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Abstract

Large Vision Language Models (LVLMs) have
achieved significant progress in integrating vi-
sual and textual inputs for multimodal reason-
ing. However, a recurring challenge is ensuring
these models utilize visual information as effec-
tively as linguistic content when both modali-
ties are necessary to formulate an accurate an-
swer. We hypothesize that hallucinations arise
due to the lack of effective visual grounding in
current LVLMs. Furthermore, current vision-
language benchmarks are not specifically mea-
suring the degree to which the answer require
the visual input. This limitation makes it chal-
lenging to confirm that the image is truly nec-
essary, particularly in tasks like visual ques-
tion answering. In this work, we introduce
FiVL, a novel method for constructing datasets
designed to train LVLMs for enhanced visual
grounding and also evaluate their effectiveness
in achieving it. We demonstrate the value of
our datasets through three approaches. First,
we introduce a novel training task based on
our augmented training dataset, resulting in
better performance than the baseline. Second,
we present benchmarks to assess the model’s
ability to use image as substantive evidence,
rather than relying solely on linguistic priors.
Finally, we identify attention heads with the
strongest vision-language alignment, enabling
explainability on visual-driven hallucinations.
The dataset and code will be publicly available.

1 Introduction

Recent advancements in large language models
have led to the integration of non-linguistic infor-
mation through multimodal perception and genera-
tion, culminating in the development of Large Vi-
sion Language Models (LVLM). These models ef-
fectively bridge visual comprehension and linguis-
tic reasoning, offering a unified approach to mul-
timodal understanding and instruction-following
(Liu et al., 2024c; Peng et al., 2023; Wang et al.,

2024; OpenAl, 2024). However, despite their ap-
parent adeptness in visual perception, LVLMs still
face the challenge of “hallucination” — where the
model generates semantically plausible yet factu-
ally incorrect information that is inconsistent with
the image. This issue possibly arises from the im-
balance of visual data compared to text data during
training, which limits the model’s ability to over-
come preconceptions inherited from the underlying
LLM (Liu et al., 2024a). A common approach to
mitigate this issue has been to introduce a visual
grounding mechanism to the model (Chen et al.,
2023; Peng et al., 2023; Wang et al., 2024; Rasheed
et al., 2024; Zhang et al., 2024b,a).

Visual grounding aims to achieve more precise
alignment between visual attention and semantic
concepts within the model. A common method for
grounding involves using bounding boxes, repre-
sented as a sequence of numerical numbers, to spec-
ify a particular region of an image. This enables
the user to query specific parts of the image and
the model to reference image locations within its
generated response (Chen et al., 2023; Peng et al.,
2023; Wang et al., 2024). Bounding boxes, how-
ever, are coarse coordinates and unable to highlight
objects or abstract concepts in finer detail. Recent
work have addressed these concerns by applying
pixel-level grounding through the use of segmen-
tation masks instead (Rasheed et al., 2024; Zhang
et al., 2024b,a).

Training models with pixel-level grounding re-
quires datasets that provide fine-grained visual
alignment between images and text. However, such
datasets are scarce, and prior work have often con-
structed custom datasets alongside model develop-
ment (Zhang et al., 2024a; Rasheed et al., 2024;
Ma et al., 2024; Zhang et al., 2024b). Addition-
ally, prior works use grounding datasets only for
training and overlook the importance of alignment
datasets for evaluation. To address these challenges,
we introduce FiVL, a novel Framework towards



Improved Vision-Language Alignment, for con-
structing datasets with visual-concept alignment.
We demonstrate the usefulness of these datasets
through a novel training approach as well as a
method that evaluates and interprets the visual-
language alignment capability in LVLMs.

Our main contributions are as follows:

* We introduce FiVL, a framework designed to aug-
ment multimodal datasets with vision-alignment
capabilities. Through comprehensive human and
automated evaluations of the datasets produced
by FiVL, we demonstrate their reliability.

» Using the FiVL training dataset, we introduce
a novel training task that jointly trains text and
vision tokens. Leveraging this task, we fine-tuned
an LVLM model that outperforms the baseline
across several downstream tasks.

* Through FiVL evaluation datasets, we use a
perturbation-based approach to assess the vision-
alignment capability of LVLMs and introduce
visual reliance score. This score shows a strong
correlation with overall model performance, go-
ing beyond a specific subset of benchmarks.

* We leverage our framework in order to gain
more insights into the internal mechanisms of
LVLMs by identifying attention heads with the
strongest vision-language alignment capabilities,
as demonstrated in (Aflalo et al., 2022). This
approach enables the exploration of vision-based
hallucinations.

2 Related Work

LVLM and Visual Grounding. Building upon
LLMs, LVLMs extend their capabilities to a multi-
modal context by incorporating visual perception
into the generation process, with notable models
such as GPT-40 (OpenAl, 2024), LLaVA (Liu et al.,
2024c), Qwen2-VL (Wang et al., 2024), and many
others (Dai et al., 2023; Zhu et al., 2024; Chen
et al., 2024), demonstrating advanced visual rea-
soning ability. Additionally, some LVLMs employ
grounding mechanisms to enhance multimodal in-
teraction by allowing the model to reference spe-
cific regions of an image. This visual grounding
has been achieved though the prediction of bound-
ing boxes coordinates, as seen in models such as
Kosmos-2 (Peng et al., 2023), Shikra (Chen et al.,
2023), BuboGPT (Zhao et al., 2023), Ferret (You
et al., 2024), Qwen2-VL (Wang et al., 2024), and
Groma (Ma et al., 2024). To obtain a fine-grained
localization of objects and semantic concepts pixel-

level grounding has subsequently proposed in mod-
els such as Llava-Grounding (Zhang et al., 2024a),
GLaMM (Rasheed et al., 2024), and GROUND-
HOG (Zhang et al., 2024b). Unlike other ground-
ing methods which learn to treat bounding box
coordinates as part of the “language” of the model
like Kosmos-2 and Shikra, or GROUNDHOG that
was trained to output mask along with generated
text, FiVL’s training process explicitly ties image
tokens to their vocabulary text representation, cre-
ating fine-grained alignment that enhances visual
grounding beyond simple region prediction, while
preserving a text-based interface. The resulting
model not only improves accuracy but can also be
utilized to produce segmentation maps.

Visually Grounded Datasets. Training LVLMs
require large-scale visual instruction-following
data (Liu et al., 2024c). However, these datasets
focus on the task of visual and language reason-
ing and generally do not have fine-grained im-
age segmentation annotations. Prior work have
mainly constructed custom datasets to train their
respective grounded LVLM models. In (Ma et al.,
2024), a custom dataset, Groma Instruct, was
constructed by prompting GPT-4V to generate
grounded conversations based on 30K samples with
region annotations from COCO (Lin et al., 2014)
and VG (Krishna et al., 2017). Llava-Grounding
(Zhang et al., 2024a) curated the Grounded Vi-
sual Chat (GVC) dataset by matching class la-
bels of ground truth bounding boxes from COCO
to noun phrases in conversations from LLaVA-
Instruct-150K (Liu et al., 2024c) using GPT-4. The
Grounding-anything Dataset (GranD) was specifi-
cally constructed to train GLaMM (Rasheed et al.,
2024) and utilized an object detection model to
obtain visual entities that were then used to gener-
ate grounded dense captions through an LLM. A
grounded visual instruction tuning dataset, M3G2,
was proposed to train the GROUNDHOG model
(Zhang et al., 2024b). There, the authors curated a
dataset consisting of 2.5M text-image pairs for vi-
sually grounded instruction tuning derived and aug-
mented from 27 existing datasets. Unlike previous
datasets that depend on bounding boxes or align
only noun phrases (e.g. entity object), our frame-
work allows the alignment of various crucial word
types, including adjectives and verbs (Table 1).

Evaluating Visual Grounding. A variety of
benchmarks have been developed to ensure that
VLMs rely on visual content rather than textual



biases. Traditional methods such as VQA-CP
(Agrawal et al., 2018) and GQA (Hudson and Man-
ning, 2019) modify data splits or balance question-
answer distributions to penalize overreliance on
language priors, while synthetic sets like CLEVR
(Johnson et al., 2017) remove commonsense pri-
ors to force explicit visual reasoning. Recent ap-
proaches (POPE (Li et al., 2023b), NaturalBench
(Li et al., 2024)) introduce adversarial or carefully
constructed examples that only a visually grounded
model can solve. Others evaluate model robust-
ness using image or question perturbations, such
as CSS (Chen et al., 2020) that generates coun-
terfactual samples by removing relevant nouns in
the image or question and assigning new ground-
truth answers, and CARETS (Jimenez et al., 2022)
which blurs or masks irrelevant background re-
gions to evaluate model consistency. In contrast
to these perturbation-based methods, which often
rely on annotated datasets and complex object se-
lection, FiVL is applicable to any dataset and com-
plements related benchmarks such as FiVL-POPE.
FiVL explicitly identifies key visual expressions
in a question-answer pair, applies vision masks,
to compute a Visual Reliance Score. This metric
assesses both the model reliance on the image as
well as how well a benchmark necessitates visual
context for accurate question answering.

3 FiVL Framework

In this section, we introduce our proposed frame-
work, which offers two advantages over existing
grounding datasets. Specifically, 1) our framework
can augment any image-text dataset without re-
lying on bounding box annotations, as these are
generated on the fly, and 2) it enables fine-grained
alignment with diverse types of textual content, ex-
tending beyond object entities as in prior work. We
will then describe how our framework is utilized to
generate both training and evaluation datasets.

3.1 Data Collection Pipeline

We built grounded datasets for training and eval-
uation, by enhancing vision-question-answer and
instruction datasets. Figure 1 shows an overview of
the pipeline. Each sample in the original datasets
was augmented with key expressions, along with
their corresponding bounding box indices and seg-
mentation masks within the images as follows:

Key Expression Identification. The initial stage
of data collection focused on identifying key ex-

pressions within each question-answer pair, using
GPT-40. We refer to key expressions as specific
words or phrases, like object names, attributes, or
spatial relations, that rely on the visual context pro-
vided by the image. We prompted GPT-40 with
only the text of the question-answer pairs, omitting
the images and asked it to detect essential expres-
sions. The prompt is shared in Appendix 13. Using
only questions and answers without visual cues al-
lows GPT-4o0 to rely solely on linguistic context to
determine whether certain words could be evoked
based on text alone. This approach can help fil-
ter language-based answers from those needing vi-
sual context, while being computationally efficient.
This process yielded a robust set of expressions,
capturing the elements in each conversation that
are closely tied to the visual information.

Bounding Box and Segmentation Masks. To
accurately associate key expressions with specific
regions in each image, we used the GroundedSAM
pipeline (Ren et al., 2024), which employs the
GroundingDINO-tiny model (Liu et al., 2024d) for
initial expressions localization generating bound-
ing box indices, followed by the Segment Anything
vit-huge model (Kirillov et al., 2023) for precise
segmentation mask creation. Each key expressions
was mapped to its relevant visual region, creating
high-quality segmentation maps. If multiple seg-
ments corresponded to a single phrase, they were
consolidated into a unified mask assigned to each
token within the phrase, to maintain consistency
across annotations. We removed segmentation
mask of the same sample that overlapped by more
than 95%, ensuring that each segmentation map
uniquely represents essential visual regions, avoid-
ing redundancy and improving annotation clarity.

3.2 Training Dataset

Our training dataset, FiVL-Instruct, is built
upon the LLaVA-1.5-mix-665K instruction tuning
dataset (Liu et al., 2024b), a vision-language in-
struction dataset containing 665K structured con-
versations between users and GPT. Most interac-
tions begin with a user-provided image, followed
by related questions, and GPT responses, each
question-answer pair is referred as a turn.

We augmented the original LLaVA-1.5-mix-
665K dataset by integrating the key expressions and
their segmentation masks according to the pipeline
outlined in Section 3.1. Not every FiVL-Instruct
sample includes a key expression. For such cases,
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Figure 1: Dataset Collection Overview. First, GPT4-o processes the question and answer to produce "key expres-
sions", which are then passed to GroundedSAM along with the image to produce segmentation maps.

we retained the original data point unchanged to
maintain the dataset size for training. In our dataset,
each conversation consists of multiple turns with
an average of ten turns. Across the dataset, we col-
lected 1.5 million unique segmentation masks for
2.3 million key expressions, averaging 2.3 masks
and 3.5 key expressions per conversation. On aver-
age, a key expression consists of 2.4 words and the
segmentation covers 28% of the image. We also
analyzed the types of key expressions in the result-
ing dataset. As shown in Table 1, our expressions
exhibit diverse types, making them distinct from
those in prior grounding datasets.

Verbs
8%

Others
17%

Nouns
42%

Adjectives
14%

Proper Nouns
10%

Adpositions
9%

Table 1: Statistics FiVL-Instruct dataset, showing key
expressions words types.

3.3 Evaluation Datasets

To assess the visual reliance of various LVLMs, we
created three benchmark datasets derived from the
following benchmarks: POPE (Li et al., 2023b),
VQAvV2 (Goyal et al., 2017), and GQA (Hudson
and Manning, 2019).

We selected these benchmarks, because they
each requires different levels of image reliance.
POPE assesses sensitivity to visual perturbations,
GQA evaluates understanding of detailed scene re-
lationships, and VQAV?2 tests visual grounding for
diverse question types. Together, they offer a well-
rounded assessment of how much models depend
on visual information to answer accurately. We
followed the procedure outlined in Section 3.1 and
produced FiVL-POPE, FiVL-VQAvV2, and FiVL-

GQA datasets. To suit the nature of the evaluation
datasets, we adapted the prompts for the key ex-
pression extraction (See Appendix B, Figure 14).
Unlike FiVL-Instruct, we filtered out samples with-
out key expressions or segmentation maps resulting
in a reduction in dataset sizes. As a result, FiVL-
POPE covers 65% of POPE, FiVL-VQA-v2 retains
40% of VQA-v2 and FiVL-GQA accounts for 95%
of GQA size (refer Table 4 in Appendix for the
actual size of the filtered dataset numbers). This in-
dicates that the original GQA relies more on visual
context than POPE and VQAV2. Our evaluation
sets: FiVL-POPE, FiVL-VQAV2, and FiVL-GQA,
select subsets from the original datasets that re-
quire visual context and are better suited for visual-
alignment testing. Table 5 from Appendix presents
additional statistics for these datasets.

4 Method Evaluation

To ensure the quality of our framework, we con-
ducted a multi-step evaluation process on the train-
ing dataset described in Section 3.2. This included
both human-based evaluations and automated as-
sessments, allowing us to validate the relevance
and accuracy of the key tokens and their alignment
with visual content. Below, we outline the key
components of our evaluation strategy.

4.1 Human Evaluation

We conducted a manual evaluation in order to vali-
date the coherency of the key expressions as well
as the relevancy of the segmentation maps with re-
spect to the formers. For each sample, we presented
to the annotators one random key expression with
its associated segmentation map. Annotators were



asked three questions: whether the key expression
aligns with the definition provided in Section 3.1,
if the segmentation map is relevant to the key ex-
pression, and whether the sample is of good quality
(does the text makes sense, is the answer related to
the question). In total, 557 unique samples were
annotated by 12 different annotators. A screenshot
of the API is shown in Appendix H. Results show
that 77% of the annotators labeled the samples as
overall good data points. In the key expression
evaluation, 75% of key expressions were deemed
pertinent. In the segmentation map evaluation, 58%
of segmentation map were annotated as relevant to
the key expression. The last result can be explained
by the fact that some key expressions might inher-
ently be more abstract or complex or by the perfor-
mance of the GroundedSAM pipeline. Finally, if
we compute the key expressions and segmentations
score only for the samples annotated as "good data
point overall", 85% of the data are with valid key
expressions and 69 % are with relevant segmenta-
tion masks. Additionnaly, we find that the quality
of the segmentation is related to its size. Figure 6
from Appendix indicates that when the segmented
mask occupies less than 20% of the image, annota-
tors were more likely to consider the segmentation
relevant. To train our model (see Section 5.1), we
selected the segmentation masks based on their size.
This metric can be used as a threshold-based filter-
ing method for future applications of the dataset.

4.2 Automatic Evaluation

Inspired by recent applications using GPT4-o0 as-
a-judge (Zheng et al., 2023a), we designed two
prompting techniques to automatically assess the
quality of extracted keywords and segmentation
masks based on a given keyword. Both evaluations
were conducted on a randomly sampled set of 1,957
keywords and their corresponding segmentations
from FiVL-Instruct.

4.2.1 Keyword Evaluation

We prompt GPT4-o, prompts are presented in Ap-
pendix C, to evaluate the correctness of the key ex-
pressions and report the following metrics: Impor-
tance Ratio = 76% representing the percentage of
extracted expressions classified as key expressions.
This result is close to human evaluation, which is
75%. Overall Importance Degree = 6.8, which in-
dicates the average importance score across all key-
words, regardless of GPT-4o classification. And,
Importance Degree of Important Keywords = 9.0,

which calculates the average importance ratio of
keywords identified as important by GPT-40. These
metrics indicate the high quality of our keywords.

4.2.2 Segmentation Evaluation

Given a keyword, we aim to evaluate whether our
segmentation for this keyword is accurate. We de-
signed two prompts to assess the quality of the
segmentation: first, we check if the segmentation
content adequately covers the keyword (Segl); sec-
ond, we verify that the inverse of the segmentation
does not contain any content related to the keyword
(Seg2). Both prompts are given in Appendix C. Re-
sults show that only for Segl = 46% of the cases
GPT-40 capture the keywords in the segmentation.
On one hand, this result aligns with the manual an-
notations and can be addressed in the same manner.
On the other hand, we found that segmentations
classified as good often involve specific objects
(e.g., tennis players, bears). In contrast, segmenta-
tions classified as bad are often abstract concepts
(e.g., water pressure, mental game, splashing), de-
scriptive words (e.g., unique, uneven ground), or
complex actions (e.g., walking over logs). These
types of words are difficult to link to a specific part
of an image when the full image context is not pro-
vided. This also highlights the limitations of the
first type of evaluation prompt. In Seg2 = 72%
of cases, the model determines that the inverse of
the segmentation is irrelevant to the keywords, ac-
curately recognizing that without the segmented
mask, the key expressions are not present in the im-
age. This measures if we do not miss key objects
in our segmentation maps. If 2 objects appear in
the image not at the same positions, we make sure
that our maps contain both of them.

S Applications of FiVL Datasets

In this section, we describe three approaches to uti-
lize our datasets. Section 5.1 describes how FiVL
can be used as a training dataset and the result-
ing models not only achieve better performance
but also has one more capability than the baseline
model: generate segmentation maps. Section 5.2
introduces FiVL as a tool for evaluating the visual
reliance of LVLMs. Section 5.3 shows that FiVL
can assist the interpretability of models.

5.1 Training

We introduce here a training task referred to as
Vision Modeling. To assess the effectiveness of this



task, we fine-tuned an LVLM, specifically, LLaVA-
1.5-7b (Liu et al., 2023), referred as to the baseline,
on FiVL-Instruct. For training our model, we used
only key expressions that appeared verbatim in
the answers for each turn, focusing exclusively on
noun-based key expressions.

Method. In the original LLaVA training, it has
two stages: the first pretraining stage trains a projec-
tor which aims to align visual and textual represen-
tations, while the second finetuning stage performs
only language modeling on the textual outputs of
the LM head. In this work, we propose to guide the
visual outputs of the last linear layer during the fine-
tuning stage, in addition to performing language
modeling on its textual outputs. Our approach aug-
ments the Language modeling cross-entropy loss
with a Vision modeling (VM) cross-entropy loss
where each patch that belongs to a segmentation
map is trained to predict the related keyword from
the vocabulary.

We denote by x the input and y the logits with
respect to each token. The logits are the outputs
of the last linear layer that projects the last hidden
states to the vocabulary space:
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where N; is the number of image tokens, [V;
the number of text tokens, /N the total lenght.
x; are the inputs embedding that relate to the
image tokens and z; to the text tokens; y; €
RNixvocabulary_size yenresents visual logits, while
y; € RNexvocabulary_size ronresents textual logits.

In Language Modeling (LM), only y; related to
the answer are trained. We propose to also train
y; related to the segmented piece. Figure 2 shows
an example where given a picture, a question, the
LM loss would only guide the relevant tokens y; to
be the expected answer The man is sitting on his
surfboard <...>. In our method, we also do vision
modeling by training each visual logit correspond-
ing to the segmented mask to refer to the noun
from the key expression: surfboard from the text
vocabulary. In order to create the vision labels we
proceed like such: for each sample, each image to-
ken will be assigned to exactly one token in the text
vocabulary. The selection is based on the size of
the mask (we take the smallest) and the type of the
keyword (we filter only nouns). That way, for each
image patch, there is maximum one key token that
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Figure 2: Overview of Vision Modeling pretraining task.

describes the patch. Image patches that do not have
a related keytoken are ignored in the loss, similar
to LM. We then compute a weighted sum from the
cross-entropy, C' Ey s between the created vision
labels and the visual logits and the cross-entropy re-
lated to language modeling, C'Er,5s. The resulting
loss is computed as such:

L= )\*CEVM—F(l—)\)*CELM,)\ € [0, 1] (1)
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Figure 3: Our model trained on FiVL-Instruct evaluated
on various benchmarks compared to the baseline.

Improve Benchmark Results. We conducted
multiple experiments to determine the optimal hy-
perparameters. We finetuned LLaVa-v1.5-7b from
scratch using our augmented dataset. We used
the trained multimodal projector and started from
Vicuna-v1.5-7b (Zheng et al., 2023b) weights. We
maintained the original training setup (batch size,
number of epochs, etc.) and primarily focused on
experimenting with different learning rates and .
The best results were achieved with a learning rate
of 2-e5, the same as in the original setup, and X set



to 0.1. Training details are shared in Appendix E
and ablations are reported in Appendix F. Figure 3
shows how we outperformed the baseline in differ-
ent benchmarks: OK-VQA (Marino et al., 2019),
MME (Fu et al., 2024), POPE (Li et al., 2023b),
ScienceQA (Lu et al., 2022), MMBench (Liu et al.,
2024¢), LLaVA-Bench-COCO (Liu et al., 2023),
LLaVA-in-the-wild (Liu et al., 2023), Text-VQA
(Singh et al., 2019), VizWiz-VQA (Gurari et al.,
2018), GQA (Hudson and Manning, 2019).

Better Grounding Outcome. Figure 4 compares
the baseline model and FiVL, illustrating the cor-
respondance of each image patch with its related
most probable token from the vocabulary. The
argmax of the vision logits is identified, mapped
back to the text vocabulary. Then, for each token,
the relevant image patches are highlighted, indicat-
ing which parts of the image align with that token.
Although the baseline can capture some relevant
text tokens for the image patches and tends to scat-
ter semantically similar image patches across differ-
ent tokens from the vocabulary. Some of these to-
kens may be relevant, but others are not, indicating
a lack of consistent grounding. On the other hand,
our model shows more relevant images patches
related to the word.

Vision Logits as Approximate Segmentation
Maps. Another interesting finding is that we can
obtain a weak “segmentation maps" by predicting
the most probable text tokens from the vision log-
its. As a simple observation, averaging over 100
examples, the baseline predicts 74 different tokens
overall (with lots of unrelated tokens such as "a",
"E""is" ete.), while our model only encompasses
9 tokens. This demonstrates potential in leveraging
visual logits for segmentation. as shown in Figure
4. More examples are presented in Figure 12 in
Appendix G. We further conducted evaluations to
assess the performance of the segmentation capabil-
ity of our model. Results, reported in Appendix G,
shows FiVL’s enhanced ability to produce precise
and coherent segmentation masks.

5.2 Visual Reliance Evaluation

FiVL datasets also allow us to measure Visual Re-
liance by performing perturbation based evaluation:
first assessing model accuracy on the original im-
ages, then on the masked images. We introduce a
Visual Reliance Score in Eq.2, which measures the
percentage of drop in accuracy from the original to

(a) Baseline (b) Our model

Figure 4: Predicted token from vision logits ( "Flo", for
"floor") and its corresponding regions in the image.

the masked image version. A higher score indicates
stronger model dependency on visual input.
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Indeed, the perturbation based on the masked im-
age is not perfect, it still provides a measurement
of visual reliance. To confirm that FiVL is suitable
for evaluating visual reliance, we created a control
dataset with random masking. In this control set,
each image contains a bounding box mask of the
same size as the key expression mask, but placed at
a random location within the image. This approach
provides a comparison to determine whether perfor-
mance declines specifically due to masking critical
visual areas or simply from general occlusion.

We compared the performance of two mod-
els, LLaVA-v1.5-13b and Qwen2-VL-7B-Instruct
(Wang et al., 2024), across the three evaluation
datasets we created.

Compare Perturbation Methods. Table 2 com-
pares FiVL and Random Perturbation. It shows
that across all benchmarks and models, the pertur-
bation based on FiVL masks causes a significantly
larger performance drop compared to random per-
turbation. This indicates that our bounding boxes
capture meaningful visual content relevant to the
questions and FiVL represent good testbeds for
visual reliance.

VQA-v2 GQA POPE
FiVL | Random | FiVL | Random | FiVL | Random
LLaVA-13B 0.72 -0.05 0.33 0.03 0.49 0.02

Qwen2-VL-7B | 0.64 0.07 0.38 0.03 047 0.02

Table 2: Comparison of Visual Reliance Score between
FiVL bounding boxes and random perturbations across
benchmarks and models.



Compare Models and Benchmarks. To gain a
broader understanding of model/benchmark perfor-
mance, we evaluated five models on FiVL-VQAV2,
FiVL-POPE, and FiVL-GQA. This helps to as-
sess the generalizability of our approach across
more models. Table 3 shows our results for Qwen2-
VL-7B, LLaVA-v1.5-7b(Liu et al., 2023), LLaVA-
13B, GPT40 (OpenAl, 2024), BLIP-2 (Li et al.,
2023a), Pixtral-12B (Agrawal et al., 2024) and
Phi3-Vision(Abdin et al., 2024), which are state-of-
the arts mutlimodal models. In bold, are the high-
est visual reliance scores per model and across all
benchmarks. The results unanimously indicate that,
among all models, FiVL-VQAv2 requires models
to rely on the image the most compared to other
datasets. Underlined are the highest visual reliance
scores across models, given a benchmark. Look-
ing at the average performance per model across
benchmarks (last column), we observe that GPT4-
o relies most heavily on the image as a reference
for answering, followed by Pixtral-12B. Lastly,
we observe a correlation between overall model
performance and the Visual Reliance score. Ac-
cording to the available VLM Leaderboard (Open-
Compass, 2025), that measures the performance
of the models on a broad range of benchmarks,
and Table 3, we see that GPT4o0 (ranked 20 on
the leaderboard) has a higher overall Visual Re-
liance Score compared to Pixtral-12B (ranked 54).
Within a similar Visual Reliance Score range, fol-
low LLaVA-13B (118), Qwen2-VL-7b (136) and
Phi3-V (77). Lastly, LLaVA-7b (127) appears at
a lower rank. This suggests that this average of
Visual Reliance Scores captures the overall perfor-
mance of the model and is not overly sensitive to
the specific benchmarks used. All together, these
results indicate that effective image utilization is a
key factor in achieving higher performance.

VQA-v2 | GQA | POPE | Avg VRS
Qwen2-VL-7B | 0.64 038 | 047 0.50
LLaVA-13B 0.72 033 | 049 051
LLaVA-7B 0.56 031 | 047 0.45
GPTdo 074 | 063 | 049 0.62
BLIP-2 0.52 023 | 0.03 0.26
Pixtral-12B 0.75 058 | 042 0.58
Phi3-V 0.60 033 | 054 0.49

Avg 0.65 040 | 042 -

Table 3: Visual reliance scores (VRS): % of drop in per-
formance using FiVL bounding boxes for perturbations.
In bold: highest scores across benchmarks. Underlined:
highest scores across models. Avg stands for Average.

a

(a) Attention Head (10,6) (b) Attention Head (14,11)

Figure 5: Attention heatmaps overlaid on the original
images for attention heads (10,6) and (14,11) of the
token "girl" for the answer: The two people [...] are a
man and a little girl.

5.3 Explainability

We show that FiVL can assist the interpretability
of LVLMs by generating a summary plot show-
ing a vision-alignment metric computed across all
heads and layers, as introduced in (Aflalo et al.,
2022). Using Spearman correlation between the
segmentation mask of FiVL-Instruct dataset and
the attention to the corresponding key expression
tokens in the Vision-to-Language attention compo-
nent, we are able to retrieve the heads achieving
the strongest VL alignment. The head summary
(Appendix D, Figure 9) indicates that heads (10,6)
and (14,11) are effective at aligning vision with
language. For instance, Figures 5a and 5b show
from which patches of the image the token gir/ gets
the most attention, clearly focusing on the girl.

6 Conclusion

In this paper, we introduced FiVL, a framework
designed to enhance vision-language alignment
in large vision-language models. We applied our
approach across key stages of an LVLM training
workflow: training, evaluation, and explainabil-
ity. By training a LLaVA model using the FiVL
dataset and our novel training task, we measured
improvement in a majority of benchmarks and pro-
duced a built-in feature that segments the image.
Our evaluation datasets measured model reliance
on images for answering questions, offering in-
sights into the level of image dependency required
across benchmarks. The results indicate a correla-
tion between this dependency and overall model
performance. Finally, our explainability applica-
tion enables users to identify attention heads that
excel in vision-language alignment, allowing for a
deeper understanding of potential hallucinations.



Limitation

In this work, we utilize the FiVL framework to aug-
ment LLaVA instruction fine-tuning data and train a
new model to compare against the baseline, demon-
strating the effectiveness of our proposed frame-
work and training objectives. However, we have
only investigated LLaVA model, because of the
limited availability of open-source training datasets
for other LVLMs and augmenting additional data
incurs additional inference costs. Lastly, we rely
on an off-the-shelf segmentation model (Ground-
edSAM) that takes a simple text prompt and an
image as input. In our context, this may lead to
less accurate segmentation, as the full contextual
understanding of keywords might be necessary. To
mitigate this issue, we could apply a filtering tech-
nique to enhance the overall quality of the dataset.
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A Appendix
Appendix
A Evaluation dataset

Table 4 compares the size of our datasets with
the original datasets and Table 5 presents some
statistics of FiVL-VQA-v2, FiVL-GQA and FiVL-
POPE.

VQA-v2 | GQA | POPE
Original | 9,999 | 12,280 | 9,000
FiVL | 4,040 | 11,660 | 5,870

Table 4: Evaluation dataset sizes after filtering out sam-
ples without key expressions or segmentation masks.

FiVL-VQAv2 | FiVL-GQA | FiVL-POPE
Key expressions 1.27 1.5 1
Segmentation masks 3.79 4.71 3.48
% of masked pixels 24% 21% 16%

Table 5: Statistics per sample of our evaluation datasets.
First row details the average number of key expressions,
second row describes the average number of distinct
segmentation masks and last row describes the average
percentage of the pixels that were masked.

Percentage of masked pixels Distribution for Correct vs Incorrect Mask

[ Correct mask
@ Incorrect mask

02 03 04 05

X 06 07
Percentage of masked pixels

Figure 6: Impact of the size of the segmentation mask.
Comparison of the Percentage of masked pixels Distri-
butions for Correctly and Incorrectly annotated Masks

B System prompts for key expressions
retrieval

We use GPT-40 via the Azure OpenAl API to ex-
tract the key expressions of the datasets we con-
sidered. In this section, we share the prompts
used for this step of the data collection. We had
to use slightly different prompts for the training
datasets compared to the evaluation datasets. In
the training datasets, where instructions are open-
ended question-answer pairs, the key expressions

are often found in the answer. However, in the
evaluation datasets, we encountered questions that
required specific types of responses (yes/no ques-
tions, counting etc...). In these cases, the key ex-
pressions are typically found in the question in-
stead. For references, we have provided the prompt
used for training dataset in Figure 13 and prompts
used for evaluation datasets VQA-V2, GQA, and
POPE in Figure 14. For each benchmark we use
different examples that suit the best to the types
of questions. See Figure 15 for FiVL-VQAv2 and
Figure 16 for FiVL-GQA and FiVL-POPE.

C System prompts for evaluation

We used GPT-40 as LL.M-as-a-judge in order to
evaluation the correctness of the key expressions
and the segmentation maps. The system prompt
are shared in Figure 7 and Figure 8.

([Segﬂ You are given a part of the image
and a word/phrase, do you think this is
a good segmentation that the given part
of the image covers this word/phrase?

Word/phrase: {word}

n n " n

Answer only "yes” or "no

[Seg2]

and a

of the
?

You are given a part of the image
word/phrase, do you see any part
image that is related to the word

Word/phrase: {word}

n n n n

Answer only "yes" or "no

NS

Figure 7: Segmentation Verification Prompt for GPT-4o.
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You are given a question, a word/phrase

and an image. Please rate the importance
degree from 0-10 scale ([OIDI]).

Note that

- @ means not important at all and 10
means very important.

- Important word/phrase means that this
word/phrase is closely related to the
image and the question, and it could not
be evoked without the use of the image

(IR).

- If the question does not related to
the image, in other words, the answer
does not depend on the image content,
then any words are not important.

Question: {question}

A word: {word}

Only answer important or not important,
and the importance degree from 0-107?

\S

Figure 8: Keyword Verification Prompt for GPT-4o.

D Explainability

For an attention matrix of size
(Nlayer37Nhead37Ni + NtaNi + Nt)a The
head summary calculates the statistical mean over
the last two dimensions, producing a plot with
dimensions of (Njgyers; Nheads) averaged for
500 samples. For a given question, image, key
expression and related segmentation mask from
the FiVL-Instruct dataset, we generate the answer
using LlaVA-v1.5-7b. We then identify if the key
expression is in the answer or in the question.
If so, we probe each head by computing the
Spearman correlation between the segmentation
mask (v/N;,+/N;). and the attention to the
corresponding key expression tokens in the Vision-
to-Language attention component (1,1, N;, 1)
(first dimension selects the layer, second the head
and the last dimension corresponds to the key
token) for each head. This is performed on the
language model component but not on the vision
component of LLaVA. In this way, we identify
the attention heads that ground the most the two
modalities by performing a function similar to
object segmentation. Figure 9 shows the head
summary and the corresponding language-vision
attention weights related to the key expression
tokens displayed as a heatmap over the image. The
head summary shows that the heads achieving
the strongest vision-language alignment are in
the early layers. This might be due to the fact
that the input to this transformer is the output of
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Figure 9: Head summary for VL alignment via Spear-
man correlation between token segmentation and vision
attention

(a) Attention Head (10,6) of
the token three. A - There
are three people in the im-
age.

(b) Attention Head (14,11)
of the token three. A - There
are three people in the im-
age.

Figure 10: Attention heatmaps overlaid on the original
images for attention heads (10,6) and (14,11), which
have a high Spearman correlation, to probe vision-
language alignment.

multimodal projector of LLaVA, which is designed
specifically to align these two modalities. The head
summary indicates that heads (10, 6) and (14, 11)
are effective at aligning vision with language.
In this way, we identify the attention heads that
ground the most the two modalities by performing
a function similar to object segmentation. Figure 9
shows the head summary and the corresponding
language-vision attention weights related to the
key expression tokens displayed as a heatmap
over the image. The head summary shows that
the heads achieving the strongest vision-language
alignment are in the early layers. This might be
due to the fact that the input to this transformer
is the output of multimodal projector of LLaVA,
which is designed specifically to align these two
modalities. The head summary indicates that heads
(10,6) and (14,11) are effective at aligning vision
with language.



E Training details

To train our model, we used 8 Nvidia RTX A6000
GPUs using the hyperparameters from Table 6

Batch Size
Number of GPUs
Gradient Accumulation
Number of epochs
LLaVA Image Size 576
Optimizer SGD
Learning Rate 2e —5
Avy 0.1
BF16 True
LR scheduler cosine

— s 00 &~

Vision Tower openai/clip-vit-large-pa

Language Model Imsys/vicuna-7b-v1.5

Accuracy

—— False
— True

merged_dataset

— liuhaotian/llava-v1.5-7b

Table 6: Hyperparameters to train our model.

F Ablations

We conducted ablations studies on different param-
eters of the model. In this section, we will limit
the experiments on a subset of the benchmarks. As
mentioned in Section 3, the FiVL-Instruct dataset
includes some samples without key expressions.
We first trained our model using only on the sam-
ples that had at least one associated key expres-
sion and segmentation map. We conducted an-
other experiment by merging the remaining sam-
ples with these. Figure 11a presents the results of
this ablation, showing that merging the samples
lead to improved performance, even over the base-
line LLaVA-v1.5-7B model.

The second ablation focused on the A parameter,
which controls the weight of the vision modeling
loss, as outlined in Section 5.1 and equation 1. The
optimal performance was obtained with A = 0.1.
As shown in Figure 11b, our approach also outper-
forms the baseline for all A < 0.3.

Finally, since we are introducing a new capabil-
ity in the training, we experimented with different
learning rates to see if it would lead to improved
convergence or better overall performance. Figure
11c shows that overall the original learning rate of
2e — 5 achieved the best performance.

G Performance of the segmentation maps
inherently provided by our model

To evaluate the segmentation ability of our FiVL
model, we evaluated Intersection-Over-Union

14

Accuracy

Accuracy

pope gga ok_vga scienceqa
Benchmarks

(a) Ablations on the dataset size

vizwiz

lambda
— 01
— 02
— 03

0.75 — 05

— 0.6

0.70 —— liuhaotian/llava-v1.5-7b

0.8

o
9

g
o

0.5

pope gga ok_vga sciencega
Benchmarks

(b) Ablations on the A parameter

vizwiz

Ir
—— 5e-06
Te-06
— 1le-05
—— 2e-05
—— b5e-05
— liuhaotian/llava-v1.5-7b

pope gga ok_vqga scienceqa
Benchmarks

(c) Ablations on the learning rate

Figure 11: Ablations for the training method

vizwiz




(IoU) on a subset of 10,000 images from the GQA-
val dataset. For each sample, we perform an infer-
ence using the baseline LLaVA-7b and our model.
From the outputs, we retrieve the visual logits for
each visual token, we assigned a text token from
the vocabulary corresponding to the maximum logit
probability, referred to as the max-v token. By ag-
gregating all image tokens associated with each
max-v token, we effectively generated a segmenta-
tion mask for each represented text token, like de-
scribe in Section 5.1. Additionally, as ground truth
to compare against, we employed Grounded-SAM
to produce segmentation maps given each max-v
token. Grounded-SAM was implemented using
the IDEA-Research/grounding-Dino-Tiny model
with thresholds set at 0.2, 0.4, and 0.6, followed by
facebook/sam-vit-huge with a threshold of 0.0. The
Intersection over Union (IoU) score was computed
between the FiVL-generated segmentation masks
and the corresponding Grounded-SAM masks to
quantitatively assess alignment. To provide a com-
parative analysis, we also computed IoU scores for
the segmentation masks produced by the baseline
model. As detailed in Table 7, across all thresh-
olds, FiVL generated approximately 7 times fewer
max-v tokens per image compared to the baseline
model (column #tokens/sample), indicating more
concise and semantically meaningful segmentation.
FiVL also showed significant improvement in aver-
age IoU scores (column IoU), increasing approxi-
mately three times: from 0.05 to 0.18 at a threshold
of 0.2, from 0.06 to 0.21 at 0.4, and from 0.09 to
0.24 at 0.6, showcasing its superior ability to gen-
erate precise and coherent segmentation masks. In
general, across all thresholds, the baseline gener-
ates significantly more max-v tokens per image,
resulting in a higher number of samples with seg-
mentation maps found by Grounded-SAM (column
#samples). Finally, the percentage of tokens pro-
cessed by Grounded-SAM is substantially higher
for our model compared to the baseline (column
#processed), indicating that the max-v tokens re-
trieved by our model were more meaningful than
those from the baseline. Figure 12 shows the seg-
mentation maps we obtained for the max-v token
describing each image. For example for the exam-
ple 12a, we computed the argmax of the tokens
highlighted in red, and it corresponded to the token
"bear" in the vocabulary

15

Thresh | IoU | # tokens/sample | # samples | #processed
Baseline 02 0.05 733 10,000 0.89
Our Model ) 0.18 10.3 10,000 0.96
Baseline 04 0.06 733 10,000 0.40
Our Model . 0.21 10.3 9,983 0.65
Baseline 06 0.09 734 9,326 0.08
Our Model i 0.24 10.6 8,604 0.26

Table 7: Performance of the segmentation maps inher-
ently provided by our model

H API of the manual evaluation

Figure 17 shows the API used for the manual eval-
uation done on FiVL-Instruct. Given a question,
an answer (on the left) and an image with a seg-
mentation mask (on the right), the annotator had to
answer the 3 following yes/no questions: is { key
expression } correctly represented in the mask? Is
{key expression} a significant word in the answer?
Is this example generally good to be included in
the dataset?



(a) Bear (b) Bird (c) Birds
(d) Bott (e) Chair (f) Dog
(g) People (h) Train (i) Water

Figure 12: Segmentations produced inherently by our model. Each figure corresponds to the max-v token specified
in caption. Max-v token being the token realizing the maximum for each highlighted patch
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FiVL-Instruct system prompt

A multimodal instruction-following dataset
used for visual instruction tuning and

The conversation is constructed from a few
turns of questions and answers regarding
the image.

identify short expressions from the answer
which could not be generated without the
image.

The expression

e expresses a visual content from the
image.

¢ should be as short as possible.
e should not be longer than 4 words
e should not include punctuation

e should no include reference to the
image

Unrelated expressions should be separated
by the following string: ":::"

Don’t add any additional information to the
prompt.

For example:

Q: What are the giraffes doing in the image?
<image>

A: The baby giraffe is walking next to the
mother giraffe, both moving through the
open area of their enclosure

The output should be as following:

baby giraffe:::mother giraffe :::open area
of their enclosure

Identify the tokens for the following:

Q: {question}

A: {answer}

it contains an image and a conversation.

Given only a question and answer pair:

Figure 13: FiVL-Instruct system prompt used for train-

ing datasets
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FiVL system prompts for the evaluation

datasets

A multimodal instruction-following dataset
used for visual instruction tuning and
it contains an image and a conversation.
The conversation is constructed from a few
turns of questions and answers regarding
the image.

Given only a question and answer pair:
identify short expressions from the answer
or the question which could not be generated
without the image.

The expression

e should hypothetically express an
immediate visual content from image.
Thus, yes/no is NOT an expected
expression, and some pronouns like
"this”, "that", "there”, and "those”
are not expected expressions.

¢ should be as short as possible.
¢ should not be longer than 4 words.
¢ should not include punctuations.

e should not include reference to the
image, like: "the man wearing a blue
suit in the image” it should be: "man
wearing blue suit”.

Unrelated expressions should be separated
by the following string: ":::".

If there is no expressions found,
response must be "N/A".

Do not add any additional information to

the prompt.

your

<EXAMPLES>

Identify the expressions for the following:
Q: "{question}"
A: "{answer}"”

7~

Figure 14: FiVL-Instruct system prompt used for the

evaluation datasets



FiVL-VQAV2 - Examples

Example 1:

Q: "Considering the limited space and
packed fixtures, what suggestions can be
provided for organizing the bathroom to
optimize its use?”

A: "To optimize the use of the small
bathroom with tightly packed fixtures,
there are some organization solutions that
can be recommended: Install wall-mounted
storage: By using vertical space on
the walls and areas above the toilet,
you can create additional storage for
toiletries and other bathroom essentials
without taking up floor space. Utilize
narrow shelves or over-the-door organizers:
Placing narrow shelves or over-the-door
organizers on available narrow spaces can
help with the organization of toiletries
and other small items. Use multi-functional
items: Opt for items that serve more than
one purpose, such as a toilet paper holder
with a shelf or a mirror with built-in
storage. Opt for compact accessories:
Choose smaller or more compact versions
of bathroom essentials, 1like toothbrush
holders or soap dishes, to maximize space on
countertops and around the sink. Declutter
regularly: Frequently assess your bathroom
supplies and remove any items that are not
in use or have expired to keep the bathroom
tidy and make the most of the limited
space. By following these suggestions,
the bathroom can appear less cluttered,
and occupants can make better use of the
available space.”

Key Expressions: small bathroom:::tightly
packed fixtures:::vertical space
on the walls:::areas above the
toilet:::over-the-door organizers:::narrow
spaces:::space on countertops and around
the sink

Example 2:

Q: "How many shadows are on the ground?”
PEY

Key Expressions:shadows:::3

Figure 15: Examples for FiVL-VQAv2
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FiVL-GQA and FiVL-POPE - Examples

Example 1:

Q: "Considering the limited space and
packed fixtures, what suggestions can be
provided for organizing the bathroom to
optimize its use?”

A: "To optimize the use of the small
bathroom with tightly packed fixtures,
there are some organization solutions that
can be recommended: Install wall-mounted
storage: By wusing vertical space on
the walls and areas above the toilet,
you can create additional storage for
toiletries and other bathroom essentials
without taking up floor space. Utilize
narrow shelves or over-the-door organizers:
Placing narrow shelves or over-the-door
organizers on available narrow spaces can
help with the organization of toiletries
and other small items. Use multi-functional
items: Opt for items that serve more than
one purpose, such as a toilet paper holder
with a shelf or a mirror with built-in
storage. Opt for compact accessories:
Choose smaller or more compact versions
of bathroom essentials, 1like toothbrush
holders or soap dishes, to maximize space on
countertops and around the sink. Declutter
regularly: Frequently assess your bathroom
supplies and remove any items that are not
in use or have expired to keep the bathroom
tidy and make the most of the limited
space. By following these suggestions,
the bathroom can appear less cluttered,
and occupants can make better use of the
available space.”

Key Expressions: small bathroom:::tightly
packed fixtures:::vertical space
on the walls:::areas above the
toilet:::over-the-door organizers:::narrow
spaces:::space on countertops and around
the sink

Example 2:

Q: "Is there a snowboard in the image?”

A: "no”

Key Expressions: snowboard

Figure 16: Examples for GQA and POPE prompts



HUMAM: Describe the scene where the man is surfing.

e near a rocky shoreline. He is

GPT: The scene shows a man in a red and black wetsuit surfing a blue

oard in the ocean and skillfully navigating the challenging area near the r

Please answer the following question:

1. 15 'riding a surfboard' correctly represented in the mask?
Correct
ridi ' a signi i 2
2. s 'riding a surfboard’ a significant word in the answer? Key Token
3. 1s this example generaly good to be included in dataset?
' ple g V8 ey ! Yes, good data

Significant word: a word that relates to the question and couldnt be elicited without the image
Good example: the answer is relevant and makes sense

Bad example: gibberish, unrelated answer

Preview Labeled Data

Figure 17: Web user interface for our dataset evaluation
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Incorrect

NOT Key Token

No, bad data

Next Data
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