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ABSTRACT

Continual Learning (CL) aims to develop models capable of learning sequen-
tially without catastrophic forgetting of previous tasks. However, most existing
approaches rely on heuristics and lack formal guarantees, limiting their applica-
bility in safety-critical domains. We introduce Certifiable Continual LEarning
(CerCE), a CL framework that provides provable certificates of non-forgetting
during training. CerCE leverages Linear Relaxation Perturbation Analysis (LiRPA)
to reinterpret weight updates as structured perturbations, deriving constraints that
guarantee the preservation of past knowledge. We formulate CL as a constrained
optimization problem and propose practical optimization strategies, including gra-
dient projection and Lagrangian relaxation, to efficiently satisfy these certification
constraints. Furthermore, we connect our approach to PAC-Bayesian generalization
theory, showing that CerCE naturally leads to tighter generalization bounds and re-
duced memory overfitting. Experiments on standard benchmarks and safety-critical
datasets demonstrate that CerCE achieves strong empirical performance while
uniquely offering formal guarantees of knowledge retention, marking a significant
step toward verifiable continual learning for real-world applications.

1 INTRODUCTION

Continual learning (CL) seeks to develop machine learning models with the ability to learn from a
sequence of tasks without catastrophic forgetting, the tendency of neural networks to lose previously
acquired knowledge when trained on new data. While CL has made impressive empirical progress
through strategies like regularization, architectural expansion, and experience replay, it remains a
largely heuristic domain, lacking strong theoretical guarantees. This is particularly concerning in
safety-critical domains such as healthcare and autonomous systems, where forgetting could have
detrimental consequences.

A central challenge in CL is that model updates for new tasks often alter parameters critical to
performance on previous tasks. Although various methods attempt to mitigate forgetting, such as
Elastic Weight Consolidation (EWC) (Kirkpatrick et al., 2017) and Learning without Forgetting (LwF)
(Li & Hoiem, 2017), these approaches lack formal guarantees that prior knowledge is preserved.
Recent work, such as InterContiNet (Wołczyk et al., 2022), has proposed using weight intervals to
prevent forgetting via set intersection. However, such methods severely constrain model capacity,
limiting their practical utility and performance.

In this paper, we introduce Certifiable Continual LEarning (CerCE) and address a critical need for
continual learning: learning procedures that are accompanied by formal guarantees that previously
learned examples are not forgotten. We introduce a novel framework grounded in Linear Relaxation
Perturbation Analysis (LiRPA), which provides provable bounds on neural network outputs under
perturbations to the inputs or model parameters. By interpreting weight updates during training as
structured weight perturbations, we can use LiRPA to derive constraints ensuring that previously seen
examples remain correctly classified, thereby achieving certifiable non-forgetting (Fig. 1).

The significance of such guarantees goes beyond mitigating forgetting. From an optimization
point of view, while existing training methods result in a single parameter point, CerCE provides
a neighborhood of parameters where the certificate is guaranteed to hold. If a standard training
approach leads to a local minimum where some critical samples remain misclassified, it is non-trivial
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to improve the final weights further. On the other hand, CerCE yields a neighborhood of parameters
with guaranteed performance that can be sampled for further training.

Finally, we connect our framework to PAC-Bayes generalization theory and show that satisfying
the CerCE constraints not only provides certificates of non-forgetting but also leads to tighter
generalization bounds. This addresses another important challenge in CL: memory overfitting when
using small replay buffers (Zhang et al., 2022).

In summary, our contributions are as follows:

• We propose CerCE, the first continual learning framework that provides certificates of
non-forgetting during training via weight perturbation analysis, which is essential for safety-
critical systems.

• We formulate continual learning as a constrained optimization problem, where constraints
derived from LiRPA guarantee classification accuracy on past data.

• We develop practical optimization strategies that incorporate these constraints efficiently,
including gradient projection and Lagrangian optimization.

• We show a connection between CerCE, and tighter PAC-Bayes generalization bounds,
reducing overfitting.

• We demonstrate that our approach achieves strong empirical performance on standard
benchmarks and safety-critical datasets, while offering theoretical guarantees previously
absent from CL methods.

CerCE lays the groundwork for a new class of theoretically grounded continual learning methods
that go beyond heuristics and provide robust, certifiable learning dynamics, which are crucial to the
development and deployment of continual learning algorithms for safety-critical applications.

2 BACKGROUND AND RELATED WORKS

(forgetting set)

(a) Naive

(forgetting set)

(b) CerCE (Ours)

Figure 1: Conceptual depiction of the model pa-
rameter space. We restrict the model updates to a
linear under-approximation of the non-forgetting
set.

Notation Let D := (X ,Y) be a data distribu-
tion of input/output pairs, where X ∈ Rd, Y
is drawn from a set of labels, and S is a set
of samples drawn from the distribution D. Let
fθ : Rd → Rc be a neural network parame-
terized by θ = {θ(1), ..., θ(ω)}, where c is the
number of different classes. We denote lD(θ)
as the expected 0-1 error induced on the distri-
bution D by parameters θ. Subsequently, l̂S(θ)
denotes the empirical 0-1 error induced on the
set S by θ. We will use L(·, ·) to denote the
cross-entropy loss function. Note that l is the
0-1 error, i.e. number of misclassified samples,
and thus, different than L. Let Ti, i ∈ N be
the distribution of a task and T0:k be a distribu-
tion where a sample drawn from T0:k is equally
likely to be drawn from Ti for any 0 ≤ i ≤ k. N (µ,Σ) refers to the Gaussian distribution with mean
vector µ and covariance matrix Σ, and KL(., .) is the Kullback–Leibler divergence between two
distributions.

Continual Learning Existing CL methods can generally be categorized as regularization-based,
architecture-based, or rehearsal-based approaches. Architecture-based methods (Rusu et al., 2016;
Mallya & Lazebnik, 2018; Wang et al., 2020) modify the model architecture by compartmentalizing
and expanding the network parameters, keeping the information from new tasks from interfering
catastrophically with the previously learned tasks. Rehearsal-based methods keep a memory buffer of
data during training and replay these buffered samples to prevent the model from forgetting previous
task knowledge. Rehearsal offers a simple and powerful framework to tackle CL and is leveraged
in many state-of-the-art methods (Chaudhry et al., 2019; Buzzega et al., 2020; Yoo et al., 2024).
Moreover, an alternative category of CL methods called regularization-based methods (Kirkpatrick
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et al., 2017; Zenke et al., 2017; Li & Hoiem, 2017; Chaudhry et al., 2018) seeks to ensure model
stability through regularization on the weights during optimization. Such methods mainly focus on
identifying model weights that are more important to the performance of previous tasks, and impose
a penalty on changes to those weights.

Theoretically certifiable continual learning is largely unexplored. InterContiNet (Wołczyk et al.,
2022), propose to replace neural network weights with weight intervals, and to take the intersection of
the resulting intervals for each task, guaranteeing the worst-case performance of the network does not
get worse. However, this approach restricts the learning capabilities of neural networks significantly.
Moreover, their guarantee of performance only holds on the worst-case performance of the weight
intervals, while evaluation is made on interval centers, leaving room for fluctuations in accuracy.
Finally, to the best of our knowledge, Wołczyk et al. (2022) is the only work on the subject of formal
guarantees for continual learning. In this paper, and for the first time, we provide a framework as
well as a concrete methodology using linear relaxations of neural networks to perform certifiable
continual learning.

Linear Relaxation based Perturbation Analysis (LiRPA) LiRPA (Xu et al., 2020; Wang et al.,
2021; Zhang et al., 2018; Xu et al., 2021) is a set of methods that use linear relaxations of activation
functions to derive provable bounds on neural network outputs under perturbations to nodes of a
computational graph. Typically, perturbations are applied only to the input of the neural network.
In contrast, in this work, we analyze perturbations to the weights of the neural network. By re-
interpreting weight updates during training as weight perturbations, we can apply LiRPA directly
to continual learning to certifiably prevent forgetting by bounding the change in the network output.
For a more detailed description of LiRPA, specifically auto-LiRPA (Xu et al., 2020) see Section B.
Typically, LiRPA methods are used within the context of adversarial robustness and input perturbations
(Zhang et al., 2018; Xu et al., 2021). However, in this work, we view and utilize LiRPA in the
much-unexplored context of weight perturbations to perform continual learning. To the best of
our knowledge, Weng et al. (2020) is the only other work that studies the certified robustness of
feedforward networks under weight perturbations (other than the one experiment in Xu et al. (2020)).
In this work, we do not solely study robustness against weight perturbation, but rather use it as a tool
to provide guarantees of non-forgetting during CL.

PAC-Bayes Generalization Bounds PAC-Bayes bounds (McAllester, 1999; Pentina & Lampert,
2014; Pérez-Ortiz et al., 2021) are a set of upper bounds on the test error of learning algorithms,
including neural networks. In this paper, we introduce CerCE to perform neural network training
while providing certificates on non-forgetting. Moreover, we will show that CerCE may result in less
memory-overfitting –the tendency of overfitting on buffer samples in rehearsal CL– using PAC-Bayes
generalization bounds. There is an extensive family of PAC-Bayes bounds (Alquier et al., 2024), and
so for the sake of brevity, we will work with a simple and commonly used version of the PAC-Bayes
bound as per McAllester (1999). We refer the reader to Section C for further discussion of PAC-Bayes
bounds as well as a statement of the generic PAC-Bayes bounds which we use further in our proofs.

3 PROBLEM FORMULATION

In this work, we are interested in providing a way to perform continual learning while providing
certificates to prevent the forgetting of samples. In this context, a certificate is a theoretical guarantee
that given a set of assumptions (e.g., being within some radius of some parameter point θ), a certain
result will hold (e.g., a sample X is classified correctly).

Definition 1 (Forgetting Set). Given parameters θ and input sample x ∈ Rd with label y, we define
the forgetting set Fθ(x) :=

{
∆θ

∣∣ fθ+∆θ(x) ̸= y
}

where y is the label of x. Subsequently, F′
θ(x) is

the complement of Fθ(x), where the samples are not forgotten. Moreover, for a set of samples X , let
Fθ(X) be the intersection of Fθ(x) for all x ∈ X , and likewise, F′

θ(X) be the intersection of F′
θ(x).

The forgetting set indicates the set of parameter perturbations that lead to a classifier that misclassifies
the sample x. During training, we aim to prevent parameter updates ∆θ from falling within the
forgetting set. Thus, we can formulate the problem of learning a new task as follows:

Definition 2 (Certifiable Continual Learning). Let X,Y ∼ Tk be a set of samples from the new task,
and X̃, Ỹ ∼ T0:k−1 be a set of samples from previous tasks, on which the classifier fθ is trained. We
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wish to solve the following optimization problem

min
∆θ
L(fθ+∆θ(X), Y ) s.t. ∆θ ∈ F′

θ(X̃) (1)

Intuitively, we seek to minimize the loss on the samples of the new task, while maintaining that
the previous samples are not forgotten. Heuristic approaches, such as ER (Chaudhry et al., 2019),
attempt to achieve this by simply including X̃ within the training loss, but offer no guarantees that
a previously learned sample will not be forgotten. In this work, we are interested in providing
theoretical guarantees; hence, the above definitions serve as a general framework to theoretically
ground the problem of certifiable continual learning. Next, we propose a concrete method using
LiRPA to perform certifiable continual learning.

4 CERTIFIABLE CONTINUAL LEARNING (CERCE)

In this section, we propose Certifiable Continual LEarning (CerCE), a novel method to perform
continual learning, while providing certificates against forgetting during training. The key idea is to
reinterpret model parameter updates as perturbations to the weights. With that in mind, let us
present a special case of the auto-LiRPA (Xu et al., 2020) theorem for perturbing model weights:
Theorem 1. Given fixed input batch X ∈ Rn×d, a model parameterized by θ = {θ(1), ..., θ(ω)}, and
a perturbation radius set γ = {γ(1), ..., γ(ω)} where γ(i) ∈ R, and a function of the model outputs
h(fθ(X)), we can obtain LiRPA coefficients W, b,W, b such that

b+W (θ +∆θ) ≤ h(fθ+∆θ(X)) ≤ b+W (θ +∆θ)

if ∥∆θ∥p ≤ γ := ∀i : ∥∆θ(i)∥p ≤ γ(i) .

Note that W, b,W, b are functions of θ,X, and γ. However, for the sake of brevity, we omit this
from our notation throughout the paper. We arrive at this special case simply by substituting bounded
norm perturbations to the network weights in the LiRPA framework. A simple proof is presented in
Section B. The theorem states that within the given perturbation set, the function of the model output
h(fθ(x)) is bounded by two linear functions of θ. We can use these linear bounds to achieve our goal
of preventing forgetting. Our main result is the corollary below, which allows for performing weight
updates on a neural network while certifying that it will not forget samples for which the bound is
satisfied.
Corollary 1.1. Given input batch X̃ ∈ Rn×d, labels Ỹ ∈ Rn, weight update ∆θ, and lower-bound
coefficients from LiRPA W, b, corresponding to h(fθ(X̃)), and perturbation set γ, then ∆θ ∈ F′

θ(X̃)
if ∥∆θ∥p ≤ γ and 0 ≤ b+W (θ +∆θ). n, d, c are the batch size, input dimension and number of
classes respectively, and h(fθ(X̃)) ∈ Rn×(c−1) is defined as follows

h(fθ(X̃))i,j =

{
fθ(X̃i)Ỹi

− fθ(X̃i)j , if j < Ỹi,

fθ(X̃i)Ỹi
− fθ(X̃i)j+1, if j ≥ Ỹi

The function h above simply subtracts the prediction scores of each class from that of the true class;
i.e., the difference between the prediction score of the true class and any other class. Thus, if the
lower bound is satisfied, that means the true class has the highest prediction score, and the sample is
being classified correctly.

Corollary 1.1 suggests that as long as the lower bound resulting from LiRPA is non-negative, and we
constrain the magnitude of the weight update to the model (e.g., by gradient clipping), the model
will not misclassify the sample set X̃ . This means we may take arbitrary gradient steps that include
additional terms (e.g., weight decay, momentum, auxiliary loss terms) so long as the constraints are
satisfied. Following Corollary 1.1, we can restate the constraints for the optimization problem in
Eq. (1) as follows:

min
∆θ
L(fθ+∆θ(X), Y ) s.t. 0 ≤ b+W (θ +∆θ), ∥∆θ∥p ≤ γ (2)

where W, b are the LiRPA coefficients of the lower bound corresponding to h(fθ(X̃)) and θ with
perturbation γ and X,Y are samples from the current task (See Fig. 1). The solutions to the above
optimization problem are a subset of Eq. (1), and it leaves us with linear constraints that are easier
to handle. However, since the loss function is still not linear, solving this optimization problem is
non-trivial. Hence, we detail our optimization strategy in the following section.
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4.1 OPTIMIZATION STRATEGY

Gradient Distance Minimization Neural networks are typically trained using non-linear loss
functions via stochastic gradient descent. As such, let X,Y be the batch of current task input samples
and∇θL(fθ(X), Y ) be the gradient with respect to the training loss function. We can reformulate
the optimization problem in Eq. (2) as an optimization problem for each step of the gradient weight
update. We propose finding the update direction with the minimum distance from the gradient
∇θL(fθ(X), Y ) while satisfying the constraints

min
∆θ

∥∥∆θ −∇θL(fθ(X), Y )
∥∥
q

s.t. 0 ≤ b+W (θ +∆θ), ∥∆θ∥p ≤ γ (3)

where q ∈ {1, 2,∞} is the type of norm (e.g., q = 2 corresponds to a projection of the gradient onto
the feasible set, note that p and q are arbitrary norms and not dependent). Depending on the choice of
q, Eq. (3) has a linear/quadratic objective with linear/norm constraints and can be solved efficiently.

Lagrangian For the case of large neural networks with millions of parameters, constrained optimiza-
tion can be infeasible or very costly. Thus, instead of Eq. (3), we propose to optimize the Lagrangian
using unconstrained stochastic gradient descent. Doing so means the only additional computational
burden is that of computing the LiRPA coefficients W, b. That leaves us with the following objective:

LCerCE = L(fθ(X), Y ) + λmax(0,Wθ + b) (4)

The first term is simply the loss function on the current task data, and the second term is optimizing
the unsatisfied constraints with a scaling hyperparameter λ. While the above objective does not
guarantee that the constraints will be satisfied, our certificates of Corollary 1.1 still hold for any
constraint that is satisfied during training. We show that this objective works well in practice in the
experiment section.

4.2 USE OF BUFFER

Equation (2) requires the LiRPA coefficients to be computed with respect to past task examples X̃ .
There are two possible approaches to achieve this, considering that in CL, we only have access to
data from the current task, not previous ones. The first approach is to compute the coefficients at the
end of the training phase of each task and store only the coefficients and use them for the rest of the
training. This approach would be ideal if not for one major flaw: since the linear relaxation depends
on the current parameters θ, the perturbation radius γ would need to be large enough to cover the
entire parameter space used for all upcoming tasks. This would lead to extremely loose lower bounds,
which are impractical since the corresponding constraints will never be satisfied (i.e., in a large radius
around the parameters, there are likely to be points that misclassify the inputs). Thus, we will take
the second approach, a common practice in CL literature: keeping a small buffer of samples from
previous tasks to be used during training new tasks, namely, rehearsal-based approaches.

However, this approach comes with its challenges. Firstly, we must choose which samples to store in
the buffer. A common practice is to use reservoir sampling (Aggarwal, 2006) to keep the distribution
of the buffer the same as the past data distribution. In Section 5.2, we experiment with additional
filters for sample selection and find that simple reservoir sampling works best in practice. A second
challenge is memory overfitting, where the network overfits to the samples stored in memory and
fails to generalize well. In the following section, we will provide theoretical justifications that our
method may lead to reduced memory overfitting compared to typical rehearsal-based methods.

4.3 TIGHTER PAC-BAYES GENERALIZATION BOUNDS

The PAC-Bayes generalization bound mentioned in Theorem 4 (Section C) provides an upper bound
on the generalization error of a learning algorithm. Using this formulation, and setting the training
data, S, to be the memory buffer, and assuming that the buffer follows the same distribution as the
joint distribution of all tasks (which we can easily achieve using reservoir sampling), the PAC-Bayes
bound will hold. Below, we propose a modified version of the PAC-Bayes bound that suggests the
improved generalization of CerCE:

5
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Theorem 2. Let θ0 be the parameter initialization and θ∗ be the final parameter vector after training.
Then the following bound holds:

Eθ∼N (θ∗,σQI)

[
lT0:k

(θ)
]
≤ e−C1 · max

∥∆θ∥2≤γ
l̂M(θ∗ +∆θ) + e−C2 (5)

+

√
KL(N (θ∗, σQI)||N (θ0, σPI)) + log 2

√
ñ

δ

2ñ

with probability 1− δ over the draw of buffer samples, whereM is the set of buffer samples sampled
from previous tasks Ti, i ∈ {0, ..., k}, and ñ = |M| is the number of buffer samples, and

C1 =
(m− γ2

σ2
Q
)2

4m
, C2 =

−2
√
m+

√
−4m+ 8γ2

σ2
Q

4

assuming γ
σQ

> m, with m being the number of parameters in θ, and σQ, σP the hyper-parameters
of the gaussian distributions.

The above theorem is the result of substituting standard Gaussians into the original PAC-Bayes bound
and partitioning the resulting parameter distribution into inside and outside the perturbation radius γ.
See Section C for more details and proof. Immediately, it follows that if the LiRPA constraints are
satisfied, the above bound is tighter, since the first term on the right-hand side disappears completely.
Corollary 2.1 (Tighter PAC-Bayes Bound). Given LiRPA coefficients W, b corresponding to
h(fθ(M)), and perturbation radius γ, if 0 ≤Wθ∗ + b then with probability 1− δ

Eθ∼N (θ∗,σQI)

[
lT0:k

(θ)
]
≤ e−C2 +

√
KL(N (θ∗, σQI)||N (θ0, σPI)) + log 2

√
ñ

δ

2ñ
(6)

This is due to the linear lower bound being valid in the entire epsilon ball with radius γ centered at
θ∗. This means that optimizing to satisfy the LiRPA lower bounds leads to a tighter generalization
bound, suggesting less overfitting on the memory buffer, which is further validated by our improved
performance compared to ER (Chaudhry et al., 2019) in the experiment section.

4.4 ADDITIONAL IMPLEMENTATION DETAILS

Slack Variables In Eq. (3), it could be the case that not all the constraints for every sample can be
satisfied simultaneously. To guarantee a feasible solution, we can add a slack term ζ ∈ Rn to the
constraints and minimize the norm of the slack variables,

min
∆θ,ζ

∥∥∆θ −∇θL(fθ(X), Y )
∥∥
q
+ c ·

∥∥ζ∥∥
q′

s.t. 0 ≤ b+W (θ +∆θ) + ζ (7)

∥∆θ∥p ≤ γ, 0 ≤ ζ

where c is a scaling constant. This does not significantly affect the computational complexity of the
optimization problem and guarantees a feasible solution at the cost of potentially violating some of
the certificates.

Inclusion of Buffer Samples Our optimization strategy does not make any strong assumptions
on the loss function, and so we find that including current task samples in the training loss, i.e.,
L, can help with training without loss of generality. We investigate the effect of this choice in an
ablation study in Section 5.2. We find that CerCE performs only marginally worse without including
buffer samples in the cross-entropy loss, demonstrating that this choice does not undermine the
soundness and effectiveness of our original methodology. We provide a pseudocode of CerCE in
Algorithm 1. We include our code in the supplementary material and will make it publicly available
upon acceptance.

5 EXPERIMENTS

Baselines As CerCE is one of the first to provide a rigorous framework for continual learning
certificates, there are few competitors to our method. InterContiNet (Wołczyk et al., 2022) is one

6
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Algorithm 1 CerCE: Certifiable Continual Learning via LiRPA Constraints
1: Initialize: model parameters θ, perturbation radius γ, replay buffer B ← ∅, learning rate α
2: for each task k = 0, 1, 2, . . . do
3: for each minibatch (X,Y ) from current task Tk do
4: X̃, Ỹ ← B ▷ Sample buffer minibatch
5: Lce ← L(fθ([X, X̃]), [Y, Ỹ ]) ▷ Cross Entropy loss
6: W, b← LiRPA(f, θ, X̃, Ỹ , γ) ▷ Compute LiRPA coefficients
7: if using constrained optimization then
8: ∆θ ← Solve Eq. (7)
9: θ ← θ − α∆θ ▷ Update θ using ∆θ

10: else ▷ Lagrangian relaxation
11: LCerCE ← Lce + λmax(0,Wθ + b)
12: Update θ via gradient descent using ∇θLCerCE
13: end if
14: Update replay buffer B with new samples (X,Y ) (e.g., reservoir sampling)
15: end for
16: end for

such method, although they do not make use of a buffer. Additionally, their method certifies that the
worst-case performance of their network does not get worse; however, performance is evaluated in
weight interval centers, which leaves room for further fluctuations. As for non-certified methods, we
also compare to EWC (Kirkpatrick et al., 2017) and LwF (Li & Hoiem, 2017) as classical buffer-less
baselines, as well as ER (Chaudhry et al., 2019), DER++ (Buzzega et al., 2020), and LPR (Yoo et al.,
2024) as representatives of rehearsal-based baselines. We additionally compare to A-GEM (Chaudhry
et al., 2018), which uses gradient projections on a memory buffer. As the focus of our work is to lay
the groundwork for certifiable continual learning, the purpose of these comparisons is to demonstrate
the effectiveness of our method compared to heuristic baselines while offering certificates, not to
claim state-of-the-art performance. Finally, we include the "joint" baseline, training with access to
the data from all tasks simultaneously, as an upper bound on performance, in addition to the "naive"
baseline, which is training sequentially without any CL methods, as a lower bound for comparison.

Metrics We use two different metrics for measuring performance. First, the standard Final Average
Accuracy (FA), the average accuracy of the final model across all tasks after training on the last task
is completed. Second, we propose a new metric specific to measuring the certification performance
of each method: Average Certification (AC): defined as the average ratio of samples in the buffer that
satisfy the certification constraints at the end of each epoch during training. Note that even though
most baselines do not provide certificates, we can still measure our certificates for these baselines
by keeping a buffer and computing the LiRPA constraints without including them in the training
objective. For the exact definition of metrics, refer to Section D.

Network Architectures Our methodology presented in the previous section does not assume
any particular constraints for architecture or training details beyond being compatible with LiRPA
frameworks. However, while currently auto-LiRPA (Xu et al., 2020) supports convolution and
self-attention, it does not support weight perturbation for these operations. Given the sophistication
of the LiRPA framework (as briefly discussed in Section H), we believe the implementation of such
methods to be beyond the scope of this work. As support for these operations is added in the future,
CerCE will be applicable to the corresponding architectures without further modification. However,
to perform experiments on standard CL datasets, we make use of frozen pretrained encoders and train
an MLP on top as the classifier. For image datasets, we use a Vision Transformer (ViT) (Dosovitskiy
et al., 2021), and for text, we use SentenceBERT (Reimers & Gurevych, 2019). We want to emphasize
that our methodology and formulations are not constrained to MLPs, and upon implementations of
weight perturbation LiRPA for convolutional and attention-based operators, CerCE can be directly
applied to a wide variety of architectures without requiring any further formulation.

Datasets While the current limitations of weight perturbation LiRPA prevent us from experimenting
on large datasets, we conduct standardized experiments on a variety of image and text datasets. For
benchmarking MLPs without a pretrained encoder, we include MNIST (Deng, 2012) and Fashion-
MNIST (Xiao et al., 2017). For more standard image datasets, and by using a pretrained encoder,

7
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we experiment on CIFAR10, CIFAR100 (Krizhevsky et al., 2009), and TinyImagenet (Deng et al.,
2009). Additionally, as certifiable machine learning is crucial to safety-critical environments, we
experiment on a set of real-world safety-critical datasets. In line with previous works on neural
network verification (Casadio et al., 2024), we use RUARobot (Gros et al., 2021), a set of user
queries where the task is to determine whether or not a dialogue agent needs to disclose that it is not
a human, as may be required by laws and regulations, as well as Medical (Abercrombie & Rieser,
2022) where the task is to identify whether or not the query of a user is indicative of a serious medical
emergency, in which case taking immediate action to inform emergency services may be necessary.
For all datasets and experiments, we follow the challenging class-incremental CL scenario, where new
classes are added each task, and task labels are not provided during inference. For more experimental
details and hyperparameters, refer to Section D.

5.1 MAIN RESULTS

Image Datasets We conduct experiments on standard image classification datasets. As can be seen
in Table 1, CerCE outperforms InterContiNet (Wołczyk et al., 2022), the only other baseline with
guarantees, due to compatibility with a buffer and higher flexibility, and is competitive with state-of-
the-art rehearsal-based baselines while offering high certification rates, while existing baselines do
not. Overall, CerCE achieves the best trade-off between accuracy and certification.

Table 1: Final Accuracy and Average Certification on Image datasets, all using 500 buffer samples.
CerCE provides competitive accuracy while yielding significantly higher certification ratios through-
out training. Bold indicates the best result, and the runner-up is underlined. * Certificate is on the
worst-case performance, but during evaluation, the worst-case is not measured.

Method Buffer Cert. MNIST FashionMNIST CIFAR10 CIFAR100 TinyImagenet
FA (↑) AC (↑) FA (↑) AC (↑) FA (↑) AC (↑) FA (↑) AC (↑) FA (↑) AC (↑)

Joint - - 97.71 - 85.56 - 74.09 - 57.55 - 82.08 -
Naive - - 19.03 11.34 19.91 13.44 18.61 8.89 8.84 2 10.64 0.40
EWC ✗ ✗ 19.05 11.54 19.91 14.04 18.70 8.48 8.82 1.89 11.13 1.45
LwF ✗ ✗ 19.09 12.42 19.90 10.96 18.73 9.52 8.77 3.61 9.41 1.88

InterContiNet ✗ ✓ 40.73 100∗ 35.11 100∗ 19.07 100∗ 9.42 100∗ 9.24 100∗

AGEM ✓ ✗ 28.49 6.84 32.08 19.94 38.49 14.68 10.26 1.34 19.39 1.06
ER ✓ ✗ 85.26 1.12 76.43 0.7 52.66 21.67 22.9 1.46 55.49 1.06

DER++ ✓ ✗ 85.66 0.00 77.75 0.00 53.14 4.91 24.50 0.00 61.21 0.18
LPR ✓ ✗ 85.08 0.80 75.77 0.30 52.83 19.10 22.63 1.22 50.15 0.00

CerCE ✓ ✓ 86.57 90.5 76.05 91.56 54.45 91.17 23.49 94.55 53.18 98.58

Safety-critical Text Data In order to demonstrate the effectiveness of our method in real-world
safety-critical scenarios, we conduct experiments on two text classification datasets. In line with
previous works (Casadio et al., 2024), we use a pre-trained text-encoder, Sentence-BERT (Reimers &
Gurevych, 2019), to transform sentences to vector embeddings and train an MLP as the classifier. The
results are presented in Table 2 and demonstrate the effectiveness of CerCE in continual learning for
real-world safety-critical scenarios. Detailed descriptions of the datasets can be found in Section G.

Table 2: Safety-critical Datasets. CerCE provides significantly higher certification rates while
maintaining accuracy. Bold indicates the best result, and the runner-up is underlined. * Certificate is on
the worst-case performance, but during evaluation, the worst-case is not measured.

Method RUARobot Medical
FA (↑) AC(↑) FA (↑) AC(↑)

Naive 50 30.20 49.14 28.63
Joint 99.39 - 99.36 -
EWC 50 48.42 54.97 28.63
LwF 50 28.48 50.34 37.12

InterContiNet 50 100∗ 50.85 100∗

AGEM 56.85 39.78 86.59 68.79
ER 89.08 37.02 98.37 39.47

DER++ 85.69 22.32 98.69 58.62
LPR 88.73 33.67 97.58 32.18

CerCE 89.03 79.84 98.83 82.94

5.2 ABLATION STUDIES

Ratio of Certified Samples in the Buffer In order to empirically measure the success of CerCE in
preventing forgetting and providing certificates during training, we plot the ratio of correctly classified
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Figure 2: Accuracy and ratio of certified samples in the Buffer for CerCE and ER over time. Not only
does CerCE result in high buffer accuracy over time, it results in a significant portion of the buffer
being certified as opposed to ER.

as well as certified samples within the input buffer through time on the CIFAR10 dataset in Fig. 2.
We also include the certification rate of ER as a comparison. While ER does not train and provide
certificates, it is possible to use our method to simply check whether or not the correct classification
of a sample is certified during training. As seen in Fig. 2, while both methods result in a high buffer
accuracy, CerCE yields a significantly higher portion of samples in the buffer that are certified, which
validates our main contribution: certified prevention of forgetting during continual learning.

Buffer Choice & What Goes in the Loss As our certificates are provided on the samples from
the buffer, it is natural to investigate the effect of different sampling schemes on selecting memory
samples. Thus, we propose three different filtering schemes to be applied on top of reservoir sampling
(which is applied in all scenarios): No additional filter (random), only include samples that the
model classifies correctly (correct), and only include the samples for which the LiRPA constraints
are satisfied (bound). In addition, we experiment with whether or not to include the buffer samples
in the cross-entropy loss alongside the current task samples. The results are presented in Table 3.
First, we see that CerCE is not very sensitive to the inclusion of new samples in the cross-entropy
loss, validating the effectiveness of our constraint-based loss term. Additionally, we see that selecting
correct or bound samples can have a marginal positive impact on certification, while incurring
additional computational cost. We hypothesize that this is because it is easier to certify already
certified/correctly classified samples rather than random ones.

For additional ablation studies and details on the hyperparameters, refer to Section D.

Table 3: Ablation Study of what is included in the buffer, as well as what filter is applied to buffer
sampling: random (no filter), correct (only correctly classified samples), bound (only samples which
satisfy the certification bounds)

Selection Filter Random Correct Bound
FA(↑) AC(↑) FA(↑) AC(↑) FA(↑) AC(↑)

Current Task Samples 81.51 81.30 80.68 80.96 78.78 80.44
All Samples 86.57 90.5 85.94 90.87 83.94 90.86

6 CONCLUSION

In this work, we introduced Certifiable Continual Learning (CerCE), a novel framework that brings
formal guarantees to the problem of continual learning. By leveraging Linear Relaxation Perturbation
Analysis (LiRPA) and formulating CL as a constrained optimization problem, CerCE enables learning
new tasks without forgetting past knowledge, with verifiable certificates during training. Our method
not only addresses catastrophic forgetting but also improves generalization by tightening PAC-Bayes
bounds, helping mitigate memory overfitting, a persistent challenge in rehearsal-based methods.
Through extensive experiments across standard benchmarks and real-world safety-critical datasets,
we demonstrate that CerCE achieves competitive performance while uniquely offering provable
non-forgetting guarantees. We believe this work lays essential groundwork for a new generation of
continual learning algorithms where reliability, robustness, and certification are emphasized, a critical
step for deploying CL systems in high-stakes applications.

9
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ETHICS STATEMENT

Safety-critical applications, such as healthcare and autonomous driving, often require guarantees on
specific performance metrics to ensure people’s safety. In this work, we take a step towards providing
such guarantees for continual learning in terms of certifying non-forgetting of samples during training.
However, it should be noted that while the certificates provided by CerCE are valid, they do not
necessarily encompass all data, nor do they ensure the safety of the system by default, as it is up to
the system designers to guarantee its safety. CerCE provides a framework for performing continual
learning with theoretical guarantees and the assumptions, propositions, and limitations of the method
should be taken into account during any application. We hope that CerCE can serve as a stepping
stone for designing safe and reliable AI systems with real-world applications.

REPRODUCIBILITY STATEMENT

In this paper, we take thorough measures to ensure the reproducibility of our work. In addition
to describing the method in detail in Section 4, we provide a pseudocode of our algorithm in
Algorithm 1. We outline our experiment setup in Section 5, and provide additional details, including
hyperparameters in Section D. Finally, we submit our code, including a README file for instructions,
anonymously in the supplementary material and pledge to make it open-source on GitHub upon
acceptance.
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A TOY EXPERIMENT

To demonstrate the effectiveness of CerCE in preventing forgetting and provide some more intuition,
we design a relatively simple toy example. We use a two-layer MLP with ReLU activations on binary
classification of two-dimensional data. The tasks are split as demonstrated in Fig. 3, in two halves. A
naive SGD approach leads to forgetting of the first task, while CerCE ensures that the samples kept
within the buffer are correctly classified and the decision boundary of the network does not move
past these samples (highlighted in red).

B AUTO-LIRPA DETAILS

LiRPA is a framework for using linear relaxations in deriving certified bounds of neural network
outputs under perturbations. Auto-LiRPA (Xu et al., 2020), provides a general framework for using
these methods for general computational graphs and perturbations to the nodes of such graphs and
the effects on the output. Below, we state deriving of LiRPA bounds as presented in Xu et al. (2020)
as a theorem
Theorem 3 (LiRPA (Xu et al., 2020)). Let V = {vi}ki=1 be a set of independent values, typically
model inputs and parameters, such that they can take values from a perturbation set Si, i.e., vi ∈ Si.
For example, Si = {ci} if vi is a constant with no perturbation. Let hi(V ) be a node in the
computational graph, with ho(V ) denoting the final output. Then, through LiRPA, we can obtain
coefficients W o,W o, bo, bo such that

bo +W oV ≤ ho(V ) ≤ bo +W oV

as long as ∀i : vi ∈ Si.

Below, we restate the special case of LiRPA (Theorem 1)
Theorem 1. Given fixed input batch X ∈ Rn×d, a model parameterized by θ = {θ(1), ..., θ(ω)}, and
a perturbation radius set γ = {γ(1), ..., γ(ω)} where γ(i) ∈ R, and a function of the model outputs
h(fθ(X)), we can obtain LiRPA coefficients W, b,W, b such that

b+W (θ +∆θ) ≤ h(fθ+∆θ(X)) ≤ b+W (θ +∆θ)

if ∥∆θ∥p ≤ γ := ∀i : ∥∆θ(i)∥p ≤ γ(i) .
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Figure 3: Non-linear Toy Example using a two layer MLP. A Naive approach forgets the first task,
while CerCE maintains the decision boundary of the chosen buffer samples.

Proof. We can obtain this special case simply by setting ho(V ) = h(fθ(X)) and setting S for the ith
parameter of the network to be the epsilon ball centered around θ(i) with radius γ(i). Note that we do
not assume any perturbations of the input x, that is, Sx = {x}.

For the paper to be self-contained, we provide details of obtaining LiRPA coefficients as outlined in
Xu et al. (2020), in Section H.

C PAC-BAYES DETAILS

Theorem 4 (PAC-Bayes Generalization bound (McAllester, 1999)). Let P,Q be distributions over
the hypothesis set (in our case, the parameter space of neural networks). Let S ∼ Dn be a set of n
samples drawn from the data distribution D. Then, assuming P is independent of S, we have:

Eθ∼Q
[
lD(θ)

]
≤ Eθ∼Q

[
l̂S(θ)

]
+

√
KL(Q||P) + log 2

√
n

δ

2n

with probability at least 1− δ over the draw of S.

The above theorem states, that the expected test error is bounded by above by two terms. First, the
expected error on the training set S , and second, how much the distributionQ deviates from P . Often,
P,Q are referred to as prior and posterior in the literature. However, there is no constraint on Q to
be the Bayesian posterior of P for the theorem to hold. We will show that our proposed method leads
to a provable tightening of the first term. Following the above theorem, we can prove Theorem 2
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Theorem 2. Let θ0 be the parameter initialization and θ∗ be the final parameter vector after training.
Then the following bound holds:

Eθ∼N (θ∗,σQI)

[
lT0:k

(θ)
]
≤ e−C1 · max

∥∆θ∥2≤γ
l̂M(θ∗ +∆θ) + e−C2 (5)

+

√
KL(N (θ∗, σQI)||N (θ0, σPI)) + log 2

√
ñ

δ

2ñ

with probability 1− δ over the draw of buffer samples, whereM is the set of buffer samples sampled
from previous tasks Ti, i ∈ {0, ..., k}, and ñ = |M| is the number of buffer samples, and

C1 =
(m− γ2

σ2
Q
)2

4m
, C2 =

−2
√
m+

√
−4m+ 8γ2

σ2
Q

4

assuming γ
σQ

> m, with m being the number of parameters in θ, and σQ, σP the hyper-parameters
of the gaussian distributions.

Proof. First consider Theorem 4, and let S be the memory buffer with n samples, and P,Q be
N (θ0, σPI),N (θ∗, σQI) respectively. Assuming the buffer uses reservoir sampling, the buffer
distribution is the same as T0:k, hence the loss on the LHS is on T0:k, the distribution of all previous
tasks. Here is the resulting intermediate form of Theorem 4 by way of these substitutions:

Eθ∼N (θ∗,σQI)

[
lT0:k

(θ)
]
≤ Eθ∼N (θ∗,σQI)

[
l̂M(θ)

]
+

√
KL(N (θ∗, σQI)||N (θ0, σPI)) + log 2

√
n

δ

2n

Now we must show that the certificates being satisfied lead to a tighter bound. If ∆θ = θ − θ∗,
since θ ∼ N (θ∗, σQI), then ∥∆θ∥22 follows a shifted and scaled chi-squared distribution, that is,
∥∆θ∥22 ∼ σ2

Qχ
2
m where m is the number of parameters in θ. By law of total expectation we have:

Eθ∼N (θ∗,σQI)

[
l̂M(θ)

]
=

P (∥∆θ∥2 ≥ γ) · Eθ∼N (θ∗,σQI)

[
l̂M(θ)

∣∣∥∆θ∥2 ≥ γ]+

P (∥∆θ∥2 ≤ γ) · Eθ∼N (θ∗,σQI)

[
l̂M(θ)

∣∣∥∆θ∥2 ≤ γ]

By Lemma 1 of Laurent & Massart (2000) we have:

∀t ∈ R+ : P (m− 2
√
mt ≥ ∥∆θ∥2

σ2
Q

) ≤ e−t

& ∀t′ ∈ R+ : P (m+ 2
√
mt′ + 2t′ ≤ ∥∆θ∥2

σ2
Q

) ≤ e−t′

Now substitute the LHS of each inequality by γ2

σ2
Q

and solve for t, t′:

m− 2
√
mt =

γ2

σ2
Q
⇒ t =

(m− γ2

σ2
Q
)2

4m

Now for t′:

m+ 2
√
mt′ + 2t′ =

γ2

σ2
Q
→ 2t′ + 2

√
mt′ +m− γ2

σ2
Q

= 0

Solve quadratic equation:

t′ =
−2
√
m+

√
−4m+ 8γ2

σ2
Q

4

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Assuming that: m < γ2

σ2
Q

. Substitute in the intermediate bound:

Eθ∼N (θ∗,σQI)

[
l̂M(θ)

]
=

P (∥∆θ∥2 ≥ γ) · Eθ∼N (θ∗,σQI)

[
l̂M(θ)

∣∣∥∆θ∥2 ≥ γ]+

P (∥∆θ∥2 ≤ γ) · Eθ∼N (θ∗,σQI)

[
l̂M(θ)

∣∣∥∆θ∥2 ≤ γ]

≤e−t · Eθ∼N (θ∗,σQI)

[
l̂M(θ)

∣∣∥∆θ∥2 ≥ γ]+

e−t′ · Eθ∼N (θ∗,σQI)

[
l̂M(θ)

∣∣∥∆θ∥2 ≤ γ]

Now, since the first expectation is bounded by the maximum inside the radius, and the second is
bounded by 1 (maximum of the error l) we have:

Eθ∼N (θ∗,σQI)

[
l̂M(θ)

]
≤

e−t · max
∥∆θ∥2≤γ

l̂M(θ∗ +∆θ)+

e−t′ · 1

Corollary 1.1 follows immediately if bounds are satisfied, since we have that all samples must be
classified correctly within ∥∆θ∥2 ≤ γ, then max∥∆θ∥2≤γ l̂M(θ∗ +∆θ) = 0.

Note that σQ can be chosen freely, but σP must be chosen in a way such that P is independent of S .
A whole field of works is dedicated to deriving tighter and tighter PAC-Bayes bounds (Alquier et al.,
2024), which is not the focus of our work. However, their contributions are largely applicable to our
bound as well.

D HYPERPARAMETERS AND EXPERIMENTAL DETAILS

Dataset splitting details MNIST, FMNIST, and CIFAR10 were split into 5 tasks of 2 classes.
CIFAR100 was split into 10 tasks of 10, and TinyImagenet was split into 20 tasks of 10 classes.
RUARobot and Medical both contain two classes and were split into two single-class tasks.
Hyperparameters All experiments for CerCE were conducted using the lagrangian optimization
variant, except for the toy example in Fig. 3, which used the constrained optimization technique.
For the underlying LiRPA method, we used "crown+ibp" (Xu et al., 2020). Table 4 shows the
hyperparameters used for each dataset. Buffer size was set to 500 samples for all methods using a
buffer (including CerCE).

Table 4: Hyperparameters for different datasets
Dataset MNIST FMNIST CIFAR10 CIFAR100 TinyImagenet

lr 0.1 0.1 0.01 0.01 0.01
γ 0.02 0.02 0.01 0.01 0.01
λ 0.01 0.01 0.1 0.1 0.1

epochs 1 5 50 50 5

Lambda & Gamma ablation The results for various values of γ and λ are detailed in Table 5 and
Table 6 respectively. For both γ and λ, higher values consistently result in better performance metrics
(AC as well as FA) until the value is too high for the objective to be feasible, and training does not
converge to a desirable point.

Buffer Size Ablation We experiment with varying buffer-sizes for CerCE and some existing methods
on the MNIST dataset. The results are shown in Table 7. While certifying larger buffer sizes is more
difficult as expected, CerCE still provides high certification rates as well as accuracy.
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Table 5: CerCE Average Certification (AC) and Final Average Accuracy (FA) on the MNIST dataset
for different values of γ.

γ 1e-5 1e-4 1e-3 0.01
AC (↑) 94.94 94.87 93.26 18.78
FA (↑) 85.87 85.83 86.39 29.29

Table 6: CerCE Average Certification (AC) and Final Average Accuracy (FA) on the MNIST dataset
for different values of λ.

λ 0.0001 0.001 0.005 0.01 0.05 0.1
AC (↑) 34.28 83.06 87.42 90.5 77.84 18.58
FA (↑) 85.41 85.82 86.17 86.57 74.22 18.40

Table 7: CerCE Average Certification (AC) and Final Average Accuracy (FA) on the MNIST dataset
for different buffer sizes.

Buffer size 100 500 1000 2000
AC (↑) 95.60 90.5 89.92 88.03
FA (↑) 70.02 86.57 89.14 90.92

Metrics Final Average Accuracy (FA) is defined below after training on τ tasks:

Aτ =
1

k

k∑
i=1

ai,τ

where ai,τ is the accuracy of the test set of the ith task computed on the model after training on the
τ th task. Average Certification (AC) is defined below after t epochs of training:

Ct =
1

t

t∑
j=1

cj

where cj is the ratio of buffer samples which are certified after jth training epoch (0 < Wθj + b for
that sample where θj is the parameters after epoch j). Note that 1...t includes all epochs from all
tasks.

E RUNTIME COMPLEXITY

The majority of CerCE’s computation time is due to computation of the LiRPA bounds. Computing
LiRPA bounds consists of two stages: 1. propagating the perturbations forward through the network,
which has O(r) complexity where O(r) is the complexity of a forward pass, and 2. Tightening the
bounds through a backward pass and obtaining the coefficient, which, with the loss-fusion technique
introduced in auto-LiRPA (Xu et al., 2020), also takes O(r) time. This, in general, leads to a 3-5 times
slowdown (Xu et al., 2020) for computing the LiRPA coefficients. In our case, with the addition of
the loss term, we get about 9x times slowdown compared to regular training, which is similar to that
of InterContiNet. The training time for a single epoch of various datasets is detailed in Table 8.

Table 8: Running time for a single epoch in seconds for various methods on different datasets.
Dataset Naive ER InterContiNet CerCE
MNIST 1.3 1.45 6.91 7.78

CIFAR10 0.98 1.06 5.89 6.28
CIFAR100 0.48 0.50 2.63 3.1

TinyImageNet 1.53 1.71 10.25 12 .03
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F ERROR BARS

We report the error bars in Table 9. All experiment results were averaged over 10 runs.

Method Buffer Cert. MNIST FashionMNIST CIFAR10 CIFAR100 TinyImagenet RUARobot Medical

Metric FA FA FA FA FA FA FA

Joint - - 0.17 0.66 3.64 0.4 0.8 0.29 0.7
Naive - - 0.04 0.00 0.53 0.04 0.01 0.00 0.00

EWC ✗ ✗ 0.02 0.00 0.58 0.06 0.59 0.00 10.53
LwF ✗ ✗ 0.00 0.01 0.3 0.08 0.00 0.00 0.00

InterContiNet ✗ ✓ 3.26 0.02 0.15 0.014 0.23 0.12 0.45

AGEM ✓ ✗ 1.18 1.70 0.84 1.72 0.50 1.52 1.58
ER ✓ ✗ 1.49 1.02 0.8 0.38 1.30 1.45 1.22

DER++ ✓ ✗ 1.09 1.18 1.52 0.66 0.85 0.16 0.54
LPR ✓ ✗ 1.58 1.93 1.58 0.16 0.81 1.69 0.32

CerCE ✓ ✓ 0.94 0.94 0.77 0.43 0.33 0.42 0.61

Table 9: Error bars (standard deviation) on all datasets, all experiments over 10 separate runs.

G DATASET DETAILS

We follow the same setting as Casadio et al. (2024), they provide the following descriptions: R-U-A-
Robot (Gros et al., 2021) The R-U-A-Robot dataset is a written English dataset consisting of 6800
variations on queries relating to the intent of ‘Are you a robot?’, such as ‘I’m a man, what about you?’.
The dataset was created via a context-free grammar template, crowd-sourcing and pre-existing data
sources. It consists of 2,720 positive examples (where given the query, it is appropriate for the system
to state its non-human identity), 3,400 negative/adversarial examples and 680‘ambiguous-if-clarify’
examples (where it is unclear whether the system is required to state its identity). The dataset was
created to promote transparency, which may be required when the user receives unsolicited phone
calls from artificial systems. Given systems like Google Duplex, and the criticism it received for
human-sounding outputs, it is also highly plausible for the user to be deceived regarding the outputs
generated by other NLP-based systems. Thus we choose this dataset to understand how to enforce
such disclosure requirements. We collapse the positive and ambiguous examples into one label,
following the principle of ‘better be safe than sorry’, i.e., prioritising a high recall system. Medical
(Abercrombie & Rieser, 2022) The Medical safety dataset is a written English dataset consisting of
2,917 risk-graded medical and non-medical queries (1,417 and 1,500 examples respectively). The
dataset was constructed by collecting questions posted on Reddit, such as r/AskDocs. The medical
queries have been labelled by experts and crowd annotators for both relevance and levels of risk (i.e.
non-serious, serious to critical) following established World Economic Forum (WEF) risk levels
designated for chatbots in healthcare. We merge the medical queries of different risk-levels into one
class, given the high scarcity of the latter 2 labels to create an in-domain/out-of-domain classification
task for medical queries. Additionally, we consider only the medical queries that were labelled as
such by expert medical practitioners. Thus this dataset will facilitate discussion on how to guarantee
a system recognises medical queries, to avoid generating medical output.

H LIRPA ALGORITHM DETAILS

Below we briefly present the details of the innerworkings of the auto-LiRPA framework, as outlined
in Xu et al. (2020). For more detailed explanations and definitions, please refer to the original paper.

The final goal is to compute provable lower and upper bounds for the value of output node ho(X), i.e.,
lower bound ho and upper bound ho (element-wise), when X is perturbed within S: ho ≤ ho(X) ≤
ho, ∀X ∈ S. In LiRPA, we find tight lower and upper bounds by first computing linear bounds w.r.t.
X:

WoX+ bo ≤ ho(X) ≤WoX+ bo ∀X ∈ S, (8)
where ho(X) is bounded by linear functions of X with parameters Wo,bo,Wo,bo. We generalize
existing LiRPA approaches into two categories: forward mode perturbation analysis and backward
mode perturbation analysis. Both methods aim to obtain bounds equation 8 in different manners:
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• Forward mode: forward mode LiRPA propagates the linear bounds of each node w.r.t.
all the independent nodes, i.e., linear bounds w.r.t. X, to its successor nodes in a forward
manner, until reaching the output node o.

• Backward mode: backward mode LiRPA propagates the linear bounds of output node o
w.r.t. dependent nodes to further predecessor nodes in a backward manner, until reaching all
the independent nodes.

Forward Mode LiRPA on General Computation Graphs For each node i on the graph, we compute
the linear bounds of hi(X) w.r.t. all the independent nodes:

WiX+ bi ≤ hi(X) ≤WiX+ bi ∀X ∈ S.

We start from independent nodes. For an independent node i, we have hi(X)=xi so we trivially have
the bounds Ixi≤hi(X)≤Ixi. For a dependent node i, we have a forward LiRPA oracle function Gi

which takes Wj , bj , Wj , bj for every j∈u(i) as input and produce new linear bounds for node i,
assuming all node j ∈ u(i) have been bounded:

(Wi,bi,Wi,bi) = Gi({Bj |j ∈ u(i)}),where Bj := (Wj ,bj ,Wj ,bj). (9)

We defer the discussions on oracle function Gi to a Xu et al. (2020). Extending this method to a
general graph with known oracle functions, the forward mode perturbation analysis is straightforward
to extend to a general computational graph: for each dependent node i, we can obtain its bounds by
recursively applying equation 9. We check every input node j and compute the bounds of node j if
they are unavailable. We then use Gi to obtain the linear bounds of node i. The correctness of this
procedure is guaranteed by the property of Gi: given Bj as inputs, it always produces valid bounds
for node i.

Backward Mode LiRPA on General Computation Graphs For each node i, we maintain two
attributes: Ai and Ai, representing the coefficients in the linear bounds of ho(X) w.r.t hi(X):∑

i∈V

Aihi(X) + d ≤ ho(X) ≤
∑
i∈V

Aihi(X) + d ∀X ∈ S, (10)

where d,d are bias terms that are maintained in our algorithm. Suppose that the output dimension of
node i is si, then the shape of matrices Ai and Ai is so×si. Initially, we trivially have

Ao = Ao = I, Ai = Ai = 0(i ̸= o), d = d = 0, (11)

which makes equation 10 hold true. When node i is a dependent node, we have a backward LiRPA
oracle function Fi aiming to compute the lower bound of Aihi(X) and the upper bound of Aihi(X),
and represent the bounds with linear functions of its predecessor nodes u1(i), u2(i), · · · , um(i)(i):

(Λu1(i)
,Λu1(i),Λu2(i)

,Λu2(i), · · · ,Λum(i)(i)
,Λum(i)(i),∆,∆) = Fi(Ai,Ai),

s.t.
∑

j∈u(i)
Λjhj(X) +∆ ≤ Aihi(X), Aihi(X) ≤

∑
j∈u(i)

Λjhj(X) +∆. (12)

We substitute the hi(X) terms in equation 10 with the new bounds equation 12, and thereby these
terms are backward propagated to the predecessor nodes and replaced by the hj(X)(j ∈ u(i)) related
terms in equation 12. In the end, all such terms are propagated to the independent nodes and ho(X)
will be bounded by linear functions of independent nodes only, where equation 10 becomes equivalent
to equation 8.

LLM USAGE

LLMs were used to aid and polish writing (e.g., grammar and spell checks)
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