Stanford Cars	ResNet50	22.34 ± 2.92	28.36 ± 0.86	29.66 ± 2.62
	MobileNet	25.29 ± 4.40	26.70 ± 1.88	29.05 ± 3.18
	ViT-Small	24.79 ± 0.63	36.73 ± 0.80	37.35 ± 3.37
Oxford-IIIT Pet	ResNet50	76.07 ± 2.26	78.30 ± 1.44	86.16 ± 1.19
	MobileNet	75.76 ± 2.58	74.45 ± 4.54	80.43 ± 1.87
	ViT-Small	75.69 ± 4.36	80.58 ± 3.62	84.58 ± 3.22
Food101	ResNet50	30.40 ± 1.56	30.49 ± 3.22	34.28 ± 0.83
	MobileNet	28.44 ± 0.89	29.38 ± 2.32	34.61 ± 1.74
	ViT-Small	38.17 ± 1.53	39.53 ± 4.35	44.89 ± 2.30

838 Table 4: 5-way, 1-shot classification accuracy (%) with standard deviation across 6 datasets and 3
839 downstream architectures, showing only the three Learned methods. Bolded values indicate the best
840 performance per row.

844 A.2 ENCODER PERFORMANCE COMPARISON
845

846 The one-shot clustering fitness function results only use a single image encoder, a pre-
847 trained ResNet50. We begin this analysis by benchmarking various pre-trained image
848 encoders—responsible for projecting augmented images into embedding space—for their effectiveness
849 in the clustering-based fitness function. We explore two variants of Vision Transformers (Dosovitskiy
850 et al., 2021) in addition to a ResNet50. Table 5 provides the results of the encoder performance
851 comparison. The two vision transformer variants outperform the baseline on all datasets. Notably,
852 however, there is no single best decoder that performs consistently the best across all datasets.

854 Table 5: Accuracy for 5-way 1-shot clustering fitness function across various image encoders
855

Dataset	Baseline	ResNet50	ViT-224	ViT-B/16
Caltech256	65.77 ± 1.29	81.83 ± 7.60	79.56 ± 1.10	72.28 ± 1.98
Flowers102	61.48 ± 0.78	56.70 ± 4.19	62.41 ± 2.38	64.38 ± 3.30
Stanford Dogs	70.30 ± 0.58	71.54 ± 2.70	75.45 ± 2.25	72.72 ± 2.42
Stanford Cars	21.31 ± 0.80	24.50 ± 3.00	25.71 ± 2.74	24.38 ± 1.32
Oxford-IIIT Pet	79.68 ± 1.50	85.21 ± 1.14	83.08 ± 2.81	85.88 ± 0.66
Food101	30.90 ± 0.57	33.97 ± 1.63	32.21 ± 0.41	32.62 ± 0.67

Figure 4: Success Case: ViT-B/16-Flowers

895 A.3 SUCCESS AND FAILURE ANALYSIS

896
 897 We look at low-dimensional cluster visualizations of encoded augmentations from strong and weak-
 898 performing learned trees for success and failure cases using UMAP (McInnes et al., 2018). This
 899 motivates the desired and non-desired qualities of clusters. We examine the clusters of the embed-
 900 dings of two encoders on the Flower dataset, shown in Figure 4 and Figure 5. We select a single
 901 dataset to establish domain consistency when comparing success and failure cases, as well as against
 902 the handcrafted tree study in the following section. The Flowers102 dataset is particularly interesting
 903 as it is the most fine-grained among those benchmarked. Unlike other datasets, where shape or size
 904 may be primary distinguishing features between classes, flowers are primarily defined by their color.
 905 As a result, applying augmentations that alter color can significantly degrade model performance.

906 For the success case – ViT-B/16 on Flowers102 – which performed 3% better than baseline, there are
 907 distinct clusters for all five classes, all of which are very tight. Clusters are also very well separated.
 908 For the failure case – ResNet50 on Flowers102 – which performed 5% worse than baseline, the
 909 classes are not clustered very accurately, with augmentations overlapping heavily between classes.

910 A.4 HANDCRAFTED AUGMENTATION TREES

911 We handcraft an “ideal” augmentation tree for the Flowers102 dataset, shown in Table 6, to compare
 912 to the clusters of the EvoAug learned trees in the success and failure cases. The hypothesized ideal
 913 augmentation tree is structured as follows: the head node as Color, the left node as NeRF, and the
 914 right node as no augmentation, with a 0.5 probability of moving to either child node. We guarantee
 915 a Color node, as it uses Color ControlNet to preserve the color palette in augmentations. We also
 916 use a NeRF node, which performs a 3D rotation for an augmentation, yet not affecting color.

Figure 5: Failure Case: ResNet50-Flowers

Table 6: Handcrafted tree performance on the Flowers102 dataset. Tree structure format: (Head, p_L , Left, p_R , Right).

Name	Tree Structure	Accuracy (%)
Ideal	(Color, 0.5, NeRF, 0.5, None)	66.98 ± 6.56
Inferior	(Depth, 0.5, Depth, 0.5, Segmentation)	60.85 ± 2.30

We also handcraft an "inferior" augmentation tree as a sanity check and counterexample, allowing us to compare clusters and better isolate critical features to reward when designing the clustering fitness score. We use Depth and Segmentation nodes for augmentations, as neither augmentation operation preserves color, which we hypothesize to be the most important feature for flower classification.

The handcrafted ideal augmentation tree performs better than all other augmentation trees learned from any image encoder, suggesting that the EvoAug pipeline is not learning the best augmentation tree through the clustering score fitness function. The ideal handcrafted tree in Figure 6 and the learned tree success case in Figure 4 both display very well-separated clusters for each class. However, the clusters for the success case are noticeably tighter than those of the handcrafted tree

Image Encoder	$S - \frac{1}{d}$	$S - \frac{2}{d}$	S	$\frac{1}{DB}$
ViT-B/16	64.382 ± 3.302	67.497 ± 2.827	61.059 ± 0.44	61.059 ± 0.44

Table 7: One-shot clustering results across different fitness functions for Flowers102 subset 50

Figure 6: Handcrafted Ideal Tree

clusters. If we compare this to Figure 5 or 7, we can see larger clusters formed from a variety of different classes, with fewer clusters that distinctly correspond to a single class.

These observations give rise to two interpretations: (1) the original fitness function may have undervalued the importance of large clusters, because the better performing handcrafted ideal tree resulted in larger yet still distinct clusters and (2) that the original fitness function may have overvalued the importance of large clusters at the expense of cluster separability, as the failure case and handcrafted inferior tree demonstrate. This motivates an exploration of alternative fitness functions that may better capture cluster dynamics.

A.5 CLUSTERING FITNESS FUNCTION MODIFICATIONS

Table 7 compares the performance of different clustering metrics as the fitness function in the EvoAug pipeline, where \mathbf{S} is the Silhouette coefficient, \mathbf{d} is the average cluster radius, \mathbf{DB} is the Davies-Bouldin Index (Davies & Bouldin, 1979). We conduct experiments using the Flowers102 dataset and use ViT-B/16 encoder as it performs the best on this dataset.

We test a fitness function of just \mathbf{S} as a baseline, but using only the Silhouette Coefficient results in a learned tree of None nodes, causing all generated augmentations to be exact copies of the original image. This is expected, as the Silhouette Coefficient scores clusters of the same embedding as a perfect score of 1, due to the small intra-cluster distances. The same result occurs with the $\frac{1}{\mathbf{DB}}$ fitness function, confirming that Davies-Bouldin is functionally the same as the Silhouette Coefficient.

We modify the original proposed fitness function by doubling the penalty to small cluster sizes. Under this setting, the learned augmentation tree is $(\text{Head}, p_L, \text{Left}, p_R, \text{Right}) = (\text{None}, 0.51, \text{None}, 0.49, \text{NeRF})$. This tree results in the best downstream classification performance

Figure 7: Handcrafted Inferior Tree

across all experiments, including those from handcrafted trees, demonstrating that this fitness function was able to learn better trees than human intuition. This learned tree was likely favored in the evolutionary algorithm, as NeRF preserves colors and edges, two features we believe are vital for classifying flowers. These results strengthen the interpretation that a large intra-cluster distance is important may help in model generalization. Future work will seek to substantiate this claim in other settings and datasets.

A.6 GENERALIZATION TO FULL DATASETS, DETECTION, AND SEGMENTATION

While the main body of our work focuses on the few shot setting, there are also experiments done which have indicated that conditioned generation is beneficial in the full dataset setting (Anonymous, 2024). The method used in these experiments employs LLaVa2 (Liu et al., 2023a) generated captions to condition the augmentation of images in the dataset. We believe that with more intelligent conditioning (by learning augmentation trees which match the dataset), we can achieve better performance.

We reproduce the relevant summary statistics below in Table 8 for completeness. The results show that conditioned generation consistently achieves higher accuracy than a classically augmented baseline across six datasets: Caltech256 (Griffin et al., 2007), Stanford Cars (Krause et al., 2013), FGVC Aircraft (Maji et al., 2013), Stanford Dogs (Khosla et al., 2011), Oxford IIIT-Pets (Parkhi et al., 2012); and eight model architectures: ResNet (He et al., 2016), VGG (Simonyan & Zisserman, 2014), EfficientNet (Tan & Le, 2019), Visformer (Chen et al., 2021), Swin Transformer (Liu et al., 2021), MobileNet (Howard et al., 2017), DenseNet (Iandola et al., 2014), and ViT (Dosovitskiy et al., 2021).

1080
 1081 We have also done some 5-way, 2-shot experiments on the PASCAL VOC dataset (Everingham et al.,
 1082 2010). For these experiments, we fine-tuned a Faster R-CNN (Ren et al., 2015) with a ResNet-50-
 1083 FPN backbone (Lin et al., 2017) pretrained on COCO (Lin et al., 2014). Our results show that a
 1084 baseline strategy which only uses classical augmentations achieves a performance of 18.77 ± 5.95
 1085 percent, while our generative augmentation pipeline achieves a performance of 21.53 ± 7.20 percent.
 1086 This indicates that our generative augmentation pipeline can also benefit dense prediction tasks.
 1087
 1088

Table 8: Accuracy on full datasets for various models

Dataset	Setting	RN50	RN101	VGG19	EN	Visformer	Swin	MN	DN
Caltech	Baseline	72.37	73.62	67.40	71.79	68.83	63.95	66.48	75.74
	Conditioned	76.49	77.64	70.82	73.85	73.15	69.55	68.33	78.10
Cars	Baseline	86.78	88.16	87.22	86.75	83.37	75.43	80.80	91.08
	Conditioned	91.02	90.95	89.61	88.56	87.40	82.32	82.70	92.20
Aircraft	Baseline	75.23	75.91	88.80	81.25	72.61	60.88	70.24	80.53
	Conditioned	82.33	81.10	88.20	81.76	74.67	71.74	74.17	83.29
Dogs	Baseline	66.49	70.15	68.63	64.17	64.65	52.10	58.60	70.44
	Conditioned	68.74	70.40	66.05	62.45	64.36	56.50	58.30	70.21
Pets	Baseline	69.22	70.72	83.17	73.59	73.02	58.54	67.35	80.16
	Conditioned	71.07	74.03	81.28	74.41	76.24	61.00	68.46	79.34

1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133