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Abstract

Large Vision Language Models (LVLMs) have001
achieved significant progress in integrating vi-002
sual and textual inputs for multimodal reason-003
ing. However, a recurring challenge is ensuring004
these models utilize visual information as effec-005
tively as linguistic content when both modali-006
ties are necessary to formulate an accurate an-007
swer. We hypothesize that hallucinations arise008
due to the lack of effective visual grounding in009
current LVLMs. Furthermore, current vision-010
language benchmarks are not specifically mea-011
suring the degree to which the answer require012
the visual input. This limitation makes it chal-013
lenging to confirm that the image is truly nec-014
essary, particularly in tasks like visual ques-015
tion answering. In this work, we introduce016
FiVL, a novel method for constructing datasets017
designed to train LVLMs for enhanced visual018
grounding and also evaluate their effectiveness019
in achieving it. We demonstrate the value of020
our datasets through three approaches. First,021
we introduce a novel training task based on022
our augmented training dataset, resulting in023
better performance than the baseline. Second,024
we present benchmarks to assess the model’s025
ability to use image as substantive evidence,026
rather than relying solely on linguistic priors.027
Finally, we identify attention heads with the028
strongest vision-language alignment, enabling029
explainability on visual-driven hallucinations.030
The dataset and code will be publicly available.031

1 Introduction032

Recent advancements in large language models033

have led to the integration of non-linguistic infor-034

mation through multimodal perception and genera-035

tion, culminating in the development of Large Vi-036

sion Language Models (LVLM). These models ef-037

fectively bridge visual comprehension and linguis-038

tic reasoning, offering a unified approach to mul-039

timodal understanding and instruction-following040

(Liu et al., 2024c; Peng et al., 2023; Wang et al.,041

2024; OpenAI, 2024). However, despite their ap- 042

parent adeptness in visual perception, LVLMs still 043

face the challenge of “hallucination” — where the 044

model generates semantically plausible yet factu- 045

ally incorrect information that is inconsistent with 046

the image. This issue possibly arises from the im- 047

balance of visual data compared to text data during 048

training, which limits the model’s ability to over- 049

come preconceptions inherited from the underlying 050

LLM (Liu et al., 2024a). A common approach to 051

mitigate this issue has been to introduce a visual 052

grounding mechanism to the model (Chen et al., 053

2023; Peng et al., 2023; Wang et al., 2024; Rasheed 054

et al., 2024; Zhang et al., 2024b,a). 055

Visual grounding aims to achieve more precise 056

alignment between visual attention and semantic 057

concepts within the model. A common method for 058

grounding involves using bounding boxes, repre- 059

sented as a sequence of numerical numbers, to spec- 060

ify a particular region of an image. This enables 061

the user to query specific parts of the image and 062

the model to reference image locations within its 063

generated response (Chen et al., 2023; Peng et al., 064

2023; Wang et al., 2024). Bounding boxes, how- 065

ever, are coarse coordinates and unable to highlight 066

objects or abstract concepts in finer detail. Recent 067

work have addressed these concerns by applying 068

pixel-level grounding through the use of segmen- 069

tation masks instead (Rasheed et al., 2024; Zhang 070

et al., 2024b,a). 071

Training models with pixel-level grounding re- 072

quires datasets that provide fine-grained visual 073

alignment between images and text. However, such 074

datasets are scarce, and prior work have often con- 075

structed custom datasets alongside model develop- 076

ment (Zhang et al., 2024a; Rasheed et al., 2024; 077

Ma et al., 2024; Zhang et al., 2024b). Addition- 078

ally, prior works use grounding datasets only for 079

training and overlook the importance of alignment 080

datasets for evaluation. To address these challenges, 081

we introduce FiVL, a novel Framework towards 082
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Improved Vision-Language Alignment, for con-083

structing datasets with visual-concept alignment.084

We demonstrate the usefulness of these datasets085

through a novel training approach as well as a086

method that evaluates and interprets the visual-087

language alignment capability in LVLMs.088

Our main contributions are as follows:089

• We introduce FiVL, a framework designed to aug-090

ment multimodal datasets with vision-alignment091

capabilities. Through comprehensive human and092

automated evaluations of the datasets produced093

by FiVL, we demonstrate their reliability.094

• Using the FiVL training dataset, we introduce095

a novel training task that jointly trains text and096

vision tokens. Leveraging this task, we fine-tuned097

an LVLM model that outperforms the baseline098

across several downstream tasks.099

• Through FiVL evaluation datasets, we use a100

perturbation-based approach to assess the vision-101

alignment capability of LVLMs and introduce102

visual reliance score. This score shows a strong103

correlation with overall model performance, go-104

ing beyond a specific subset of benchmarks.105

• We leverage our framework in order to gain106

more insights into the internal mechanisms of107

LVLMs by identifying attention heads with the108

strongest vision-language alignment capabilities,109

as demonstrated in (Aflalo et al., 2022). This110

approach enables the exploration of vision-based111

hallucinations.112

2 Related Work113

LVLM and Visual Grounding. Building upon114

LLMs, LVLMs extend their capabilities to a multi-115

modal context by incorporating visual perception116

into the generation process, with notable models117

such as GPT-4o (OpenAI, 2024), LLaVA (Liu et al.,118

2024c), Qwen2-VL (Wang et al., 2024), and many119

others (Dai et al., 2023; Zhu et al., 2024; Chen120

et al., 2024), demonstrating advanced visual rea-121

soning ability. Additionally, some LVLMs employ122

grounding mechanisms to enhance multimodal in-123

teraction by allowing the model to reference spe-124

cific regions of an image. This visual grounding125

has been achieved though the prediction of bound-126

ing boxes coordinates, as seen in models such as127

Kosmos-2 (Peng et al., 2023), Shikra (Chen et al.,128

2023), BuboGPT (Zhao et al., 2023), Ferret (You129

et al., 2024), Qwen2-VL (Wang et al., 2024), and130

Groma (Ma et al., 2024). To obtain a fine-grained131

localization of objects and semantic concepts pixel-132

level grounding has subsequently proposed in mod- 133

els such as Llava-Grounding (Zhang et al., 2024a), 134

GLaMM (Rasheed et al., 2024), and GROUND- 135

HOG (Zhang et al., 2024b). Unlike other ground- 136

ing methods which learn to treat bounding box 137

coordinates as part of the “language” of the model 138

like Kosmos-2 and Shikra, or GROUNDHOG that 139

was trained to output mask along with generated 140

text, FiVL’s training process explicitly ties image 141

tokens to their vocabulary text representation, cre- 142

ating fine-grained alignment that enhances visual 143

grounding beyond simple region prediction, while 144

preserving a text-based interface. The resulting 145

model not only improves accuracy but can also be 146

utilized to produce segmentation maps. 147

Visually Grounded Datasets. Training LVLMs 148

require large-scale visual instruction-following 149

data (Liu et al., 2024c). However, these datasets 150

focus on the task of visual and language reason- 151

ing and generally do not have fine-grained im- 152

age segmentation annotations. Prior work have 153

mainly constructed custom datasets to train their 154

respective grounded LVLM models. In (Ma et al., 155

2024), a custom dataset, Groma Instruct, was 156

constructed by prompting GPT-4V to generate 157

grounded conversations based on 30K samples with 158

region annotations from COCO (Lin et al., 2014) 159

and VG (Krishna et al., 2017). Llava-Grounding 160

(Zhang et al., 2024a) curated the Grounded Vi- 161

sual Chat (GVC) dataset by matching class la- 162

bels of ground truth bounding boxes from COCO 163

to noun phrases in conversations from LLaVA- 164

Instruct-150K (Liu et al., 2024c) using GPT-4. The 165

Grounding-anything Dataset (GranD) was specifi- 166

cally constructed to train GLaMM (Rasheed et al., 167

2024) and utilized an object detection model to 168

obtain visual entities that were then used to gener- 169

ate grounded dense captions through an LLM. A 170

grounded visual instruction tuning dataset, M3G2, 171

was proposed to train the GROUNDHOG model 172

(Zhang et al., 2024b). There, the authors curated a 173

dataset consisting of 2.5M text-image pairs for vi- 174

sually grounded instruction tuning derived and aug- 175

mented from 27 existing datasets. Unlike previous 176

datasets that depend on bounding boxes or align 177

only noun phrases (e.g. entity object), our frame- 178

work allows the alignment of various crucial word 179

types, including adjectives and verbs (Table 1). 180

Evaluating Visual Grounding. A variety of 181

benchmarks have been developed to ensure that 182

VLMs rely on visual content rather than textual 183
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biases. Traditional methods such as VQA-CP184

(Agrawal et al., 2018) and GQA (Hudson and Man-185

ning, 2019) modify data splits or balance question-186

answer distributions to penalize overreliance on187

language priors, while synthetic sets like CLEVR188

(Johnson et al., 2017) remove commonsense pri-189

ors to force explicit visual reasoning. Recent ap-190

proaches (POPE (Li et al., 2023b), NaturalBench191

(Li et al., 2024)) introduce adversarial or carefully192

constructed examples that only a visually grounded193

model can solve. Others evaluate model robust-194

ness using image or question perturbations, such195

as CSS (Chen et al., 2020) that generates coun-196

terfactual samples by removing relevant nouns in197

the image or question and assigning new ground-198

truth answers, and CARETS (Jimenez et al., 2022)199

which blurs or masks irrelevant background re-200

gions to evaluate model consistency. In contrast201

to these perturbation-based methods, which often202

rely on annotated datasets and complex object se-203

lection, FiVL is applicable to any dataset and com-204

plements related benchmarks such as FiVL-POPE.205

FiVL explicitly identifies key visual expressions206

in a question-answer pair, applies vision masks,207

to compute a Visual Reliance Score. This metric208

assesses both the model reliance on the image as209

well as how well a benchmark necessitates visual210

context for accurate question answering.211

3 FiVL Framework212

In this section, we introduce our proposed frame-213

work, which offers two advantages over existing214

grounding datasets. Specifically, 1) our framework215

can augment any image-text dataset without re-216

lying on bounding box annotations, as these are217

generated on the fly, and 2) it enables fine-grained218

alignment with diverse types of textual content, ex-219

tending beyond object entities as in prior work. We220

will then describe how our framework is utilized to221

generate both training and evaluation datasets.222

3.1 Data Collection Pipeline223

We built grounded datasets for training and eval-224

uation, by enhancing vision-question-answer and225

instruction datasets. Figure 1 shows an overview of226

the pipeline. Each sample in the original datasets227

was augmented with key expressions, along with228

their corresponding bounding box indices and seg-229

mentation masks within the images as follows:230

Key Expression Identification. The initial stage231

of data collection focused on identifying key ex-232

pressions within each question-answer pair, using 233

GPT-4o. We refer to key expressions as specific 234

words or phrases, like object names, attributes, or 235

spatial relations, that rely on the visual context pro- 236

vided by the image. We prompted GPT-4o with 237

only the text of the question-answer pairs, omitting 238

the images and asked it to detect essential expres- 239

sions. The prompt is shared in Appendix 13. Using 240

only questions and answers without visual cues al- 241

lows GPT-4o to rely solely on linguistic context to 242

determine whether certain words could be evoked 243

based on text alone. This approach can help fil- 244

ter language-based answers from those needing vi- 245

sual context, while being computationally efficient. 246

This process yielded a robust set of expressions, 247

capturing the elements in each conversation that 248

are closely tied to the visual information. 249

Bounding Box and Segmentation Masks. To 250

accurately associate key expressions with specific 251

regions in each image, we used the GroundedSAM 252

pipeline (Ren et al., 2024), which employs the 253

GroundingDINO-tiny model (Liu et al., 2024d) for 254

initial expressions localization generating bound- 255

ing box indices, followed by the Segment Anything 256

vit-huge model (Kirillov et al., 2023) for precise 257

segmentation mask creation. Each key expressions 258

was mapped to its relevant visual region, creating 259

high-quality segmentation maps. If multiple seg- 260

ments corresponded to a single phrase, they were 261

consolidated into a unified mask assigned to each 262

token within the phrase, to maintain consistency 263

across annotations. We removed segmentation 264

mask of the same sample that overlapped by more 265

than 95%, ensuring that each segmentation map 266

uniquely represents essential visual regions, avoid- 267

ing redundancy and improving annotation clarity. 268

3.2 Training Dataset 269

Our training dataset, FiVL-Instruct, is built 270

upon the LLaVA-1.5-mix-665K instruction tuning 271

dataset (Liu et al., 2024b), a vision-language in- 272

struction dataset containing 665K structured con- 273

versations between users and GPT. Most interac- 274

tions begin with a user-provided image, followed 275

by related questions, and GPT responses, each 276

question-answer pair is referred as a turn. 277

We augmented the original LLaVA-1.5-mix- 278

665K dataset by integrating the key expressions and 279

their segmentation masks according to the pipeline 280

outlined in Section 3.1. Not every FiVL-Instruct 281

sample includes a key expression. For such cases, 282
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Figure 1: Dataset Collection Overview. First, GPT4-o processes the question and answer to produce "key expres-
sions", which are then passed to GroundedSAM along with the image to produce segmentation maps.

we retained the original data point unchanged to283

maintain the dataset size for training. In our dataset,284

each conversation consists of multiple turns with285

an average of ten turns. Across the dataset, we col-286

lected 1.5 million unique segmentation masks for287

2.3 million key expressions, averaging 2.3 masks288

and 3.5 key expressions per conversation. On aver-289

age, a key expression consists of 2.4 words and the290

segmentation covers 28% of the image. We also291

analyzed the types of key expressions in the result-292

ing dataset. As shown in Table 1, our expressions293

exhibit diverse types, making them distinct from294

those in prior grounding datasets.295

Nouns Adjectives Proper Nouns Adpositions Verbs Others
42% 14% 10% 9% 8% 17%

Table 1: Statistics FiVL-Instruct dataset, showing key
expressions words types.

3.3 Evaluation Datasets296

To assess the visual reliance of various LVLMs, we297

created three benchmark datasets derived from the298

following benchmarks: POPE (Li et al., 2023b),299

VQAv2 (Goyal et al., 2017), and GQA (Hudson300

and Manning, 2019).301

We selected these benchmarks, because they302

each requires different levels of image reliance.303

POPE assesses sensitivity to visual perturbations,304

GQA evaluates understanding of detailed scene re-305

lationships, and VQAv2 tests visual grounding for306

diverse question types. Together, they offer a well-307

rounded assessment of how much models depend308

on visual information to answer accurately. We309

followed the procedure outlined in Section 3.1 and310

produced FiVL-POPE, FiVL-VQAv2, and FiVL-311

GQA datasets. To suit the nature of the evaluation 312

datasets, we adapted the prompts for the key ex- 313

pression extraction (See Appendix B, Figure 14). 314

Unlike FiVL-Instruct, we filtered out samples with- 315

out key expressions or segmentation maps resulting 316

in a reduction in dataset sizes. As a result, FiVL- 317

POPE covers 65% of POPE, FiVL-VQA-v2 retains 318

40% of VQA-v2 and FiVL-GQA accounts for 95% 319

of GQA size (refer Table 4 in Appendix for the 320

actual size of the filtered dataset numbers). This in- 321

dicates that the original GQA relies more on visual 322

context than POPE and VQAv2. Our evaluation 323

sets: FiVL-POPE, FiVL-VQAv2, and FiVL-GQA, 324

select subsets from the original datasets that re- 325

quire visual context and are better suited for visual- 326

alignment testing. Table 5 from Appendix presents 327

additional statistics for these datasets. 328

4 Method Evaluation 329

To ensure the quality of our framework, we con- 330

ducted a multi-step evaluation process on the train- 331

ing dataset described in Section 3.2. This included 332

both human-based evaluations and automated as- 333

sessments, allowing us to validate the relevance 334

and accuracy of the key tokens and their alignment 335

with visual content. Below, we outline the key 336

components of our evaluation strategy. 337

4.1 Human Evaluation 338

We conducted a manual evaluation in order to vali- 339

date the coherency of the key expressions as well 340

as the relevancy of the segmentation maps with re- 341

spect to the formers. For each sample, we presented 342

to the annotators one random key expression with 343

its associated segmentation map. Annotators were 344
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asked three questions: whether the key expression345

aligns with the definition provided in Section 3.1,346

if the segmentation map is relevant to the key ex-347

pression, and whether the sample is of good quality348

(does the text makes sense, is the answer related to349

the question). In total, 557 unique samples were350

annotated by 12 different annotators. A screenshot351

of the API is shown in Appendix H. Results show352

that 77% of the annotators labeled the samples as353

overall good data points. In the key expression354

evaluation, 75% of key expressions were deemed355

pertinent. In the segmentation map evaluation, 58%356

of segmentation map were annotated as relevant to357

the key expression. The last result can be explained358

by the fact that some key expressions might inher-359

ently be more abstract or complex or by the perfor-360

mance of the GroundedSAM pipeline. Finally, if361

we compute the key expressions and segmentations362

score only for the samples annotated as "good data363

point overall", 85% of the data are with valid key364

expressions and 69 % are with relevant segmenta-365

tion masks. Additionnaly, we find that the quality366

of the segmentation is related to its size. Figure 6367

from Appendix indicates that when the segmented368

mask occupies less than 20% of the image, annota-369

tors were more likely to consider the segmentation370

relevant. To train our model (see Section 5.1), we371

selected the segmentation masks based on their size.372

This metric can be used as a threshold-based filter-373

ing method for future applications of the dataset.374

4.2 Automatic Evaluation375

Inspired by recent applications using GPT4-o as-376

a-judge (Zheng et al., 2023a), we designed two377

prompting techniques to automatically assess the378

quality of extracted keywords and segmentation379

masks based on a given keyword. Both evaluations380

were conducted on a randomly sampled set of 1,957381

keywords and their corresponding segmentations382

from FiVL-Instruct.383

4.2.1 Keyword Evaluation384

We prompt GPT4-o, prompts are presented in Ap-385

pendix C, to evaluate the correctness of the key ex-386

pressions and report the following metrics: Impor-387

tance Ratio = 76% representing the percentage of388

extracted expressions classified as key expressions.389

This result is close to human evaluation, which is390

75%. Overall Importance Degree = 6.8, which in-391

dicates the average importance score across all key-392

words, regardless of GPT-4o classification. And,393

Importance Degree of Important Keywords = 9.0,394

which calculates the average importance ratio of 395

keywords identified as important by GPT-4o. These 396

metrics indicate the high quality of our keywords. 397

4.2.2 Segmentation Evaluation 398

Given a keyword, we aim to evaluate whether our 399

segmentation for this keyword is accurate. We de- 400

signed two prompts to assess the quality of the 401

segmentation: first, we check if the segmentation 402

content adequately covers the keyword (Seg1); sec- 403

ond, we verify that the inverse of the segmentation 404

does not contain any content related to the keyword 405

(Seg2). Both prompts are given in Appendix C. Re- 406

sults show that only for Seg1 = 46% of the cases 407

GPT-4o capture the keywords in the segmentation. 408

On one hand, this result aligns with the manual an- 409

notations and can be addressed in the same manner. 410

On the other hand, we found that segmentations 411

classified as good often involve specific objects 412

(e.g., tennis players, bears). In contrast, segmenta- 413

tions classified as bad are often abstract concepts 414

(e.g., water pressure, mental game, splashing), de- 415

scriptive words (e.g., unique, uneven ground), or 416

complex actions (e.g., walking over logs). These 417

types of words are difficult to link to a specific part 418

of an image when the full image context is not pro- 419

vided. This also highlights the limitations of the 420

first type of evaluation prompt. In Seg2 = 72% 421

of cases, the model determines that the inverse of 422

the segmentation is irrelevant to the keywords, ac- 423

curately recognizing that without the segmented 424

mask, the key expressions are not present in the im- 425

age. This measures if we do not miss key objects 426

in our segmentation maps. If 2 objects appear in 427

the image not at the same positions, we make sure 428

that our maps contain both of them. 429

5 Applications of FiVL Datasets 430

In this section, we describe three approaches to uti- 431

lize our datasets. Section 5.1 describes how FiVL 432

can be used as a training dataset and the result- 433

ing models not only achieve better performance 434

but also has one more capability than the baseline 435

model: generate segmentation maps. Section 5.2 436

introduces FiVL as a tool for evaluating the visual 437

reliance of LVLMs. Section 5.3 shows that FiVL 438

can assist the interpretability of models. 439

5.1 Training 440

We introduce here a training task referred to as 441

Vision Modeling. To assess the effectiveness of this 442
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task, we fine-tuned an LVLM, specifically, LLaVA-443

1.5-7b (Liu et al., 2023), referred as to the baseline,444

on FiVL-Instruct. For training our model, we used445

only key expressions that appeared verbatim in446

the answers for each turn, focusing exclusively on447

noun-based key expressions.448

Method. In the original LLaVA training, it has449

two stages: the first pretraining stage trains a projec-450

tor which aims to align visual and textual represen-451

tations, while the second finetuning stage performs452

only language modeling on the textual outputs of453

the LM head. In this work, we propose to guide the454

visual outputs of the last linear layer during the fine-455

tuning stage, in addition to performing language456

modeling on its textual outputs. Our approach aug-457

ments the Language modeling cross-entropy loss458

with a Vision modeling (VM) cross-entropy loss459

where each patch that belongs to a segmentation460

map is trained to predict the related keyword from461

the vocabulary.462

We denote by x the input and y the logits with463

respect to each token. The logits are the outputs464

of the last linear layer that projects the last hidden465

states to the vocabulary space:466

x = (xi0 , xi1 , . . . , xiNi , xt0 , xt1 , . . . , xtN ),467

y = (yi0 , yi1 , . . . , yiNi , yt0 , yt1 , . . . , ytN ),468

where Ni is the number of image tokens, Nt469

the number of text tokens, N the total lenght.470

xi are the inputs embedding that relate to the471

image tokens and xt to the text tokens; yi ∈472

RNi×vocabulary_size represents visual logits, while473

yt ∈ RNt×vocabulary_size represents textual logits.474

In Language Modeling (LM), only yt related to475

the answer are trained. We propose to also train476

yi related to the segmented piece. Figure 2 shows477

an example where given a picture, a question, the478

LM loss would only guide the relevant tokens yt to479

be the expected answer The man is sitting on his480

surfboard <...>. In our method, we also do vision481

modeling by training each visual logit correspond-482

ing to the segmented mask to refer to the noun483

from the key expression: surfboard from the text484

vocabulary. In order to create the vision labels we485

proceed like such: for each sample, each image to-486

ken will be assigned to exactly one token in the text487

vocabulary. The selection is based on the size of488

the mask (we take the smallest) and the type of the489

keyword (we filter only nouns). That way, for each490

image patch, there is maximum one key token that491

Figure 2: Overview of Vision Modeling pretraining task.

describes the patch. Image patches that do not have 492

a related keytoken are ignored in the loss, similar 493

to LM. We then compute a weighted sum from the 494

cross-entropy, CEVM between the created vision 495

labels and the visual logits and the cross-entropy re- 496

lated to language modeling, CELM . The resulting 497

loss is computed as such: 498

L = λ∗CEVM+(1−λ)∗CELM , λ ∈ [0, 1] (1) 499

Figure 3: Our model trained on FiVL-Instruct evaluated
on various benchmarks compared to the baseline.

Improve Benchmark Results. We conducted 500

multiple experiments to determine the optimal hy- 501

perparameters. We finetuned LLaVa-v1.5-7b from 502

scratch using our augmented dataset. We used 503

the trained multimodal projector and started from 504

Vicuna-v1.5-7b (Zheng et al., 2023b) weights. We 505

maintained the original training setup (batch size, 506

number of epochs, etc.) and primarily focused on 507

experimenting with different learning rates and λ. 508

The best results were achieved with a learning rate 509

of 2-e5, the same as in the original setup, and λ set 510
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to 0.1. Training details are shared in Appendix E511

and ablations are reported in Appendix F. Figure 3512

shows how we outperformed the baseline in differ-513

ent benchmarks: OK-VQA (Marino et al., 2019),514

MME (Fu et al., 2024), POPE (Li et al., 2023b),515

ScienceQA (Lu et al., 2022), MMBench (Liu et al.,516

2024e), LLaVA-Bench-COCO (Liu et al., 2023),517

LLaVA-in-the-wild (Liu et al., 2023), Text-VQA518

(Singh et al., 2019), VizWiz-VQA (Gurari et al.,519

2018), GQA (Hudson and Manning, 2019).520

Better Grounding Outcome. Figure 4 compares521

the baseline model and FiVL, illustrating the cor-522

respondance of each image patch with its related523

most probable token from the vocabulary. The524

argmax of the vision logits is identified, mapped525

back to the text vocabulary. Then, for each token,526

the relevant image patches are highlighted, indicat-527

ing which parts of the image align with that token.528

Although the baseline can capture some relevant529

text tokens for the image patches and tends to scat-530

ter semantically similar image patches across differ-531

ent tokens from the vocabulary. Some of these to-532

kens may be relevant, but others are not, indicating533

a lack of consistent grounding. On the other hand,534

our model shows more relevant images patches535

related to the word.536

Vision Logits as Approximate Segmentation537

Maps. Another interesting finding is that we can538

obtain a weak “segmentation maps" by predicting539

the most probable text tokens from the vision log-540

its. As a simple observation, averaging over 100541

examples, the baseline predicts 74 different tokens542

overall (with lots of unrelated tokens such as "a",543

"*", "is" etc.), while our model only encompasses544

9 tokens. This demonstrates potential in leveraging545

visual logits for segmentation. as shown in Figure546

4. More examples are presented in Figure 12 in547

Appendix G. We further conducted evaluations to548

assess the performance of the segmentation capabil-549

ity of our model. Results, reported in Appendix G,550

shows FiVL’s enhanced ability to produce precise551

and coherent segmentation masks.552

5.2 Visual Reliance Evaluation553

FiVL datasets also allow us to measure Visual Re-554

liance by performing perturbation based evaluation:555

first assessing model accuracy on the original im-556

ages, then on the masked images. We introduce a557

Visual Reliance Score in Eq.2, which measures the558

percentage of drop in accuracy from the original to559

(a) Baseline (b) Our model

Figure 4: Predicted token from vision logits ( "Flo", for
"floor") and its corresponding regions in the image.

the masked image version. A higher score indicates 560

stronger model dependency on visual input. 561

Visual Reliance Score =
accuracyoriginal − accuracyperturb

accuracyoriginal
(2) 562

Indeed, the perturbation based on the masked im- 563

age is not perfect, it still provides a measurement 564

of visual reliance. To confirm that FiVL is suitable 565

for evaluating visual reliance, we created a control 566

dataset with random masking. In this control set, 567

each image contains a bounding box mask of the 568

same size as the key expression mask, but placed at 569

a random location within the image. This approach 570

provides a comparison to determine whether perfor- 571

mance declines specifically due to masking critical 572

visual areas or simply from general occlusion. 573

We compared the performance of two mod- 574

els, LLaVA-v1.5-13b and Qwen2-VL-7B-Instruct 575

(Wang et al., 2024), across the three evaluation 576

datasets we created. 577

Compare Perturbation Methods. Table 2 com- 578

pares FiVL and Random Perturbation. It shows 579

that across all benchmarks and models, the pertur- 580

bation based on FiVL masks causes a significantly 581

larger performance drop compared to random per- 582

turbation. This indicates that our bounding boxes 583

capture meaningful visual content relevant to the 584

questions and FiVL represent good testbeds for 585

visual reliance. 586

VQA-v2 GQA POPE
FiVL Random FiVL Random FiVL Random

LLaVA-13B 0.72 -0.05 0.33 0.03 0.49 0.02
Qwen2-VL-7B 0.64 0.07 0.38 0.03 0.47 0.02

Table 2: Comparison of Visual Reliance Score between
FiVL bounding boxes and random perturbations across
benchmarks and models.
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Compare Models and Benchmarks. To gain a587

broader understanding of model/benchmark perfor-588

mance, we evaluated five models on FiVL-VQAv2,589

FiVL-POPE, and FiVL-GQA. This helps to as-590

sess the generalizability of our approach across591

more models. Table 3 shows our results for Qwen2-592

VL-7B, LLaVA-v1.5-7b(Liu et al., 2023), LLaVA-593

13B, GPT4o (OpenAI, 2024), BLIP-2 (Li et al.,594

2023a), Pixtral-12B (Agrawal et al., 2024) and595

Phi3-Vision(Abdin et al., 2024), which are state-of-596

the arts mutlimodal models. In bold, are the high-597

est visual reliance scores per model and across all598

benchmarks. The results unanimously indicate that,599

among all models, FiVL-VQAv2 requires models600

to rely on the image the most compared to other601

datasets. Underlined are the highest visual reliance602

scores across models, given a benchmark. Look-603

ing at the average performance per model across604

benchmarks (last column), we observe that GPT4-605

o relies most heavily on the image as a reference606

for answering, followed by Pixtral-12B. Lastly,607

we observe a correlation between overall model608

performance and the Visual Reliance score. Ac-609

cording to the available VLM Leaderboard (Open-610

Compass, 2025), that measures the performance611

of the models on a broad range of benchmarks,612

and Table 3, we see that GPT4o (ranked 20 on613

the leaderboard) has a higher overall Visual Re-614

liance Score compared to Pixtral-12B (ranked 54).615

Within a similar Visual Reliance Score range, fol-616

low LLaVA-13B (118), Qwen2-VL-7b (136) and617

Phi3-V (77). Lastly, LLaVA-7b (127) appears at618

a lower rank. This suggests that this average of619

Visual Reliance Scores captures the overall perfor-620

mance of the model and is not overly sensitive to621

the specific benchmarks used. All together, these622

results indicate that effective image utilization is a623

key factor in achieving higher performance.624

VQA-v2 GQA POPE Avg VRS
Qwen2-VL-7B 0.64 0.38 0.47 0.50

LLaVA-13B 0.72 0.33 0.49 0.51
LLaVA-7B 0.56 0.31 0.47 0.45

GPT4o 0.74 0.63 0.49 0.62
BLIP-2 0.52 0.23 0.03 0.26

Pixtral-12B 0.75 0.58 0.42 0.58
Phi3-V 0.60 0.33 0.54 0.49

Avg 0.65 0.40 0.42 -

Table 3: Visual reliance scores (VRS): % of drop in per-
formance using FiVL bounding boxes for perturbations.
In bold: highest scores across benchmarks. Underlined:
highest scores across models. Avg stands for Average.

(a) Attention Head (10,6) (b) Attention Head (14,11)

Figure 5: Attention heatmaps overlaid on the original
images for attention heads (10,6) and (14,11) of the
token "girl" for the answer: The two people [...] are a
man and a little girl.

5.3 Explainability 625

We show that FiVL can assist the interpretability 626

of LVLMs by generating a summary plot show- 627

ing a vision-alignment metric computed across all 628

heads and layers, as introduced in (Aflalo et al., 629

2022). Using Spearman correlation between the 630

segmentation mask of FiVL-Instruct dataset and 631

the attention to the corresponding key expression 632

tokens in the Vision-to-Language attention compo- 633

nent, we are able to retrieve the heads achieving 634

the strongest VL alignment. The head summary 635

(Appendix D, Figure 9) indicates that heads (10,6) 636

and (14,11) are effective at aligning vision with 637

language. For instance, Figures 5a and 5b show 638

from which patches of the image the token girl gets 639

the most attention, clearly focusing on the girl. 640

6 Conclusion 641

In this paper, we introduced FiVL, a framework 642

designed to enhance vision-language alignment 643

in large vision-language models. We applied our 644

approach across key stages of an LVLM training 645

workflow: training, evaluation, and explainabil- 646

ity. By training a LLaVA model using the FiVL 647

dataset and our novel training task, we measured 648

improvement in a majority of benchmarks and pro- 649

duced a built-in feature that segments the image. 650

Our evaluation datasets measured model reliance 651

on images for answering questions, offering in- 652

sights into the level of image dependency required 653

across benchmarks. The results indicate a correla- 654

tion between this dependency and overall model 655

performance. Finally, our explainability applica- 656

tion enables users to identify attention heads that 657

excel in vision-language alignment, allowing for a 658

deeper understanding of potential hallucinations. 659
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Limitation660

In this work, we utilize the FiVL framework to aug-661

ment LLaVA instruction fine-tuning data and train a662

new model to compare against the baseline, demon-663

strating the effectiveness of our proposed frame-664

work and training objectives. However, we have665

only investigated LLaVA model, because of the666

limited availability of open-source training datasets667

for other LVLMs and augmenting additional data668

incurs additional inference costs. Lastly, we rely669

on an off-the-shelf segmentation model (Ground-670

edSAM) that takes a simple text prompt and an671

image as input. In our context, this may lead to672

less accurate segmentation, as the full contextual673

understanding of keywords might be necessary. To674

mitigate this issue, we could apply a filtering tech-675

nique to enhance the overall quality of the dataset.676
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A Appendix939

Appendix940

A Evaluation dataset941

Table 4 compares the size of our datasets with942

the original datasets and Table 5 presents some943

statistics of FiVL-VQA-v2, FiVL-GQA and FiVL-944

POPE.945

VQA-v2 GQA POPE
Original 9,999 12,280 9,000

FiVL 4,040 11,660 5,870

Table 4: Evaluation dataset sizes after filtering out sam-
ples without key expressions or segmentation masks.

FiVL-VQAv2 FiVL-GQA FiVL-POPE
Key expressions 1.27 1.5 1

Segmentation masks 3.79 4.71 3.48
% of masked pixels 24% 21% 16%

Table 5: Statistics per sample of our evaluation datasets.
First row details the average number of key expressions,
second row describes the average number of distinct
segmentation masks and last row describes the average
percentage of the pixels that were masked.

Figure 6: Impact of the size of the segmentation mask.
Comparison of the Percentage of masked pixels Distri-
butions for Correctly and Incorrectly annotated Masks

B System prompts for key expressions946

retrieval947

We use GPT-4o via the Azure OpenAI API to ex-948

tract the key expressions of the datasets we con-949

sidered. In this section, we share the prompts950

used for this step of the data collection. We had951

to use slightly different prompts for the training952

datasets compared to the evaluation datasets. In953

the training datasets, where instructions are open-954

ended question-answer pairs, the key expressions955

are often found in the answer. However, in the 956

evaluation datasets, we encountered questions that 957

required specific types of responses (yes/no ques- 958

tions, counting etc...). In these cases, the key ex- 959

pressions are typically found in the question in- 960

stead. For references, we have provided the prompt 961

used for training dataset in Figure 13 and prompts 962

used for evaluation datasets VQA-V2, GQA, and 963

POPE in Figure 14. For each benchmark we use 964

different examples that suit the best to the types 965

of questions. See Figure 15 for FiVL-VQAv2 and 966

Figure 16 for FiVL-GQA and FiVL-POPE. 967

C System prompts for evaluation 968

We used GPT-4o as LLM-as-a-judge in order to 969

evaluation the correctness of the key expressions 970

and the segmentation maps. The system prompt 971

are shared in Figure 7 and Figure 8. 972

�
[Seg1] You are given a part of the image
and a word/phrase , do you think this is
a good segmentation that the given part
of the image covers this word/phrase?

Word/phrase: {word}

Answer only "yes" or "no".

[Seg2] You are given a part of the image
and a word/phrase , do you see any part

of the image that is related to the word
?

Word/phrase: {word}

Answer only "yes" or "no".
� �
Figure 7: Segmentation Verification Prompt for GPT-4o.
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�
You are given a question , a word/phrase
and an image. Please rate the importance
degree from 0-10 scale ([OID]).

Note that
- 0 means not important at all and 10

means very important.
- Important word/phrase means that this
word/phrase is closely related to the

image and the question , and it could not
be evoked without the use of the image

(IR).
- If the question does not related to

the image , in other words , the answer
does not depend on the image content ,
then any words are not important.

Question: {question}

A word: {word}

Only answer important or not important ,
and the importance degree from 0-10?
� �
Figure 8: Keyword Verification Prompt for GPT-4o.

D Explainability973

For an attention matrix of size974

(Nlayers, Nheads, Ni + Nt, Ni + Nt), The975

head summary calculates the statistical mean over976

the last two dimensions, producing a plot with977

dimensions of (Nlayers, Nheads) averaged for978

500 samples. For a given question, image, key979

expression and related segmentation mask from980

the FiVL-Instruct dataset, we generate the answer981

using LlaVA-v1.5-7b. We then identify if the key982

expression is in the answer or in the question.983

If so, we probe each head by computing the984

Spearman correlation between the segmentation985

mask (
√
Ni,

√
Ni). and the attention to the986

corresponding key expression tokens in the Vision-987

to-Language attention component (1, 1, Ni, 1)988

(first dimension selects the layer, second the head989

and the last dimension corresponds to the key990

token) for each head. This is performed on the991

language model component but not on the vision992

component of LLaVA. In this way, we identify993

the attention heads that ground the most the two994

modalities by performing a function similar to995

object segmentation. Figure 9 shows the head996

summary and the corresponding language-vision997

attention weights related to the key expression998

tokens displayed as a heatmap over the image. The999

head summary shows that the heads achieving1000

the strongest vision-language alignment are in1001

the early layers. This might be due to the fact1002

that the input to this transformer is the output of1003

Figure 9: Head summary for VL alignment via Spear-
man correlation between token segmentation and vision
attention

(a) Attention Head (10,6) of
the token three. A - There
are three people in the im-
age.

(b) Attention Head (14,11)
of the token three. A - There
are three people in the im-
age.

Figure 10: Attention heatmaps overlaid on the original
images for attention heads (10,6) and (14,11), which
have a high Spearman correlation, to probe vision-
language alignment.

multimodal projector of LLaVA, which is designed 1004

specifically to align these two modalities. The head 1005

summary indicates that heads (10, 6) and (14, 11) 1006

are effective at aligning vision with language. 1007

In this way, we identify the attention heads that 1008

ground the most the two modalities by performing 1009

a function similar to object segmentation. Figure 9 1010

shows the head summary and the corresponding 1011

language-vision attention weights related to the 1012

key expression tokens displayed as a heatmap 1013

over the image. The head summary shows that 1014

the heads achieving the strongest vision-language 1015

alignment are in the early layers. This might be 1016

due to the fact that the input to this transformer 1017

is the output of multimodal projector of LLaVA, 1018

which is designed specifically to align these two 1019

modalities. The head summary indicates that heads 1020

(10,6) and (14,11) are effective at aligning vision 1021

with language. 1022
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E Training details1023

To train our model, we used 8 Nvidia RTX A60001024

GPUs using the hyperparameters from Table 61025

Batch Size 4
Number of GPUs 8

Gradient Accumulation 4
Number of epochs 1

LLaVA Image Size 576
Optimizer SGD

Learning Rate 2e− 5
λVM 0.1
BF16 True

LR scheduler cosine
Vision Tower openai/clip-vit-large-patch14-336

Language Model lmsys/vicuna-7b-v1.5

Table 6: Hyperparameters to train our model.

F Ablations1026

We conducted ablations studies on different param-1027

eters of the model. In this section, we will limit1028

the experiments on a subset of the benchmarks. As1029

mentioned in Section 3, the FiVL-Instruct dataset1030

includes some samples without key expressions.1031

We first trained our model using only on the sam-1032

ples that had at least one associated key expres-1033

sion and segmentation map. We conducted an-1034

other experiment by merging the remaining sam-1035

ples with these. Figure 11a presents the results of1036

this ablation, showing that merging the samples1037

lead to improved performance, even over the base-1038

line LLaVA-v1.5-7B model.1039

The second ablation focused on the λ parameter,1040

which controls the weight of the vision modeling1041

loss, as outlined in Section 5.1 and equation 1. The1042

optimal performance was obtained with λ = 0.1.1043

As shown in Figure 11b, our approach also outper-1044

forms the baseline for all λ ≤ 0.3.1045

Finally, since we are introducing a new capabil-1046

ity in the training, we experimented with different1047

learning rates to see if it would lead to improved1048

convergence or better overall performance. Figure1049

11c shows that overall the original learning rate of1050

2e− 5 achieved the best performance.1051

G Performance of the segmentation maps1052

inherently provided by our model1053

To evaluate the segmentation ability of our FiVL1054

model, we evaluated Intersection-Over-Union1055

(a) Ablations on the dataset size

(b) Ablations on the λ parameter

(c) Ablations on the learning rate

Figure 11: Ablations for the training method
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(IoU) on a subset of 10,000 images from the GQA-1056

val dataset. For each sample, we perform an infer-1057

ence using the baseline LLaVA-7b and our model.1058

From the outputs, we retrieve the visual logits for1059

each visual token, we assigned a text token from1060

the vocabulary corresponding to the maximum logit1061

probability, referred to as the max-v token. By ag-1062

gregating all image tokens associated with each1063

max-v token, we effectively generated a segmenta-1064

tion mask for each represented text token, like de-1065

scribe in Section 5.1. Additionally, as ground truth1066

to compare against, we employed Grounded-SAM1067

to produce segmentation maps given each max-v1068

token. Grounded-SAM was implemented using1069

the IDEA-Research/grounding-Dino-Tiny model1070

with thresholds set at 0.2, 0.4, and 0.6, followed by1071

facebook/sam-vit-huge with a threshold of 0.0. The1072

Intersection over Union (IoU) score was computed1073

between the FiVL-generated segmentation masks1074

and the corresponding Grounded-SAM masks to1075

quantitatively assess alignment. To provide a com-1076

parative analysis, we also computed IoU scores for1077

the segmentation masks produced by the baseline1078

model. As detailed in Table 7, across all thresh-1079

olds, FiVL generated approximately 7 times fewer1080

max-v tokens per image compared to the baseline1081

model (column #tokens/sample), indicating more1082

concise and semantically meaningful segmentation.1083

FiVL also showed significant improvement in aver-1084

age IoU scores (column IoU), increasing approxi-1085

mately three times: from 0.05 to 0.18 at a threshold1086

of 0.2, from 0.06 to 0.21 at 0.4, and from 0.09 to1087

0.24 at 0.6, showcasing its superior ability to gen-1088

erate precise and coherent segmentation masks. In1089

general, across all thresholds, the baseline gener-1090

ates significantly more max-v tokens per image,1091

resulting in a higher number of samples with seg-1092

mentation maps found by Grounded-SAM (column1093

#samples). Finally, the percentage of tokens pro-1094

cessed by Grounded-SAM is substantially higher1095

for our model compared to the baseline (column1096

#processed), indicating that the max-v tokens re-1097

trieved by our model were more meaningful than1098

those from the baseline. Figure 12 shows the seg-1099

mentation maps we obtained for the max-v token1100

describing each image. For example for the exam-1101

ple 12a, we computed the argmax of the tokens1102

highlighted in red, and it corresponded to the token1103

"bear" in the vocabulary1104

Thresh IoU # tokens/sample # samples #processed
Baseline 0.2 0.05 73.3 10,000 0.89

Our Model 0.18 10.3 10,000 0.96
Baseline 0.4 0.06 73.3 10,000 0.40

Our Model 0.21 10.3 9,983 0.65
Baseline 0.6 0.09 73.4 9,326 0.08

Our Model 0.24 10.6 8,604 0.26

Table 7: Performance of the segmentation maps inher-
ently provided by our model

H API of the manual evaluation 1105

Figure 17 shows the API used for the manual eval- 1106

uation done on FiVL-Instruct. Given a question, 1107

an answer (on the left) and an image with a seg- 1108

mentation mask (on the right), the annotator had to 1109

answer the 3 following yes/no questions: is { key 1110

expression } correctly represented in the mask? Is 1111

{key expression} a significant word in the answer? 1112

Is this example generally good to be included in 1113

the dataset? 1114
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(a) Bear (b) Bird (c) Birds

(d) Bott (e) Chair (f) Dog

(g) People (h) Train (i) Water

Figure 12: Segmentations produced inherently by our model. Each figure corresponds to the max-v token specified
in caption. Max-v token being the token realizing the maximum for each highlighted patch
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FiVL-Instruct system prompt

A multimodal instruction-following dataset
used for visual instruction tuning and
it contains an image and a conversation.
The conversation is constructed from a few
turns of questions and answers regarding
the image.
Given only a question and answer pair:
identify short expressions from the answer
which could not be generated without the
image.
The expression

• expresses a visual content from the
image.

• should be as short as possible.

• should not be longer than 4 words

• should not include punctuation

• should no include reference to the
image

Unrelated expressions should be separated
by the following string: ":::"
Don’t add any additional information to the
prompt.
For example:
Q: What are the giraffes doing in the image?
<image>
A: The baby giraffe is walking next to the
mother giraffe, both moving through the
open area of their enclosure
The output should be as following:
baby giraffe:::mother giraffe :::open area
of their enclosure
Identify the tokens for the following:
Q: {question}
A: {answer}

Figure 13: FiVL-Instruct system prompt used for train-
ing datasets

FiVL system prompts for the evaluation
datasets

A multimodal instruction-following dataset
used for visual instruction tuning and
it contains an image and a conversation.
The conversation is constructed from a few
turns of questions and answers regarding
the image.
Given only a question and answer pair:
identify short expressions from the answer
or the question which could not be generated
without the image.
The expression

• should hypothetically express an
immediate visual content from image.
Thus, yes/no is NOT an expected
expression, and some pronouns like
"this", "that", "there", and "those"
are not expected expressions.

• should be as short as possible.

• should not be longer than 4 words.

• should not include punctuations.

• should not include reference to the
image, like: "the man wearing a blue
suit in the image" it should be: "man
wearing blue suit".

Unrelated expressions should be separated
by the following string: ":::".
If there is no expressions found, your
response must be "N/A".
Do not add any additional information to
the prompt.

<EXAMPLES>

Identify the expressions for the following:
Q: "{question}"
A: "{answer}"

Figure 14: FiVL-Instruct system prompt used for the
evaluation datasets
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FiVL-VQAv2 - Examples

Example 1:
Q: "Considering the limited space and
packed fixtures, what suggestions can be
provided for organizing the bathroom to
optimize its use?"
A: "To optimize the use of the small
bathroom with tightly packed fixtures,
there are some organization solutions that
can be recommended: Install wall-mounted
storage: By using vertical space on
the walls and areas above the toilet,
you can create additional storage for
toiletries and other bathroom essentials
without taking up floor space. Utilize
narrow shelves or over-the-door organizers:
Placing narrow shelves or over-the-door
organizers on available narrow spaces can
help with the organization of toiletries
and other small items. Use multi-functional
items: Opt for items that serve more than
one purpose, such as a toilet paper holder
with a shelf or a mirror with built-in
storage. Opt for compact accessories:
Choose smaller or more compact versions
of bathroom essentials, like toothbrush
holders or soap dishes, to maximize space on
countertops and around the sink. Declutter
regularly: Frequently assess your bathroom
supplies and remove any items that are not
in use or have expired to keep the bathroom
tidy and make the most of the limited
space. By following these suggestions,
the bathroom can appear less cluttered,
and occupants can make better use of the
available space."
Key Expressions: small bathroom:::tightly
packed fixtures:::vertical space
on the walls:::areas above the
toilet:::over-the-door organizers:::narrow
spaces:::space on countertops and around
the sink

Example 2:
Q: "How many shadows are on the ground?"
A: "3"
Key Expressions:shadows:::3

Figure 15: Examples for FiVL-VQAv2

FiVL-GQA and FiVL-POPE - Examples

Example 1:
Q: "Considering the limited space and
packed fixtures, what suggestions can be
provided for organizing the bathroom to
optimize its use?"
A: "To optimize the use of the small
bathroom with tightly packed fixtures,
there are some organization solutions that
can be recommended: Install wall-mounted
storage: By using vertical space on
the walls and areas above the toilet,
you can create additional storage for
toiletries and other bathroom essentials
without taking up floor space. Utilize
narrow shelves or over-the-door organizers:
Placing narrow shelves or over-the-door
organizers on available narrow spaces can
help with the organization of toiletries
and other small items. Use multi-functional
items: Opt for items that serve more than
one purpose, such as a toilet paper holder
with a shelf or a mirror with built-in
storage. Opt for compact accessories:
Choose smaller or more compact versions
of bathroom essentials, like toothbrush
holders or soap dishes, to maximize space on
countertops and around the sink. Declutter
regularly: Frequently assess your bathroom
supplies and remove any items that are not
in use or have expired to keep the bathroom
tidy and make the most of the limited
space. By following these suggestions,
the bathroom can appear less cluttered,
and occupants can make better use of the
available space."
Key Expressions: small bathroom:::tightly
packed fixtures:::vertical space
on the walls:::areas above the
toilet:::over-the-door organizers:::narrow
spaces:::space on countertops and around
the sink
Example 2:
Q: "Is there a snowboard in the image?"
A: "no"
Key Expressions: snowboard

Figure 16: Examples for GQA and POPE prompts
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Figure 17: Web user interface for our dataset evaluation
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