
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BEYOND CROPPING AND ROTATION: AUTOMATED
EVOLUTION OF POWERFUL TASK-SPECIFIC AUGMEN-
TATIONS WITH GENERATIVE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Data augmentation has long been a cornerstone for reducing overfitting in vision
models, with methods like AutoAugment automating the design of task-specific
augmentations. Recent advances in generative models, such as conditional diffu-
sion and few-shot NeRFs, offer a new paradigm for data augmentation by syn-
thesizing data with significantly greater diversity and realism. However, unlike
traditional augmentations like cropping or rotation, these methods introduce sub-
stantial changes that enhance robustness but also risk degrading performance if the
augmentations are poorly matched to the task. In this work, we present EvoAug,
an automated augmentation learning pipeline, which leverages these generative
models alongside an efficient evolutionary algorithm to learn optimal task-specific
augmentations. Our pipeline introduces a novel approach to image augmentation
that learns stochastic augmentation trees that hierarchically compose augmenta-
tions, enabling more structured and adaptive transformations. We demonstrate
strong performance across fine-grained classification and few-shot learning tasks.
Notably, our pipeline discovers augmentations that align with domain knowledge,
even in low-data settings. These results highlight the potential of learned genera-
tive augmentations, unlocking new possibilities for robust model training.

1 INTRODUCTION

Generative AI has rapidly advanced across multiple domains. In computer vision, diffusion models
now surpass GANs in producing realistic images and videos from simple prompts (Dhariwal &
Nichol, 2021). In language, models like GPT generate human-like text and code, achieving high
scores on standardized tests (OpenAI et al., 2024). Similar breakthroughs extend to generative
audio (Schneider, 2023) and 2D-to-3D shape generation (Karnewar et al., 2023). These advances
raise an important question: to what extent can AI-generated content improve AI itself (Yang et al.,
2023b)? While far from true self-improvement, generative models are increasingly influencing their
own training processes.

A key challenge in leveraging synthetic data is the syn-to-real gap—the discrepancy between gener-
ated and real-world data. Poorly matched synthetic augmentations degrade performance rather than
enhance it. For example, diffusion models still struggle with fine details such as realistic fingers
(Narasimhaswamy et al., 2024). Thus, a model trained on data augmented by flawed synthetic im-
ages may reinforce errors. Similarly, a language model could amplify its own biases by training on
text that it generated itself. This issue is particularly critical in tasks requiring fine-grained distinc-
tions, such as image classification, or in low-data settings like few-shot learning. Addressing this
gap is essential for generative augmentations to contribute meaningfully to AI training.

Hence, methods that use synthetic or simulated data must balance the tradeoff between data variabil-
ity and fidelity. This can be achieved by constraining data generation to closely match the real-world
distribution, thereby reducing its variability while improving its fidelity. This approach has been suc-
cessful in fields like robotics (Lu et al., 2024) and autonomous vehicles (Song et al., 2024). However,
it has only seen limited application in synthetic image generation for computer vision. This work
tackles the challenge of fine-grained few-shot classification. Due to the lack of real samples, syn-

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

thetic data provides an attractive option for boosting performance. Since fine-grained distinctions
between classes can be easily missed, a carefully designed image generation pipeline is required.

We propose using generative AI not for data creation, but for data augmentation—a paradigm shift.
Instead of generating data from scratch, we condition the process on real data, thereby ensuring that
it preserves the semantic priors and underlying structure of the original distribution while introduc-
ing meaningful and novel variations. While this approach constrains synthetic data to resemble real
data, it also provides stronger guarantees of its validity, effectively overcoming the syn-to-real gap.

Motivated by this vision, we design EvoAug, a pipeline that automatically learns a powerful aug-
mentation strategy. Our work makes use of evolutionary algorithms, which have been shown to work
in a variety of domains and still remain more sample-efficient and straightforward than other meth-
ods (Ho et al., 2019; Wang et al., 2023). This is especially important when dealing with complex
augmentation operators like conditional diffusion and NeRF models, where evaluation is expensive,
gradients are very difficult to approximate, and sample efficiency is paramount.

As part of our pipeline, we construct an augmentation tree—a binary tree that applies a series of aug-
mentation operators in accordance with learned branching probabilities. The augmentation tree can
then be used to produce synthetic or augmented variations of the images in the dataset by stochasti-
cally following root-to-leaf paths. Our trees include nodes that perform either classical or generative
augmentations. To produce accurate synthetic data, we condition the diffusion models on exist-
ing structural and appearance-based information rather than solely relying on prompt-based image
generation. Our approach is powerful enough to work even with very small datasets and provides
promising results on fine-grained and few-shot classification tasks across multiple datasets.

Our main contributions are the following:

1. The first automated augmentation strategy to leverage both modern augmentation operators
like controlled diffusion and NeRFs, along with traditional augmentation operators like
cropping and rotation

2. Strong results on fine-grained few-shot learning, a challenging domain where prior work
has failed to preserve the minor semantic details that distinguish the classes

3. Novel unsupervised strategies that scale as low as the one-shot setting, where no supervi-
sion to evaluate augmentations is available

4. Constructing an augmentation pipeline from only open-source, pre-trained diffusion mod-
els, without requiring domain-specific fine-tuning

2 RELATED WORK

Data augmentation reduces model overfitting by applying image transformations that preserve the
original semantics while introducing controlled diversity into the training set. Traditional augmenta-
tions include rotations, random cropping, mirroring, scaling, and other basic transformations. These
straightforward techniques remain fundamental in state-of-the-art image augmentation pipelines.
More advanced methods—such as erasing (Zhong et al., 2020; Chen et al., 2020; Li et al., 2020;
DeVries & Taylor, 2017), copy-pasting (Ghiasi et al., 2021), image mixing (Zhang et al., 2017;
Yun et al., 2019), and data-driven augmentations like AutoAugment (Cubuk et al., 2018) and its
simplified variant RandAugment (Cubuk et al., 2020)—have expanded the augmentation toolbox.

Another approach involves generating synthetic data using generative models (Figueira & Vaz,
2022). Early work explored GANs (Besnier et al., 2020; Jahanian et al., 2021; Brock et al., 2018),
VAEs (Razavi et al., 2019), and CLIP (Ramesh et al., 2022), achieving strong results (Engelsma
et al., 2022; Skandarani et al., 2023). Recently, diffusion models, particularly for text-to-image syn-
thesis, have surpassed GANs in producing photorealistic images (Nichol et al., 2021; Ramesh et al.,
2022; Saharia et al., 2022b; Yang et al., 2025). Trained on large-scale internet data (Schuhmann
et al., 2022), diffusion models have been used for augmentation (Azizi et al., 2023; Sarıyıldız et al.,
2023; He et al., 2022; Shipard et al., 2023; Rombach et al., 2022; Islam et al., 2025; 2024), often
relying on class names or simple class agnostics prompts to guide generation. Despite promising
initial results, synthetic data remains inferior to real data, highlighting the persistent domain gap
between the two (Yamaguchi & Fukuda, 2023).

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

To address this gap, recent approaches have incorporated conditioning the generative process on
real data. Some popular methods involve projecting the original images to the diffusion latent space
(Zhou et al., 2023), fine-tuning diffusion models on real data (Azizi et al., 2023), leveraging multi-
modal LLMs to obtain detailed, custom image captions for high-quality text prompting(Yu et al.,
2023), and employing image-to-image diffusion models that enable direct conditioning on a spe-
cific image (Saharia et al., 2022a; Meng et al., 2021; Zhang et al., 2023; He et al., 2022; Trabucco
et al., 2025). Controlled diffusion, a subset of these methods, introduces a more powerful paradigm,
furthering the efficient use of both text and image priors (Fang et al., 2024; Islam & Akhtar, 2025)
with applications in segmentation (Trabucco et al., 2023) and classification (Goldfeder et al., 2024)
problems.

Given such a wide range of augmentation operators, an important problem is knowing which aug-
mentations to use for a specific task, without the use of domain knowledge. This task, of automati-
cally learning augmentation policies, falls under the class of meta learning and bi-level optimization
problems, where we seek to learn a component of the learning algorithm itself (Hospedales et al.,
2021). These algorithms generally fall under one of the following categories: gradient-based opti-
mization, RL-based optimization, Bayesian optimization, and evolution-based optimization.

In the context of learning augmentation policies, all these methods have seen success (Yang et al.,
2023a). Differentiable methods often train a neural network to produce augmentations (Lemley
et al., 2017), sometimes in a generative adversarial setup (Shrivastava et al., 2017; Tran et al., 2017).
By far the most notable method, AutoAugment (Cubuk et al., 2018), employs reinforcement learn-
ing. While RL is traditionally sample inefficient, improvements upon vanilla RL strategies have
leveraged Bayesian methods (Lim et al., 2019), evolutionary strategies (Ho et al., 2019; Wang et al.,
2023), or approximate gradient estimation for first-order optimization (Hataya et al., 2020).

Learning augmentation policies is especially challenging in low data settings, as full data policies
are usually not transferable to the few-shot case. Various approaches have been considered, includ-
ing proposing K-fold validation as a method of retaining the data while still performing validation
(Naghizadeh et al., 2021). However, this method does not scale to one-shot settings. Utilizing clus-
tering as a label-efficient evaluation method, where augmentations are designed to stay within their
corresponding class cluster, can address this limitation (Abavisani et al., 2020).

3 METHODS

3.1 AUGMENTATION OPERATORS

Figure 1: Example image augmentations using our pipeline. Classical augmentations include color
jitter, rotation, and random cropping. Canny, color, depth, and segment use existing image informa-
tion to steer a ControlNet diffusion model. NeRF uses a zero-shot NeRF to perform a 3D rotation.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: Mutation and Crossover for Augmentation Trees

The generative augmentation operators are based on both diffusion and NeRFs. For diffusion-based
operators, we use ControlNet (Zhang et al., 2023), an architecture which allows rapid customization
of diffusion models without fine-tuning. To condition the model, we extract edges using Canny
edge detection (Canny, 1986), segmentations using Segment Anything (Kirillov et al., 2023), depth
maps using MiDaS (Ranftl et al., 2020), and color palettes by simply downsampling the image.
This gives four diffusion-based augmentation operators, termed ”Canny”, ”Segment”, ”Depth” and
”Color”. We use Zero123 (Liu et al., 2023b) for NeRF-based augmentation. This model creates
a 3D reconstruction of an image from a single shot, allowing for 3D rotation. We then rotate 15
degrees left or right when performing an augmentation using this model. We term this operator
”NeRF”. Next, we include another augmentation operator, termed ”Classical.” This includes the
full set of traditional augmentations: random crop, translation, scale, rotation, color jitter, and flip.
This operator allows the evolution process to decide whether to include and build on the traditional
classical augmentation pipeline or exclude it. Sometimes, all augmentations can be harmful, so we
also included a ”NoOp” operator that simply duplicates the existing image. Figure 1 gives examples
of these operators.

3.2 EVOLUTIONARY STRATEGY

For our augmentation policy learning pipeline, we choose an evolutionary approach. This choice is
motivated by practical considerations: diffusion and NeRF based augmentation is considerably more
expensive to evaluate than traditional augmentations, so pipeline efficiency is crucial. Population-
based evolutionary strategies have been shown to be as effective as RL approaches, with less than
one percent of the computational effort (Ho et al., 2019). While gradient approximation methods
have been shown to be even more efficient in some cases(Hataya et al., 2020), those results are for
approximating gradients of simpler transformations, and do not translate to our pipeline, which can
handle arbitrary generative modules. Further, recent work has shown evolution to be effective for
searching for augmentation polices even in very complex augmentation spaces (Wang et al., 2023).

We define an augmentation tree as a binary tree, where each node represents an augmentation oper-
ator. The edges of our tree represent transition probabilities to each child node, summing to 1. This
structure is chosen as it serves as a common genome for evolutionary algorithms.

Mutation Illustrated in figure 2, mutation can occur at either the node level or the edge level. An
edge mutation reassigns the probabilities of a transition between two child nodes. A node mutation
switches the augmentation operator of that node (eg. Depth node becomes a Canny node).

Crossover Also illustrated in figure 2, crossover is the other basic evolutionary operator. Two par-
ents are selected, a child is created by splicing the branches of the parents together.

We thus define a population P of size n, of initial trees. In each generation, we use mutation and
crossover to generate c children Pnew, that are appended to P . Finally, the population is evaluated
with a fitness function f , and the top n are kept for the next generation. Mutation and crossover
probability are parameterized by pm and pc respectively. Algorithm 1 describes this process.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 3: Tree Learning Pipelines. (a) K-Fold applies when there is more than one example per
class. (b) We can measure cluster quality for the 1-shot case. (c) We can duplicate the image and
assume the problem to be 2-shot instead of 1-shot (d) We can simply use training loss, though it is
risky to assume that lower train loss equates to better performance.

3.3 FITNESS FUNCTIONS

The goal of our augmentation strategy is to improve downstream model robustness, and thus the
fitness function we choose to evaluate augmentation trees should either directly reflect what we seek
to achieve or be a strong proxy. Note that in a full data setting, training data can be split into a train
and validation. An augmentation tree can be evaluated by simply training a model with generated
augmentations on the training data and measuring performance on the previously unseen evaluation
data. We divide our discussion into two, more difficult, settings.

3.3.1 LOW DATA SETTING

In the low-data and few-shot case, the challenge becomes managing the noise of the evaluation
function. We can no longer rely on a single train/val split to accurately measure the performance of
a tree as low-data settings introduce high variability in splits. Thus, we use K-fold cross-validation.

In addition, directly using accuracy as our metric is no longer appropriate, as our validation set
remains small enough that accuracy becomes coarse-grained and unstable. As a result, to align
with the convention of higher fitness values corresponding to better candidates in the population, we
use the negative validation loss as the fitness function in these settings. Algorithm 2 describes this
process. The pipeline can be seen in figure 3a.

Algorithm 1 Evolutionary Search for Augmentation Trees
Require: Population size p, number of generations g, fitness function f , number of children c,

mutation probability pm, crossover probability pc
1: P ← InitializePopulation(p)
2: for i = 1 to g do
3: Pnew ← MutateAndCrossover(P, c, pm, pc)
4: P ← P ∪ Pnew
5: Evaluate fitness f(T ) for each tree T ∈ P
6: P ← SelectBest(P, p) ▷ Keep top p trees
7: end for
8: Tbest ← BestTree(P )
9: return Tbest

3.3.2 ONE-SHOT SETTING

In the most extreme case, we only have one image per class. Thus, proposed methods involving K-
fold validation will not be able to span the full class range of the dataset (Naghizadeh et al., 2021).
To address this problem, we devised the following strategies:

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 2 K-Fold Cross Validation Tree Fitness Function
Require: Dataset D, augmentation tree T , number of folds k

1: Split D into k folds: D1, D2, . . . , Dk

2: Initialize M ← 0
3: for i = 1 to k do
4: Dval ← Di

5: Dtrain ← D \Di

6: Daug ← ApplyAugmentationTree(T,Dtrain)
7: Train model Mi on Daug
8: mi ← Evaluate(Mi, Dval)
9: M ←M +mi

10: end for
11: m̄← M

k
12: return m̄

Label-Efficient Clustering Our goal is to find augmentations that preserve important class-specific
characteristics while still providing novel data. Thus, when evaluating on a validation set is not
possible, we can switch to a clustering approach. To find these novel, true-to-class augmentations,
our intuition is to search for clusters that are wide, but still distinct from each other. Abavisani et al.
proposed using this type of evaluation for augmentation pipelines in low-data and one-shot settings
(Abavisani et al., 2020). They adopted Deep Subspace Clustering (Ji et al., 2017) and optimized the
Silhouette coefficient as a measure of cluster quality. We improve upon this work in three ways:

1. We simplify the clustering process by using a pre-trained network to generate image em-
beddings which we then cluster, thus eliminating the need for a Deep Subspace Clustering
network and requiring no training.

2. Prior work employed k-means to form clusters (Douzas et al., 2018), adding computational
complexity. We simplify this by directly using known class labels as clusters. This al-
lows us to evaluate explicitly whether augmentations form meaningful, class-based clusters
rather than merely measuring separability.

3. When evaluating augmentation quality via clustering, traditional metrics like the Silhouette
coefficient reward cohesion but do not penalize small or redundant clusters. This can cause
the evolutionary algorithm to favor augmentation trees that produce minimal or trivial vari-
ations, which lack diversity and generalization potential. To avoid this pitfall, we introduce
an additional penalty term based on average cluster radius, balancing cohesion with cluster
size and separability. This modified metric thus encourages the formation of clusters that
are both cohesive and sufficiently distinct, promoting better generalization. Experiments
supporting these conclusions are presented in Appendix A.5.

This process is given in Algorithm 3. The pipeline can be seen in figure 3b.

Double Augmentation This strategy is simple yet effective. We apply classical augmentations—
which reliably introduce meaningful variations—to expand the original one-shot dataset. The aug-
mented dataset is then divided into k splits, and the negative validation losses are averaged across
splits, as detailed in Algorithm 4 and illustrated in Figure 3c. This approach allows us to increase
augmentations while minimizing the risk of degrading dataset quality or relevance through unin-
tended variations introduced by generative models.

Algorithm 4 1-Shot Double Augmentation Fitness Function
Require: One-shot dataset D, augmentation tree T , number of folds k

1: D′ ← ∅
2: for each image x ∈ D do
3: A(x) = {ClassicAug(x)1, . . . ,ClassicAug(x)k}
4: D′ ← D′ ∪A(x)
5: end for
6: return KFOLDFITNESS(D′, T , k) ▷ Refer to Alg. 2

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Algorithm 3 1-Shot Clustering Fitness Function
Require: Image dataset D, augmentation tree T , embedding model E

1: Daug ← ApplyAugmentationTree(T,D)
2: Initialize embedding list L← ∅
3: for each image x ∈ Daug do
4: e← E(x)
5: Append e to L
6: end for
7: C ← Cluster(L)
8: S ← ComputeSilhouetteScore(C)
9: d← ComputeMeanClusterDistance(C)

10: s← αS − 1−α
d

11: return s

Training Loss We can also simply use training loss as a proxy in the one-shot case. We augment
all the images, and train a model. We then evaluate trees based on how low the training loss is after
a fixed number of epochs. While this should encourage minor augmentations, and also makes use
of train loss to estimate eval loss, a very erroneous assumption, it still works well in practice. The
pipeline can be seen in figure 3d.

4 RESULTS

4.1 EXPERIMENT SETUP

We perform our experiments on six datasets: Caltech256 (Griffin et al., 2007), Oxford IIIT-Pets
(Parkhi et al., 2012), Oxford 102 Flowers (Nilsback & Zisserman, 2008), Stanford Cars (Krause
et al., 2013), Stanford Dogs (Khosla et al., 2011), and Food101 (Bossard et al., 2014). To highlight
how powerful our method is, even in few-shot settings when the fine-grained semantic distinctions
are minor, we deliberately searched for few-shot images and classes that were the most challenging.

For an n-way k-shot classification task, we do this as follows. First, we randomly select n classes
from the original dataset. Then we randomly selected k images from each class. We fine-tune a
pretrained Resnet50 model (He et al., 2016) on these images and record the accuracy. We repeat
this procedure 10 times, gathering 10 different subsets of the classes with different images for each
dataset. Afterwards, we note which subset of classes from the dataset had the lowest baseline test
accuracy, and we choose this subset as the setting for our augmentation benchmarks.

For our genetic algorithm, we initialize a population of 14. For each of the seven augmentation
operators, we initialize two trees whose root nodes use that operator, creating a balanced population.
This broadens the solution space exploration and avoids the pitfalls of random initialization on a
small population. We set the mutation probability to 10% and include 6 crossovers per generation.
We restrict tree depth to 2, allowing the composition of at most 2 operations per augmentation. For
each of the 10 generations, we generate 8 children. In the 2 and 5-shot cases, we use K-fold fitness,
choosing folds such that the classes remained balanced. To evaluate augmentation trees, we train
the models for 20 epochs and observe the corresponding loss. In the one-shot case, we examine the
three other fitness functions (double augmentation, training loss, and clustering) proposed above.

Once the best tree is chosen, we generate augmentations and evaluate the downstream classification
accuracy against several baselines:

1. Naive Baseline: We randomly apply classical augmentations (cropping, scaling, transla-
tion, horizontal/vertical flipping, color jitter, rotation)

2. RandAugment: We perform a grid search over the number of operations (num ops) and
magnitude parameters, selecting the configuration with the lowest validation loss using
cross-validation on a train/validation split; this best-performing configuration is then eval-
uated on the full test set.

3. AutoAugment: We apply the ImageNet-learned AutoAugment policy to our datasets.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

In all downstream classification tasks, training proceeds for 200 epochs. In the 1-shot setting, we
augment each image in the original dataset 2 times, in the 2-shot setting 5 times, and in the 5-shot
setting 2 times. We also evaluate our methods and baselines against augmentations generated from
random trees in the ResNet experiments to ensure that our evolutionary search was an important
part of creating true-to-class augmentations. Each experiment is performed at least three times with
varying seeds, and the average and standard deviation are reported. We evaluate using a pre-trained
ResNet50, ViT-Small (Dosovitskiy et al., 2021), or MobileNetV2 (Sandler et al., 2019) model. Mod-
els are fine-tuned using Adam (Kingma & Ba, 2017), with a learning rate of 1e-3. We use NVIDIA
GeForce RTX 4090 chips with 24 GB of memory. Each experiment took between 2 and 24 hours to
complete, depending on the number of ways and shots.

4.2 FEW-SHOT RESULTS

Dataset Model Naive Baseline Random Tree RandAugment AutoAugment Learned

Caltech256
ResNet50 79.78 ± 0.73 81.42 ± 7.64 84.71 ± 0.01 86.78 ± 0.00 88.28 ± 1.75
MobileNet 80.95 ± 1.08 - 86.04 ± 0.01 84.45 ± 0.01 84.18 ± 0.75
ViT-Small 73.30 ± 6.61 - 81.85 ± 0.01 81.74 ± 0.02 79.83 ± 9.90

Flowers102
ResNet50 70.49 ± 1.08 78.59 ± 2.11 83.65 ± 0.00 86.60 ± 0.00 73.73 ± 3.70
MobileNet 77.00 ± 1.83 - 79.54 ± 0.01 81.75 ± 0.01 73.21 ± 4.75
ViT-Small 97.89 ± 1.43 - 99.37 ± 0.00 98.63 ± 0.00 94.30 ± 3.85

Stanford Dogs
ResNet50 78.44 ± 0.13 83.76 ± 6.42 80.76 ± 0.01 82.23 ± 0.00 85.15 ± 2.73
MobileNet 75.34 ± 0.99 - 73.72 ± 0.02 75.26 ± 0.00 77.51 ± 0.63
ViT-Small 83.67 ± 1.38 - 86.95 ± 0.02 83.97 ± 0.02 80.61 ± 2.01

Stanford Cars
ResNet50 30.90 ± 1.68 36.94 ± 6.48 37.20 ± 0.01 34.68 ± 0.01 40.40 ± 3.07
MobileNet 35.35 ± 1.05 - 36.30 ± 0.01 36.95 ± 0.01 37.36 ± 0.15
ViT-Small 40.64 ± 5.43 - 43.83 ± 0.01 42.74 ± 0.02 46.32 ± 1.43

Oxford-IIIT Pet
ResNet50 86.57 ± 0.60 84.97 ± 3.08 85.25 ± 0.01 86.57 ± 0.00 88.34 ± 1.72
MobileNet 84.41 ± 0.53 - 87.27 ± 0.01 86.08 ± 0.00 89.21 ± 2.93
ViT-Small 88.52 ± 0.55 - 91.28 ± 0.01 90.60 ± 0.01 91.44 ± 2.06

Food101
ResNet50 47.82 ± 0.57 42.61 ± 4.56 46.23 ± 0.00 51.32 ± 0.00 49.78 ± 4.21
MobileNet 39.93 ± 1.46 - 43.49 ± 0.00 44.82 ± 0.00 42.97 ± 2.61
ViT-Small 55.66 ± 3.22 - 62.20 ± 0.02 64.14 ± 0.02 64.18 ± 2.13

Table 1: 5-way, 2-shot classification accuracy (%) with standard deviation across 6 datasets and 3
downstream image classification architectures. Bolded values indicate the best performance per row.

Dataset Model Naive Baseline Random Tree RandAugment AutoAugment Learned

Caltech256
ResNet50 88.15 ± 0.25 92.22 ± 0.93 92.55 ± 0.00 93.31 ± 0.00 91.48 ± 1.11
MobileNet 88.80 ± 0.19 - 89.51 ± 0.00 91.41 ± 0.00 90.05 ± 0.98
ViT-Small 85.75 ± 1.04 - 90.32 ± 0.01 90.70 ± 0.01 92.33 ± 1.27

Flowers102
ResNet50 82.61 ± 0.96 79.51 ± 2.69 89.04 ± 0.01 89.92 ± 0.01 84.95 ± 1.15
MobileNet 88.82 ± 0.69 - 91.47 ± 0.00 89.26 ± 0.01 86.60 ± 1.07
ViT-Small 99.78 ± 0.19 - 99.89 ± 0.00 99.89 ± 0.00 99.34 ± 0.33

Stanford Dogs
ResNet50 88.69 ± 0.65 90.81 ± 1.08 89.21 ± 0.00 91.24 ± 0.00 91.35 ± 0.72
MobileNet 82.88 ± 0.72 - 81.49 ± 0.00 83.10 ± 0.00 83.40 ± 0.27
ViT-Small 88.73 ± 0.46 - 89.73 ± 0.00 87.99 ± 0.00 84.66 ± 0.85

Stanford Cars
ResNet50 52.97 ± 0.80 53.75 ± 1.44 54.63 ± 0.00 51.48 ± 0.01 57.98 ± 3.20
MobileNet 50.79 ± 1.39 - 55.41 ± 0.01 55.93 ± 0.01 48.87 ± 1.71
ViT-Small 58.12 ± 2.73 - 63.00 ± 0.02 66.67 ± 0.01 59.25 ± 2.23

Oxford-IIIT Pet
ResNet50 92.07 ± 0.44 93.12 ± 0.74 92.91 ± 0.01 93.61 ± 0.00 93.63 ± 0.43
MobileNet 88.56 ± 0.85 - 90.32 ± 0.00 90.14 ± 0.00 90.53 ± 0.76
ViT-Small 94.95 ± 0.56 - 95.44 ± 0.01 95.37 ± 0.01 93.54 ± 0.53

Food101
ResNet50 54.09 ± 0.58 56.88 ± 2.60 56.72 ± 0.00 58.28 ± 0.00 58.75 ± 1.60
MobileNet 51.88 ± 0.59 - 52.00 ± 0.00 54.05 ± 0.00 54.19 ± 1.36
ViT-Small 75.40 ± 2.22 - 79.59 ± 0.00 78.25 ± 0.00 76.49 ± 0.75

Table 2: 5-way, 5-shot classification accuracy (%) with standard deviation across 6 datasets and 3
downstream image classification architectures. Bolded values indicate the best performance per row.

The few-shot results are shown in Tables 1 and 2. We measure the accuracy on the test set for models
trained using the baseline strategies, random augmentation trees, and the augmentation trees learned
from our pipeline. While EvoAug consistently outperforms the Naive Baseline, results are mixed
when evaluated against AutoAugment and RandAugment. Notably, EvoAug is much better on the
Stanford Dogs and Oxford-IIIT Pets datasets, but marginally worse on Flowers102.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Dataset Model Naive Baseline NoOp / Classical Tree Random Tree RandAugment AutoAugment Learned (Clustering)

Caltech256
ResNet50 65.77 ± 1.29 78.67 ± 2.00 81.57 ± 6.44 81.63 ± 0.01 82.92 ± 0.01 83.65 ± 4.92
MobileNet 67.28 ± 2.56 - - 71.97 ± 0.01 71.47 ± 0.01 80.09 ± 4.73
ViT-Small 66.72 ± 3.53 - - 75.60 ± 0.03 75.38 ± 0.03 82.12 ± 3.64

Flowers102
ResNet50 61.48 ± 0.78 66.15 ± 0.90 63.03 ± 3.95 63.97 ± 0.00 65.84 ± 0.01 66.75 ± 2.34
MobileNet 57.11 ± 1.30 - - 53.17 ± 0.01 58.46 ± 0.01 60.78 ± 2.58
ViT-Small 94.60 ± 1.88 - - 96.26 ± 0.03 93.98 ± 0.02 95.47 ± 2.19

Stanford Dogs
ResNet50 70.30 ± 0.58 75.79 ± 0.29 76.58 ± 3.84 75.86 ± 0.01 77.22 ± 0.02 78.86 ± 3.21
MobileNet 60.58 ± 2.66 - - 65.19 ± 0.02 67.73 ± 0.01 69.70 ± 2.37
ViT-Small 75.55 ± 1.61 - - 78.47 ± 0.01 77.83 ± 0.02 79.70 ± 3.12

Stanford Cars
ResNet50 21.31 ± 0.80 28.11 ± 0.43 29.77 ± 1.83 32.84 ± 0.01 31.84 ± 0.03 29.66 ± 2.62
MobileNet 30.43 ± 1.12 - - 30.18 ± 0.01 30.35 ± 0.02 29.05 ± 3.18
ViT-Small 31.10 ± 5.56 - - 36.15 ± 0.02 34.66 ± 0.01 37.35 ± 3.37

Oxford-IIIT Pet
ResNet50 79.68 ± 1.50 82.44 ± 0.55 81.47 ± 6.34 78.17 ± 0.01 82.71 ± 0.00 86.16 ± 1.19
MobileNet 72.18 ± 1.45 - - 76.31 ± 0.00 74.17 ± 0.01 80.43 ± 1.87
ViT-Small 76.10 ± 5.44 - - 83.88 ± 0.02 79.61 ± 0.04 84.58 ± 3.22

Food101
ResNet50 30.90 ± 0.57 30.06 ± 0.31 32.83 ± 2.42 30.38 ± 0.00 30.46 ± 0.00 34.28 ± 0.83
MobileNet 28.78 ± 0.63 - - 25.52 ± 0.01 26.15 ± 0.01 34.61 ± 1.74
ViT-Small 43.74 ± 2.51 - - 48.17 ± 0.02 45.44 ± 0.01 44.89 ± 2.30

Table 3: 5-way, 1-shot classification accuracy (%) with standard deviation across 6 datasets and 3
downstream image classification architectures. Bolded values indicate the best performance per row.

4.3 ONE-SHOT RESULTS

Our 1-shot results are shown in Table 3. Here, we include our clustering-based fitness function
learning strategy. Results for our double augmentation and training loss strategies are included in
the appendix. EvoAug consistently outperforms the Naive Baseline, and often outperforms Ran-
dAugment and AutoAugment, achieving strong performance in scarce data settings. We also run
our pipeline restricting nodes to just classical or NoOp transformations and find that these restricted
trees perform worse than our normal trees. This supports the conclusion that generative augmenta-
tion operators are an important part of performance.

5 CONCLUSION

We present an automated augmentation strategy that leverages advanced generative models, specif-
ically controlled diffusion and NeRF operators, in combination with classical augmentation tech-
niques. By employing an evolutionary search framework, our method automatically discovers task-
specific augmentation policies that significantly improve performance in fine-grained few-shot and
one-shot classification tasks. Experimental results on a diverse set of datasets demonstrate that our
approach not only outperforms standard baselines but also identifies augmentation strategies that
effectively preserve subtle semantic details, which are crucial in low-data scenarios.

Our work introduces novel unsupervised evaluation metrics and proxy objectives to reliably guide
augmentation policy search in settings where labeled data is scarce. While the computational over-
head associated with evaluating complex generative augmentations remains a challenge, the sub-
stantial gains in classification accuracy validate the potential of our approach. Overall, our findings
suggest that integrating generative models with automated policy learning can play a pivotal role in
enhancing the robustness of vision systems, particularly in environments with limited data.

5.1 LIMITATIONS

A potential limitation of our method is its ability to extend to a full dataset recognition task, as
directly scaling our pipeline to learn semantic priors from the full dataset is not efficient. Preliminary
work, however, has shown that using a text conditioned process to augment images does improve
the performance of models on image classification tasks against a classical augmentation baseline
(discussion in Appendix A.6). We believe that a more careful augmentation learning strategy that
efficiently learns augmentations that match the dataset may be able to further improve this accuracy.

Other avenues of interest are extending this framework to other vision tasks such as object detection
and segmentation and further refining the balance between diversity and fidelity in generated aug-
mentations. Preliminary work on these tasks has shown that our pipeline has the ability to improve
model performance when compared to a baseline of classically augmented images (discussion in
Appendix A.6).

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Mahdi Abavisani, Alireza Naghizadeh, Dimitris Metaxas, and Vishal Patel. Deep subspace clus-
tering with data augmentation. Advances in Neural Information Processing Systems, 33:10360–
10370, 2020.

Shekoofeh Azizi, Simon Kornblith, Chitwan Saharia, Mohammad Norouzi, and David J Fleet.
Synthetic data from diffusion models improves imagenet classification. arXiv preprint
arXiv:2304.08466, 2023.

Victor Besnier, Himalaya Jain, Andrei Bursuc, Matthieu Cord, and Patrick Pérez. This dataset does
not exist: training models from generated images. In ICASSP 2020-2020 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1–5. IEEE, 2020.

Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101–mining discriminative compo-
nents with random forests. In Computer Vision–ECCV 2014: 13th European Conference, Zurich,
Switzerland, September 6-12, 2014, Proceedings, Part VI 13, pp. 446–461. Springer, 2014.

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity natural
image synthesis. arXiv preprint arXiv:1809.11096, 2018.

John Canny. A computational approach to edge detection. IEEE Transactions on pattern analysis
and machine intelligence, (6):679–698, 1986.

Pengguang Chen, Shu Liu, Hengshuang Zhao, and Jiaya Jia. Gridmask data augmentation. arXiv
preprint arXiv:2001.04086, 2020.

Zhengsu Chen, Lingxi Xie, Jianwei Niu, Xuefeng Liu, Longhui Wei, and Qi Tian. Visformer:
The vision-friendly transformer. In Proceedings of the IEEE/CVF international conference on
computer vision, pp. 589–598, 2021.

Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. Autoaugment:
Learning augmentation policies from data. arXiv preprint arXiv:1805.09501, 2018.

Ekin D. Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V. Le. Randaugment: Practical automated
data augmentation with a reduced search space. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 702–703, 2020.

David L. Davies and Donald W. Bouldin. A cluster separation measure. IEEE Transactions on
Pattern Analysis and Machine Intelligence, PAMI-1(2):224–227, 1979. doi: 10.1109/TPAMI.
1979.4766909.

Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural networks
with cutout. arXiv preprint arXiv:1708.04552, 2017.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale, 2021. URL https://arxiv.org/abs/2010.11929.

Georgios Douzas, Fernando Bacao, and Felix Last. Improving imbalanced learning through a
heuristic oversampling method based on k-means and smote. Information Sciences, 465:1–
20, 2018. ISSN 0020-0255. doi: https://doi.org/10.1016/j.ins.2018.06.056. URL https:
//www.sciencedirect.com/science/article/pii/S0020025518304997.

Joshua James Engelsma, Steven Grosz, and Anil K Jain. Printsgan: synthetic fingerprint generator.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(5):6111–6124, 2022.

Mark Everingham, Luc Van Gool, Christopher K. I. Williams, John Winn, and Andrew Zisserman.
The pascal visual object classes (voc) challenge. International Journal of Computer Vision, 88
(2):303–338, 2010.

10

https://arxiv.org/abs/2010.11929
https://www.sciencedirect.com/science/article/pii/S0020025518304997
https://www.sciencedirect.com/science/article/pii/S0020025518304997


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Haoyang Fang, Boran Han, Shuai Zhang, Su Zhou, Cuixiong Hu, and Wen-Ming Ye. Data augmen-
tation for object detection via controllable diffusion models. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision, pp. 1257–1266, 2024.

Alvaro Figueira and Bruno Vaz. Survey on synthetic data generation, evaluation methods and gans.
Mathematics, 10(15):2733, 2022.

Golnaz Ghiasi, Yin Cui, Aravind Srinivas, Rui Qian, Tsung-Yi Lin, Ekin D Cubuk, Quoc V Le, and
Barret Zoph. Simple copy-paste is a strong data augmentation method for instance segmentation.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
2918–2928, 2021.

Judah A Goldfeder, Patrick Minwan Puma, Gabriel Guo, Gabriel Guerra Trigo, and Hod Lipson.
Learning via imagination: Controlled diffusion image augmentation. In NeurIPS 2024 Workshop
on Compositional Learning: Perspectives, Methods, and Paths Forward, 2024.

Gregory Griffin, Alex Holub, and Pietro Perona. Caltech-256 object category dataset. 2007.

Ryuichiro Hataya, Jan Zdenek, Kazuki Yoshizoe, and Hideki Nakayama. Faster autoaugment:
Learning augmentation strategies using backpropagation. In Computer Vision–ECCV 2020: 16th
European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXV 16, pp. 1–16.
Springer, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Ruifei He, Shuyang Sun, Xin Yu, Chuhui Xue, Wenqing Zhang, Philip Torr, Song Bai, and Xiao-
juan Qi. Is synthetic data from generative models ready for image recognition? arXiv preprint
arXiv:2210.07574, 2022.

Daniel Ho, Eric Liang, Xi Chen, Ion Stoica, and Pieter Abbeel. Population based augmentation:
Efficient learning of augmentation policy schedules. In International conference on machine
learning, pp. 2731–2741. PMLR, 2019.

Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. Meta-learning in neural
networks: A survey. IEEE transactions on pattern analysis and machine intelligence, 44(9):
5149–5169, 2021.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Forrest Iandola, Matt Moskewicz, Sergey Karayev, Ross Girshick, Trevor Darrell, and Kurt Keutzer.
Densenet: Implementing efficient convnet descriptor pyramids. arXiv preprint arXiv:1404.1869,
2014.

Khawar Islam and Naveed Akhtar. Context-guided responsible data augmentation with diffusion
models, 2025. URL https://arxiv.org/abs/2503.10687.

Khawar Islam, Muhammad Zaigham Zaheer, Arif Mahmood, and Karthik Nandakumar. Diffusemix:
Label-preserving data augmentation with diffusion models, 2024. URL https://arxiv.
org/abs/2405.14881.

Khawar Islam, Muhammad Zaigham Zaheer, Arif Mahmood, Karthik Nandakumar, and Naveed
Akhtar. Genmix: Effective data augmentation with generative diffusion model image editing,
2025. URL https://arxiv.org/abs/2412.02366.

Ali Jahanian, Xavier Puig, Yonglong Tian, and Phillip Isola. Generative models as a data source for
multiview representation learning. arXiv preprint arXiv:2106.05258, 2021.

Pan Ji, Tong Zhang, Hongdong Li, Mathieu Salzmann, and Ian Reid. Deep subspace clustering
networks. Advances in neural information processing systems, 30, 2017.

11

https://arxiv.org/abs/2503.10687
https://arxiv.org/abs/2405.14881
https://arxiv.org/abs/2405.14881
https://arxiv.org/abs/2412.02366


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Animesh Karnewar, Andrea Vedaldi, David Novotny, and Niloy J. Mitra. Holodiffusion: Training a
3d diffusion model using 2d images. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 18423–18433, June 2023.

Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng Yao, and Fei-Fei Li. Novel dataset for fine-
grained image categorization: Stanford dogs. In Proc. CVPR workshop on fine-grained visual
categorization (FGVC), volume 2. Citeseer, 2011.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL
https://arxiv.org/abs/1412.6980.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In Proceed-
ings of the IEEE/CVF international conference on computer vision, pp. 4015–4026, 2023.

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
categorization. In Proceedings of the IEEE international conference on computer vision work-
shops, pp. 554–561, 2013.

Joseph Lemley, Shabab Bazrafkan, and Peter Corcoran. Smart augmentation learning an optimal
data augmentation strategy. Ieee Access, 5:5858–5869, 2017.

Pu Li, Xiangyang Li, and Xiang Long. Fencemask: a data augmentation approach for pre-extracted
image features. arXiv preprint arXiv:2006.07877, 2020.

Sungbin Lim, Ildoo Kim, Taesup Kim, Chiheon Kim, and Sungwoong Kim. Fast autoaugment.
Advances in neural information processing systems, 32, 2019.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C. Lawrence Zitnick. Microsoft coco: Common objects in context. In European
Conference on Computer Vision (ECCV), pp. 740–755. Springer, 2014.

Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie.
Feature pyramid networks for object detection. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 2117–2125, 2017.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning. arXiv preprint arXiv:2310.03744, 2023a.

Ruoshi Liu, Rundi Wu, Basile Van Hoorick, Pavel Tokmakov, Sergey Zakharov, and Carl Vondrick.
Zero-1-to-3: Zero-shot one image to 3d object, 2023b.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012–10022, 2021.

Wenquan Lu, Yufei Xu, Jing Zhang, Chaoyue Wang, and Dacheng Tao. Handrefiner: Refining
malformed hands in generated images by diffusion-based conditional inpainting, 2024. URL
https://arxiv.org/abs/2311.17957.

Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained
visual classification of aircraft. arXiv preprint arXiv:1306.5151, 2013.

Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and
projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.

Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon.
Sdedit: Guided image synthesis and editing with stochastic differential equations. arXiv preprint
arXiv:2108.01073, 2021.

Alireza Naghizadeh, Dimitris N Metaxas, and Dongfang Liu. Greedy auto-augmentation for n-shot
learning using deep neural networks. Neural Networks, 135:68–77, 2021.

12

https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2311.17957


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Supreeth Narasimhaswamy, Uttaran Bhattacharya, Xiang Chen, Ishita Dasgupta, Saayan Mitra, and
Minh Hoai. Handiffuser: Text-to-image generation with realistic hand appearances. In 2024
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2468–2479.
IEEE, June 2024. doi: 10.1109/cvpr52733.2024.00239. URL http://dx.doi.org/10.
1109/CVPR52733.2024.00239.

Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew,
Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing with
text-guided diffusion models. arXiv preprint arXiv:2112.10741, 2021.

Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
of classes. In 2008 Sixth Indian conference on computer vision, graphics & image processing, pp.
722–729. IEEE, 2008.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red
Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Moham-
mad Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher
Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
man, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann,
Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis,
Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey
Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux,
Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila
Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
Simón Posada Fishman, Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian Gib-
son, Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan
Grafstein, Scott Gray, Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hal-
lacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes Heidecke, Chris Hesse, Alan
Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu,
Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Ka-
mali, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook
Kim, Christina Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie Kiros, Matt Knight, Daniel
Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen
Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel
Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie Lin, Mateusz Litwin, Theresa Lopez,
Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam Manning, Todor Markov, Yaniv
Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob McGrew, Scott Mayer McKinney,
Christine McLeavey, Paul McMillan, Jake McNeil, David Medina, Aalok Mehta, Jacob Menick,
Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély, Ashvin Nair, Reiichiro Nakano, Ra-
jeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Long Ouyang, Cullen O’Keefe,
Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano, Giambattista Parascandolo, Joel
Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe
de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto, Michael, Pokorny,
Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power, Elizabeth Proehl,
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis Real, Kendra
Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted Sanders,
Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel Sel-
sam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor,
Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang,
Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Pre-
ston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vi-
jayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan
Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng,
Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Work-
man, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming
Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao

13

http://dx.doi.org/10.1109/CVPR52733.2024.00239
http://dx.doi.org/10.1109/CVPR52733.2024.00239


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report, 2024. URL
https://arxiv.org/abs/2303.08774.

Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In 2012
IEEE conference on computer vision and pattern recognition, pp. 3498–3505. IEEE, 2012.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. arxiv 2022. arXiv preprint arXiv:2204.06125,
2022.

René Ranftl, Katrin Lasinger, David Hafner, Konrad Schindler, and Vladlen Koltun. Towards robust
monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transac-
tions on pattern analysis and machine intelligence, 44(3):1623–1637, 2020.

Ali Razavi, Aaron Van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images with
vq-vae-2. Advances in neural information processing systems, 32, 2019.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. In Advances in Neural Information Processing Systems
(NeurIPS), volume 28, 2015.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Chitwan Saharia, William Chan, Huiwen Chang, Chris Lee, Jonathan Ho, Tim Salimans, David
Fleet, and Mohammad Norouzi. Palette: Image-to-image diffusion models. In ACM SIGGRAPH
2022 conference proceedings, pp. 1–10, 2022a.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
text-to-image diffusion models with deep language understanding. Advances in neural informa-
tion processing systems, 35:36479–36494, 2022b.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks, 2019. URL https://arxiv.org/abs/
1801.04381.

Mert Bülent Sarıyıldız, Karteek Alahari, Diane Larlus, and Yannis Kalantidis. Fake it till you make
it: Learning transferable representations from synthetic imagenet clones. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8011–8021, 2023.

Flavio Schneider. Archisound: Audio generation with diffusion, 2023. URL https://arxiv.
org/abs/2301.13267.

Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An
open large-scale dataset for training next generation image-text models. Advances in Neural
Information Processing Systems, 35:25278–25294, 2022.

Jordan Shipard, Arnold Wiliem, Kien Nguyen Thanh, Wei Xiang, and Clinton Fookes. Diversity
is definitely needed: Improving model-agnostic zero-shot classification via stable diffusion. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 769–
778, 2023.

Ashish Shrivastava, Tomas Pfister, Oncel Tuzel, Joshua Susskind, Wenda Wang, and Russell Webb.
Learning from simulated and unsupervised images through adversarial training. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 2107–2116, 2017.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Youssef Skandarani, Pierre-Marc Jodoin, and Alain Lalande. Gans for medical image synthesis: An
empirical study. Journal of Imaging, 9(3):69, 2023.

14

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/1801.04381
https://arxiv.org/abs/1801.04381
https://arxiv.org/abs/2301.13267
https://arxiv.org/abs/2301.13267


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Zhihang Song, Zimin He, Xingyu Li, Qiming Ma, Ruibo Ming, Zhiqi Mao, Huaxin Pei, Lihui Peng,
Jianming Hu, Danya Yao, and Yi Zhang. Synthetic datasets for autonomous driving: A survey.
IEEE Transactions on Intelligent Vehicles, 9(1):1847–1864, January 2024. ISSN 2379-8858. doi:
10.1109/tiv.2023.3331024. URL http://dx.doi.org/10.1109/TIV.2023.3331024.

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural net-
works. In International conference on machine learning, pp. 6105–6114. PMLR, 2019.

Brandon Trabucco, Kyle Doherty, Max Gurinas, and Ruslan Salakhutdinov. Effective data augmen-
tation with diffusion models. arXiv preprint arXiv:2302.07944, 2023.

Brandon Trabucco, Kyle Doherty, Max Gurinas, and Ruslan Salakhutdinov. Effective data augmen-
tation with diffusion models, 2025. URL https://arxiv.org/abs/2302.07944.

Toan Tran, Trung Pham, Gustavo Carneiro, Lyle Palmer, and Ian Reid. A bayesian data augmenta-
tion approach for learning deep models. Advances in neural information processing systems, 30,
2017.

Gary Wang, Ekin D Cubuk, Andrew Rosenberg, Shuyang Cheng, Ron J Weiss, Bhuvana Ramabhad-
ran, Pedro J Moreno, Quoc V Le, and Daniel S Park. G-augment: Searching for the meta-structure
of data augmentation policies for asr. In 2022 IEEE Spoken Language Technology Workshop
(SLT), pp. 23–30. IEEE, 2023.

Shin’ya Yamaguchi and Takuma Fukuda. On the limitation of diffusion models for synthesizing
training datasets. arXiv preprint arXiv:2311.13090, 2023.

Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Wentao Zhang,
Bin Cui, and Ming-Hsuan Yang. Diffusion models: A comprehensive survey of methods and
applications, 2025. URL https://arxiv.org/abs/2209.00796.

Zihan Yang, Richard O Sinnott, James Bailey, and Qiuhong Ke. A survey of automated data augmen-
tation algorithms for deep learning-based image classification tasks. Knowledge and Information
Systems, 65(7):2805–2861, 2023a.

Zuhao Yang, Fangneng Zhan, Kunhao Liu, Muyu Xu, and Shijian Lu. Ai-generated images as data
source: The dawn of synthetic era. arXiv preprint arXiv:2310.01830, 2023b.

Zhuoran Yu, Chenchen Zhu, Sean Culatana, Raghuraman Krishnamoorthi, Fanyi Xiao, and Yong Jae
Lee. Diversify, don’t fine-tune: Scaling up visual recognition training with synthetic images.
arXiv preprint arXiv:2312.02253, 2023.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
Cutmix: Regularization strategy to train strong classifiers with localizable features. In Proceed-
ings of the IEEE/CVF international conference on computer vision, pp. 6023–6032, 2019.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. arXiv preprint arXiv:1710.09412, 2017.

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
diffusion models. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pp. 3836–3847, 2023.

Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. Random erasing data augmen-
tation. In Proceedings of the AAAI conference on artificial intelligence, volume 34, pp. 13001–
13008, 2020.

Yongchao Zhou, Hshmat Sahak, and Jimmy Ba. Training on thin air: Improve image classification
with generated data. arXiv preprint arXiv:2305.15316, 2023.

A APPENDIX

We provide additional results for our method in the 5-way 1-shot setting, as well as a study on the
one-shot clustering fitness function. We also examine how our method might scale to be used on
full datasets and object detection/segmentation tasks.

15

http://dx.doi.org/10.1109/TIV.2023.3331024
https://arxiv.org/abs/2302.07944
https://arxiv.org/abs/2209.00796


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.1 FITNESS FUNCTION CHOICE IN ONE-SHOT SETTING

Carefully crafting a fitness function which can enable robust downstream classification is a difficult
task. Our three main approaches were using augmented images themselves as a part of the validation
set for models, using heuristics from the training loss to determine optimal learning, and an involved
clustering approach which tried to capture the spread within a class and between classes. Our results
are summarized in Table 4, which show that the clustering approach seemed to be a consistently
good strategy for guiding our augmentation scoring.

Dataset Model Learned (Double Aug) Learned (Train Loss) Learned (Clustering)

Caltech256
ResNet50 80.27 ± 6.50 76.21 ± 5.58 83.65 ± 4.92
MobileNet 75.04 ± 6.68 68.57 ± 2.85 80.09 ± 4.73
ViT-Small 73.53 ± 4.31 68.57 ± 10.44 82.12 ± 3.64

Flowers102
ResNet50 55.95 ± 5.72 65.73 ± 6.54 66.75 ± 2.34
MobileNet 57.70 ± 1.45 64.38 ± 2.99 60.78 ± 2.58
ViT-Small 88.27 ± 2.42 86.11 ± 1.85 95.47 ± 2.19

Stanford Dogs
ResNet50 78.46 ± 2.27 68.26 ± 2.19 78.86 ± 3.21
MobileNet 66.40 ± 2.56 67.25 ± 2.49 69.70 ± 2.37
ViT-Small 74.73 ± 4.08 67.57 ± 1.55 79.70 ± 3.12

Stanford Cars
ResNet50 22.34 ± 2.92 28.36 ± 0.86 29.66 ± 2.62
MobileNet 25.29 ± 4.40 26.70 ± 1.88 29.05 ± 3.18
ViT-Small 24.79 ± 0.63 36.73 ± 0.80 37.35 ± 3.37

Oxford-IIIT Pet
ResNet50 76.07 ± 2.26 78.30 ± 1.44 86.16 ± 1.19
MobileNet 75.76 ± 2.58 74.45 ± 4.54 80.43 ± 1.87
ViT-Small 75.69 ± 4.36 80.58 ± 3.62 84.58 ± 3.22

Food101
ResNet50 30.40 ± 1.56 30.49 ± 3.22 34.28 ± 0.83
MobileNet 28.44 ± 0.89 29.38 ± 2.32 34.61 ± 1.74
ViT-Small 38.17 ± 1.53 39.53 ± 4.35 44.89 ± 2.30

Table 4: 5-way, 1-shot classification accuracy (%) with standard deviation across 6 datasets and 3
downstream architectures, showing only the three Learned methods. Bolded values indicate the best
performance per row.

A.2 ENCODER PERFORMANCE COMPARISON

The one-shot clustering fitness function results only use a single image encoder, a pre-
trained ResNet50. We begin this analysis by benchmarking various pre-trained image en-
coders—responsible for projecting augmented images into embedding space—for their effectiveness
in the clustering-based fitness function. We explore two variants of Vision Transformers (Dosovit-
skiy et al., 2021) in addition to a ResNet50. Table 5 provides the results of the encoder performance
comparison. The two vision transformer variants outperform the baseline on all datasets. Notably,
however, there is no single best decoder that performs consistently the best across all datasets.

Table 5: Accuracy for 5-way 1-shot clustering fitness function across various image encoders

Dataset Baseline ResNet50 ViT-224 ViT-B/16

Caltech256 65.77± 1.29 81.83 ± 7.60 79.56± 1.10 72.28± 1.98
Flowers102 61.48± 0.78 56.70± 4.19 62.41± 2.38 64.38 ± 3.30
Stanford Dogs 70.30± 0.58 71.54± 2.70 75.45 ± 2.25 72.72± 2.42
Stanford Cars 21.31± 0.80 24.50± 3.00 25.71 ± 2.74 24.38± 1.32
Oxford-IIIT Pet 79.68± 1.50 85.21± 1.14 83.08± 2.81 85.88 ± 0.66
Food101 30.90± 0.57 33.97 ± 1.63 32.21± 0.41 32.62± 0.67

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 4: Success Case: ViT-B/16-Flowers

A.3 SUCCESS AND FAILURE ANALYSIS

We look at low-dimensional cluster visualizations of encoded augmentations from strong and weak-
performing learned trees for success and failure cases using UMAP (McInnes et al., 2018). This
motivates the desired and non-desired qualities of clusters. We examine the clusters of the embed-
dings of two encoders on the Flower dataset, shown in Figure 4 and Figure 5. We select a single
dataset to establish domain consistency when comparing success and failure cases, as well as against
the handcrafted tree study in the following section. The Flowers102 dataset is particularly interesting
as it is the most fine-grained among those benchmarked. Unlike other datasets, where shape or size
may be primary distinguishing features between classes, flowers are primarily defined by their color.
As a result, applying augmentations that alter color can significantly degrade model performance.

For the success case – ViT-B/16 on Flowers102 – which performed 3% better than baseline, there are
distinct clusters for all five classes, all of which are very tight. Clusters are also very well separated.
For the failure case – ResNet50 on Flowers102 – which performed 5% worse than baseline, the
classes are not clustered very accurately, with augmentations overlapping heavily between classes.

A.4 HANDCRAFTED AUGMENTATION TREES

We handcraft an ”ideal” augmentation tree for the Flowers102 dataset, shown in Table 6, to compare
to the clusters of the EvoAug learned trees in the success and failure cases. The hypothesized ideal
augmentation tree is structured as follows: the head node as Color, the left node as NeRF, and the
right node as no augmentation, with a 0.5 probability of moving to either child node. We guarantee
a Color node, as it uses Color ControlNet to preserve the color palette in augmentations. We also
use a NeRF node, which performs a 3D rotation for an augmentation, yet not affecting color.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 5: Failure Case: ResNet50-Flowers

Table 6: Handcrafted tree performance on the Flowers102 dataset. Tree structure format: (Head,
pL, Left, pR, Right).

Name Tree Structure Accuracy (%)

Ideal (Color, 0.5, NeRF, 0.5, None) 66.98± 6.56
Inferior (Depth, 0.5, Depth, 0.5, Segmentation) 60.85± 2.30

We also handcraft an ”inferior” augmentation tree as a sanity check and counterexample, allowing us
to compare clusters and better isolate critical features to reward when designing the clustering fitness
score. We use Depth and Segmentation nodes for augmentations, as neither augmentation operation
preserves color, which we hypothesize to be the most important feature for flower classification.

The handcrafted ideal augmentation tree performs better than all other augmentation trees learned
from any image encoder, suggesting that the EvoAug pipeline is not learning the best augmenta-
tion tree through the clustering score fitness function. The ideal handcrafted tree in Figure 6 and
the learned tree success case in Figure 4 both display very well-separated clusters for each class.
However, the clusters for the success case are noticeably tighter than those of the handcrafted tree

Image Encoder S− 1
d S− 2

d S 1
DB

ViT-B/16 64.382± 3.302 67.497± 2.827 61.059± 0.44 61.059± 0.44

Table 7: One-shot clustering results across different fitness functions for Flowers102 subset 50

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 6: Handcrafted Ideal Tree

clusters. If we compare this to Figure 5 or 7, we can see larger clusters formed from a variety of
different classes, with fewer clusters that distinctly correspond to a single class.

These observations give rise to two interpretations: (1) the original fitness function may have under-
valued the importance of large clusters, because the better performing handcrafted ideal tree resulted
in larger yet still distinct clusters and (2) that the original fitness function may have overvalued the
importance of large clusters at the expense of cluster separability, as the failure case and handcrafted
inferior tree demonstrate. This motivates an exploration of alternative fitness functions that may
better capture cluster dynamics.

A.5 CLUSTERING FITNESS FUNCTION MODIFICATIONS

Table 7 compares the performance of different clustering metrics as the fitness function in the
EvoAug pipeline, where S is the Silhouette coefficient, d is the average cluster radius, DB is the
Davies-Boudlin Index (Davies & Bouldin, 1979). We conduct experiments using the Flowers102
dataset and use ViT-B/16 encoder as it performs the best on this dataset.

We test a fitness function of just S as a baseline, but using only the Silhouette Coefficient results in
a learned tree of None nodes, causing all generated augmentations to be exact copies of the original
image. This is expected, as the Silhouette Coefficient scores clusters of the same embedding as a
perfect score of 1, due to the small intra-cluster distances. The same result occurs with the 1

DB fitness
function, confirming that Davies-Bouldin is functionally the same as the Silhouette Coefficient.

We modify the original proposed fitness function by doubling the penalty to small clus-
ter sizes. Under this setting, the learned augmentation tree is (Head, pL,Left, pR,Right) =
(None, 0.51,None, 0.49,NeRF). This tree results in the best downstream classification performance

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Figure 7: Handcrafted Inferior Tree

across all experiments, including those from handcrafted trees, demonstrating that this fitness func-
tion was able to learn better trees than human intuition. This learned tree was likely favored in the
evolutionary algorithm, as NeRF preserves colors and edges, two features we believe are vital for
classifying flowers. These results strengthen the interpretation that a large intra-cluster distance is
important may help in model generalization. Future work will seek to substantiate this claim in other
settings and datasets.

A.6 GENERALIZATION TO FULL DATASETS, DETECTION, AND SEGMENTATION

While the main body of our work focuses on the few shot setting, there are also experiments done
which have indicated that conditioned generation is beneficial in the full dataset setting (Anony-
mous, 2024). The method used in these experiments employs LLaVa2 (Liu et al., 2023a) generated
captions to condition the augmentation of images in the dataset. We believe that with more intelli-
gent conditioning (by learning augmentation trees which match the dataset), we can achieve better
performance.

We reproduce the relevant summary statistics below in Table 8 for completeness. The results show
that conditioned generation consistently achieves higher accuracy than a classically augmented base-
line across six datasets: Caltech256 (Griffin et al., 2007), Stanford Cars (Krause et al., 2013), FGVC
Aircraft (Maji et al., 2013), Stanford Dogs (Khosla et al., 2011), Oxford IIIT-Pets (Parkhi et al.,
2012); and eight model architectures: ResNet (He et al., 2016), VGG (Simonyan & Zisserman,
2014), EfficientNet (Tan & Le, 2019), Visformer (Chen et al., 2021), Swin Transformer (Liu et al.,
2021), MobileNet (Howard et al., 2017), DenseNet (Iandola et al., 2014), and ViT (Dosovitskiy
et al., 2021).

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

We have also done some 5-way, 2-shot experiments on the PASCAL VOC dataset (Everingham et al.,
2010). For these experiments, we fine-tuned a Faster R-CNN (Ren et al., 2015) with a ResNet-50-
FPN backbone (Lin et al., 2017) pretrained on COCO (Lin et al., 2014). Our results show that a
baseline strategy which only uses classical augmentations achieves a performance of 18.77 ± 5.95
percent, while our generative augmentation pipeline achieves a performance of 21.53±7.20 percent.
This indicates that our generative augmentation pipeline can also benefit dense prediction tasks.

Table 8: Accuracy on full datasets for various models

Dataset Setting RN50 RN101 VGG19 EN Visformer Swin MN DN

Caltech Baseline 72.37 73.62 67.40 71.79 68.83 63.95 66.48 75.74
Conditioned 76.49 77.64 70.82 73.85 73.15 69.55 68.33 78.10

Cars Baseline 86.78 88.16 87.22 86.75 83.37 75.43 80.80 91.08
Conditioned 91.02 90.95 89.61 88.56 87.40 82.32 82.70 92.20

Aircraft Baseline 75.23 75.91 88.80 81.25 72.61 60.88 70.24 80.53
Conditioned 82.33 81.10 88.20 81.76 74.67 71.74 74.17 83.29

Dogs Baseline 66.49 70.15 68.63 64.17 64.65 52.10 58.60 70.44
Conditioned 68.74 70.40 66.05 62.45 64.36 56.50 58.30 70.21

Pets Baseline 69.22 70.72 83.17 73.59 73.02 58.54 67.35 80.16
Conditioned 71.07 74.03 81.28 74.41 76.24 61.00 68.46 79.34

21


	Introduction
	Related Work
	Methods
	Augmentation Operators
	Evolutionary Strategy
	Fitness Functions
	Low Data Setting
	One-Shot Setting


	Results
	Experiment Setup
	Few-Shot Results
	One-Shot Results

	Conclusion
	Limitations

	Appendix
	Fitness function choice in one-shot setting
	Encoder Performance Comparison
	Success and Failure Analysis
	Handcrafted Augmentation Trees
	Clustering Fitness Function Modifications
	Generalization to Full Datasets, Detection, and Segmentation


