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ABSTRACT

Autoregressive (AR) models have recently achieved state-of-the-art performance
in text and image generation. However, their primary limitation is slow gener-
ation speed due to the token-by-token process. We ask an ambitious question:
can a pre-trained AR model be adapted to generate outputs in just one or two
steps? If successful, this would significantly advance the development and de-
ployment of AR models. We notice that existing works that attempt to speed up
AR generation by generating multiple tokens at once fundamentally cannot cap-
ture the output distribution due to the conditional dependencies between tokens,
limiting their effectiveness for few-step generation. To overcome this, we pro-
pose Distilled Decoding (DD), which leverages flow matching to create
a deterministic mapping from Gaussian distribution to the output distribution of
the pre-trained AR model. We then train a network to distill this mapping, en-
abling few-step generation. The entire training process of DD does not need the
training data of the original AR model (as opposed to some other methods), thus
making DD more practical. We evaluate DD on state-of-the-art image AR models
and present promising results. For VAR, which requires 10-step generation (680
tokens), DD enables one-step generation (6.3× speed-up), with an acceptable in-
crease in FID from 4.19 to 9.96. Similarly, for LlamaGen, DD reduces generation
from 256 steps to 1, achieving an 217.8× speed-up with a comparable FID in-
crease from 4.11 to 11.35. In both cases, baseline methods completely fail with
FID scores >100. As the first work to demonstrate the possibility of one-step gen-
eration for image AR models, DD challenges the prevailing notion that AR models
are inherently slow, and opens up new opportunities for efficient AR generation.

1 INTRODUCTION

Autoregressive (AR) models (Van den Oord et al., 2016; Chen et al., 2018; Esser et al., 2021; Razavi
et al., 2019; Lee et al., 2022; Yu et al., 2021; Chang et al., 2022; Li et al., 2023; 2024a; Touvron
et al., 2023a;b; Ouyang et al., 2022) are the foundation of state-of-the-art (SOTA) models for text
generation (e.g., GPT (Brown, 2020; Radford et al., 2019; Radford, 2018; Achiam et al., 2023)) and
image generation (e.g., VAR (Tian et al., 2024), LlamaGen (Sun et al., 2024)).

Despite their impressive performance, AR models suffer from slow generation speeds due to their
sequential generation process. More specifically, AR models formulate data (e.g., text, images) as
a sequence of tokens and are trained to predict the conditional probability distribution of one token
given all previous tokens. This means that AR models can only generate data in a token-by-token
fashion, which is slow. For example, LlamaGen-343M-256×256 requires 256 steps (∼5 seconds1)
to generate one 256×256 image.

In this paper, we ask the ambitious question:

Can a pre-trained AR model be adapted to generate data in a few (e.g., one or two) steps?

If successful, this would greatly benefit both the model developers (e.g., reducing the testing and
deployment cost) and the end users (e.g., reducing the latency).

Apparently, this problem is challenging. While speeding up AR models by generating multiple to-
kens at a time (Fig. 2) is extensively studied in literature (Ning et al., 2024a; Liu et al., 2024; Jin
et al., 2024; Stern et al., 2018; Kou et al., 2024; Gloeckle et al., 2024; Cai et al., 2024; Santilli
et al., 2023; Chang et al., 2022; Li et al., 2024a), none of these works were able to generate the
entire sample (i.e., all tokens) in one step. Indeed, we find that there is a fundamental reason for this
limitation (Sec. 3.1). Sampling multiple tokens in parallel (given previous tokens) would have to

1Measured on one NVIDIA A100-80G GPU.
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Figure 1: Comparison of DD models, pre-trained models, and other acceleration methods for pre-
trained models. DD achieves significant speedup compared to pre-trained models with comparable
performance. In contrast, other methods’ performance degrades quickly as inference time decreases.
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Figure 2: High-level comparison between our Distilled Decoding (DD) and prior work. To
generate a sequence of tokens qi: (a) the vanilla AR model generates token-by-token, thus being
slow; (b) parallel decoding generates multiple tokens in parallel (Sec. 4.1), which fundamentally
cannot match the generated distribution of the original AR model with one-step generation (see
Sec. 3.1); (c) our DD maps noise tokens ϵi from Gaussian distribution to the whole sequence of
generated tokens directly in one step and it is guaranteed that (in the optimal case) the distribution
of generated tokens matches that of the original AR model.

assume that these tokens are conditionally independent with each other, which is incorrect in prac-
tice. As an extreme, generating all tokens in one step (i.e., assuming that all tokens are independent)
would completely destroy the characteristics in data (Sec. 3.1). This insight suggest that few-step
AR generation requires a fundamentally different approach.

In this paper, we introduce Distilled Decoding (DD) (Fig. 2), a novel method for distilling
a pre-trained AR model for few-step sampling. In each AR generation step, we use flow matching
(FM) (Liu et al., 2022; Lipman et al., 2022) to transform a random noisy token, sampled from an
isotropic Gaussian distribution, into the generated token. FM ensures that the generated token’s
distribution aligns with that of the AR model. However, this generation process would be even
slower than vanilla AR due to the added FM overhead. The actual benefit is that, the mapping
between noisy and generated token is determinstic. Therefore, we can train a model that directly
distills the mapping between the entire sequence of noisy tokens and the generated tokens. This
enables one-step generation by inputting the sequence of noisy tokens into the distilled model.
Moreover, this deep synergy between AR and FM allows for flexible use of additional generation
steps to improve data quality without changing the model (see Sec. 3.3). Note that the training of DD
does not need the training data of the original AR model. This makes DD more practical as training
data is often not released especially for SOTA LLMs.

As the first work in this series, we focus on image AR models. We validate the effectiveness of DD
on the latest and SOTA image AR models: VAR (Tian et al., 2024) and LlamaGen (Sun et al., 2024).
Our key contributions are:

• We identify the fundamental limitations of existing methods that prevent them from achieving
few-step sampling in AR models.

• We introduce DD to distill pre-trained AR models for few-step sampling.
• For the first time, we demonstrate the feasibility of 1-step sampling with SOTA image AR mod-

els. For example, DD reduces the sampling of VAR from 10 steps to 1-step (6.3× speed-up) with
an acceptable increase in FID from 4.19 to 9.96. For LlamaGen, DD cuts sampling from 256
steps to 1 (217.8× speed-up) with a comparable FID increase from 4.11 to 11.35. In both cases,
baseline methods completely fail on 1 step generation and achieve FID scores >100. DD also
supports more generation steps for better image quality (Fig. 1). See Fig. 3 for visualization.

This work challenges the assumption that AR models must be slow. We hope it paves the way
for efficient AR models and inspires research into one-step AR models in other areas, such as text
generation, where the task is more challenging due to the higher number of steps.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

DD-1step (218×) DD-2step (117×) DD-42step (5.7×) LlamaGen-256step

Figure 3: Qualitative comparisons between DD and vanilla LlamaGen Sun et al. (2024) on
ImageNet 256×256. We show that the generated images of DD have small quality loss compared to
the pre-trained AR model, while achieving ≥ 200 speedup. Note that we do not use fixed noise for
the 42step sample so it may look slightly different. More examples in App. F.

2 PRELIMINARIES

In this section, we introduce the preliminaries required to understand DD.

2.1 AR MODELS

Given a random variable z arranged in a sequence of n tokens (q1, · · · , qn), AR models learn the
conditional distribution of tokens given all previous ones: p(qi|q<i) = p(qi|qi−1, qi−2, · · · , q1).
The data likelihood is given by p(z) =

∏n
i=1 p(qi|q<i). At generation, AR models sample tokens

one by one using the learned conditional distribution for each token, which is therefore slow.

2.2 IMAGE AR MODELS

Image tokenizer. To apply AR models to images, we need to represent continuous images as a
sequence of discrete tokens. Early works of image AR models operate on quantized pixels (Van den
Oord et al., 2016; Chen et al., 2018). Later works propose the vector quantization (VQ) method, uti-
lizing a encoder E , a quantizer Q, and a decoder D to quantize and reconstruct images. Specifically,
after [E , Q, D] is fully trained, the encoder will transform the original image x ∈ R3×H×W into
a more compact latent space: Z = E(x), where Z = {z1, z2, · · · , zh×w} ∈ RC×h×w consists of
h×w embeddings, each has a dimension of C. Then, the quantizer will look up the closest token qi
in the codebook V = (c1, c2, · · · , cV ) ∈ RV×C for each embedding zi. AR works on the quantized
sequence Zq = {q1, q2, · · · , qh×w}. Finally, one can use the decoder to reconstruct the image from
the quantized sequence: x̂ = D(Zq). A distance loss l(x̂, x) is used in training for accurate recon-
struction. The VQ scheme is used in many popular image AR models (Li et al., 2023; Chang et al.,
2022; Tian et al., 2024; Sun et al., 2024; Li et al., 2024a).

The order of tokens. Another important design choice of image AR models is the order of to-
kens. A typical and straightforward method of ordering tokens is following the raster order of
the embeddings zi, such as LlamaGen (Sun et al., 2024). Random order is a more general option
(Chang et al., 2022; Li et al., 2023; 2024a). The SOTA method VAR (Tian et al., 2024) proposes a
novel method where the tokens are arranged according to the resolution. Specifically, give the latent
Z ∈ RC×h×w, VAR down-samples it to a series of resolutions ((h1, w1), (h2, w2), · · · , (hK , wK)),
where hi < hj , wi < wj for i < j. Then, VAR arranges the augmented tokens from these la-
tents in the order of resolution. Tokens from the same resolution are sampled simultaneously. This
more natural and human-aligned next scale prediction approach enables VAR to achieve excellent
performance. However, it still needs 10 steps to generate a 256×256 image, making it inefficient.

2.3 FLOW MATCHING

Given two random distribution π0(x), π1(x) with x ∈ Rd, flow matching (FM) (Liu et al., 2022;
Lipman et al., 2022) constructs a probability path which connects the two distributions. Setting up
a continuous timestep axis and putting the two distribution at t = 0 and t = 1 respectively, such
probability paths can be viewed as an ordinary differential equation (ODE) trajectory. Specifically,
flow matching defines a velocity field V (x, t) at any timestep t, given by:

V (x, t) = Ex0,x1∼π0,1(x0,x1)(
∂φ(x0, x1, t)

∂t
|φ(x0, x1, t) = x), (1)

where π0,1(x0, x1) is any joint distribution that satisfies both
∫
π0,1(x0, x1)dx0 = π1(x1) and∫

π0,1(x0, x1)dx1 = π0(x0), and φ(x, y, t) is a trivariate bijection function for x and y, which
means that at any give timestep t, knowing any two of the φ, x, y will determine the third one.
φ(x, y, t) should also satisfy the boundary conditions: φ(x0, x1, 0) = x0, φ(x0, x1, 1) = x1.

The flow matching ODE has marginal preserving property. Given x0 ∼ π0, we can obtain xt

by stepping along the ODE trajectory: xt = x0 +
∫ t

τ=0
V (xτ , τ)dτ . It can be proved that the

3
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distribution of xt is equal to the distribution of φ(x0, x1, t) (Liu et al., 2022; Lipman et al., 2022):
π(xt) = π(φ(x0, x1, t)), where x0, x1 ∼ π0,1(x0, x1). When we step to t = 1, we will get a
sample from another distribution π1. In practice, π1 is usually set as the target distribution we want
to sample from, while π0 is set as a simple prior distribution, e.g., Gaussian distribution. Then flow
matching enables a generative process from the prior to the target.
3 METHOD
3.1 TRAINING FEW-STEP AR MODELS IS NON-TRIVIAL

In this section, we explain why few-step generation is challenging for AR models and why existing
approaches fundamentally cannot achieve it. To finish the sampling process of the whole token
sequence (q1, · · · , qn) in as few steps as possible, each step should generate as many tokens as
possible. Assume our goal is to generate a set of next tokens (qk+1, · · · , qm) based on a sub-
sequence (q1, · · · , qk) as prefix in one step, there are several straightforward ideas to solve this
problem. We discuss each method and the reason why they do not work as below:

(1) Train a neural network with the prefix sequence as input and output the subsequent tokens
in one run. Actually, the information in the prefix (q0, · · · , qk) is not enough to deterministically
specify the (qk+1, · · · , qm), because there are many feasible possibilities for the subsequent tokens
that can fit the prefix, leaving a one-to-many mapping for the neural network to learn. For example,
we can mask the face portion of a portrait and then select another face from many choices to replace
it. In this case, the neural network can only learn an average of all possibilities and output blurry im-
age tokens, like the one in MAE (He et al., 2022). At the stage where the prefix token is insufficient
to constrain the subsequent tokens (e.g., at the beginning of the AR generation process), feasible
choices are even much more, leading to poor generation quality. A further potential solution is to
select the choice with the highest probability as the output target of the network (e.g., Song et al.
(2021)). However, such a method will destroy the distribution completely by collapsing into the
most likely mode, which is impractical for image generation.

(2) Model the distribution of all subsequent tokens. The neural network can be trained to output
the probability of each subsequent token given the prefix as the input. This approach avoids the
challenges caused by the one-to-many mapping and is used in mask-based AR models (Chang et al.,
2022; Li et al., 2023; 2024a) and VAR (Tian et al., 2024). In this case, the sampling processes of
each token are independent from each other, introducing a gap between the modeled distribution∏m

i=k+1 p(qi|qk, · · · , q1) and the ground truth p(qm, · · · , qk+1|qk, · · · , q1). For image AR models,
the gap is acceptable when m − k is small. However, when the number of new tokens is large,
the gap will increase exponentially, making the performance much worse. Consider the case where
the model is trained to learn to sample all tokens in one run (which is our goal). In this case, the
cross-entropy loss of every token is calculated separately. The final objective can be written as

L =
1

N

N∑
i=1

1

n

n∑
j=1

V∑
k=1

pijklogp̂θjk, (2)

where V is the codebook size, N is the dataset size, pijk is a one-hot vector along the third dimen-
sion given any (i, j), indicating the ground-truth probability distribution, and p̂θjk is the modeled
distribution. In the following proposition, we give the optimal solution of p̂θjk.
Proposition 3.1. The optimal solution for Eq. (2) is p̂θ∗jk =

∑N
i=1 pijk

N

This solution equals to occurrence frequency of the k-th token at the j-th position within the dataset.
The proof can be found in App. A. Based on this proposition, consider a toy case where the dataset
only contains 2 data samples: D = {(0, 0), (1, 1)}. It is easy to find the optimal one-step sam-
pling distribution is a uniform distribution among {(0, 0), (1, 1), (0, 1), (1, 0)}, which is incorrect.
It indicates that the widely used method which predicts the next group of tokens is fundamentally
impossible to apply for few-step generation. We will see such experimental evidence in Sec. 5.

Additionally, attempting to model the joint distribution by outputting the probability distribution
over all possible next m−k tokens is also impractical because of the large number V m−k of possible
values, where V is the codebook size, which is typically several thousands or even tens of thousands.

3.2 CONSTRUCTING DETERMINISTIC TRAJECTORIES FROM GAUSSIAN TO DATA THROUGH
AR FLOW MATCHING

As discussed in section Sec. 3.1, training a model to generate all the tokens in a single run is impos-
sible due to the issue of one-to-many mapping. Therefore, constructing a one-to-one mapping is the
key for training a model to generate more tokens simultaneously. The process is illustrated in Fig. 4.
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Figure 4: AR flow matching. Given all previous tokens, the teacher AR model gives a probability
vector for the next token, which defines a mixture of Dirac delta distributions over all tokens in the
codebook. We then construct a deterministic mapping between the Gaussian distribution and the
Dirac delta distribution with flow matching. The next noise token ϵ4 is sampled from the Gaussian
distribution, and its corresponding token in the codebook becomes the next token q4.

Construct a mapping for a single token. Consider the sampling process of a single token qi ∈ RC

given (q1, · · · , qi−1). Inspired by the knowledge distillation method for diffusion model (Luhman
& Luhman, 2021; Salimans & Ho, 2022; Song et al., 2023; Song & Dhariwal, 2023; Kim et al.,
2023) which map noise to data, we propose to use noise token as additional information to deter-
mine this single token. Specifically, we sample noise token from a prior distribution and map it
to the generated token. We hope that (1) every noise token will be transferred to a deterministic
data token in the codebook, and (2) the distribution of generated token equals to pθ(qi|qi−1, · · · , q0)
given by the pre-trained AR model. We propose to use flow matching as the desired mapping for
the single token. We operate on the continuous embedding space EC of each token given by the
codebook V = (c1, · · · , cv) ∈ RV×C . Since the distribution of the next token is a discrete probabil-
ity distribution among all tokens in the codebook: P(qi = cj) = pj , where pj ≥ 0,

∑V
j=1 pj = 1,

it can also be viewed as a weighted sum of point distributions in the continuous embedding space:
p(qi) =

∑V
j=1 pjδ(qi − cj), where δ(·) is the Dirac function. Denoting πt as the marginal distribu-

tion at timestep t, we set this weighted sum of point distributions as the target distribution π1 and
apply a standard Gaussian distribution as the source distribution π0. We further choose the linear
interpolation used in Liu et al. (2022) as the perturb function: φ(z0, z1, t) = (1− t)z0 + tz1. Then
the velocity field in the flow matching framework is given as:

V (x, t) =

∑V
j=1 pj(cj − x)e

(x−tcj)
2

(1−t)2

(1− t)
∑V

j=1 pje
(x−tcj)

2

(1−t)2

(3)

In this way, we construct a mapping from a noise token embedding ϵi ∈ RC to the generated
token embedding qi with the ODE dx = V (x, t)dt while keeping the distribution of qi unchanged.
We denote this mapping as

qi = FM(ϵi, pθ(·|q<i)) (4)

In practice, we use numerical solvers (Lu et al., 2022) to solve the ODE process, so qi will not have
an exact match in the codebook. To tackle that, we will use the token closest to qi in the codebook.

Construct the whole trajectory along the AR generation process. After constructing a mapping
from (q1, · · · , qi−1, ϵi) to (q1, · · · , qi−1, qi), we can extend such mapping to situations with arbi-
trary length of subsequent noise tokens (q1, · · · , qi−1, ϵi, · · · , ϵm) via an iterative way. After gener-
ating the current token qi from noise ϵi, we can update the sequence with (q1, · · · , qi, ϵi+1, · · · , ϵn)
and get the conditional probability p(qi+1|qi, · · · , q1). Then the same method can be applied to
transfer the next noise token ϵi+1 to data token qi+1, until all the subsequent noise tokens are mapped
to the corresponding generated data. This process imposes no constraints on the length of the prefix,
so we can start from a pure noise sequence (ϵ1, · · · , ϵn). In this way, we construct an AR trajectory
{Xi}n+1

i=1 from pure noise to the final data using flow matching, given as:
Xi = (q1, · · · , qi−1, ϵi, · · · , ϵn) (5)

The recurrence relation is given by Eq. (4).

3.3 DISTILLING AR ALONG THE TRAJECTORY

The AR trajectory transfer the pure noise sequence progressively to the final data sequence, thus
is suitable for a neural network to learn. To enable a trade-off between sample quality and sample
step, we train the model to predict the final data not only at the beginning of the trajectory but also at
intermediate points. Based on this, we first clarify the notation, discuss the model parameterization
and training loss, and finally introduce the overall workflow of distillation and sampling.

Notation. Suppose X = (x1, · · · , xn) and Y = (y1, · · · , yn) are two arbitrary sequence. We
denote X[: t] as a sub-sequence with the first t tokens in X and X[t + 1 :] is the rest part: X[:

5
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Figure 5: The training and generation workflow of DD. Given X1 with noise tokens ϵi, the whole tra-
jectory X1, · · · , X5 consists of data tokens qi and noise tokens ϵi is uniquely determined (Sec. 3.2).
Assuming the timesteps are set to {t1 = 1, t2 = 3}. During training (Sec. 3.3), we train DD model to
reconstruct X5 given X1 or X3 as input. The DD will then have the capability of jumping from X1

and X3 to any point in the later trajectory (e.g., X1 to any of {X2, · · · , X5}). During generation
(Sec. 3.3), we can either do 1-step (X1 → X5) or 2-step generation (X1 → X3 → X5). Addi-
tionally, we can do generation with more steps by incorporating the teacher AR model in part of the
generation process, such as 3-step generation X1 → X2 → X3 → X5 where X2 → X3 utilizes the
AR model and other steps use the DD model.

t] = (x1, · · · , xt), X[t+ 1 :] = (xt+1, · · · , xn). 2 Additionally, we define the Concat operation as
concatenating two sequences: Concat(X,Y ) = (x1, · · · , xn, y1, · · · , yn).
Model parameterization. The model takes an intermediate value Xt = (q1, · · · , qt−1, ϵt, · · · , ϵn)
of the trajectory and the position t as input, and output the final data Xn+1 ∈ Rn×C corresponding
to the Xt. Suppose we have a neural network fθ and denote its output as fθ(X) = (fθ1, · · · , fθn).
Since the first t− 1 tokens of Xt is already correct tokens, they can be directly used as the first t− 1
tokens of the predicted results. We thus parameterize the model output as:

Fθ(Xt, t) = Concat(Xt[: t− 1], fθ(Xt)[t :]) = (q1, · · · , qt−1, fθt, · · · , fθn) (6)

Training loss. We train the model by minimizing the distance between its output and the target data
sequence, which gives the following loss:

L = E[λ(t)d(Fθ(Xt, t), Xn+1)] (7)
Denote {t1, . . . , tL} as the set from which timestep t can be sampled, where ti ∈ [1, n] and t1 = 1,
and Xt = Concat(Xn[: t− 1], X1[t :]), where Xn is the final generated data by the pre-trained AR
model corresponding to X1. The expectation of Eq. (7) is taken with respect to t ∼ Uniform{ti}Li=1
and X1 ∼ N (0, I). λ(·) ̸= 0 is a step-wise weighted function. d(·, ·) is any distance function that
satisfies d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y.

Overall distillation workflow (Fig. 5). Our overall workflow consists of two parts: generating the
training set and training the model. First, we iteratively draw noises from standard Gaussian distri-
bution and calculate the deterministic generated data through the method in Sec. 3.2, to construct a
dataset of noise-data pairs (see Alg. 1). Then we train the model with Eq. (7) using the dataset (see
Alg. 2). In this case, the noise-data pair (X1, Xn) is directly drawn from the dataset.

Generation (Fig. 5). With one trained DD model using the above workflow, we can flexibly ad-
just the trade-off between sample quality and the number of generation timesteps during inference
(Alg. 3). Specifically, any subset of the training timesteps {tk1

, · · · , tkl
} where tk1

= 1 can be cho-
sen as a timestep path from noise to data. We can choose only the first timestep {t1} to do one-step
generation, or leverage more timesteps to improve sample quality. Utilizing the AR property of the
trajectory, jumping from step tki to tki+1 can be implemented by predicting all tokens at timestep
tki and only keeping the ones before tki+1 .

Additionally, we can utilize the pre-trained AR model to achieve more flexibility in the trade-off
between sample quality and timestep. Specifically, we can use the pre-trained AR model to generate
from any position along the sampling process until reaching the next trained timestep for few-step
sampling. Alg. 4 is an example of 2 + tk2 − ts step sampling with the pre-trained model inserted
into the original two-step sampling process. We use the DD model on the first step, re-generate the
last tk2 − ts tokens with the pre-trained AR model, and then apply the DD model for the second step.

Discussions. As a deep synergy between AR and flow matching, DD possesses interesting prop-
erties that none of the flow matching (which is closely related to diffusion models) and AR have.
Compared to AR, DD has the capability of adjusting the number of generation steps. Compared to

2Note that this is different from Python indexing.
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Algorithm 1 Generate dataset
Require:

θΦ: The pre-trained AR model
Generation Process
1: D ← ∅
2: for i = 1, · · · , N do
3: X1 ← (ϵ1, · · · , ϵn) ∼ N (0, I)
4: for t = 1, · · · , n do
5: qt ← FM(ϵt, pθΦ(·|q<t))
6: end for
7: Xn ← (q1, ·, qn)
8: D ← D ∪ {(X1, Xn)}
9: end for

10: return D

Algorithm 2 Training

Require: :Generated dataset with noise-data pairs D, the pre-
trained AR model θΦ.

Hyper-parameter : Available timesteps for training
{t1, · · · , tL}, learning rate η.

Training Process
1: θ initialized from θΦ

2: for i = 1, · · · , Iter do
3: Sample (X1, Xn) ∼ D, t ∼ {t1, · · · , tL}
4: Xt ← Concat(Xn[: t− 1], X1[t :])

5: X̂n ← Fθ(Xt, t)

6: L ← d(X̂n, Xn)
7: θ ← θ − η∇θL
8: end for
9: return θ

Algorithm 3 Sampling
Require: : The distilled few-step model θ, sam-

pling timesteps {tk1 , · · · , tkl}.
Sampling Process
1: X1 ← (ϵ1, · · · , ϵn) ∼ N (0, I), X ← X1

2: for t in {tk1 , · · · , tkl} do
3: X ← Concat(X[: t− 1], X1[t :])
4: X ← Fθ(X, t)
5: end for
6: return X

Algorithm 4 Sampling with the pre-trained AR model

Require: : The distilled few-step model θ, the pre-trained
AR model θΦ, sampling timesteps {tk1 = 1, tk2}, start-
ing timestep of pre-trained model tk1 < ts < tk2 .

Sampling Process
1: X1 ← (ϵ1, · · · , ϵn) ∼ N (0, I), X ← X1

2: X ← Concat(X[: tk1 − 1], X1[tk1 :])
3: X ← Fθ(X, tk1)
4: X ← Concat(X[: ts − 1], X1[ts :])
5: for t in {ts, · · · , tk2 − 1} do
6: Sample qt ∼ pθΦ(·|X[: t− 1])
7: X[t]← qt
8: end for
9: X ← Fθ(X, tk2)

10: return X

flow matching (and diffusion models), DD uses AR to construct the trajectories, and therefore, DD
has an easy way to jump back to any point in the trajectory by replacing the last few generated to-
kens with the original noise tokens, which we utilize in the sampling procedure above. This property
enables DD to keep the trajectory unchanged when sampling with multi-steps, in contrast to other
intermediate-to-final distillation methods for diffusion models (Song et al., 2023; Song & Dhariwal,
2023) which cannot maintain the trajectory during multi-step sampling.

Another point to mention is that the DD does not require the training data of the original AR model,
as opposed to some related work (Li et al., 2024b; Song et al., 2023). This makes DD more practical
in cases where the training data of the pre-trained AR models is not released.

4 RELATED WORK
4.1 DECREASING THE NUMBER OF SAMPLING STEPS OF AR MODELS

Image generation. (1) Mask-based image AR methods (Chang et al., 2022; Li et al., 2023; 2024a)
adopt a random masking ratio when training, allowing them to directly perform a trade-off between
performance and number of steps. Specifically, these models are trained to predict an arbitrary
number of tokens given some other arbitrary number of tokens. By increasing the number of tokens
generated in each step, they can sample faster at the cost of loss in generation quality. However,
the fewest number of generation steps evaluated in these works is only 8 and we show in Sec. 3.1
that they fundamentally cannot support very few steps (e.g., one or two steps). (2) For causal-
transformer-based methods, how to reduce their number of steps is still unknown.

Text generation (large language models). There are already many works focusing on speeding
up the generation of LLMs (Zhou et al., 2024). (1) Speculative decoding first generates a draft of
multiple following tokens and then applies the target LLM to verify these tokens in parallel. The
draft tokens can either be generated (a) sequentially by another (small) AR model (Chen et al.,
2023; Leviathan et al., 2023; Li et al., 2024b) or (b) in parallel by specially trained models or
heads (Cai et al., 2024; Gloeckle et al., 2024; Xia et al., 2023). Method (a) does not reduce the
number of generation steps and therefore is irrelevant to our few-step generation goal. Method
(b) fundamentally cannot match the distribution of the target AR model (Sec. 3.1). As a result,
even when generating a small number of tokens at a time, they rely on a verification step to ensure
correctness, let alone one-step generation. (2) In contrast to token-level parallelism exploited in
speculative decoding, content-based parallelism is another paradigm that exploit the weak relation
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between different parts of the generated content (Ning et al., 2024a; Liu et al., 2024; Jin et al., 2024).
These methods prompt or train the LLM to generate an answer outline, enabling the LLM to generate
independent points in the outline in parallel. However, these methods change the output distribution
of the original AR model. (3) Conceptually similar to our methods, CLLMs (Kou et al., 2024)
utilize Jacobi decoding trajectory (Song et al., 2021; Santilli et al., 2023) and train a student model
to conduct one-step sampling along the trajectory. However, CLLMs only support greedy decoding,
which deviates from the (non-deterministic) generated distribution of the original AR model.

In contrast to all these methods, DD supports one-step sampling while theoretically having the po-
tential to match the output distribution of the original AR model.

4.2 DIFFUSION DISTILLATION

Similar to AR models, diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al.,
2020) also suffer from a large number of sampling steps. Knowledge distillation is a promising
approach to address this problem and has been widely studied. These methods leverage the trajec-
tory constructed by the pre-trained diffusion model, and train neural networks to directly predict
the value multiple steps ahead in the trajectory, rather than predicting just one step ahead as in the
pre-trained model. One key difference between various knowledge distillation methods lies in how
the starting and ending points of multi-step skipping are selected. The earliest method (Luhman &
Luhman, 2021) trains the model to skip the entire trajectory (i.e., predicting the final data directly
from the initial Gaussian noise), enabling one-step sampling. PD (Salimans & Ho, 2022) progres-
sively merges two adjacent steps into one, which makes the optimization task smoother and provides
a trade-off between steps and quality. CM (Song et al., 2023; Song & Dhariwal, 2023) skips from
any intermediate points along the trajectory to the final data. CTM (Kim et al., 2023) proposes a
more general framework which enables the transfer between any two points in the trajectory.

Unlike diffusion models, AR models do not come with these deterministic trajectories, and there-
fore, doing knowledge distillation on AR is not straightforward. One of our key innovations is
the construction of deterministic trajectories out from a pre-trained AR (Sec. 3.2), thereby making
knowledge distillation for AR possible. In this paper, we only explored a simple knowledge distilla-
tion paradigm, and we hope that this work opens the door for more knowledge distillation paradigms
(including the ones above) for AR in the future.

See App. E for more discussions on related works (Li et al., 2024a; Yin et al., 2024)

5 EXPERIMENTS

In this section, we use DD to accelerate pre-trained image AR models and demonstrate its effective-
ness by comparing with the original model and other baselines. More details are in App. C

5.1 SETUP

Training. For pre-trained AR models, we choose VAR (Tian et al., 2024) and LlamaGen (Sun
et al., 2024) for the following reasons: (1) Both methods are recently released, very popular, and
have achieved excellent performance (e.g., LlamaGen claims to beat diffusion models on image
generation). (2) Their token sequences are defined very differently (Sec. 2.2): VAR uses images
of different resolutions to construct the sequence, while LlamaGen adopts traditional method where
tokens are latent pixels and arranged in raster order. We want to test the universality of DD across
different token sequence definitions. (3) Their number of generation steps vary significantly: VAR
has 10 steps while LlamaGen uses 256 steps. We want to test whether DD is able to achieve few-step
generation no matter whether the AR model has a small or a large number of steps. (4) They both
provide different sizes of pre-trained models for us to study how DD scales with model sizes.

We first generate 1.2M data-noise pairs use each of the two models. We set the number of available
timesteps as 2 and use {1, 6}, {1, 81} as {tk1

, tk2
} for VAR, LlamaGen, respectively. Experimental

results show that DD can compress both models to 1 or 2 steps with comparable quality. Following
these works, we choose the popular ImageNet 256×256 (Deng et al., 2009) as the benchmark.

Generation. We apply Alg. 3 with 1 and 2 steps as our main results in Sec. 5.2. We additionally use
Alg. 4 in Sec. 5.3 for better quality with more generation steps. We use a series of staring timesteps
for the pre-trained model to get a smooth trade-off between generation cost and quality.

Baselines. Since there is no existing method for decreasing the generation steps of visual AR with
causal transformers (Sec. 4), we design two baselines: (1) Directly skipping the last several steps,
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Table 1: Generative performance on class-conditional ImageNet-256. “#Step” indicates the number
of model inference to generate one image. “Time” is the wall-time of generating one image in the
steady state. Results with † are taken from the VAR paper (Tian et al., 2024).

Type Model FID↓ IS↑ Pre↑ Rec↑ #Para #Step Time

GAN† StyleGan-XL (Sauer et al., 2022) 2.30 265.1 0.78 0.53 166M 1 0.3

Diff.† ADM (Dhariwal & Nichol, 2021) 10.94 101.0 0.69 0.63 554M 250 168
Diff.† LDM-4-G (Rombach et al., 2022) 3.60 247.7 − − 400M 250 −
Diff.† DiT-L/2 (Peebles & Xie, 2023) 5.02 167.2 0.75 0.57 458M 250 31
Diff.† L-DiT-7B (Peebles & Xie, 2023) 2.28 316.2 0.83 0.58 7.0B 250 >45

Mask.† MaskGIT (Chang et al., 2022) 6.18 182.1 0.80 0.51 227M 8 0.5

AR† VQVAE-2† (Razavi et al., 2019) 31.11 ∼45 0.36 0.57 13.5B 5120 −
AR† VQGAN† (Esser et al., 2021) 18.65 80.4 0.78 0.26 227M 256 19
AR† VQGAN (Esser et al., 2021) 15.78 74.3 − − 1.4B 256 24
AR† ViTVQ (Yu et al., 2021) 4.17 175.1 − − 1.7B 1024 >24
AR† RQTran. (Lee et al., 2022) 7.55 134.0 − − 3.8B 68 21

AR VAR-d16 (Tian et al., 2024) 4.19 230.2 0.84 0.48 310M 10 0.133
AR VAR-d20 (Tian et al., 2024) 3.35 301.4 0.84 0.51 600M 10 -
AR VAR-d24 (Tian et al., 2024) 2.51 312.2 0.82 0.53 1.03B 10 -
AR LlamaGen-B (Sun et al., 2024) 5.42 193.5 0.83 0.44 111M 256 -
AR LlamaGen-L (Sun et al., 2024) 4.11 283.5 0.85 0.48 343M 256 5.01

Baseline VAR-skip-1 9.52 178.9 0.68 0.54 310M 9 0.113
Baseline VAR-skip-2 40.09 56.8 0.46 0.50 310M 8 0.098
Baseline VAR-onestep* 157.5 − − − − 1 −
Baseline LlamaGen-skip-106 19.14 80.39 0.42 0.43 343M 150 2.94
Baseline LlamaGen-skip-156 80.72 12.13 0.17 0.20 343M 100 1.95
Baseline LlamaGen-onestep* 220.2 − − − − 1 −

Ours VAR-d16-DD 9.94 193.6 0.80 0.37 327M 1 0.021 (6.3×)
Ours VAR-d16-DD 7.82 197.0 0.80 0.41 327M 2 0.036 (3.7×)
Ours VAR-d20-DD 9.55 197.2 0.78 0.38 635M 1 -
Ours VAR-d20-DD 7.33 204.5 0.82 0.40 635M 2 -
Ours VAR-d24-DD 8.92 202.8 0.78 0.39 1.09B 1 -
Ours VAR-d24-DD 6.95 222.5 0.83 0.43 1.09B 2 -
Ours LlamaGen-B-DD 15.50 135.4 0.76 0.26 98.3M 1 -
Ours LlamaGen-B-DD 11.17 154.8 0.80 0.31 98.3M 2 -
Ours LlamaGen-L-DD 11.35 193.6 0.81 0.30 326M 1 0.023 (217.8×)
Ours LlamaGen-L-DD 7.58 237.5 0.84 0.37 326M 2 0.043 (116.5×)

denoted as skip-n where n is the number of skipped steps, and (2) predicting the distribution of all
tokens in one step with the optimal solution in Prop. 3.1, denoted as onestep*. We also compare
with the base pre-trained AR models and other generative models for comprehensiveness.

5.2 MAIN RESULTS

The main results of DD are shown at Tab. 1. The key takeaways are:

DD enable few-step generation of AR models. By comparing the required generation step and
time between the pre-trained models (VAR and LlamaGen) and our distilled models (VAR-DD and
LlamaGen-DD), we can see that DD compresses the step and accelerates the pre-trained AR by a very
impressive ratio (6.3× on VAR and 217.8× on LlamaGen). Notably, DD decreases the generation
step and time of LlamaGen by two orders.

Baselines do not work for few-step generation. From Tab. 1, we can see that DD steadily surpasses
the two types of baselines. For skip baseline, we find that the performance rapidly declines as the
number of skipped steps increases. The onestep* indeed does not work as expected in Sec. 3.1, due
to the lack of correlation between tokens.

DD does not sacrifice quality too much. While achieving significant speedup, DD does not sacrifice
the generation quality too much. For VAR, the FID increases of one-step and two-step generation are
smaller than 6 and 4, respectively. For LlamaGen which has more original steps, the FID increase is
around 3.5 for two-step generation. Note that as DD learns the mapping given by the pre-trained AR,
its performance is bounded by the pre-trained model. Such results have already outperformed many
other popular methods like ADM (Dhariwal & Nichol, 2021) with much faster generation speed.

DD scales well with different model sizes. We experiment with two different sizes of LlamaGen
and three different sizes of VAR. DD always achieves reasonable sample quality across different
model sizes. In addition, for each model family, with larger model sizes, DD can achieve better FID.
These results suggest that DD works and scales well with different model sizes.
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Table 2: Generation quality of involving the pre-trained AR model when sampling. The notation
pre-trained-n-m means that the pre-trained AR model is used to re-generate the n-th to m − 1-th
tokens in the sequence generated by the first step of DD.

Type Model FID↓ IS↑ Pre↑ Rec↑ #Para #Step Time

AR VAR (Tian et al., 2024) 4.19 230.2 0.84 0.48 310M 10 0.133
AR LlamaGen (Sun et al., 2024) 4.11 283.5 0.865 0.48 343M 256 5.01

Ours VAR-pre-trained-1-6 5.03 242.8 0.84 0.45 327M 6 0.090 (1.5×)
Ours VAR-pre-trained-4-6 5.47 230.5 0.84 0.43 327M 4 0.062 (2.1×)
Ours VAR-pre-trained-5-6 6.54 210.8 0.83 0.42 327M 3 0.045 (2.6×)
Ours LlamaGen-pre-trained-1-81 5.71 238.6 0.83 0.43 326M 81 1.725 (2.9×)
Ours LlamaGen-pre-trained-41-81 6.20 233.8 0.83 0.41 326M 42 0.880 (5.7×)
Ours LlamaGen-pre-trained-61-81 6.76 231.4 0.83 0.40 326M 22 0.447 (11.2×)

DD allows users to choose the desired trade-off between quality and speed. From Tab. 1, we can
see that generation with two steps has better quality than generation with one step, indicating that
DD offers a trade-off between quality and step, which is a property that AR models using a causal
transformer (such as VAR and LlamaGen) do not have.
5.3 GENERATION INVOLVING THE PRE-TRAINED MODEL

In this section, we test the method in Alg. 4 which utilizes both the distilled model from DD and
the pre-trained AR model to provide more trade-off points between quality and step. As discussed
in Sec. 3.3, we use the pre-trained AR model to re-generate token from ts to tk2 − 1, denoted as
pre-trained-ts-tk2

. Results are shown at Tab. 2. We can see this generation method offers a flexible
and smooth trade-off between quality and step. For example, for VAR, by totally replacing the first
step with the pre-trained model, DD reaches a FID of 5.03 which is very close to the pre-trained
model, while achieving 1.5× speedup. For LlamaGen, DD achieves FID 6.76 with 11.2× speedup.
5.4 ABLATION STUDY

Effect of the training iteration. From Fig. 6, we can see that the few-step FID decreases rapidly in
the first few epochs, demonstrating the high adaptability of the pre-trained AR model across different
tasks, which contributes to the smaller distilling cost of DD than training AR models from scratch.

Effect of the intermediate timestep. From Fig. 6, we find that the convergence speed and perfor-
mance of different intermediate timesteps are similar, indicating that DD is not sensitive to it.

Effect of the dataset size. From Fig. 7, we find that the DD can still work when there is only 0.6M
(data, noise) pairs. Additionally, with more (data, noise) pairs, the performance improves. The
results demonstrate DD’s robustness to limited data and its data scaling ability.

6 LIMITATIONS AND FUTURE WORK

We discuss the limitations of DD and provide several future work directions.

Training few-step AR models without teachers. In this work, we distill pre-trained teacher AR
models to support few-step sampling. The sample quality is therefore bounded by the pre-trained AR
model. It would be interesting to explore if it is possible to eliminate the need for a teacher, which
offers more flexibility and potentially can lead to better sample quality. As discussed in Sec. 4.2,
the trajectory construction in DD opens up the opportunity to apply other diffusion distillation ap-
proaches to AR models. One potential direction is to apply the teacher-free consistency training
approaches (Song et al., 2023; Song & Dhariwal, 2023) on AR models.

Applications on LLMs. Theoretically, DD can be directly applied to LLMs. However, different
from visual AR models, the codebook of LLMs is much larger in both size and embedding dimen-
sions. Additionally, the sequence length of LLMs may be much longer. Therefore, applying DD on
LLMs introduces new challenges to be solved.

Questioning the fundamental trade-off between inference cost and performance. It was re-
cently believed that for AR models scaling up the inference compute and number of generation
steps is important for getting better performance, as exemplified by various LLM prompting tech-
niques (Wei et al., 2022; Nori et al., 2023; Ning et al., 2024b; Snell et al., 2024) and the inference
scaling law presented in OpenAI o1 (OpenAI, 2024). However, as our experiments demonstrated,
it is possible to significantly reduce the inference compute and generation steps without losing too
much fidelity, at least for current image AR models. This suggests that while the inference compute
is important, current models might be wasting compute in the wrong place. It would be interesting
to study (1) where the optimal trade-off between inference cost and performance is, (2) how much
current models are away from that optimal trade-off, and (3) how to modify current models or design
new models to reach that optimal trade-off.
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A PROOF OF PROP. 3.1

Proof. Since all positions in the sequence are symmetrical, we can just consider one certain position
j. The loss on this position is

Lj =
1

N

N∑
i=1

V∑
k=1

pijklogp̂θjk (8)

Due to the normalization constraints of probability, we have
V∑

k=1

p̂θjk = 1 (9)

Considering the Lagrange Multiplier Method, the Lagrange function is given as

F(p̂θj1, · · · , p̂θjV , λ) =
1

N

N∑
i=1

V∑
k=1

pijklogp̂θjk − λ(

V∑
k=1

p̂θjk − 1) (10)

The optimal p̂θjk and the corresponding λ satisfy
∂F
∂p̂θjk

=

∑N
i=1 pijk
Np̂θjk

− λ = 0, k = 1, · · · , V (11)

∂F
∂λ

=

V∑
k=1

p̂θjk − 1 = 0 (12)

By solving the above equations, we can get the final solution

λ =

∑N
i=1

∑V
k=1 pijk

N
= 1 (13)

p̂θ∗jk =

∑N
i=1 pijk
N

(14)

B MODEL ARCHITECTURE DESIGN

Since our method does not alter the AR property nature of the generation task, we can use the same
architecture as the pre-trained model while slightly modify several modules as discussed below.
Aside from these adjusted modules, all other modules inherit the weights from the teacher model for
quicker convergence.

Two final heads for logits and embedding prediction. The task of the model is to output the
token in the codebook (with a shape of V × C) which corresponds to the input noise. There are
two approaches to achieve this goal: we can view the problem as a classification problem among
all tokens in the codebook, or we can treat it as a regression task aimed at outputting the correct
embedding. Therefore, we set two final heads after the transformer backbone. For each token, one
outputs p ∈ RV as the predicted logits among all tokens in the codebook, and the other outputs
c ∈ RC as the predicted embedding. For logits output, we use cross entropy as the distance function
d in Eq. (7), while we apply LPIPS loss (Zhang et al., 2018) for the embedding prediction. The
overall objective is a weighted sum of the two losses. We empirically find that the predicted logits
perform well when t is small and much worse when t is large, while the predicted embeddings
perform the opposite. Thus we simply set a split point and use the predicted logits for small ts and
the predicted embeddings for the rest.

Additional embeddings for noise and data tokens. Since data tokens and noise tokens are fed
in the model simultaneously, and their distribution differs significantly, it is necessary for the net-
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Figure 6: The training curve of FID vs. epoch or iteration for different intermediate timesteps. FIDs
are calculated with 5k generated sample.

work to distinguish between them. Therefore, before the transformer block, We add two different
learnable embeddings to the data tokens and noise tokens, respectively. The two embeddings are
randomly initialized.

Positional Embedding. Actually, the processed sequence of our model is one token longer than
the pre-trained AR model. It is because the pre-trained model needs 1 class label token and n − 1
generated token to obtain the whole sequence, while our model needs 1 class label token and n
noise token to generate the whole sequence. Thus, for models who have positional embedding, we
increase its length by 1 and randomly initialize this new part.

Attention Mask. The attention mask of the pre-trained AR model also can not be used directly
due to the mismatch in length. In our case, we let every token see all previous tokens. For VAR, all
tokens generated at the same step can see each other as well.

C EXPERIMENTAL DETAILS

In this section, we introduce more details of the experiments in Sec. 5.

Dataset Generation. In the dataset generation phase, we use Alg. 1 to construct the data-noise pairs.
For the AR models, we set the classifier-free guidance scale to 2.0 for both VAR and LlamaGen,
while other settings follow the default configuration of these two works. In the flow matching pro-
cess, we employ the perturb function from Rectflow (Liu et al., 2022): φ(x0, x1, t) = (1−t)x0+tx1.
We use the DPM-Solver (Lu et al., 2022) to efficiently solve the FM ODE. Specifically, after cal-
culating the velocity model given by Eq. (3), we wrap the model function V (x, t) to get the noise
prediction model ϵ(x, t): ϵ(x, t) = x − tV (x, t). Then we can directly use the official implemen-
tation of DPM-Solver (see https://github.com/LuChengTHU/dpm-solver) to conduct
sampling with the noise prediction model and the Rectflow noise schedule. Our configuration in-
cludes 10 NFE multistep DPM-Solver++ with an order of 3.

Training Configuration. We follow most of the training configuration for the pre-trained AR
model. For VAR, we use a batch size of 512, a base learning rate 1e-4 per 256 batch size, and
an AdamW optimizer with β1 = 0.9, β2 = 0.95. For LlamaGen, all other settings are the same ex-
cept for the learning rate, which is fixed at 1e-4 and doesn’t vary with the batch size. We distill the
VAR model for 120 epochs and LlamaGen model for 70 epochs. We additionally use exponential
moving average (EMA) with a rate of 0.9999. As discussed in App. B, our model has two types of
prediction results, therefore two types of loss. We assign a loss weight of 1.0 for the embedding loss
(LPIPS) and a weight of 0.1 for the logits loss (cross entropy) to maintain a similar loss scale for
them. For the timestep-wise loss weight, we use a uniform one with λ(t) = 1.

D ADDITIONAL RESULTS

In this section, we show the training curve of different experimental settings. Results are demonstrate
in Fig. 6 and Fig. 7.
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Figure 7: The training curve of FID vs. epoch for different dataset sizes. FIDs are calculated with
5k generated sample.

E MORE RELATED WORK DISCUSSIONS

In this section, we provide expanded discussions on two related works: DMD (Yin et al., 2024) and
MAR (Li et al., 2024a).

DMD (Yin et al., 2024) uses distribution matching to distill diffusion models into few steps. Specif-
ically, the main idea of DMD is to minimize the distance between the generated distribution and the
teacher distribution at all timesteps. Additionally, it constructs data-noise pairs and conducts direct
distillation as a regularization loss term to avoid mode collapse. There are several key differences
between DD and DMD: (1) Target: DMD focuses on diffusion models, whereas DD focuses on AR.
These are two different problems; (2) Technique: In diffusion models, the diffusion process natu-
rally defines the data-noise pairs, which can be directly used for distillation as in DMD. In contrast,
AR models do not have a pre-defined concept of “noise”. How to construct noise and the data-noise
pair (Sec. 3.2) is one important and unique contribution of our work.

That being said, the distribution matching idea in DMD is very insightful, and could potentially be
combined with DD to achieve better approaches for few-step sampling of AR models. For example,
from a high-level perspective, the noisy image in DMD is similar to the partial data sequence in AR,
while the next token logits given by the pre-trained AR model can be viewed as the score function
in DMD. The objective can be set as minimizing the distance between the output of a fake logits
prediction network and the pre-trained AR at all timesteps. As long as the next-token conditional
distribution of the generated distribution is the same as the distribution given by the pre-trained AR
model, the modeled one-step distribution will be correct. There is no requirement for any data-noise
pair in this case.

MAR (Li et al., 2024a) proposes to replace the cross-entropy loss with diffusion loss in AR, which
shares some similarities with DD at a high level since both works view decoding as a denoising
process. The goals of these two works are different though. MAR targets removing the vector
quantization in image AR models for better performance, while DD aims to compress the sampling
steps of AR, without any modification to the codebook. In this sense, these two works are orthogonal
and could potentially be combined to develop a new method that leverages the strengths of both.

F VISUALIZATION

In this section, we demonstrate samples generated by DD.
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Figure 8: Generation results with VAR model (Tian et al., 2024). From left to right: one-step DD
model, two-step DD model, DD-pre-trained-4-6, and the pre-trained VAR model. Note that we do
not use fixed noise for the samples in the 3rd column so they may look slightly different.
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Figure 9: Generation results with VAR model (Tian et al., 2024). From left to right: one-step DD
model, two-step DD model, DD-pre-trained-4-6, and the pre-trained VAR model. Note that we do
not use fixed noise for the samples in the 3rd column so they may look slightly different.
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Figure 10: Generation results with LlamaGen model (Sun et al., 2024). From left to right: one-step
DD model, two-step DD model, DD-pre-trained-41-81, and the pre-trained LlamaGen model. Note
that we do not use fixed noise for the samples in the 3rd column so they may look slightly different.
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Figure 11: Generation results with LlamaGen model (Sun et al., 2024). From left to right: one-step
DD model, two-step DD model, DD-pre-trained-41-81, and the pre-trained LlamaGen model. Note
that we do not use fixed noise for the samples in the 3rd column so they may look slightly different.
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