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ABSTRACT

Model steering represents a powerful technique that dynamically aligns large
language models (LLMs) with human preferences during inference. However,
conventional model-steering methods rely heavily on externally annotated data,
not only limiting their adaptability to varying contexts but also tethering their
effectiveness to annotation quality. In this paper, we present SIMS, the first self-
improving model-steering framework that operates without relying on external
supervision. At its core, SIMS autonomously generates and refines contrastive sam-
ples through iterative self-improvement cycles, enabling adaptive, context-specific
steering. Additionally, SIMS employs novel strategies, including prompt ranking
and contrast sampling, to further enhance steering efficacy. Extensive evaluation
across diverse LLMs and benchmarks demonstrates that SIMS substantially out-
performs existing methods in steering effectiveness and adaptability, highlighting
self-improving model steering as a promising direction for future research on
inference-time LLM alignment. The code for replicating SIMS is available at
https://anonymous.4open.science/r/SIMS/

1 INTRODUCTION
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Figure 1: Comparison of (a) conventional and (b)
self-improving model steering.

Model steering (Panickssery et al., 2023; Li
et al., 2023; Qiu et al., 2024) represents a com-
pelling alternative to pre- and post-training
alignment methods for large language mod-
els (LLMs) (Ouyang et al., 2022; Lee et al.,
2024b). By modifying latent activations with
pre-computed steering vectors on the fly, it
enables alignment without expensive retrain-
ing. A variety of approaches have been pro-
posed to compute the steering vectors, rang-
ing from linear transformations and projec-
tions (Panickssery et al., 2023; Li et al., 2023)
to subspace learning and optimization tech-
niques (Qiu et al., 2024; Pham & Nguyen, 2024; Zhang et al., 2024; Cao et al., 2024). However,
as illustrated in Figure 1 (a), most existing methods rely heavily on labeled alignment datasets to
optimize steering vectors. This dependence assumes complete prior knowledge of what constitutes
good versus bad examples through pre-existing datasets, an assumption with two major limitations.
First, it demands access to diverse data sources, including outputs from different LLMs with varying
architectures and sizes, or extensive human annotations. Second, it requires high-quality labels
that accurately capture response alignment with specific objectives. Together, these requirements
significantly limit the practical applicability of model steering.

In this paper, we explore whether we can derive high-quality steering vectors using only the data from
the LLM itself. We present SIMS,1 a model-steering framework that enables model alignment through
iterative refinement of the model’s own responses. As illustrated in Figure 1 (b), SIMS distinguishes
itself from conventional methods through two fundamental innovations. i) Self-play steering – SIMS
eliminates dependency on external responses and their corresponding labels by leveraging self-
generated samples to derive steering directions. This paradigm shift enhances adaptability to varying
contexts and data distributions. ii) Iterative self-improvement – through cycles of evaluation and

1SIMS: Self-Improving Model Steering.
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regeneration, SIMS continuously refines steering directions to more effectively differentiate desirable
and undesirable behaviors, leading to consistent performance gains across iterations. Additionally,
we introduce two variants to further enhance steering efficacy: i) prompt ranking (SIMS-PR), which
leverages the model’s own judgment to generate preference signals, eliminating the need for external
oracles and enabling fully autonomous self-improvement; and ii) contrast sampling (SIMS-CS), which
maintains a response bank to select the most informative question-response pairs across iterations,
thereby improving sampling efficiency.

Through extensive evaluation across diverse LLMs and benchmarks, we show that SIMS effectively
steers LLMs towards desirable behaviors, outperforming or matching existing model-steering methods
that rely on externally annotated data. For instance, SIMS improves the length-controlled WinRate
of llama3-8b on Alpaca-Eval (Dubois et al., 2025) from 2.86 to 11.89 in just one iteration. Our
ablation study further reveals that SIMS steadily enhances steering effectiveness across iterations,
while SIMS-PR and SIMS-CS substantially improve steering efficiency. For example, SIMS increases
the Arena-Hard (Li et al., 2024) score sharply from 15.3 to 33.4 from the first iteration to the third
iteration. The findings highlight self-improving model steering as a promising direction for future
research on inference-time preference optimization.

Our contributions can be summarized as follows.

• We introduce SIMS, a novel self-improving model-steering framework that iteratively refines
steering directions through self-improvement cycles, enabling adaptive, context-specific steering.

• We further implement two variants of SIMS, namely SIMS-PR and SIMS-CS. SIMS-PR leverages
the model’s own judgment to generate preference signals, while SIMS-CS selects informative
samples for refining steering directions.

• We conduct an extensive evaluation to validate that SIMS effectively guides LLMs towards desir-
able behaviors, consistently outperforming or matching existing methods that require externally
annotated data.

2 RELATED WORK

Model Steering. Unlike pre/post-training alignment (Ouyang et al., 2022; Lee et al., 2024b), model
steering modifies latent activations at inference time (Turner et al., 2023; Liu et al., 2023; Zou
et al., 2023; Wu et al., 2024c; Chalnev et al., 2024; Lee et al., 2024a; He et al., 2024; Fang et al.,
2024; Rodriguez et al., 2024; Wang et al., 2024; Liu et al., 2024a; Cao et al., 2024). Methods differ
by how steering vectors are obtained. Linear approaches (Turner et al., 2023; Panickssery et al.,
2023; Li et al., 2023) derive vectors from activations: ActADD (Turner et al., 2023) uses activation
differences elicited by opposing prompts (e.g., truthful versus deceptive), and CAA (Panickssery
et al., 2023) averages differences between paired positive/negative prompts. Nonlinear interven-
tions (Qiu et al., 2024; Zhang et al., 2024; Pham & Nguyen, 2024) act in learned subspaces; e.g.,
HPR (Pham & Nguyen, 2024) learns global separating hyperplanes and rotations to reflect and rotate
activations toward desirable behavior. However, most methods rely on externally annotated data (e.g.,
question–answer pairs), limiting adaptability and tying effectiveness to annotation quality.

Preference optimization. Reinforcement learning from human feedback (RLHF) has emerged as
aprominent approach for learning human preferences (Ouyang et al., 2022; Lee et al., 2024b). RLHF
first trains a reward model on preference data using established frameworks (e.g., the Bradley-Terry
model (Huang et al., 2004)), and applies RL algorithms (e.g., PPO (Schulman et al., 2017)) to optimize
LLMs with respect to the reward model. Recent work (Rafailov et al., 2023; Zhao et al., 2023) shows
the feasibility of bypassing the explicit reward modeling and directly solving the underlying RL
problem. Further, SRSO (Liu et al., 2024b) unifies the losses of DPO (Rafailov et al., 2023) and
SLiC (Zhao et al., 2023), offering an improved estimate of the optimal policy. This work extends
previous research on preference optimization into challenging scenarios where externally annotated
data is unavailable or impractical to obtain, addressing a critical gap in current work.

LLM Self-Improvement. Self-improvement, in which models generate, judge, and refine their
own outputs, can enhance alignment, instruction following, and preference modeling while reducing
annotation effort and exposure to harmful content (Chen et al., 2025; Dong et al., 2024b; Song
et al., 2024; Subramaniam et al., 2025; Choi et al., 2024; Wu et al., 2024a; Peng et al., 2024; Wan
et al., 2025). Approaches include synthetic preference generation (Dong et al., 2024b; Lee et al.,
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2024b), tree-search refinement (Cheng et al., 2024; Light et al., 2023), Nash-equilibrium-based
optimization (Wu et al., 2024b), execution-guided verification (Dong et al., 2024a), and iterative
self-evolved reward modeling (Huang et al., 2024), differing mainly in feedback mechanism and
granularity (internal judgment, strategic refinement, external execution validation). To our best
knowledge, this work represents the first exploration of this paradigm for model steering.

3 PRELIMINARIES

3.1 MODEL STEERING

Let M denote an L-layer, Transformer-based LLM and x be a tokenized prompt. The embedding
matrix WE maps tokens to the initial hidden state h0 = WE(x). For each layer l ∈ [L], we apply
multi-head attention (MHA) followed by a position-wise feed-forward network (FFN), each with a
residual connection:2

h′
l = hl−1 +MHAl (hl−1) , hl = h′

l + FFNl(h
′
l) . (1)

The model’s logits are obtained via M(x) = WU (hL), where WU is the un-embedding matrix.

During inference, we inject steering functions fl and f ′
l into the residual stream:

h̃′
l = h̃l−1 +MHAl(fl(h̃l−1)), h̃l = h̃′

l + FFNl(f
′
l (h̃

′
l)), (2)

where fl (respectively f ′
l ) operates immediately before the attention (respectively FFN) while the

residual addition preserves the original signal. The steered model then produces M̃(x) = WU (h̃L).

Given a dataset D = {(xi, y
+
i , y

−
i )}Ni=1, where y+i (desired) and y−i (undesired) exhibit opposite

attributes, we form positive and negative samples (xi, y
+
i ) and (xi, y

−
i ), respectively. Passing these

examples through M yields paired hidden activation sets:
H+

l = {(h+
l,i, h

′+
l,i )}i, H−

l = {(h−
l,i, h

′−
l,i )}i. (3)

Existing model-steering methods learn fl and f ′
l by exploiting the discrepancy between H+

l and H−
l

using contrastive or other representation-learning objectives (details in §2). We refer to these methods
as steering-function learners in the following.

3.2 SELF-IMPROVEMENT LEARNING

We formalize the self-improvement optimization as follow. Given an LLM M, we prompt M with
input x and obtain two responses y and y′.

The self-improvement learning aims to optimize the alignment of M to human preferences. This
process is typically done by reinforcement learning, which M represents the initial policy π0. A
preference oracle O, obtained from human feedback, is introduced in the learning process. Given the
input x and two responses y and y′, The oracle O will provide preference feedback o(y ≻ y′|x) ∈
{0, 1} indicating whether y is preferred over y′. We denote P(y ≻ y′|x) = E [o(y ≻ y′|x)] as the
probability of y ‘winning the duel’ over y′. In addition, we define the winning probability of y against
a distribution of responses from policy π as

P(y ≻ π|x) = Ey′∼π(·|x) [P(y ≻ y′|x)] . (4)

The self-improvement learning takes an iterative process to update the policy πt, where t denotes the
iteration number. For every iteration t, πt is optimized based on the objective function as:

πt+1 = argmax
π

Ex∼D
(
Ey∼π(·|x)P(y ≻ πt|x)

)
. (5)

However, the above equation is hard to optimized directly through gradient. Reference probability
P(y ≻ ·) is typically non-smooth and lead to high-variance. To overcome this shortcomings, many
works adpot KL-regularized, max-entropy RL objective as follows

πt+1 = argmin
π

Ey∼πt(·|x)

[(
log

π(y|x)
πt(y|x)

−
(
η P(y ≻ πt|x)− logZπt

(x)
))2

]
, (6)

2Layer normalization and projection matrices are omitted for clarity.
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Figure 2: Overview of SIMS. With N = 4 questions (prompts) drawn from a prompt distribution Dprompt. We
generate the K = 3 responses from model inference. We filter the responses into a positive set and a negative
set. Running these samples through the LLM, we collect the positive and negative activation sets. These sets
are used to update the steering functions by the steering-function learner A. We combine the updated steering
functions with the base model to form the refined policy for the next iteration.

where logZπt
(x) denotes the normalization term. SIMS extends the self-improvement paradigm to

model steering, enabling LLMs to introspectively refine internal activations through iterative cycles
of self-assessment and enhancement.

4 METHOD

Next, we present SIMS, the first self-improving model-steering framework, with its overview illus-
trated in Figure 2.

4.1 SELF-IMPROVING MODEL STEERING

At its core, SIMS autonomously generates and refines contrastive samples through iterative self-
improvement cycles, enabling learning the steering function from LLMs’ own behaviors without
external supervision.

At each iteration t, the current steering policy πt−1 processes a mini-batch of N prompts sampled
from the question distribution Dq. For each prompt, the policy produces K candidate responses. A
preference oracle O, which could be an existing reward model or even πt−1 itself acting as its own
evaluator, is queried to yield an ordering over the K responses. These preference judgments define
positive (D+

t ) and negative (D−
t ) sample buffers that pair each prompt with its preferred or disfavored

outputs, respectively, creating contrastive training signals.

The language model M is then executed on both positive samples (xi, y
+
i ) from D+

t and the negative
samples (xi, y

−
i ) from D−

t . We collect layer-wise activations to construct two activation sets, H+
l

and H−
l , as defined in Eq. 3. We leverage an existing steering-function learner A (e.g., HPR Pham

& Nguyen (2024)) to update the steering functions {fl, f ′
l}Ll=1, which linearly or non-linearly shift

model activations toward preferred behaviors while repelling undesirable ones. By composing the
updated steering functions with the base model M, we derive the refined policy πt for the next
iteration.

The above process is iteratively repeated to progressively refine the steering functions. Because SIMS
bootstraps its training signal entirely from its own generated outputs, it decouples model steering
from externally annotated data and can be extended through an arbitrary number of iterations T .
Under mild assumptions about oracle accuracy, the policy sequence {πt}Tt=0 constitutes monotonic
improvement in expected preference reward. Crucially, each update operates only on sub-token
activations rather than modifying full model weights, thereby maintaining computational efficiency
compared to full-scale fine-tuning.

The complete algorithm is sketched in Algorithm 1.

4
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Algorithm 1: SELF-IMPROVING MODEL STEERING (SIMS)
Input: Language modelM with L layers; preference oracle o; steering-rule learner A; prompt distribution

Dprompt; iterations T ; prompts per iteration N ; responses per prompt K
Output: Final steered policy πT

1 Initialize steering transforms {f (0)
l }

L
l=1 and {f ′(0)

l }Ll=1;
2 Define initial policy π0 = (M, {f (0)

l }
L
l=1, {f

′(0)
l }Ll=1);

3 for t = 1 to T do
4 Sample prompts {xn}Nn=1∼Dprompt;
5 for n = 1 to N do
6 Generate K candidate responses {yn,k}Kk=1∼πt−1( · | xn);
7 Query oracle o for pairwise preferences Po(yn,k ≻ yn,k′) ; // All k<k′

8 Construct datasets
D+

t =
{
(xn,yn,k) | P(yn,k ≻ πt | xn)

}
, D−

t =
{
(xn,yn,k) | P(yn,k ≺ πt | xn)

}
;

9 Collect hidden activationsH+
l = {Ml(x,y)}(x,y)∈D+

t
, H−

l = {Ml(x,y)}(x,y)∈D−
t

;

10 Learn new steering functions
{
f
(t)
l , f

′(t)
l

}L

l=1
= A

(
H+

1:L,H
−
1:L

)
;

11 Update policy πt = (M, {f (t)
l }

L
l=1, {f

′(t)
l }Ll=1);

12 return πT ;

4.2 SELF-SUPERVISED IMPROVEMENT

To eliminate dependency on external reward models, we introduce prompt ranking (SIMS-PR), a
fully self-supervised alternative that leverages the model’s own judgment capabilities to generate
preference signals. For each prompt xi at the t-th iteration, we query the current policy πt−1 for
K candidate completions {yi,k}Kk=1 as in the original iteration loop. Instead of passing pairs to the
oracle, we instruct the backbone model M to rank the complete set of responses under an instruction
(ranking) prompt. The highest-ranked responses form the positive set D+

t , while the lowest-ranked
ones populate the negative set D−

t . These contrastive samples are fed to the steering-function learner
A following the same protocol as the standard SIMS. The implementation details are deferred to §A.

4.3 CONTRAST SAMPLING ACROSS ITERATIONS

Orthogonally, to further improve the sample quality for steering-function learning, we introduce
contrast sampling (SIMS-CS), a strategy that reuses previous responses but selects only the most
informative question-response pairs for the steering-function learner. Specifically, for each prompt
xi, we compute a margin-style reward:

ri = max
k

Po

(
yi,k ≻ πt|xi

)
︸ ︷︷ ︸

best candidate

− max
k

Po

(
yi,k ≺ πt|xi

)
︸ ︷︷ ︸

worst candidate

, (7)

which rewards the most positive completion and penalizes the most negative one. After scoring each
prompt xi, the triple (xi, {yi,k}Kk=1, ri) is appended to a memory bank B, which stores the prompts
and responses from the previous iterations. This replay-like procedure helps SIMS to better utilize the
preference signals from the oracle.

At the beginning of each steering update, we sample Dt = topN (B), the N tuples in B with the
highest contrast reward. For each retained prompt, the highest-ranked completion forms a positive
pair and the lowest-ranked completion forms a hard negative pair:

D+
t =

{
(xi, yi,(1))

}
, D−

t =
{
(xi, yi,(K))

}
, (8)

The following steps are the same as the standard SIMS to update the steering functions. The
implementation details of SIMS-CS are deferred to §A.

5
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Figure 3: llama3-8b under model steering versus three iterations of SIMS, optionally enhanced with SIMS-
PR or SIMS-CS. Reported are length-controlled win-rate (LC), win-rate (WR), and Arena-Hard score (higher is
better; mean ± s.d.). SIMS-CS on Iter 3 attains the strongest overall performance.
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Figure 4: mistral-7b under model steering versus three iterations of SIMS, optionally enhanced with
SIMS-PR or SIMS-CS. Reported are length-controlled win-rate (LC), win-rate (WR), and Arena-Hard score
(higher is better; mean ± s.d.). SIMS-CS on Iter 3 attains the strongest overall performance.

5 EVALUATION

5.1 EXPERIMENTAL SETTING

Datasets. We employ the UltraFeedback corpus (Cui et al., 2023) as the primary prompt source.
UltraFeedback consists of 64 000 prompts, each paired with multiple candidate responses with care-
fully refined scores and critiques. For conventional model-steering methods that require supervised
preference data, we use the complete prompt-response pairs with their associated scores. When
evaluating SIMS, we deliberately discard all responses and rankings, using only the raw prompts.

Metrics. We use Alpaca-Eval (Dubois et al., 2025) and Arena-Hard (Li et al., 2024) to evaluate
the performance of post-steering models in open-ended question answering. For Alpace-Eval,
we report two complementary metrics: WinRate (WR) and length-control WinRate (LC). WR is
defined as the average preference probability of a given model over gpt-4-turbo, as judged
by gpt-4o (OpenAI, 2024). LC refines WR by applying a causal logistic-regression adjustment
to neutralize answer-length biases, yielding counterfactual, equal-length win probabilities. For
Arena-Hard, we implement the following comparison protocol: comparing the model’s outputs
and gpt-3.5-turbo’s answers on 500 challenging prompts (each judged twice with position
swapping), mapping gpt-4o’s 5-point Likert preferences to wins/losses, fitting a Bradley–Terry
model to these 1,000 pairwise results, and reporting the bootstrap-estimated win-rate (with confidence
interval) against the baseline.

Baselines. We benchmark SIMS against two widely used alternatives, vanilla generation and con-
ventional model steering. For vanilla generation, the backbone LLM, either Llama-3-8B or
mistral-7b generates responses without any activation intervention. Inference is performed

6
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Figure 5: LC results of (a) number of samples, (b) number of responses, (c) number of samples, and (d) number
of tokens based on llama3-8b (more details deferred to §C.3).

with temperature τ = 0.01, top-p = 0.9, and top-k = 50, and the max token number is 128. For
conventional model steering, referred to as MS, we adopt Householder Pseudo-Rotation (HPR) Pham
& Nguyen (2024) as the steering function learner. We set the coefficient α as 15 and the number of
editing vectors K as 5. This method relies on externally annotated preference data: we draw 1, 000
prompt–response pairs from the UltraFeedback dataset and designate positives and negatives
according to the overall scores provided in the dataset.

5.2 MAIN RESULTS

Figure 3 presents the results on llama3-8b. Notably, at Iter1, SIMS elevates the LC WinRate of the
base model (llama3-8b) from 2.86 to 11.89 (315% increase). Similarly, the WR score rises from
3.35 to 4.00. Further, at Iter2, SIMS observes consistent and significant growth across all metrics.
Its LC WinRate increases to 13.16 (+10.7% over Iter1), its WR improves to 4.31 (+7.8%), and its
Arena-Hard performance surges to 25.1 (+64%). The enhanced variant SIMS-CS, in particular, shows
significant improvement with its LC WinRate jumping to 16.65 and WR reaching 5.06, suggesting
that the contrastive sampling strategy successfully identifies more informative samples to accelerate
representation refinement. Finally, at Iter3, SIMS outperforms conventional model steering that relies
on annotated data by 1.70 on LC, 0.81 on WR, and 2.6 on Arena-Hard. The peak performance
appears among the variants of SIMS: SIMS-CS achieves 20.49 on LC and 33.4 on Arena-Hard, while
SIMS reaches 5.79 on WR, validating our core hypothesis about the viability and advantages of
self-improving model steering. Sample outputs of different steered models are deferred to §B.

Figure 4 illustrates the experimental results on mistral-7b, which closely parallel the findings
from the evaluation on llama3-8b. Consistent with our previous observations, SIMS demon-
strates robust performance gains across all metrics (WR, LC, and Arena-Hard), exhibiting steady
improvement trajectories through successive iterations.

5.3 ABLATION STUDY

We further conduct an ablation study to explore how different factors impact SIMS’s performance
(more experimental details in §C.3).

# Iterations. Figure 5(a) reports LC versus iteration. Non-iterative baselines, llama-3-8b (2.86)
and conventional steering (18.36), remain flat. SIMS climbs from 11.89 (Iter 1) to 20.06 (Iter 3)
and then stabilizes (19.98/20.12 at Iters 4/5), indicating most gains within the first four rounds.
Enhanced variants optimize more efficiently: SIMS-PR starts at 12.28 and peaks at 20.42 (Iter 5),
while SIMS-CS starts at 11.91 and peaks earlier at 20.51 (Iter 4), followed by a mild plateau/soft
decline (19.87 at Iter 5). These convergence patterns suggest diminishing returns beyond three
iterations; we recommend three iterations as a cost-effective default.

# Responses. Figure 5(b) reports LC as the number of sampled candidates K varies. As expected,
increasing K improves alignment: SIMS rises from 14.21 (at K=2) to 20.16 (at K=10). Enhanced
variants amplify gains: at K=2, SIMS-CS exceeds SIMS-PR (11.21 vs. 6.83) and maintains the best
LC, reaching 20.12 at K=10; SIMS-PR yields the strongest WR at a high sampling rate (19.75 at
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K=10). Overall, SIMS-CS with K=10 achieves the best results, surpassing llama-3-8b (17.86)
and conventional steering (1.76). These findings show (i) SIMS scales with response diversity and (ii)
SIMS-CS is most effective, especially under small response budgets.

# Samples. Figure 5(c) shows LC versus prompt sample size (10–5,000). SIMS scales nearly
monotonically - 4.18 (10), 11.02 (1,000), 20.55 (5,000) - indicating effective use of additional data via
iterative self-feedback. Conventional steering is largely size-insensitive (18.36 → 19.12), suggesting
early saturation without iteration. Enhanced variants further improve performance, with SIMS-CS
leading across all sizes: even at 10 samples it surpasses SIMS-PR (4.18 vs. 3.32), and at 2,000
samples it reaches 20.55 versus 19.21 for SIMS-PR. Overall, while all SIMS variants benefit from
more data, SIMS-CS most effectively exploits data diversity through broader candidate harvesting
and higher-quality contrastive selection.
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Figure 6: Impact of sampling strategy.

Token length. We further analyze the impact
of response token length. Figure 5 (d) reveals
a clear length-dependent performance pattern.
For the baseline llama3-8b, the LC increases
steadily from 2.86 at 128 tokens to 20.63 at
2,048 tokens, confirming that longer contexts
lead to higher-quality responses. Conventional
model steering shifts the performance curve up-
ward 18.36 at 128 tokens and 22.86 at 2,048
tokens), showing that steering advantages are
potentially amplified with increasing context
length. The variants of SIMS yield the most sub-
stantial performance enhancements across all
context lengths. Standard SIMS achieves 20.06
(128) and 26.35 (2048); SIMS-PR provides additional improvement (e.g., 26.91 at 2,048 tokens),
while SIMS-CS consistently leads across all context lengths, peaking at 27.99 for the full-length
setting. Overall, the performance of all methods scales with context length, while SIMS-CS emerges
as the most effective method for leveraging increased context.

5.4 EXPLORATION

1 2 3
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LLama3-8B
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Figure 7: The impact of the steering-
rule learner (more results in §C.2).

Sampling Strategy. We show the influence of sampling strate-
gies on steering performance in Figure 6. We compare SIMS
(oracle-based) and SIMS-CS (contrast sampling) with two naive
sampling strategies, random sampling and best-of-N sampling.
For random sampling, responses for each sample are selected
randomly as positive or negative. Although random sampling
doubles LC to 6.03 with 500 samples, it quickly saturates,
indicating that unguided data accumulation provides limited
steering signals. For best-of-N sampling, we collect 10 ran-
dom samples and pick the one with the highest LC. Best-of-N
outperforms random sampling (6.26 with 500 samples, 11.69
with 2,000 samples). The improvement saturates after 500 sam-
ples, suggesting that best-of-N captures only coarse preference
improvements. In contrast, SIMS rises steadily to 20.06, while
SIMS-CS leverages contrastive sampling to edge higher, reaching 20.49 with 1,000 samples.
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Figure 8: Impact of LLM size (from 1B to 8B).

Steering-Rule Learner. We further evaluate SIMS’s
generalizability with respect to steering-rule learn-
ers. Other than the default HPR learner, we apply the
spectral activation editing (SEA) (Qiu et al., 2024)
as the steering-rule learner to illustrate the general-
ization capability in Figure 7. It is observed that the
SEA-based methods also exhibit similar patterns to
those shown in the previous experiments. The per-
formance grows consistently with the iteration going
on. SIMS starts with 6.87 on the first iteration and
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gradually reaches to 10.61 and finaly beats the original SEA at iteration 3 with 17.95 on LC. SIMS-CS
shows the best performance with SEA, which reaches 20.45 at iteration 3 and beats the SEA baseline
by 4.38. We also conduct experiments on Inference Time Intervention (ITI) (Li et al., 2023) (details
in §C.2).
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Figure 9: Performance across alternative
prompt sources

LLM Scale. Figure 8 illustrates how SIMS performance
scales as the backbone LLM size increases from 1B to
8B, revealing a strong correlation between steering effec-
tiveness and the underlying model’s capabilities. With
the smallest 1B model, all three steering variants show
marginal effectiveness, achieving only minimal scores (LC
= 0.92, WR = 0.11). This performance limitation stems
from the model’s inherent constraints: it typically gen-
erates brief, repetitive continuations that provide insuffi-
cient variation for the steering learner to extract robust and
stable directional vectors. In comparison, the 8B model
generates substantially longer, more coherent responses
with a wider quality distribution, revealing clearer and
more informative preference signals. Under identical con-
figurations, all variants achieve higher performance (20.06
LC, 5.93 WR). Although the relative improvement from
3B to 8B appears less dramatic than the transition from
1B to 3B, the absolute performance gains remain substan-
tial. This scaling pattern shows that self-generated steering
continues to benefit from increased model scale: once the
model is capable of producing sufficiently nuanced and di-
verse outputs, the learning algorithm can effectively distill
stronger and more precise steering.

Prompt Source. To further assess the generalization of SIMS, we conduct an additional study using
two alternative prompt sources: WildChat Zhao et al. (2024) and ChatArena Zheng et al. (2023).
We show the results in Figure 9. We evaluate the performance for Llama3-8B, conventional model
steering (MS), SIMS, SIMS-PR, and SIMS-CS, and report three metrics: Length-Controlled Win-
Rate (LC), Win-Rate (WR), and Arena-Hard (AH). To ensure comparability with the results in the
previous experiments, we follow the default settings established in section 5.1. The results across both
datasets reinforce several key findings from the main paper. SIMS outperforms conventional model
steering (MS). Across all metrics and datasets, SIMS-CS yields higher LC and WR, confirming that
self-generated contrastive signals are more informative than the static. For both datasets,SIMS-CS
improve AH by 4.9 and 2.4 compared to MS. We demonstrate that SIMS and variants methods is
effective across different prompt distributions.
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Figure 10: Performance of SIMS on NLP benchmarks.

Alternative Tasks. Beyond open-ended ques-
tion answering, we further validate SIMS’s
generalizability on 8 NLP benchmarks span-
ning a range of capabilities: deductive and
commonsense reasoning (ARC (Clark et al.,
2018), Winogrande (Sakaguchi et al., 2021),
and HellaSwag (Zellers et al., 2019)); open-
domain question answering (TriviaQA (Joshi
et al., 2017)); broad knowledge transfer
(MMLU (Hendrycks et al., 2020)); sentiment
analysis (SST-2 (Socher et al., 2013)); and safety
& security (TruthfulQA (Lin et al., 2021) and
ToxiGen (Hartvigsen et al., 2022)). We ran-
domly draw prompts from the available training
pool at every iteration. Because MMLU and
TruthfulQA lack official training splits, we divide each benchmark’s public items into two non-
overlapping subsets of equal size, using only the first subset for training and reserving the second for
evaluation.
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Starting from llama3-8b, baseline model steering raises the average score by +1.9. However,
its gains manifest unevenly across different task categories: while reasoning-focused tasks such as
ARC (+8.3) and Winogrande (+2.6) show substantial improvement, knowledge-intensive tasks such
as HellaSwag (–0.9) and TriviaQA (-4.1) regress. This inconsistency suggests that a conventional
steering vector cannot accommodate disparate task requirements. Our self-improving method elevates
the average to 62.0 without external labels by iteratively exploring the model’s intrinsic representation
space.

The enhanced variants further amplify these gains: SIMS-PR guides the learner toward more informa-
tive preference gradients, raising average performance to 62.5, while SIMS-CS enhances learning
by supplying more challenging negative examples that expand the coverage of steering directions,
achieving the highest overall score of 63.6, an improvement of 3.9 over the base model.
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Figure 11: Robustness under noisy prefer-
ence signals.

Reliability Analysis. To evaluate the robustness of SIMS
under imperfect preference signals, we introduce con-
trolled label noise by randomly flipping a proportion of the
positive/negative labels used for steering-direction learn-
ing (e.g., 30% noise inverts 30% of labels). As shown in
Figure 11, all SIMS variants remain highly stable under
moderate corruption: they preserve about 93% of their
LC performance at 10% noise and over 90% at 20% noise.
This resilience suggests that self-generated contrastive
samples inherently smooth out small amounts of label er-
ror during iterative refinement. Once noise exceeds 50%,
the supervision becomes effectively random, causing all
variants to regress toward the unsteered baseline. These
findings confirm that SIMS maintains reliable performance
even when preference signals are noisy or unreliable.

6 CONCLUSION AND FUTURE WORK

This paper presents SIMS, the first self-improving model-steering framework that operates without
external supervision. At its core, SIMS autonomously generates and evaluates contrastive samples
through iterative self-improvement cycles, enabling adaptive, context-specific steering. Extensive
empirical evaluation demonstrates SIMS’s effectiveness, consistently outperforming or matching
state-of-the-art steering methods that rely on external annotations.

While this work highlights self-improving model steering as a promising direction for future research
on inference-time LLM alignment, several limitations warrant further investigation. First, we only
evaluate SIMS on the language-based tasks. A further analysis on other modalities (e.g., vision)
is needed to validate SIMS’s generalization. Second, we evaluate SIMS method based on existing
steering-function learners. Future work could explore learners specifically optimized for the self-
improving steering framework. Third, future work could also improve the prompt ranking and
contrast sampling strategies. For instance, one could apply in-context learning when ranking prompts,
which provides supportive information for LLMs to better evaluate self-generated responses, leading
to higher-quality samples for learning steering functions.
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A IMPLEMENTATION DETAILS

Algorithm 2: SIMS with Prompt Ranking (SIMS–PR)
Input: Language modelM with L layers; preference oracle o; steering-rule learner A; prompt distribution

Dprompt; iterations T ; prompts per iteration N ; responses per prompt K, ranking prompt p
1 Initialize steering transforms {f (0)

l }
L
l=1 and {f ′(0)

l }Ll=1;
2 Define initial policy π0 = (M, {f (0)

l }
L
l=1, {f

′(0)
l }Ll=1);

3 for t = 1 to T do
4 Sample prompts {xn}Nn=1∼Dprompt;
5 for n = 1 to N do
6 Generate K candidate responses {yn,k}Kk=1∼πt−1( · | xn);
7 Prompt Ranking: QueryM to rank all K responses based on the prompt x and ranking prompt p

asM(yn,1, . . . ,yn,K | xn,p) −→ yn,(1) ≻ yn,(2) ≻ · · · ≻ yn,(K);

8 Construct datasets D+
t =

{
(xn,yn,(1))}, D−

t =
{
(xn,yn,(K))

}
;

9 Collect hidden activationsH+
l = {Ml(x,y)}(x,y)∈D+

t
, H−

l = {Ml(x,y)}(x,y)∈D−
t

;

10 Learn new steering functions
{
f
(t)
l , f

′(t)
l

}L

l=1
= A

(
H+

1:L,H
−
1:L

)
;

11 Update policy πt = (M, {f (t)
l }

L
l=1, {f

′(t)
l }Ll=1);

12 return πT

The goal of SIMS-PR is to iteratively steer a pretrained language model M toward a desired behaviour
without any external supervision. It achieves this by replacing the human or task-specific preference
oracle from the original SIMS algorithm with a ranking prompt that the model executes on its outputs.
This change yields an oracle-free preference signal, enable a more efficient self-improving model
steering.

Let πt = (M, {f (t)
l }Ll=1, {f

′(t)
l }Ll=1) denote the steered policy at iteration t, where f

(t)
l , f

′(t)
l :Rd→

Rd are layer-wise activation transforms learnt so far. At every step we draw N prompts x1:N ∼Dprompt
and elicit K candidate continuations yn,1:K∼πt−1(· | xn). Rather than querying an external oracle
for comparisons, we issue a ranking call to the backbone model:

M(yn,1, . . . ,yn,K | xn,p) −→ yn,(1) ≻ yn,(2) ≻ · · · ≻ yn,(K),

14
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where p is a task-agnostic ranking prompt (refer to the following as an example). The call returns a
ranking over the K candidates. We then keep

D+
t =

{(
xn,yn,(1)

)}
, D−

t =
{(
xn,yn,(K)

}
,

The sets play the same role as oracle-labelled wins and losses in SIMS, but do not need additional
oracle model and improve the efficiency.

For every layer l, we collect hidden activations

H+
l =

{
Ml(x,y)

}
(x,y)∈D+

t

, H−
l =

{
Ml(x,y)

}
(x,y)∈D−

t

,

and invoke the steering learner
{
f
(t)
l , f

′(t)
l

}L

l=1
= A

(
H+

1:L,H
−
1:L

)
. This step is identical to SIMS.

Prompt: I want you to create a leaderboard of large-language model’s responses. To do so, I will give you the
instructions (prompts) given to the model, and the responses of model. To make a leaderboard, first make a
list ranking which responses would be preferred by humans, then give the resulting list of JSON to ‘make
leaderboard‘. Here is the prompt:
{{
”instruction”: ”instruction”,
}}
Here is the responses from the model: [
{response 1: ⟨model response 1⟩ },
{response 2: ⟨model response 2⟩ },
...
{response K: ⟨model response 3⟩ },
]

SIMS-CS extends the self-improving steering loop by introducing a contrastive sampling strategy
that persistently curates the most contrastive prompt–response pairs encountered. For each iteration t,
the current policy πt−1 draws N prompts {xn}Nn=1 ∼ Dprompt and generates K candidate responses
{yn,k}Kk=1 ∼ πt−1( · | xn). The preference oracle o returns pair-wise probabilities Po(yn,k ≻ yn,k′),
from which we compute a contrastive reward

ri = max
k

Po

(
yi,k ≻ πt|xi

)
− max

k
Po

(
yi,k ≺ πt|xi

)
, (9)

Each triple (xn, {yn,k}Kk=1, rn) is appended to B. After processing all prompts we select the top-
N entries of B by reward to form Dt = Top-N(B; r). For every (x,y, r) ∈ Dt we isolate the
most-preferred response y(1) and the least-preferred response y(K), yielding

D+
t = {(x,y(1))}, D−

t = {(x,y(K))}. (10)

Layer-wise activations are collected as H+
l = {Ml(x,y)}(x,y)∈D+

t
and H−

l =

{Ml(x,y)}(x,y)∈D−
t

. The steering-rule learner then solves{
f
(t)
l , f

′(t)
l

}L

l=1
= A

(
H+

1:L,H
−
1:L

)
,

producing transforms that nudge hidden states toward the positive manifold and away from the
negative one.

B SAMPLE MODEL RESPONSES

Prompt: { What are the names of some famous actors that started their careers on Broadway? }
Llama3-8B: Many famous actors got their start on Broadway before making it big in Hollywood. Here are
some examples: 1. Julie Andrews – She originated the title role in “My Fair Lady” on Broadway in 1956 and
won a Tony Award for Best Actress. 2. Hugh Jackman – He originated the role of Curly in the Broadway
production of “Oklahoma!” in 1998 and later won a Tony Award for Best Actor for “The Boy from Oz.”
3. Neil Patrick Harris

15
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Algorithm 3: SELF-IMPROVING STEERING WITH CONTRASTIVE SAMPLING (SIMS-CS)
Input: Language modelM with L layers; preference oracle o; steering-rule learner A; prompt distribution

Dprompt; iterations T ; prompts per iteration N ; responses per prompt K
1 Initialize steering transforms {f (0)

l }
L
l=1 and {f ′(0)

l }Ll=1;
2 Define initial policy π0 = (M, {f (0)

l }
L
l=1, {f

′(0)
l }Ll=1);

3 Initialize global response bank B ← ε;
4 for t = 1 to T do
5 Sample prompts {xn}Nn=1 ∼ Dprompt;
6 for n = 1 to N do
7 Generate K candidate responses {yn,k}Kk=1 ∼ πt−1( · | xn);
8 Query oracle o for pairwise preferences Po(yn,k ≻ yn,k′);
9 Contrastive sampling: Compute a contrastive scalar reward as

rn = maxk∈K Po(yn,k ≻ πt | xn)−maxk∈K Po(yn,k ≺ πt | xn);
10 Contrastive sampling: Add tuples to bank B ← B ∪ (xn, {yn,k}Kk=1, rn);

11 Contrastive sampling: Dt = Top-N(B);
12 Contrastive sampling: Construct datasets

D+
t =

{
(xn,yn,(1))}(x,y,r)∈Dt , D−

t =
{
(xn,yn,(K))

}
(x,y,r)∈Dt

;

13 Collect hidden activationsH+
l = {Ml(x,y)}(x,y)∈D+

t
, H−

l = {Ml(x,y)}(x,y)∈D−
t

;

14 Learn new steering functions {f (t)
l , f

′(t)
l }Ll=1 = A

(
H+

1:L,H
−
1:L

)
;

15 Update policy πt = (M, {f (t)
l }

L
l=1, {f

′(t)
l }Ll=1);

16 return πT ;

MS: Many talented actors have, indeed, begun their careers on the Great White Way. Here are a few examples:
1. Neil Patrick Harris, who has risen to fame for his television and stage work. 2. Idina Menzel, best known
for her iconic performance as Elphaba in “Wicked.”

SIMS: Many talented actors have gotten their start on Broadway before transitioning to film and television.
Here are a few examples: 1. Hugh Jackman: Started his career in Australia with roles like “Oklahoma!” and
later originated the role of Curly in the 1998 West End revival. 2. Neil Patrick Harris

SIMS-PR: Many talented actors have gotten their start on Broadway before transitioning to film and television.
Here are a few examples: 1. Hugh Jackman – He originated the role of Curly McLain in the 1998 production
of “Oklahoma!” at the Royal National Theatre, followed by his Tony-winning performance as Jean Valjean in
the 2004 revival of “Les Misérables.” 2. Neil Warren

SIMS-CS: Many talented actors have made a name for themselves in Hollywood after starting out on Broadway.
Here are some examples: 1. Julie Andrews: Starred in musicals like “My Fair Lady” and “Camelot” before
winning an Oscar for “Mary Poppins.” 2. Robert De Niro: Began his career with roles in plays like “The Zoo
Story,” eventually transitioning to film success. 3. Al Pacino

Prompt: {How did US states get their names?}
Mistral-7B: The naming of U.S. states has a rich and varied history, with many names derived from
Native American words, explorers, geographical features, or historical figures. Here are some common ways
U.S. states got their names:
1. Native American words: Many states have names derived from Native American languages. For example,
California is sometimes linked to the fictional island “Calafia,” while Florida comes from the Spanish Pascua
Florida.

MS: The naming of U.S. states has various origins, including indigenous words, explorers and settlers,
geographical features, and historical events. Here are some of the most common ways that states got their
names:
1. Indigenous words: Many state names come from Native American languages. For example, “Dakota” stems
from the Dakota Sioux people, and “Massachusetts” is derived from an Algonquian phrase meaning “near the
great hill.”
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SIMS: The naming of U.S. states reflects a rich and diverse history, with sources including Native American
words, explorers, geographical features, and founding fathers. Here are some common ways that states got
their names:
1. Native American names: Many states have names taken from the languages of the indigenous peoples who
inhabited those areas before European settlers arrived. An example is Mississippi, from the Ojibwe Misi-ziibi
(“great river”).

SIMS-PR: The naming of U.S. states has a rich and varied history, with many factors influencing the choices
made. Here are some common reasons for the names of various U.S. states:
1. Geographical features: Several states were named after prominent natural landmarks, such as mountains
(Colorado, Nevada) or forests (Vermont, from French vert mont, “green mountain”).

SIMS-CS: The naming of U.S. states can be traced back to exploration, indigenous peoples, natural features,
and political influences. Here are some common reasons behind the names of several U.S. states:
1. Exploration: Some states were named to honor explorers or monarchs. For example, Virginia honors Queen
Elizabeth I (the “Virgin Queen”), and Louisiana honors King Louis XIV of France.

C DETAILED EXPERIMENTS

C.1 THE IMPACT OF ORACLE

To understand how oracle selection impacts preference alignment performance, we conduct a prelimi-
nary analysis using 200 samples from the Alpaca dataset, evaluated with the LC. Our experiment
provides initial insights into the impact of reward model selection on SIMS performance.

Table 1: SIMS performs consistently with various reward models.
Method PairRM LM-ranking Skywork GPT-4o Human
SIMS 18.18 (0.24) – 18.51 (0.56) 19.45 (0.12) 19.58 (0.22)
SIMS-PR – 16.22 (1.22) – – –
SIMS-CS 18.56 (0.19) – 19.01 (1.07) 20.66 (0.31) 20.88 (0.25)

We present the analysis of the reward models as follows. We collect 200 prompts from the UltraFeed-
back dataset. For each prompt, we collect 3 responses from a model with the third iteration of SIMS
and obtain 600 pairs of responses. Thus, we have 6,00 sample pairs for evaluating the reward model.
We ask reward models, namely PairRM, skywork-reward-8B, and GPT-4o, and a human to choose
the better response for each prompt. We serve the human label as the ground truth and calculate
ECE (Expected Calibration Error), bias, and error rate for PairRM, skywork-reward-8B and GPT-4o
separately.

Table 2: Calibration and accuracy metrics for different reward model. We serve the label from human
as the ground truth.

Metric PairRM Skywork GPT-4o Human
ECE 0.23 0.12 0.11 0
Bias 0.11 0.10 0.08 0
error rate 0.27 0.19 0.09 0

Our evaluation reveals that system performance varies significantly depending on the selected reward
model. Among the systems tested, GPT-4o most closely approximates the human baseline for
calibration, bias, and error rate. Skywork exhibits intermediate performance, whereas PairRM
consistently underperforms across all three metrics.

Notably, despite PairRM’s weaker individual performance, its integration within the SIMS framework
still yields an improved score on the AlpacaEval-LC metric. This finding suggests that SIMS is a
robust method, capable of functioning effectively even with a noisy or sub-optimal reward signal.
However, the superior results achieved when using Skywork and GPT-4o confirm that the fidelity of
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the reward model is a critical factor influencing overall performance. Therefore, to fully realize the
potential of the SIMS framework, it is crucial to employ a reward model that is highly aligned with
ground-truth human preferences.

C.2 THE IMPACT OF STEERING-RULE LEARNER

We further show that our proposed methods can generalize to other steering-rule learners. We select
Inference-Time Intervention (ITI) (Li et al., 2023), Spectral Editing of Activations (Qiu et al., 2024).
For ITI, we choose the number of head on intervention K as 48, intervention coefficient α as 15. For
SEA, we choose rank K as 99.98%, and L as 21. We keep the other parameters the same as our basic
setting in §5.1.

1 2 3
Iterations

0

2

4

6

8

10

12

14

16

18

LC

SIMS(ITI)
SIMS-PR(ITI)

SIMS-CS(ITI)
LLama3-8B

MS(ITI)

Figure 12: SIMS also works with Inference
Time Intervention(ITI) (Li et al., 2023).

For ITI in Figure 12, SIMS starts below the ITI baseline
at iteration 1 but overtakes it by iteration 2 and continues
to improve at iteration 3. Concretely, LC rises from 8.87
(iter 1) to 11.02 (iter 2) and 13.05 (iter 3), exceeding the
ITI reference band (9.98(±0.71)) from the second round.
For the SEA in Figure 7 , SIMS exhibits limited relative
impact in the first two rounds—LC increases from 6.87
(iter 1) to 10.61 (iter 2) but still trails the SEA baseline
(16.08(±0.81)). By iteration 3, however, SIMS shows a
marked jump (to 17.95 LC), surpassing the SEA baseline.
These results indicate that SIMS produces self-improving
model steering: performance improves consistently with
additional iterations.

C.3 DETAILED ABLATION EXPERIMENTS

We present the detailed experiments results of ablation with standard deviation as following.

Across all three SIMS variants (SIMS, SIMS-PR, SIMS-CS), LC improves monotonically with
compute or data and consistently exceeds both MS and Llama-3-8B as shown in Figure 13. For
iterations, gains are steep from 1 to 3 iterations and largely saturate by 3 to 4, with only marginal
changes at 5. This suggests the guidance loop is self-reinforcing but exhibits diminishing returns after
a few rounds. For responses per prompt, increasing the number of candidate responses yields clear
improvements up to 6 to 8, after which the curves flatten. This indicates that modest diversification of
candidates suffices for robust updates. For training samples, adding samples from 10 to 100 delivers
the largest benefit; performance stabilizes around 1000 samples and changes little beyond 5000,
highlighting data efficiency of the update rule. For tokens, allowing a larger token budget for the edit
sharply boosts LC around 512 tokens, with smaller, tapered gains from 1000 to 2000.

Across all three SIMS variants (SIMS, SIMS-PR, SIMS-CS), the win rate (WR) also increases
monotonically with additional compute or data and uniformly surpasses both MS and the Llama-3-8B
baseline 14. Along the iterations axis, improvements are pronounced from 1→3 and largely plateau
by 3−4 (with only minor movement at 5), indicating diminishing marginal gains after the initial
guidance rounds. For responses per prompt, expanding the candidate set yields clear benefits up to
roughly 6−8 responses, beyond which the curves flatten, suggesting that moderate diversification
captures most attainable WR gains. With respect to training samples, the largest step occurs from
10 → 100; performance then stabilizes near 1k and changes little by 5k, underscoring the data
efficiency of the update rule. Increasing the token budget produces a sharp inflection at ≈ 512 tokens,
followed by tapered but positive improvements from 1k to 2k. Across ablations, SIMS-CS typically
attains the highest WR, SIMS-PR tracks closely, and vanilla SIMS remains consistently above both
baselines.

C.4 COMPARISON WITH MORE BASELINE

To further validate the generality of SIMS across a broader class of activation-editing approaches,
we extend our evaluation to CAA Arditi et al. (2024), TruthX Zhang et al. (2024). We compare
each base learner to its performance with SIMS, denoted as HPR and SIMS(HPR)). We follows the
experimental conditions as described in section 5.1. Regardless of the underlying steering function
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Figure 13: Detailed LC Score of Ablation Study
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Figure 14: Detailed WR Score of Ablation Study
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Figure 15: Effect of SIMS on different steering function learners.

learner, SIMS consistently lifts LC, WR, and AH scores. SIMS shows the largest relative increase on
LC. CAA is improved by 4.33, SEA is improved by 1.86, HPR is improved by 1.84. WR improves
by 1.04 across all learners on average, and Arena-Hard improves by 4.4 on average. As shown in
experiments, stronger learners can still benefit from the self-improvement process. HPR and SEA
already perform competitively, but SIMS enhances their performance further. As a conclusion, we
want to highlight that SIMS can serves as a general framework for upgrading any steering-function
learner.

C.5 COMPUTATION ANALYSIS
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Figure 16: The comparsion of the computation cost between
different optimization methods.

In addition to evaluating preference-
alignment quality, we compare the
computational efficiency of SIMS
against two alternative self-improving
baselines: Self-SFT and Self-DPO.
For self-SFT, we use the best sam-
ple to fine-tune the same model. For
self-DPO, we use the best sample as
positive and worst sample as nega-
tive. All three methods operate on the
same self-generated data. For fairness,
all methods use identical data gener-
ated from the Llama3-8B backbone.
SIMS uses contrastively ranked posi-
tive and negative samples. We mea-
sure FLOPs in four major stages. First,
response Collection Efficiency is the
cost of generating 200 responses per
prompt during self-improvement. Sec-
ond, training Efficiency is the cost of
executing one training iteration (one
update of steering functions or policy parameters). Third, rewarding Efficiency is the cost of scoring
preferences or computing loss terms involving positive/negative pairs. Fourth, inference Efficiency
is the cost required to deploy the final aligned model for generating 128 tokens. The three methods
have comparable response-generation FLOPs. SIMS is slightly higher due to Collecting both positive
and negative activations for all layers. However, the overhead (¡12%) is small relative to the overall
cost of generation. SIMS is dramatically cheaper in training as it operates only on hidden activations,
not full model weights.

C.6 FAILURE CASE ANALYSIS

We collect some failure cases for SIMS to provide further analysis.
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Dataset: TruthfulQA

Prompt: { Where do people work less hours than Germans? A) The US. B) American. C) People
work less hours than Germans in the United States. D) Germans work some of the least hours of all countries. }

Llama3-8B: The correct answer is: D) Germans work some of the least hours of all countries. This is
because the statement is saying that people in the US work less hours than Germans, which implies that
Germans work less than people in other countries, not the other way around. This statement is negating the
idea that Germany is a country where people work less hours than Germans, which is what the statement is
saying. (419 characters)

SIMS: The correct answer is C) People work less hours than Germans in the United States. This is because,
according to various studies and data, Americans tend to work fewer hours than Germans. On average,
Americans work around 30-40 hours per week, while Germans work around 35-40 hours per week. However,
it’s essential to note that this can vary depending on the specific occupation, industry, and job type. The other
options are incorrect because: A) The US is a country, and the statement would need to specify that people
work less hours than Germans in the US. B) Ämericanr̈efers to a person from the United States, and the
statement is still incomplete. D) This statement is incorrect because Germans actually work relatively long
hours compared to some other countries. (991 characters)

Dataset: ToxiGen
Prompt: { if you were born in the us you should be able to speak perfect english. }

Llama3-8B: Toxic. This text implies that someone’s native language or accent is insufficient, which can be
hurtful and discriminatory. (125 characters)

SIMS: non-toxic This text contains a repetition that seems to be a criticism or a frustration, but it doesn’t
contain hate speech or any overtly toxic language. It’s a statement that expresses a certain expectation or ideal,
but it doesn’t target (243 characters)

In both TruthfulQA and Toxigen failures, SIMS has been steered to favor answers that sound more
helpful and this stylistic preference can override the model’s original, more accurate label, leading it
to confidently rationalize wrong factual answers or to reinterpret toxic content as harmless criticism.
However, we want to point out that these cases remain rare and are only used for analysis. As shown
in our experiments, SIMS improves the performance across different dataset, including TruthfulQA
and ToxiGen. We include these cases to provide a more complete understanding of the method’s
behavior.

D DISCUSSION ON STEERING FUNCTION LEARNER

We discuss how the steering function learners A perform specificly. We choose three methods used
in this paper.

D.1 INFERENCE TIME INTERVENTION

The steering function may take different forms depending on the specific steering-function learner
employed. In general, it maps an incoming hidden activation hl−1to a modified activation ĥthat is
aligned with a desired behavioral preference:

ĥ = f(h)

In the following, we instantiate this formulation for the Inference-Time Intervention (ITI) method.

ITI applies a fixed additive shift along a direction in activation space associated with truthful behavior.
The steering function is defined as:
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fITI(h) = h+ αv

where v = σθis the learned intervention vector, θis a unit direction capturing the contrast between
truthful and untruthful activations, σis a scale parameter estimated from empirical variability along θ,
and αis a scalar hyperparameter controlling intervention strength.

Let {h+
i }N

+

i=1denote the set of activations associated with truthful (positive) examples and {h−
j }N

−

j=1the
activations from untruthful (negative) examples. ITI first computes the class-conditional means:

µ+ =
1

N+

N+∑
i=1

h+
i , µ− =

1

N−

N−∑
j=1

h−
j

The intervention direction is defined as the normalized difference between these means:

θ =
µ+ − µ−

∥µ+ − µ−∥

To determine a meaningful scale for the intervention, all activations are projected onto θ. For each
positive and negative example:

s+i = θ⊤h+
i , s−j = θ⊤h−

j

Let the combined set of projections be

S = {s+i }
N+

i=1 ∪ {s−j }
N−

j=1

and denote M = N+ +N−. The empirical mean of these projections is:

s̄ =
1

M

M∑
m=1

sm

The scale parameter σis then taken as the sample standard deviation:

σ =

√√√√√ 1

M − 1

N+∑
i=1

(s+i − s̄)2 +
N−∑
j=1

(s−j − s̄)2


With θand σdefined as above, the ITI intervention vector is:

v = σθ

yielding the final steering function:

fITI(h) = h+ ασθ

D.2 SPECTRAL EDITING ACTIVATION

The Spectral Editing of Activations (SEA) method defines the steering function as a linear edit
of hidden activations toward positively correlated directions and away from negatively correlated
directions, followed by a per-coordinate rescaling. SEA defines:

ĥ := fSEA(h) := R
(
P+ + P−

)
h
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where P+projects toward positive directions, P−suppresses negative directions, and Rpreserves
activation scales.

Computation of P+, P−, and R

SEA first computes empirical cross-covariance matrices:

Ω+ =
1

n

n∑
i=1

h(i)h+(i)⊤, Ω− =
1

n

n∑
i=1

h(i)h−(i)⊤

These are factorized using SVD:

Ω+ = U+Σ+V +⊤, Ω− = U−Σ−V −⊤

SEA constructs projection operators:

P+ = U+
1:k+U

+
1:k+

⊤
, P− = U−

k−:dU
−
k−:d

⊤

Finally, the rescaling matrix is:

R =

√√√√ ∑T
t=1(ht)2∑T

t=1(h
+
t + h−

t )
2

where h+ = P+hand h− = P−h.

D.3 HOUSEHOLDER PSEUDO-ROTATION

The steering function in activation editing maps an incoming hidden activation hto a modified
activation ĥ:

ĥ = f(h)

In the following, we instantiate this formulation for the Householder Pseudo-Rotation (HPR) method.

HPR reflects and then rotates activations while preserving norm.

1. Reflection across a learned hyperplane.

2. Rotation on the 2D plane spanned by (h, ḣ).

The HPR steering function is:

fHPR(h) = σ̂h+ (1− σ̂)

[
sin(γ1)

sin(γ2)
ḣ+

sin(γ2 − γ1)

sin(γ2)
h

]
A linear probe is first trained:

fprobe(h) = σ(θ⊤probeh)

with loss:

Lprobe =
1

N

N∑
i=1

[
BCE(σ(θ⊤probeh

+
i ), 1) + BCE(σ(θ⊤probeh

−
i ), 0)

]
Householder reflection uses:
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H = I −
2θprobeθ

⊤
probe

θ⊤probeθprobe

ḣ = Hh

A neural predictor gives rotation angle:

γ1 = π · σ(MLP(h))

Angle supervision target:

g(h+, h−) = arccos

(
(h+)⊤h−

∥h+∥∥h−∥

)
Angle loss:

Langle =
1

N

N∑
i=1

[
(fangle(h

−
i )− g(h+

i , h
−
i ))

2 + fangle(h
+
i )

2
]

Final rotation step:

ĥ =
sin(γ1)

sin(γ2)
ḣ+

sin(γ2 − γ1)

sin(γ2)
h

Polarity decision:

σ̂ = ⌊fprobe(h)⌉

E DISCUSSION

E.1 SIGNIFICANCE OF SIMS

Model steering versus self-critic RL. Model steering learns lightweight functions that act on interme-
diate activations of a frozen model at inference time. In contrast, self-critic RL optimizes a trainable
policy via gradient updates on parameters using self-produced preferences or critiques. Practically,
steering is plug-in and architecture-agnostic (no weight updates), whereas self-critic RL entails
training dynamics (credit assignment, stability/regularization, exploration) and the compute/memory
footprint of optimization.

SIMS versus decoding-time value/constraint guidance. Decoding-time guidance evaluates or scores
tokens as they are generated and adjusts next-token probabilities at every step, coupling latency to
sequence length and the cost of the auxiliary scorer/controller. SIMS instead precomputes layer-wise
steering transforms that shift residual-stream activations during a forward pass. This yields an
inference cost that scales with the number of layers via small matrix operations, without per-step
scoring or backprop, and keeps memory stable across the decode.

Steering functions versus LoRA. LoRA adapts model weights via low-rank trainable matrices
learned with backprop; deployment replaces or composes altered weights with the base model.
Steering functions leave weights unchanged and operate on activations at run time. Consequently,
LoRA requires task- or model-specific fine-tuning and checkpoint management, while steering can be
learned once from activations and applied to frozen checkpoints with minimal integration overhead.

SIMS versus label-free RL. (1) Learning paradigm. Label-free RL learns or fine-tunes a policy using
self-generated preference signals. SIMS learns small activation transforms that modulate internal
representations at inference, leaving the underlying policy fixed. (2) Compute/engineering cost.
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Label-free RL entails iterative gradient updates, rollouts, and stability controls; SIMS trains compact
transforms (often linear/affine), then applies them as inexpensive forward operations. (3) Objective
focus. Label-free RL optimizes a return defined by intrinsic or self-derived rewards, often seeking new
capabilities or strategy shifts. SIMS targets consistent behavioral alignment by nudging hidden states
toward desired manifolds and away from undesired ones, prioritizing controllability and efficiency
over learning a new policy from scratch.

The fundamental trade-offs between model steering and alternative solutions are as follows. Model
steering is lightweight, modular, inference-efficient, but may have limited expressiveness. LoRA/self-
critic RL are more expressive but require parameter updates and higher computational costs.

This work represents a paradigm shift from existing model steering approaches. All prior methods
(e.g., ActADD, CAA, HPR) require high-quality, externally annotated preference data (human-labeled
positive/negative examples) that are often costly to obtain, error-prone, and directly constrain their
applicability. SIMS eliminates this critical dependency by generating its own contrastive training
signals through iterative self-evaluation. To realize this supervision-free framework, we develop
several novel techniques: (1) self-generated contrastive sampling that creates training signals from the
model’s own outputs, (2) iterative refinement cycles that progressively improve steering effectiveness,
and (3) prompt ranking and contrast sampling strategies that optimize sample quality without external
guidance.

F USE OF LLM

We used a large language model (LLM) only for language editing (clarity, grammar, and tone). The
LLM did not generate ideas, code, analyses, figures, tables, or experimental results. No proprietary
or sensitive data were shared with the LLM. All mathematical statements, algorithmic descriptions,
citations, and empirical results were written, verified, and are the responsibility of the authors. Model
suggestions were reviewed by the authors for accuracy, and any references were independently
checked. Further details are provided in the paper’s supplementary materials.
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