
PyLO: Towards Accessible Learned Optimizers in PyTorch

Paul Janson * 1 2 Benjamin Thérien * 3 2 Quentin Anthony 4 Xiaolong Huang 1 2 Abhinav Moudgil 1 2

Eugene Belilovsky 1 2

Abstract

Learned optimizers have been an active research
topic over the past decade, with increasing
progress toward practical, general-purpose opti-
mizers that can serve as drop-in replacements for
widely used methods like Adam. However, re-
cent advances—such as VeLO, which was meta-
trained for 4000 TPU-months, remain largely
inaccessible to the broader community, in part
due to their reliance on JAX and the absence
of user-friendly packages for applying the op-
timizers after meta-training. To address this
gap, we introduce PyLO, a PyTorch-based li-
brary that brings learned optimizers to the broader
machine learning community through familiar,
widely adopted workflows. Unlike prior work
focused on limited-scale academic benchmarks,
our emphasis is on applying learned optimiza-
tion to real-world large-scale pre-training tasks.
Our release includes a CUDA-accelerated ver-
sion of the small fc lopt learned optimizer
architecture from (Metz et al., 2022a), delivering
substantial speedups—from 39.36 to 205.59 sam-
ples/sec throughput for training ViT-B/16 with
batch size 32. PyLO also allows us to easily com-
bine learned optimizers with existing optimization
tools such as learning rate schedules and weight
decay. When doing so, we find that learned opti-
mizers can substantially benefit. Our code is avail-
able at https://github.com/Belilovsky-Lab/pylo

1. Introduction
Learned optimization (LO) (Hochreiter et al., 2001;
Andrychowicz et al., 2016) represents a promising yet under-

*Equal contribution.authorship order among first authors was
randomized. 1Concordia University, Montréal, Canada 2Mila –
Quebec AI Institute, Montréal, Canada 3DIRO, Université de
Montréal, Montréal, Canada 4EleutherAI. Correspondence to: Ben-
jamin Thérien <benjamin.therien@umontreal.ca>.

Proceedings of the ICML 2025 Workshop on Championing Open-
source Development in Machine Learning (CODEML ’25). Copy-
right 2025 by the author(s).

32 64 128 256 512
Batch Size

0

200

400

600

800

1000

1200

1400

1600

Ti
m

e
pe

r
It

er
at

io
n

(m
s)

Training Time for ViT-Base-Patch16

Forward
Backward
AdamW

AdaFactor
small_fc_lopt(LOM)-CUDA
small_fc_lopt(LOM)-Naive

Figure 1. Training step timing breakdown for ViT-B/16 on a
single A100GPU. We measure the forward (blue), backward (or-
ange), and optimizer (other colors) times per training step. We
observe that the CUDA-accelerated learned optimizer step shows
substantial improvements over the naive implementation (red). In
all cases, as the batch size is increased, the relative overhead of the
optimizer shrinks.

utilized direction for advancing optimization algorithms in
machine learning. Training contemporary neural networks
requires solving highly non-convex optimization problems
for which theory neither guarantees convergence to a glob-
ally optimal solution, nor convergence at the optimal rate.
Therefore, despite the purportedly strong performance of
hand-designed optimizers such as Adam (Kingma & Ba,
2017), for many tasks of interest, there may be substantial
room for improvement through learning to optimize. Indeed,
VeLO (Metz et al., 2022b), the most performant publicly
available learned optimizer to date, was shown to outper-
form a well-tuned NadamW and schedule baseline optimizer
without hyperparameter tuning. Despite its strong perfor-
mance, however, VeLO is seldom used by our community
today.

Several critical barriers have hindered the more widespread
adoption of learned optimizers: 1) an overfocus on meta-
learning in current learned optimization frameworks, 2) the
absence of a PyTorch implementation for the most perfor-
mant learned optimizers available, 3) the inability to effec-
tively share optimizer weights, 4) the absence of learned
optimizer benchmarking for popular machine learning tasks,

1

https://github.com/Belilovsky-Lab/pylo

PyLO

OptimModels

CUDA
kernels

Meta-learned
Optimizer

Simple
Usage

Download
Task-Specific

Optimizer

PyLO

import torch
from pylo.optim import VeLO
Initialize a model
model = ...
Create a learned optimizer instance
optimizer = VeLO(model.parameters())
Use it like any PyTorch optimizer
for epoch in range(10):
 optimizer.zero_grad()
 loss = loss_fn(model(input), target)
 loss.backward()
 optimizer.step(loss)

Figure 2. PyLO: simplifies the integration of learned optimizers into standard machine learning workflows. By addressing key usability
challenges, PyLO provides seamless access to meta-learned optimization techniques through three core features: (1) automatic weight
loading from Hugging Face Hub, (2) a familiar PyTorch-style optimizer interface, and (3) accelerated CUDA kernel support. The
library bridges the gap between advanced meta-learning research and practical machine-learning applications, enabling researchers and
practitioners to easily leverage state-of-the-art learned optimization techniques in PyTorch.

and 5) learned optimizer step overhead.

In what follows, we take a step towards improving the adop-
tion of learned optimizers for deep learning by providing a
PyTorch implementation of state-of-the-art learned optimiz-
ers that emphasizes their performance and accessibility for
practical machine learning problems. our contributions can
be summarized as follows:

1. We provide a modular open-source implemen-
tation of state-of-the-art learned optimizers
in PyTorch which seamlessly integrates with
torch.optim.Optimizer and the Huggingface
ecosystem to easily integrate with existing code and
facilitates standardized sharing of task-specific learned
optimizer weights (Figure 2).

2. We provide a CUDA-accelerated implementation of
small fc lopt’s optimizer step, which substan-
tially reduces memory overhead and increases occu-
pancy (GPU utilization as in Figure 1).

3. We benchmark optimizer step times and performance
in PyLO for popular image classification and language
modeling workloads, showing that our implementation
scales to larger workloads and decreases step times by
more than 2X over the existing JAX implementation.

4. Our flexible framework makes it easy to study the ef-
fect of weight decay and learning rate schedules on
learned optimizer performance by leveraging the ex-
isting Pytorch API and, when doing so, we find that
making these simple additions can substantially im-
prove performance in some cases.

2. Project vision
With our goal of improving the adoption of learned optimiz-
ers within the deep learning community and enhancing the
open-source ecosystem around them, we design PyLO with
the following principles in mind:
Accessibility With minimal dependencies (PyTorch + Hug-
gingFace) and a straightforward installation process, PyLO
eliminates the technical barriers that have impeded the
widespread adoption of learned optimizers thus far.
Decoupling By exclusively providing efficient learned op-
timizer implementations in PyTorch without meta-training
code, PyLO decouples meta-testing from meta-training.
This substantially reduces code bloat and additional depen-
dencies required compared to other frameworks. As a result,
PyLO is simpler to use and easier to understand.
Interoperability Through strict adherence to the PyTorch
optimizer (torch.optim.Optimizer) interface specification,
PyLO ensures seamless integration with existing training
pipelines, enabling practitioners to adopt learned optimizers
with minimal modification to existing code. It also helps to
use external learning rate schedulers and decoupled weight
decay.

3. Addressing Learned Optimizer Adoption
Barriers with PyLO

Overfocus on Meta-learning Existing learned optimizer
libraries (Metz et al., 2022a; Chen et al., 2022) include both
meta-learning research code along with optimizer classes,
making it difficult for newcomers to navigate the pack-
age. Moreover, both existing libraries provide optimizer
interfaces that diverge significantly from PyTorch’s familiar
torch.optim.Optimizer interface, a mainstay of our

2

PyLO

community. This forces practitioners to make substantial
codebase modifications. PyLO directly addresses this bar-
rier by seamlessly extending PyTorch’s optimizer interface,
enabling practitioners to directly insert learned optimizers
into their training code with as few as five lines of code
(see Figure 2). Our design maintains full compatibility
with existing PyTorch code, including learning rate sched-
ules, gradient accumulation, data-parallel training, and many
more features, eliminating the integration friction that has
hindered adoption.

LO weight accessibility Unlike the thriving ecosystem for
sharing pre-trained models through HuggingFace Hub (Hug-
gingFace), no standardized mechanism exists for distribut-
ing learned optimizer weights. In PyLO, we establish a stan-
dardized ecosystem for sharing learned optimizer weights
through HuggingFace integration, automatically handling
weight downloading, caching, and loading with simple
model identifiers1. This approach mirrors the successful
model-sharing paradigm that has accelerated adoption of
pre-trained models across the machine learning community
(Wolf et al., 2020; von Platen et al., 2022).

Computational Overhead The per-step computational cost
of learned optimizers has been a significant deterrent, as
practitioners are reluctant to adopt optimization algorithms
that increase training time although they may substantially
improve convergence. PyLO overcomes this critical barrier
through a custom CUDA implementation of the learned opti-
mizer’s feature computation and forward pass that achieves
substantial reductions in per-step execution time compared
to the existing Jax implementation.

4. Code design
We implement a modular architecture partitioned into three
main components to realize our project vision. This de-
sign philosophy prioritizes both usability for practitioners
and extensibility for researchers developing novel learned
optimizers.

Optimization Module (pylo.optim) This module facilitates
critical state management functions necessary for learned
optimization. These include maintaining parameter-specific
accumulators, computing parameter features for optimizer
forward passes, executing update steps with configurable
learning rate scaling, and supporting standard PyTorch opti-
mizer functionality such as state dictionaries for resuming.
This implementation allows practitioners to leverage ad-
vanced learned optimization techniques without significant
modifications to existing training setups.

Meta-Model Architectures (pylo.models) This module en-

1see for example the page of the µLOM optimizer (Thérien
et al., 2024) https://huggingface.co/btherien/
mulo

125M 355M 1.0B
Parameter Count (M)

200

300

400

500

600
700

O
pt

im
iz

er
 s

te
p

Ti
m

e
(m

s)

Small

Medium

Small

Medium

Large

small_fc_lopt - JAX
small_fc_lopt - PyLO-CUDA (Ours)

Figure 3. Step Time Scaling of Learned Optimizer. We present
a comparison of optimizer step time between our custom CUDA
implementation and the original JAX version of small fc lopt,
evaluated during the training of GPT-2 style transformer models
across a range of model sizes. The results show that our CUDA
implementation not only achieves substantially lower step times
but also maintains this advantage as model size increases, enabling
more efficient scaling to larger architectures.

capsulates the parameters of the learned optimizer and its
forward pass. It is also fully integrated with HuggingFace-
Hub (HuggingFace), allowing users to download existing op-
timizers from the hub and providing a mechanism for weight
distribution and versioning of future optimizers. Through
HF integration, we facilitate community-driven improve-
ment cycles and allow researchers to easily leverage our
CUDA-accelerated implementation for their own bench-
marking.

CUDA Acceleration (pylo.csrc) The unique computa-
tional demands of learned optimizers present challenges
that default PyTorch is unequipped to handle. There-
fore, we implemented a specialized CUDA kernel for the
small fc lopt learned optimizer. This implementation
strategically leverages the GPU memory hierarchy to ad-
dress the primary bottleneck: memory bandwidth rather than
computational throughput. Our CUDA implementation em-
ploys two key optimization strategies: (1) Register-Based
Computation and (2) On-the-Fly Feature Computation.
The first utilizes GPU registers to store intermediate activa-
tions during forward propagation through the optimizer’s
MLP. This approach minimizes high-latency global memory
accesses by keeping frequently accessed data in the fastest
available memory tier. The second avoids storing normal-
ized features in global memory, recalculating them when
needed, and trading redundant computation for reduced
memory bandwidth.

5. Benchmarking LO step times in PyLO
In this section, we establish the per-step overhead of learned
optimizers for common pre-training workloads and show-

3

https://huggingface.co/btherien/mulo
https://huggingface.co/btherien/mulo

PyLO

Model Optimizer BS/SL Fwd (ms) Bwd (ms) Opt step (ms) #Params (M)

ViT-B/16

AdamW

32/197 17.52 38.13

4.90

86.57Adafactor 18.99
small fc lopt (naive) 756.80
small fc lopt (CUDA) 99.59

GPT2-355M

AdamW

4/1024 197.41 392.29

20.12

355.92Adafactor 35.11
small fc lopt (naive) 2872.17
small fc lopt (CUDA) 319.14

Table 1. Timing Results Across Optimizers for ViT and GPT Models. We report optimizer step times for Vision Transformer (ViT-B/16)
and a GPT-2 style model with 355M parameters, using realistic batch sizes (BS) and sequence lengths (SL) that fit within the memory
constraints of a single A100 GPU. The results demonstrate that our custom CUDA kernel significantly reduce optimizer step time
compared to naive implementation, enabling more efficient training in practical settings.

case the improved scaling behavior of PyLO’s CUDA-
accelerated learned optimizer steps. Our goal is to report
learned optimizer overhead relative to hand-designed opti-
mizers for practical tasks and to illustrate how the overhead
scales as the model size is increased. To this end, we bench-
mark and record the forward, backward, and optimizer step
times for training ViT-B/16 and a 410M parameter language
model on a single 80GB A100 GPU.

Learned Optimizer overhead shrinks as batch size in-
creases
Figure 1 reports timings at different batch sizes for ViT-B/16.
We observe that as batch size is increased the overhead of
the learned optimizer’s step compared to the forward and
backward pass shrinks. This suggests that large-scale train-
ing with long per-step times may be a suitable workload
for learned optimizers, where the cost of applying the op-
timizer can be amortized. Table 1 compares timing results
across different optimizers for ViT and GPT. We observe
that the per-step time small fc lopt (CUDA) increases
due to the large parameter count of the language model but
that using our CUDA kernels still leads to a remarkable
improvement over the naive implementation. We note that
it also halves the optimizer step time of the original JAX
implementation (see Figure 3).

Scaling behavior of our CUDA implementation
Figure 3 reports the scaling behavior w.r.t. transformer
size when trained with different implementations of
small fc lopt (we use hidden size 32 as in (Thérien
et al., 2024)): CUDA and JAX. JAX corresponds to the orig-
inal implementation of (Metz et al., 2022a), which uses the
JAX compiler, while CUDA is the fastest implementation
that we make available in PyLO. We observe that our CUDA
implementation results in a substantial memory savings as it
can optimize the large model size while the JAX implemen-
tation runs out of memory for the 1B parameter transformer
on an 80 GB A100 GPU. Moreover, in cases where the JAX
implementation does not run out of memory, it is outper-

formed by our CUDA implementation, resulting in a 2X
reduction in step time. While a 2X improvement may seem
meager for a single step, across hundreds of thousands of
optimization steps it can make a large difference.

6. Demonstrating the real-world use of PyLO
In the following section, we evaluate and compare our Py-
Torch implementation of VeLO (Metz et al., 2022b) and
µLOM (Thérien et al., 2024) to the performance of tuned
AdamW with a cosine annealing schedule. Our goal is to
establish the performance of readily available learned op-
timizers in PyLO for these practical vision and language
pre-training tasks.

6.1. Training Vision Transformer on ImageNet-1K

Experimental Configuration: We train ViT-Base/16 mod-
els (86M parameters) for 480 epochs (150k steps) on
ImageNet-1K following established protocols (Wightman,
2019). We apply standard augmentation techniques (Ran-
dAugment, CutMix, Mixup) to ensure realistic training con-
ditions that reflect practical deployment scenarios. We em-
ploy a batch size of 4096 and conduct these experiments on
Nvidia H100 GPUs.

Results As shown in Table 2 VeLO demonstrates compet-
itive performance in this context, achieving 78.45% top-1
accuracy compared to AdamW’s 77.22%. This scenario
demonstrates a case where the learned optimizer practically
competes with AdamW. µLO exhibits training divergence
after 65,000 steps due to its limited 1,000-step meta-training
horizon, achieving only 62.14% peak validation accuracy.

6.2. Language model pre-training on FineWeb

Experimental Configuration
We pre-train a 355M parameter GPT-2 style transformers
on FineWeb-EDU (Lozhkov et al., 2024) for 10B tokens,

4

PyLO

0 5000 10000 15000 20000
Training Steps

3.00

3.25

3.50

3.75

4.00

4.25

4.50

4.75

5.00

Lo
ss

LOM

LOM + Weight Decay
LOM + Schedule

(a) LM µLO

0 5000 10000 15000 20000
Training Steps

3.00

3.25

3.50

3.75

4.00

4.25

4.50

4.75

5.00

Lo
ss

VeLO
VeLO + Weight Decay
VeLO + Schedule

(b) LM VeLO

0 50000 100000 150000
Training Steps

0%

10%

20%

30%

40%

50%

60%

70%

80%

To
p-

1
Ac

cu
ra

cy
 (%

)

LOM

LOM + Weight Decay
LOM + Schedule

(c) ViT µLO

0 50000 100000 150000
Training Steps

0%

10%

20%

30%

40%

50%

60%

70%

80%

To
p-

1
Ac

cu
ra

cy
 (%

)

VeLO
VeLO + Weight Decay
VeLO + Schedule

(d) ViT VeLO

Figure 4. Weight decay and learning rate schedule (LRS) ablation. In PyLO, it is easy to equip VeLO and µLOM with weight decay
and learning rate schedules since it integrates with torch.optim.Optimizer. We sweep different values and find that in some cases
learned optimizers improve.

Table 2. Final Loss for Language Modeling (LM) and Final Vali-
dation Accuracy for Vision Transformer (ViT) Tasks for Medium
Model Sizes Using Different Optimizers

Optimizer LM Loss ↓ (355M) ViT Acc. ↑ (86M)

µLOM 3.18 62.14
VeLO 2.89 78.39
AdamW + Cosine 2.91 77.22

employing a batch size of 512 and sequences of length 1024
(see section G for additional hyperparameter details).

Results
Table 2 reports the final loss achieved for all optimizers in
our study, while figure 7 of the appendix plots the training
curves. We observe that VeLO outperforms AdamW and
µLOM , reaching the lowest final loss. This demonstrates
that PyLO has the potential to deliver optimization perfor-
mance improvements to PyTorch users.

6.3. Combining scheduler and decoupled weight decay

To showcase the interoperability of our library, we add
learning rate scheduling and decoupled weight decay to
our learned optimizer implementations in as little as 5 lines
of code. Although the primary objective of learned opti-
mization is to eliminate the reliance on manually designed
heuristics, we take the opportunity to investigate whether
learning rate schedules and weight decay can still improve
learned optimizer performance.

Effect of Learning Rate Scheduler
We equip µLOM and VeLO with a cosine annealing LRS
and tune the maximum learning rate (MaxLR). Figure 4
reports ViT and GPT training and accuracy curves for the
best-performing MaxLR while training curves for more
values are reported in the appendix (F). We observe that
µLOM benefits substantially from explicit scheduling, ex-

tending stable training from 65k to 150k steps and reaching
71% Top-1 accuracy on ImageNet and improving loss in
language model pre-training. VeLO shows minimal schedul-
ing improvements, suggesting different internal adaptation
mechanisms.

Effect of Weight decay
We equip µLOM and VeLO with decoupled weight decay
and tune the decay coefficient, λ. Figure 4 reports ViT and
GPT training and accuracy curves for the best-performing
λ while training curves for more values are reported in the
appendix (F). We observe that µLOM benefits from weight
decay for training GPT but not VeLO. Neither optimizer
benefits from weight decay for ViT tasks.

7. Conclusion
In conclusion, we have introduced PyLO, an open-
source repository for state-of-the-art learned optimiz-
ers in PyTorch. PyLO breaks down the barriers
to learned optimizers adoption by integrating directly
with torch.optim.Optimizer and the HuggingFace
ecosystem, allowing users to directly leverage learned op-
timizers in their existing code and easily download and
share learned optimizer weights. For the best performance,
PyLO implements a CUDA accelerated forward pass for
the small fc lopt architecture, which we demonstrate
has superior scaling properties and lower memory overhead
than the original JAX implementation. When benchmark-
ing the PyLO implementation of µLOM and VeLO against
AdamW, we observed that VeLO can outperform AdamW
on transformer language modeling and ViT tasks. We also
ran ablations facilitated by PyLO’s PyTorch integration and
found that learning rate schedules and weight decay can
substantially improve the performance of certain learned
optimizers.

5

PyLO

ACKNOWLEDGMENTS

We acknowledge support from FRQNT New Scholar [E.B.]
and the FRQNT Doctoral (B2X) scholarship [B.T., A.M.].
We also acknowledge resources provided by Compute
Canada, Calcul Québec, and Mila.

References
Andrychowicz, M., Denil, M., Gomez, S., Hoffman, M. W.,

Pfau, D., Schaul, T., Shillingford, B., and De Freitas, N.
Learning to learn by gradient descent by gradient descent.
Advances in neural information processing systems, 29,
2016.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary,
C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J.,
Wanderman-Milne, S., and Zhang, Q. JAX: composable
transformations of Python+NumPy programs, 2018. URL
http://github.com/jax-ml/jax.

Chen, T., Chen, X., Chen, W., Wang, Z., Heaton, H., Liu,
J., and Yin, W. Learning to optimize: A primer and a
benchmark. The Journal of Machine Learning Research,
23(1):8562–8620, 2022.

Dao, T., Fu, D., Ermon, S., Rudra, A., and Ré, C. Flashat-
tention: Fast and memory-efficient exact attention with
io-awareness. Advances in neural information processing
systems, 35:16344–16359, 2022.

DeepSeek-AI, Guo, D., Yang, D., Zhang, H., Song, J.,
Zhang, R., Xu, R., Zhu, Q., Ma, S., Wang, P., Bi, X.,
Zhang, X., Yu, X., Wu, Y., Wu, Z. F., Gou, Z., Shao, Z.,
Li, Z., Gao, Z., Liu, A., Xue, B., Wang, B., Wu, B., Feng,
B., Lu, C., Zhao, C., Deng, C., Zhang, C., Ruan, C., Dai,
D., Chen, D., Ji, D., Li, E., Lin, F., Dai, F., Luo, F., Hao,
G., Chen, G., Li, G., Zhang, H., Bao, H., Xu, H., Wang,
H., Ding, H., Xin, H., Gao, H., Qu, H., Li, H., Guo, J.,
Li, J., Wang, J., Chen, J., Yuan, J., Qiu, J., Li, J., Cai,
J. L., Ni, J., Liang, J., Chen, J., Dong, K., Hu, K., Gao,
K., Guan, K., Huang, K., Yu, K., Wang, L., Zhang, L.,
Zhao, L., Wang, L., Zhang, L., Xu, L., Xia, L., Zhang,
M., Zhang, M., Tang, M., Li, M., Wang, M., Li, M., Tian,
N., Huang, P., Zhang, P., Wang, Q., Chen, Q., Du, Q., Ge,
R., Zhang, R., Pan, R., Wang, R., Chen, R. J., Jin, R. L.,
Chen, R., Lu, S., Zhou, S., Chen, S., Ye, S., Wang, S., Yu,
S., Zhou, S., Pan, S., Li, S. S., Zhou, S., Wu, S., Ye, S.,
Yun, T., Pei, T., Sun, T., Wang, T., Zeng, W., Zhao, W.,
Liu, W., Liang, W., Gao, W., Yu, W., Zhang, W., Xiao,
W. L., An, W., Liu, X., Wang, X., Chen, X., Nie, X.,
Cheng, X., Liu, X., Xie, X., Liu, X., Yang, X., Li, X., Su,
X., Lin, X., Li, X. Q., Jin, X., Shen, X., Chen, X., Sun,
X., Wang, X., Song, X., Zhou, X., Wang, X., Shan, X.,
Li, Y. K., Wang, Y. Q., Wei, Y. X., Zhang, Y., Xu, Y., Li,
Y., Zhao, Y., Sun, Y., Wang, Y., Yu, Y., Zhang, Y., Shi,

Y., Xiong, Y., He, Y., Piao, Y., Wang, Y., Tan, Y., Ma, Y.,
Liu, Y., Guo, Y., Ou, Y., Wang, Y., Gong, Y., Zou, Y., He,
Y., Xiong, Y., Luo, Y., You, Y., Liu, Y., Zhou, Y., Zhu,
Y. X., Xu, Y., Huang, Y., Li, Y., Zheng, Y., Zhu, Y., Ma,
Y., Tang, Y., Zha, Y., Yan, Y., Ren, Z. Z., Ren, Z., Sha, Z.,
Fu, Z., Xu, Z., Xie, Z., Zhang, Z., Hao, Z., Ma, Z., Yan,
Z., Wu, Z., Gu, Z., Zhu, Z., Liu, Z., Li, Z., Xie, Z., Song,
Z., Pan, Z., Huang, Z., Xu, Z., Zhang, Z., and Zhang, Z.
Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning, 2025.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., et al. An image is worth 16x16
words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

He, H. The state of machine learning frameworks in 2019.
The Gradient, 2019.

Hochreiter, S., Younger, A. S., and Conwell, P. R. Learning
to learn using gradient descent. In Artificial Neural Net-
works—ICANN 2001: International Conference Vienna,
Austria, August 21–25, 2001 Proceedings 11, pp. 87–94.
Springer, 2001.

HuggingFace. Hugging face hub. https://
huggingface.co/docs/huggingface_hub.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization, 2017.

Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C.,
Gustafson, L., Xiao, T., Whitehead, S., Berg, A. C., Lo,
W.-Y., Dollár, P., and Girshick, R. Segment anything.
arXiv:2304.02643, 2023.

Loshchilov, I. and Hutter, F. SGDR: stochastic gradient de-
scent with warm restarts. In 5th International Conference
on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings. Open-
Review.net, 2017.

Loshchilov, I. and Hutter, F. Decoupled weight decay regu-
larization. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA,
May 6-9, 2019. OpenReview.net, 2019.

Lozhkov, A., Ben Allal, L., von Werra, L., and Wolf,
T. Fineweb-edu: the finest collection of educational
content, 2024. URL https://huggingface.co/
datasets/HuggingFaceFW/fineweb-edu.

Metz, L., Freeman, C. D., Harrison, J., Maheswaranathan,
N., and Sohl-Dickstein, J. Practical tradeoffs between
memory, compute, and performance in learned optimiz-
ers, 2022a.

6

http://github.com/jax-ml/jax
https://huggingface.co/docs/huggingface_hub
https://huggingface.co/docs/huggingface_hub
https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu
https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu

PyLO

Metz, L., Harrison, J., Freeman, C. D., Merchant, A., Beyer,
L., Bradbury, J., Agrawal, N., Poole, B., Mordatch, I.,
Roberts, A., et al. Velo: Training versatile learned opti-
mizers by scaling up. arXiv preprint arXiv:2211.09760,
2022b.

Müller, T., Rousselle, F., Novák, J., and Keller, A. Real-time
neural radiance caching for path tracing. ACM Transac-
tions on Graphics (TOG), 40(4):1–16, 2021.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,
M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L.,
Bai, J., and Chintala, S. Pytorch: An imperative style,
high-performance deep learning library. Advances in
Neural Information Processing Systems, 32, 2019.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark,
J., Krueger, G., and Sutskever, I. Learning transferable
visual models from natural language supervision. In
Meila, M. and Zhang, T. (eds.), Proceedings of the 38th
International Conference on Machine Learning, ICML
2021, 18-24 July 2021, Virtual Event, volume 139 of
Proceedings of Machine Learning Research, pp. 8748–
8763. PMLR, 2021.

Rezk, F., Antoniou, A., Gouk, H., and Hospedales, T. M.
Is scaling learned optimizers worth it? evaluating the
value of velo’s 4000 TPU months. In Antorán, J., Blaas,
A., Buchanan, K., Feng, F., Fortuin, V., Ghalebikesabi,
S., Kriegler, A., Mason, I., Rohde, D., Ruiz, F. J. R.,
Uelwer, T., Xie, Y., and Yang, R. (eds.), Proceedings on

”I Can’t Believe It’s Not Better: Failure Modes in the Age
of Foundation Models” at NeurIPS 2023 Workshops, 16
December 2023, New Orleans, Louisiana, USA, volume
239 of Proceedings of Machine Learning Research, pp.
65–83. PMLR, 2023.

Shazeer, N. and Stern, M. Adafactor: Adaptive learning
rates with sublinear memory cost. In Dy, J. G. and
Krause, A. (eds.), Proceedings of the 35th International
Conference on Machine Learning, ICML 2018, Stock-
holmsmässan, Stockholm, Sweden, July 10-15, 2018, vol-
ume 80 of Proceedings of Machine Learning Research,
pp. 4603–4611. PMLR, 2018.

Thérien, B., Étienne Joseph, C., Knyazev, B., Oyallon, E.,
Rish, I., and Belilovsky, E. µlo: Compute-efficient meta-
generalization of learned optimizers, 2024. URL https:
//arxiv.org/abs/2406.00153.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., Bikel, D., Blecher, L., Ferrer, C. C., Chen,
M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W.,

Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn,
A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez,
V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P. S.,
Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y.,
Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Moly-
bog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R.,
Saladi, K., Schelten, A., Silva, R., Smith, E. M., Subra-
manian, R., Tan, X. E., Tang, B., Taylor, R., Williams,
A., Kuan, J. X., Xu, P., Yan, Z., Zarov, I., Zhang, Y.,
Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Sto-
jnic, R., Edunov, S., and Scialom, T. Llama 2: Open
foundation and fine-tuned chat models, 2023. URL
https://arxiv.org/abs/2307.09288.

von Platen, P., Patil, S., Lozhkov, A., Cuenca, P., Lam-
bert, N., Rasul, K., Davaadorj, M., Nair, D., Paul, S.,
Berman, W., Xu, Y., Liu, S., and Wolf, T. Diffusers:
State-of-the-art diffusion models. https://github.
com/huggingface/diffusers, 2022.

Wightman, R. Pytorch image models. https://github.
com/rwightman/pytorch-image-models,
2019.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue,
C., Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz,
M., Davison, J., Shleifer, S., von Platen, P., Ma, C., Jer-
nite, Y., Plu, J., Xu, C., Scao, T. L., Gugger, S., Drame,
M., Lhoest, Q., and Rush, A. M. Transformers: State-
of-the-art natural language processing. In Proceedings
of the 2020 Conference on Empirical Methods in Natu-
ral Language Processing: System Demonstrations, pp.
38–45, Online, October 2020. Association for Compu-
tational Linguistics. URL https://www.aclweb.
org/anthology/2020.emnlp-demos.6.

7

https://arxiv.org/abs/2406.00153
https://arxiv.org/abs/2406.00153
https://arxiv.org/abs/2307.09288
https://github.com/huggingface/diffusers
https://github.com/huggingface/diffusers
https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

PyLO

A. Comparison to Existing Learned Optimization Frameworks
Open-L2O (Chen et al., 2022) offers a comprehensive benchmarking suite designed primarily for evaluating learned
optimizers (L2O) across a range of optimization problems. It includes both model-based and model-free L2O methods,
facilitating reproducibility and fair comparisons but does not focus on practical deployment for real-world tasks.

Google’s learned optimization (Metz et al., 2022a) is a research-oriented repository that provides a robust JAX-based
framework for training, designing, evaluating, and applying learned optimizers. It extensively supports meta-training
mechanisms, including Evolution Strategies (ES) and Predictive ES (PES), but lacks user-friendly interfaces for applying
these optimizers in practical, production-oriented settings.

PyLO (ours) addresses critical barriers that have limited the adoption of learned optimizers in the broader machine learning
community by providing an accessible, performance-focused PyTorch implementation. PyLO features seamless integration
with PyTorch workflows, CUDA acceleration for computational efficiency, and HuggingFace ecosystem integration for easy
sharing of optimizer weights and community-driven development.

Comparative Analysis PyLO distinguishes itself from Open-L2O and Google’s learned optimization in several key
aspects:

1. Framework Compatibility: PyLO is built entirely in PyTorch, ensuring compatibility with the predominant framework
used by practitioners, unlike Google’s learned optimization, which is JAX-based.

2. Decoupled Meta-testing: PyLO exclusively provides optimized implementations for meta-testing without the com-
plexity and overhead associated with meta-training code, unlike the other repositories.

3. HuggingFace Integration: PyLO integrates deeply with the HuggingFace Hub, facilitating standardized sharing,
versioning, and benchmarking of task-specific optimizers, a capability not provided by the other repositories.

4. Computational Efficiency: By leveraging specialized CUDA kernels, PyLO significantly reduces optimizer step
overhead, enabling practical deployment for large-scale models, a substantial improvement over naive implementations.

The strengths of PyLO position it uniquely as both researcher- and practitioner-friendly, enabling efficient exploration and
practical use of state-of-the-art learned optimization techniques.

Table 3. Comparison of Learned Optimization Repositories

Repository HF PyTorch Decoupled Paper Github

Open-L2O ✗ ✓ ✗ (Chen et al., 2022) Open-L2O
Learned Optimization ✗ ✗ ✗ (Metz et al., 2022a) learned optimization
PyLO (ours) ✓ ✓ ✓ In submission PyLO

B. Extended challenges of L2O adoption for the Wider ML community
This section examines the critical barriers hindering the widespread adoption of learned optimizers within the broader
machine-learning community. Despite their demonstrated potential for reduced training wall-clock time across various
domains(Metz et al., 2022a; Chen et al., 2022), several structural and technical challenges have limited the integration of
learned optimizers into standard machine learning workflows. The main barriers can be summarized as follows:

Several critical barriers have hindered the more widespread adoption of learned optimizers for deep learning tasks in our
community: 1) overfocus on meta-learning in current frameworks, 2) absence of a PyTorch implementation for the most
performant learned optimizers available, 3) the inability to effectively share optimizer weights, 4) the absence of learned
optimizer benchmarking for popular machine learning tasks, and 5) the optimizer step overhead of learned optimizers.

1. The overfocus on meta-learning in current frameworks.

2. The absence of a PyTorch implementation for the most performant learned optimizers available.

8

https://github.com/VITA-Group/Open-L2O
https://github.com/google/learned_optimization

PyLO

3. The lack of a standardized way to effectively share learned optimizer weights.

4. The absence of learned optimizer benchmarking for popular machine learning tasks.

5. The optimizer step overhead of learned optimizers.

Overfocus on meta-learning A primary obstacle to L2O adoption stems from the disparity between current learned
optimization frameworks and established training paradigms. Existing libraries, such as the JAX (Bradbury et al., 2018)-based
learned optimization framework (Metz et al., 2022a;b), prioritize meta-training capabilities over practical deployment. While
these frameworks do provide mechanisms for utilizing pre-trained learned optimizers, the interfaces diverge significantly
from those familiar to practitioners (Wightman, 2019; Wolf et al., 2020; von Platen et al., 2022). The evaluation and
application of learned optimizers appear as secondary objectives, with insufficient emphasis on seamless integration with
conventional training pipelines. This architectural choice highlights the necessity of decoupling meta-learning and meta-
testing phases, particularly for researchers and practitioners who seek to leverage pre-trained optimization algorithms
without engaging in the complexities of meta-training.

PyTorch v.s. JAX A second significant barrier relates to the underlying deep learning frameworks. While JAX (Bradbury
et al., 2018) offers powerful functional programming capabilities and high flexibility for research workflows, it lacks the
mature ecosystem and widespread adoption of more established frameworks. In contrast, PyTorch (Paszke et al., 2019) has
developed into the dominant deep learning framework with extensive community support (He, 2019) and a rich ecosystem of
pre-trained models and resources (Wightman, 2019; von Platen et al., 2022; Wolf et al., 2020). This prevalence stems partly
from PyTorch’s object-oriented architecture and modular design principles, which facilitate extension, ease-of-use, and
customization. The absence of a comprehensive learned optimizer library that conforms to PyTorch’s optimizer interface
presents a substantial obstacle, as it necessitates significant codebase modifications for implementation and experimentation.
Consequently, there exists a pressing need for a modular L2O framework that seamlessly integrates with PyTorch’s optimizer
class hierarchy. Such integration, particularly when combined with standardized weight serialization and distribution through
established repositories, would substantially accelerate both the circulation and scaling of learned optimization techniques.

Absence of standardized benchmarking A third critical limitation concerns evaluation methodologies and benchmarking
procedures. Current L2O framework Metz et al. (2022a) , typically evaluate optimization algorithms across an extensive
but potentially misaligned task distribution. These evaluations predominantly focus on training loss trajectories rather than
generalization performance metrics that are of primary interest to practitioners. Moreover, recent works like VeLO(Metz
et al., 2022b) omit crucial experimental details, including baseline hyperparameter configurations , impeding reproducibil-
ity and comparative analysis(Rezk et al., 2023). This deficiency underscores the necessity for standardized evaluation
frameworks that enable systematic comparison of conventional and learned optimizers on practically relevant tasks. Such
frameworks should prioritize contemporary challenges in vision and language model pre-training rather than theoretical
convex optimization problems that, while analytically tractable, often fail to capture the complexities of modern neural
network training dynamics.

Sharing learned optimizer weights Pre-trained models for language understanding (DeepSeek-AI et al., 2025; Touvron
et al., 2023), image classification (Dosovitskiy et al., 2020; Radford et al., 2021), semantic segmentation (Kirillov et al.,
2023), and a number of other tasks are routinely shared via platforms such as HuggingFace Hub (HuggingFace), enabling
practitioners to leverage computational investments made by well-resourced institutions. This collaborative open-model
ecosystem has accelerated innovation and reduced redundancy in these domains through its expansion of access to state-
of-the-art models. Despite this revolution in model sharing, we lack seamless sharing in learned optimizer weights. We
suggest that foundational Learned Optimizer (LO) models can and should be integrated into the community following
similar distribution mechanisms (e.g., HuggingFace) to those established for neural network weights. Our objective is to
facilitate seamless integration of learned optimizers into existing PyTorch (Paszke et al., 2019) workflows with minimal
friction, addressing the significant gap in accessibility for the predominant deep learning framework used by practitioners.
Furthermore, by establishing infrastructure for distributing optimizer weights, we aim to catalyze a parallel ecosystem where
learned optimizer rules can be shared and deployed across diverse problem domains.

Per-step overhead of learned optimizers A significant obstacle to the widespread adoption of learned optimizers is the
computational overhead they potentially introduce to already resource-intensive training setups. Deep learning workflows
operate under strict time and computational constraints, with practitioners demonstrating marked reluctance to try new

9

PyLO

optimization strategies that might increase training durations, regardless of potential convergence benefits. This challenge
necessitates meticulous implementation of learned optimization algorithms to ensure competitive computational efficiency.
Our approach addresses this critical constraint through custom CUDA implementations that substantially reduce optimizer
step time compared to native PyTorch implementations. By implementing the learned optimizer update as a neural network
pass directly in CUDA and strategically storing intermediate activations in registers, we minimize the need to write
activations to global GPU memory. This optimization achieves substantial reductions in wall-clock time for optimization
steps and render learned optimizers practically viable within existing computational budgets, removing a significant barrier
to their adoption by the broader machine-learning community.

C. Extended Code design
We implement a modular architecture partitioned into three main components to realize our project vision. This design
philosophy prioritizes both usability for practitioners and extensibility for researchers developing novel learned optimizers.

Optimization Module (pylo.optim) This module facilitates critical state management functions necessary for learned
optimization. These include maintaining parameter-specific accumulators, computing parameter features for optimizer
forward passes, executing update steps with configurable learning rate scaling, and supporting standard PyTorch optimizer
functionality such as state dictionaries for resuming. This implementation allows practitioners to leverage advanced learned
optimization techniques without significant modifications to existing training setups.

Meta-Model Architectures (pylo.models) encapsulates the parameters of the learned optimizer and its forward pass. It is
also fully integrated with HuggingFaceHub (HuggingFace), allowing users to download existing optimizers from the hub and
providing a mechanism for weight distribution and versioning of future optimizers. Through HF integration, we facilitate
community-driven improvement cycles and allow researchers to easily leverage our CUDA-accelerated implementation for
their own benchmarking.

CUDA Acceleration (pylo.csrc) The computational demands of learned optimizers present significant implementation
challenges. Unlike traditional optimization algorithms that apply simple, closed-form update rules, learned optimizers
require evaluating a small multilayer perceptron (MLP) for each parameter in the optimizee. This can introduce substantial
computational overhead for large models, creating a critical bottleneck that limits practical deployment. Our analysis
revealed that standard PyTorch neural network modules are inadequately optimized for this specific use case. These modules
are primarily designed for batched operations on image or language data rather than the unique computational pattern of
learned optimizers, where many small MLPs must be evaluated in parallel across millions of parameters.

Drawing inspiration from the architecture-aware optimizations (Müller et al., 2021; Dao et al., 2022) we implemented a
specialized CUDA kernel for the small fc lopt learned optimizer. This implementation strategically leverages the GPU
memory hierarchy to address the primary bottleneck: memory bandwidth rather than computational throughput. Our CUDA
implementation employs two key optimization strategies: (1) Register-Based Computation and (2) On-the-Fly Feature
Computation. The first utilizes GPU registers to store intermediate activations during forward propagation through the
optimizer’s MLP. This approach minimizes high-latency global memory accesses by keeping frequently accessed data in the
fastest available memory tier. The second avoids storing normalized features in global memory, recalculating them when
needed, and trading redundant computation for reduced memory bandwidth.

D. Extended Experimental Results
D.1. Benchmarking LO step times in PyLO

We extend our analysis beyond the baseline results to examine per-step computational overhead across varying model
scales representative of contemporary pretraining workloads. Table 4 presents a comprehensive timing breakdown across
forward pass, backward pass, and optimizer step durations for both vision and language model architectures. Traditional
optimizers including AdamW (Loshchilov & Hutter, 2019) and Adafactor (Shazeer & Stern, 2018) exhibit minimal
computational overhead relative to the forward and backward passes. Our CUDA kernel implementations demonstrate
substantial reductions in learned optimizer overhead, with improvements that scale favorably with model size. Notably, for
ViT-L-16, our small fc lopt(CUDA) implementation achieves a 9× reduction in optimizer step time compared to the

10

PyLO

Model Optimizer Batch Size Samples per sec Step time (ms) Forward time (ms) Backward time (ms) Optimizer step time(ms) Num parameters(M)

Vit-B-16

AdamW

32.00

524.09 60.55

17.52 38.13

4.90

86.57Adafactor 425.51 74.69 18.99
small fc lopt (naive) 39.36 812.51 756.80

small fc lopt (CUDA) 205.59 155.16 99.59

Vit-S-16

AdamW

32.00

1,116.12 28.17

7.65 18.27

2.25

22.05Adafactor 711.97 44.47 18.53
small fc lopt (naive) 109.03 293.01 266.90
small fc lopt (CUDA) 382.73 83.28 57.45

Vit-L-16

AdamW

32.00

175.95 181.36

52.18 113.89

15.28

304.33Adafactor 156.64 203.34 37.23
small fc lopt (naive) 11.64 2,748.52 2,582.30
small fc lopt (CUDA) 70.69 451.69 285.80

GPT2-125 m

AdamW

4.00

17.80 224.72

73.20 144.24

7.29

125.26Adafactor 17.02 235.07 17.76
small fc lopt (naive) 3.38 1,182.33 964.89
small fc lopt (CUDA) 11.71 341.46 124.09

GPT2-355 m

AdamW

4.00

6.56 609.83

197.41 392.29

20.12

355.92Adafactor 6.40 624.64 35.11
small fc lopt (naive) 1.16 3,461.96 2,872.17
small fc lopt (CUDA) 4.40 908.69 319.14

GPT2-1B

AdamW

4.00

2.88 1,387.51

442.49 896.81

48.21

912.95Adafactor 2.87 1,395.03 54.08
small fc lopt (naive) OOM OOM OOM
small fc lopt (CUDA) 1.98 2,025.26 681.78

Table 4. Breakdown of time spent per training step, averaged over 40 steps. The CUDA-based implementation reduces overhead from the
learned optimizer by minimizing memory usage and optimizer time, ultimately achieving competitive throughput compared to traditional
optimizers.

naive implementation. This performance advantage becomes increasingly pronounced at scale. Consistent with our earlier
findings regarding memory limitations—where JAX implementations encounter out-of-memory errors for 1B parameter
language models—the naive learned optimizer implementation similarly fails at this scale. Our CUDA implementation
addresses these scalability constraints while maintaining the computational efficiency gains observed with increasing batch
sizes, making learned optimization viable for large-scale pretraining scenarios.

Scaling analysis with MLP: To systematically characterize the scaling behavior of our implementation, we conduct
controlled experiments using synthetic MLP architectures with varying architectural parameters. Figure 5 presents two
complementary scaling analyses that isolate the effects of network width and depth on optimizer computational overhead.
Figure 5(a) examines the relationship between hidden layer dimensionality and optimization time for a fixed 5-layer MLP
architecture. The results reveal a stark performance disparity: the naive implementation of small fc lopt exhibits
optimization times an order of magnitude greater than our CUDA implementation and encounters memory limitations
beyond hidden dimensions of 256. While our CUDA implementation remains slower than traditional optimizers (AdamW
and Adafactor), it demonstrates favorable scaling characteristics that maintain computational tractability across the tested
range.

Complementary analysis in Figure 5(b) evaluates depth scaling behavior using MLPs with fixed width of 256 units but varying
layer counts (depth). The naive implementation consistently operates in a computationally prohibitive regime, requiring over
400ms for optimization steps, while our CUDA implementation maintains optimization times below 50ms—approaching
the performance envelope of traditional optimizers despite the inherent complexity of learned optimization. These scaling
experiments demonstrate that our CUDA implementation successfully addresses the computational bottlenecks that render
naive learned optimizer implementation impractical for realistic model architectures.

E. Training Curves for the Experiments
This section presents a comprehensive empirical evaluation comparing learned optimizers VeLO (Metz et al., 2022b) and
µLO (Thérien et al., 2024) against the standard AdamW optimizer (Loshchilov & Hutter, 2019; Kingma & Ba, 2017) with
cosine learning rate scheduling (Loshchilov & Hutter, 2017). Our evaluation spans Vision Transformer architectures of
varying scales and GPT-2 models, extending beyond the main paper’s validation accuracy results for ViT-Base/16 and final
loss metrics for GPT-2 to provide detailed training dynamics across multiple configurations.

Vision Transformer Experiments: We evaluate three ViT configurations—Small, Base, and Large with patch size

11

PyLO

26 27 28 29 210 211 212 213

Hidden Size

100

101

102

103

O
pt

im
iz

at
io

n
Ti

m
e

(m
s)

Optimization Time vs. Hidden Size

small_fc_lopt-PyLO-CUDA
small_fc_lopt-naive
AdaFactor
Adam

(a) Width

2 4 6 8 10 12 14 16
Number of Layers

0

100

200

300

400

500

O
pt

im
iz

at
io

n
Ti

m
e

(m
s)

Optimization Time vs. Number of Layers

small_fc_lopt-PyLO-CUDA
small_fc_lopt-naive
AdaFactor
Adam

(b) Depth

Figure 5. Step time for deeper and wider MLPs. Increasing the width and depth of MLPs provides a systematic way to measure the
impact of larger and more tensors on optimizer step time. Subfigure (a) reports optimizer step time as the hidden size of the 5-layer
optimizee MLP is increased, while Subfigure (b) reports step time as the depth of a 256 hidden-layer MLP is increased. We observe that
in each case, the CUDA implementation reduces the optimizer step time by more than an order of magnitude.

16—on ImageNet-1k classification tasks. All configurations maintain consistent training protocols with 150,000
optimization steps and batch sizes of 4,096 across model variants, using hyperparameters detailed in Table 5. The
extended evaluation presented in Figure 6 reveals critical scale-dependent optimization characteristics. MuLO
demonstrates pronounced early divergence patterns across both small and large model configurations, reinforcing our
hypothesis that its constrained meta-training horizon limits generalization to extended optimization trajectories. In
contrast, VeLO exhibits remarkable consistency in convergence properties across the full spectrum of model scales exam-
ined, maintaining stable training dynamics while achieving competitive performance metrics relative to the AdamW baseline.

Language Modeling Experiments For GPT-2 pretraining on FineWeb-EDU data, we train models for 19,073 steps with
batch size 512 and sequence length 1024. Complete hyperparameters are presented in Table 7, with full training curves
shown in Figure 7. VeLO demonstrates competitive performance against AdamW with cosine scheduling, while MuLO
exhibits significantly degraded performance across the extended training horizon, consistent with the stability patterns
observed in vision tasks.

12

PyLO

0 25000 50000 75000 100000 125000 150000
Training Steps

0.00

2.00

4.00

6.00

8.00

10.00

12.00

Lo
ss

AdamW + Cosine
VeLO

LOM

(a) ViT small patch 16

0 25000 50000 75000 100000 125000 150000
Training Steps

0.00

2.00

4.00

6.00

8.00

10.00

12.00

Lo
ss

AdamW + Cosine
VeLO

LOM

(b) ViT base patch 16

0 25000 50000 75000 100000 125000 150000
Training Steps

0.00

2.00

4.00

6.00

8.00

10.00

12.00

Lo
ss

AdamW + Cosine
VeLO

LOM

(c) ViT large patch 16

Figure 6. Vision Transformer training dynamics. Training loss curves for Vision Transformers trained on ImageNet-1k classification
across three model configurations: (a) ViT-small with patch size 16, (b) ViT-base with patch size 16, and (c) ViT-large with patch size 16.
We compare AdamW with cosine learning rate scheduling (blue), VeLO learned optimizer (orange), and µLO learned optimizer (black)
over 150,000 training steps with batch size 4,096. µLO exhibits early training instability across all scales, while VeLO demonstrates
competitive or superior convergence properties, particularly evident in the base model configuration where it achieves lower final loss than
the AdamW baseline.

13

PyLO

0 2500 5000 7500 1000012500150001750020000
Training Steps

2.75

3.00

3.25

3.50

3.75

4.00

4.25

4.50

4.75

5.00

Lo
ss

VeLO
AdamW + Cosine

LOM

(a) 355M LM

Figure 7. GPT-2 pretraining performance. We pre-train decoder-only transformers of different sizes on a causal language modeling
objective. We estimate gradients from 512 sequences of length 1024, resulting in a ∼0.5M token batch size per step. We train all models
for 10B tokens of FineWeb-EDU data.

14

PyLO

F. Extended Ablation Studies
This section presents comprehensive training curves across all hyperparameter configurations examined in our weight decay
and cosine annealing ablations. Our analysis encompasses systematic sweeps of weight decay coefficients and maximum
learning rates for cosine annealing schedules.

Vision Transformer Ablations Figures 8 and 9 demonstrate the variation of training dynamics with varying maximum
learning rates and weight decay values for the ViT-B/16 model. The results reveal that VeLO exhibits minimal sensitivity to
weight decay and scheduler modifications in this experimental setup, suggesting robust inherent regularization properties.
Conversely, MuLO shows improved training horizon stability when augmented with cosine scheduling, enabling successful
completion of the full 150,000 training steps. Weight decay modifications yield marginal improvements for MuLO across
the evaluated parameter ranges.

Language Modeling Ablations

The language modeling experiments, presented in Figures 10 and 11, demonstrate more pronounced sensitivity to weight
decay and scheduling compared to vision tasks. VeLO shows measurable performance improvements when augmented
with weight decay and scheduling for specific parameter configurations. Similarly, MuLO benefits substantially from both
weight decay regularization and cosine scheduling in the language modeling domain, suggesting that learned optimizers
may benefit from scheduling and weight decay.

Architectural Configuration Effects

Figure 12 presents an additional ablation examining the impact of separate versus concatenated query-key-value (QKV)
matrices on the optimizee’s training loss. We observe that separating the QKV matrices in attention blocks improves
performance across VeLO and µLOM .

15

PyLO

0 25000 50000 75000 100000 125000 150000
Training Steps

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

Lo
ss

VeLO
VeLO WD=1e-1
VeLO WD=1e-2
VeLO WD=1e-3
VeLO WD=1e-4

(a) VeLO Decoupled Weight decay ablation

0 25000 50000 75000 100000 125000 150000
Training Steps

0.00

1.00

2.00

3.00

4.00

5.00

6.00

Lo
ss

VeLO LR=1
VeLO MaxLR=0.1
VeLO MaxLR=0.01
VeLO MaxLR=0.001
VeLO MaxLR=0.2
VeLO MaxLR=1.0

(b) VeLO Cosine annealing Ablation

Figure 8. Training ViT-B-16 with VeLO on Imagenet 1k with decoupled weight decay and cosine annealing. We see no improvement
in using weight decay or Scheduler for VeLO in this setup

16

PyLO

0 25000 50000 75000 100000 125000 150000
Training Steps

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

Lo
ss

LOM

LOM WD=1e-1
LOM WD=1e-2
LOM WD=1e-3
LOM WD=1e-4

(a) µLO Decoupled Weight decay ablation

0 25000 50000 75000 100000 125000 150000
Training Steps

0.00

1.00

2.00

3.00

4.00

5.00

6.00

Lo
ss

LOM LR=1
LOM MaxLR=0.1
LOM MaxLR=0.01
LOM MaxLR=0.5
LOM MaxLR=0.25
LOM MaxLR=0.75

(b) µLO Cosine annealing Ablation

Figure 9. Training ViT-B/16 with µLO on Imagenet1k with decoupled weight decay and cosine annealing. We see that the training
horizon of µLO is improved with using a scheduler that helps it to run up to 150000 training steps. We also see that weight decay did not
have substantial improvement

17

PyLO

0 2500 5000 7500 10000 12500 15000 17500 20000
Training Steps

3.00

3.25

3.50

3.75

4.00

4.25

4.50

4.75

5.00

Lo
ss

VeLO
VeLO WD=1e-6
VeLO WD=1e-5
VeLO WD=1e-4
VeLO WD=1e-3
VeLO WD=1e-2
VeLO WD=1e-1

(a) VeLO Decoupled Weight decay ablation

0 2500 5000 7500 1000012500150001750020000
Training Steps

3.00

3.25

3.50

3.75

4.00

4.25

4.50

4.75

5.00

Lo
ss

VeLO
VeLO MaxLR=0.01
VeLO MaxLR=0.1
VeLO MaxLR=0.25
VeLO MaxLR=0.5
VeLO MaxLR=0.75
VeLO MaxLR=1
VeLO MaxLR=2
VeLO MaxLR=4
VeLO MaxLR=8
VeLO MaxLR=16

(b) VeLO Cosine annealing Ablation

Figure 10. GPT2 Pre-training VeLO ablations: decoupled weight decay and cosine annealing. We pre-train decoder-only transformers
of different sizes on a causal language modeling objective. We estimate gradients from 512 sequences of length 1024, resulting in a ∼ 0.5
M token batch size per step. We train all models for 10B tokens of FineWeb-EDU data.

18

PyLO

0 2500 5000 7500 10000 12500 15000 17500 20000
Training Steps

3.00

3.25

3.50

3.75

4.00

4.25

4.50

4.75

5.00

Lo
ss

LOM WD=0
LOM WD=1e-6
LOM WD=1e-5
LOM WD=1e-4
LOM WD=1e-3
LOM WD=1e-2
LOM WD=1e-1

(a) µLO Decoupled Weight decay ablation

0 2500 5000 7500 1000012500150001750020000
Training Steps

3.00

3.25

3.50

3.75

4.00

4.25

4.50

4.75

5.00

Lo
ss

LOM LR=1
LOM MaxLR=0.01
LOM MaxLR=0.1
LOM MaxLR=0.25
LOM MaxLR=0.5
LOM MaxLR=0.75
LOM MaxLR=1
LOM MaxLR=2
LOM MaxLR=4
LOM MaxLR=8
LOM MaxLR=16

(b) µLO Cosine annealing Ablation

0 2500 5000 7500 10000 12500 15000 17500 20000
Training Steps

3.00

3.25

3.50

3.75

4.00

4.25

4.50

4.75

5.00

Lo
ss

LOM LR=1
LOM LR=2
LOM LR=4
LOM LR=8
LOM LR=16

(c) µLO LR Tuning Ablation

Figure 11. GPT2 Pre-training VeLO ablations: decoupled weight decay, LR-tuning, and cosine annealing. We pre-train decoder-only
transformers of different sizes on a causal language modeling objective. We estimate gradients from 512 sequences of length 1024,
resulting in a ∼ 0.5 M token batch size per step. We train all models for 10B tokens of FineWeb-EDU data.

19

PyLO

0 2500 5000 7500 10000 12500 15000 17500 20000
Training Steps

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4.0

Lo
ss

VeLO
VeLO QKV

(a) VeLO

0 2500 5000 7500 1000012500150001750020000
Training Steps

3.00

3.25

3.50

3.75

4.00

4.25

4.50

4.75

5.00
Lo

ss
LOM
LOM QKV

(b) µLO

Figure 12. Separate QKV weight ablation. We ablate using concatenated or separate QKV matrices in attention layers. From the
perspective of the learned optimizer, these two settings will be treated differently. We observe that performance improves for both µLOM

and VeLO when QKV matrices are separated.

20

PyLO

G. Hyperparameters for Experiments

Table 5. Vision Transformer Training Hyperparameters.

Description Value

Model Architecture
Model ViT-Base/16
Image Size 224× 224
Patch Size 16× 16
Training Configuration
Batch Size 4096
Training Epochs 480
Optimizer (for baseline) AdamW
Learning Rate (η) 4× 10−3

LR Scheduler Cosine
Warmup Epochs 32
Weight Decay 0.03
Gradient Clipping 1.0
Data Augmentation
Crop Percentage 0.95
Random Horizontal Flip 0.5
Mixup 0.1
CutMix 1.0
AutoAugment rand-m7-mstd0.5
Regularization
Dropout Rate 0.1
Stochastic Depth 0.1

Table 6. Vision Transformer Model Variants Architecture.
Description Value

ViT-Small/16
Parameters 22.05M
Hidden Dimension (dmodel) 384
MLP Hidden Dimension 1536
Number of Heads 6
Number of Layers 12
Patch Embedding Dim 384
ViT-Base/16
Parameters 86.57M
Hidden Dimension (dmodel) 768
MLP Hidden Dimension 3072
Number of Heads 12
Number of Layers 12
Patch Embedding Dim 768
ViT-Large/16
Parameters 307.40M
Hidden Dimension (dmodel) 1024
MLP Hidden Dimension 4096
Number of Heads 16
Number of Layers 24
Patch Embedding Dim 1024

21

PyLO

Table 7. GPT-2 Training Hyperparameters.

Description Value

Model Configuration
Base Model GPT-2
Architecture Type Decoder-only Transformer
Attention Mechanism separate kqv
Sequence Length (T) 1024
Vocabulary Size 50257
Training Configuration
Batch Size 512
Training Iterations 19073
Optimizer (for baseline) AdamW
Learning Rate Scheduler (for baseline) Cosine
Warmup Iterations 381
Regularization
Attention Dropout 0.1
Embedding Dropout 0.1
Residual Dropout 0.1
Initialization
Muon Initialization Enabled
Weight Initialization Standard GPT-2

Table 8. GPT-2 Model Variants Architecture.
Description Value

GPT-2 Small
Parameters ∼ 36M
Hidden Dimension (dmodel) 768
Number of Heads 12
Number of Layers 12
Head Dimension 64
FFN Hidden Dimension 3072
GPT-2 Medium
Parameters ∼ 345M
Hidden Dimension (dmodel) 1024
Number of Heads 16
Number of Layers 24
Head Dimension 64
FFN Hidden Dimension 4096
GPT-2 Large
Parameters ∼ 762M
Hidden Dimension (dmodel) 2048
Number of Heads 32
Number of Layers 16
Head Dimension 64
FFN Hidden Dimension 8192

22

PyLO

H. Validation of PyLO Implementation Against Original JAX Codebase
To validate the correctness of our implementation of the popular learned optimizers in PyLO, we conducted a direct
comparison with the original JAX implementation from Google’s learned optimization(Metz et al., 2022a) codebase. We
evaluated both µLO(Thérien et al., 2024) and VeLO(Metz et al., 2022b) algorithms on a simplified image classification
benchmark using ImageNet resized to 64×64 pixels with a 3-layer MLP architecture (width 128). The comparison spans the
first 5,000 training steps to assess implementation accuracy in a practical and economical setup.

The results demonstrate strong agreement between the two implementations across both optimizers. As shown in Figure 13,
the training curves exhibit nearly identical convergence patterns across all 5 different runs. Minor variations arise from
inherent differences in how PyTorch and JAX compute gradients. Accounting for this, we confirm that our PyTorch
implementation faithfully reproduces the behavior of the original JAX code. We further plan to compare both implementations
across a range of models and tasks.

0 1000 2000 3000 4000 5000
Training Steps

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

Tr
ai

ni
ng

 L
os

s

LO (CUDA)
LO (JAX)

(a) µLO implementation comparison

0 1000 2000 3000 4000 5000
Training Steps

4.50

5.00

5.50

6.00

6.50

7.00

Tr
ai

ni
ng

 L
os

s

VeLO (PyTorch)
VeLO (JAX)

(b) VeLO implementation comparison

Figure 13. Training curve comparison between original JAX implementation and PyLO library for µLO and VeLO optimizers on ImageNet
64×64 classification task using a 3-layer MLP (width 128). Both implementations show nearly identical convergence behavior over 5,000
training steps, validating the correctness of our implementation.

23

