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ABSTRACT

Self-supervised learning has become a cornerstone in computer vision, primarily
divided into reconstruction-based methods like masked autoencoders (MAE) and
discriminative methods such as contrastive learning (CL). Recent empirical ob-
servations reveal that MAE and CL capture different types of representations: CL
tends to focus on global patterns, while MAE adeptly captures both global and
subtle local information simultaneously. Despite a flurry of recent empirical inves-
tigations to shed light on this difference, theoretical understanding remains limited,
especially on the dominant architecture vision transformers (ViTs). In this paper,
to provide rigorous insights, we model the visual data distribution by considering
two types of spatial features: dominant global features and comparatively minus-
cule local features, and study the impact of imbalance among these features. We
analyze the training dynamics of one-layer softmax-based ViTs on both MAE and
CL objectives using gradient descent. Our analysis shows that as the degree of
feature imbalance varies, ViTs trained with the MAE objective effectively learn
both global and local features to achieve near-optimal reconstruction, while the
CL-trained ViTs favor predominantly global features, even under mild imbalance.
These results provide a theoretical explanation for distinct behaviors of MAE and
CL observed in empirical studies.

1 INTRODUCTION

Self-supervised learning (SSL) has been a leading approach to pretrain neural networks for down-
stream applications since the introduction of BERT (Devlin et al., 2018) and GPT (Radford et al.,
2018) in natural language processing (NLP). On the other hand, in vision, self-supervised learning
focused more on discriminative methods, which include contrastive learning (CL) (He et al., 2020;
Chen et al., 2020) and non-contrastive learning methods (Grill et al., 2020; Chen et al., 2020; Caron
et al., 2021; Zbontar et al., 2021). Inspired by masked language models in NLP and the seminal
work of vision transformers (ViTs) (Dosovitskiy et al., 2020), generative approaches, such as masked
reconstruction-based methods, have gained prominence in self-supervised vision pretraining. The
masked autoencoders (MAE) (He et al., 2022) and SimMIM (Xie et al., 2022) have demonstrated the
effectiveness of visual representation learning via reconstruction-based objectives.

Contrastive learning-like objectives promote instance discrimination among samples in the same
batch of training. With suitable data augmentation, CL returns well-trained vision encoders like
CLIP (Radford et al., 2021) and DINO (Caron et al., 2021) that can serve as backbones for state-
of-the-art multimodal large language models (MLLMs) (Tong et al., 2024). Masked reconstruction
objectives (e.g., MAE), on the other hand, enforce neural networks to reconstruct some or all patches
of an image given masked inputs. In practice, the MAE-like approach proves to have intriguing
generalization properties that differ significantly from the behaviors in CL. The seminal work (He
et al., 2022) showed that MAE can visibly conduct visual reasoning to fill missing patches even under
very high masking rates. Some critical observations from recent research (Wei et al., 2022b; Park
et al., 2023; Xie et al., 2023) provide comparative studies of these SSL approaches. They concluded
that the ViTs trained via generative objectives display diverse attention patterns: different query
patches pay attention to distinct local areas. This is in sharp contrast to the discriminative approaches,
whose attention heads focus primarily on the most significant global pattern regardless of where the
query patches are, as shown in Figure 1. These empirical observations motivate the question: from
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Query 1

Query 2

DINO MoCo MAE

Discriminative: collapse into 
analogous attention patterns 

Generative: diverse 
local patterns 
associated with 
query patches

Figure 1: Visualization of attention maps in the last layer of ViT for query patches from two different
spatial locations, similar to those presented in Park et al. (2023). The ViTs were trained by the
generative self-supervised learning approach of masked reconstruction (MAE) and discriminative
methods: DINO (Caron et al., 2021) and MoCo (Chen et al., 2021b).

a theoretical standpoint, how do ViTs pick up these observed attention patterns during the training
process, respectively for different SSL methods?

Despite extensive empirical efforts of studying SSL in vision pretraining, its theoretical understanding
is still nascent. Most existing theories of SSL focused on the discriminative approach (Arora et al.,
2019; Chen et al., 2021a; Robinson et al., 2021; HaoChen et al., 2021; Tian et al., 2021; Wang et al.,
2021; Wen & Li, 2021; 2022), especially (non-)contrastive learning. There are also a few attempts
towards understanding methods using the generative approach like masked reconstructions (Cao et al.,
2022; Zhang et al., 2022; HaoChen et al., 2021; Pan et al., 2022), which mainly adapt the theories
developed for CL to their context. In fact, there are two major limitations of these prior works: i)
Transformers, as the dominant architecture in practice, were not studied in the aforementioned
works of self-supervised learning and ii) there still lacks a suitable theoretical framework that can
provide convincing explanations for the empirical findings in Park et al. (2023); Xie et al. (2023),
especially on the difference of the attention patterns learned by the different approaches of SSL. The
above limitations highlight a significant gap in the literature on SSL for vision pretraining1.

Motivated by the limited theoretical characterization of SSL for vision with transformers, especially
in comparing CL and masked reconstruction objectives, we aim to address the following research
questions:

Our Research Questions
Can we theoretically characterize the solutions that ViTs converge to in these two mainstream
self-supervised learning approaches? How do differences in attention patterns emerge during their
respective training processes?

Contributions. In this paper, we take a step toward answering the above questions. We study the
gradient descent (GD) training process of one-layer softmax-based ViTs for both masked reconstruc-
tion and contrastive learning, focusing on spatially structured data distributions generalized from
supervised learning settings (Jelassi et al., 2022). In our setting, each image is sampled from distinct
clusters characterized by unique patch-wise feature associations. Each cluster contains two types
of features: a large portion of patches reside in a global area and share global features, while the
remaining local areas contain relatively few patches with their own local features. We measure the
imbalance of feature distribution by a condition called the information gap ∆, which is defined in
eq. (4.1). Under such setting:

1. We provide global convergence guarantees for training ViTs on both the MAE and the
CL loss fucntions. To the best of our knowledge, this is the first end-to-end guarantee for
learning ViTs with self-supervised learning objectives;

1More detailed discussions for related work can be found in Appendix A.
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2. We provide a comprehensive characterization of the training dynamics of attention corre-
lations (see Definition 3.1) to illustrate the attention patterns to which ViTs converge: i).
MAE provably learns diverse attention patterns, with each patch concentrating its attention
on its designated area based on its position, even under a substantial information gap ∆; ii).
CL primarily learns a global attention pattern, causing all patches to focus on the global
area regardless of their locations, even with a minor ∆. These qualitative differences in
the solutions learned by these two SSL methods provide strong theoretical support for the
empirical behavior gaps observed in Park et al. (2023); Xie et al. (2023), and highlight the
theoretical advantage of MAE in handling highly imbalanced data structures.

Notation. We introduce notations to be used throughout the paper. For any two functions h(x) and
g(x), we use h(x) = Ω(g(x))

(
resp. h(x) = O(g(x))

)
to denote that there exist some universal

constants C1 > 0 and a1, s.t. |h(x)| ≥ C1|g(x)|
(
resp. |h(x)| ≤ C1|g(x)|

)
for all x ≥ a1;

Furthermore, h(x) = Θ(g(x)) indicates h(x) = Ω(g(x)) and h(x) = O(g(x)) hold simultaneously.
We use 1{·} to denote the indicator function, and let [N ] := {1, 2, . . . , N}. We use Õ, Ω̃, and Θ̃
to further hide logarithmic factors in the respective notations. We use poly(P ) and polylog(P ) to
represent large constant-degree polynomials of P and log(P ), respectively.

2 PROBLEM SETUP

In this section, we present our problem formulations for studying the training process of ViTs in
self-supervised pretraining. We begin with some background information, followed by a description
of our data distribution. We then detail the pretraining strategies using MAE and CL respectively
with the specific transformer architecture considered in this paper.

2.1 BACKGROUND ON SELF-SUPERVISED LEARNING

Masked reconstruction-based learning. We follow the masked reconstruction frameworks in He
et al. (2022); Xie et al. (2022). Each data sample X ∈ Rd×P has the form X = (Xp)p∈P , which
has |P| = P patches, and each patch Xp ∈ Rd. Given a collection of images {Xi}i∈[n], we select a
masking set Mi ⊂ P for each image Xi, and mask these patches to a uniform value M ∈ Rd. The
resulting masked images {M(Xi)}i∈[n] are given by

M(Xi)p =

{
[Xi]p p ∈ Ui

M p ∈ Mi
, i ∈ [n], (2.1)

where Ui = P \Mi is the index set of unmasked patches. Let F : X 7→ X̂ be an architecture that
outputs a reconstructed image X̂ ∈ Rd×P for any given input X ∈ Rd×P . The pretraining objective
is then defined as the mean-squared reconstruction loss over a series of subsets P ′

i ⊂ P of the image
as follows:

Lmasked(F ) = 1
n

∑n
i=1

∑
p∈P′

i

∥∥∥[Xi]p − [F (M(Xi))]p

∥∥∥2
2
. (2.2)

MAE (He et al., 2022) chose the subset P ′
i as the set of masked patches Mi, whereas SimMIM (Xie

et al., 2022) aimed to reconstruct the full image P ′
i = P . We do not explore the trade-offs between

these two approaches in our study.

Contrastive learning. Contrastive learning (Chen et al., 2020) aims to learn meaningful representa-
tions F by distinguishing between similar and dissimilar data points. For a given batch {Xi}i∈[n], we
generate a positive pair (X(1)

i , X
(2)
i ) for each i by applying random augmentations to Xi. Negative

pairs (X
(1)
i , X

(2)
j ) for j ̸= i are formed from different data points. The model F is trained to

minimize the following contrastive loss:

Lcontrastive(F ) = 1
n

∑n
i=1

[
−τ log

(
e
SimF (X(1)

i
,X

(2)
i )/τ∑

j∈[n] e
SimF (X(1)

i
,X

(2)
j )/τ

)]
, (2.3)

where SimF measures the similarity between two representations, and τ is a temperature parameter
controlling the sharpness of the distribution.
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Figure 2: Illustration of our data distribution (see Definition 2.1). Each cluster Dk is segmented into
distinct areas Pk,j , with squares in the same color representing the same area Pk,j . The global area
Pk,1 (depicted in orange) contains a larger count of patches compared to any other local areas. It is
important to note that while we use spatially contiguous partitions for clarity in this illustration, our
data model is also applicable to non-contiguous cases.

2.2 DATA DISTRIBUTION

We assume the data samples X ∈ Rd×P are drawn independently based on some data distribution D.
To capture the feature-position (FP) correlation in the learning problem, we consider the following
setup for vision data. We assume that the data distribution consists of many different clusters, where
each cluster captures a distinct spatial pattern, and hence is defined by a different partition of patches
with a different set of visual features. We define the data distribution D formally as follows. An
intuitive illustration of data generation is given in Figure 2.

Definition 2.1 (Data distribution D). The data distribution D has K = O(polylog(P )) different
clusters {Dk}Kk=1. For every cluster Dk, k ∈ [K], there is a corresponding partition of P into Nk

disjoint subsets P =
⋃Nk

j=1 Pk,j which we call areas. For each sample X = (Xp)p∈P , its sampling
process is as follows:

• We draw Dk uniformly at random from all clusters and draw a sample X from Dk.

• Given k ∈ [K], for any j ∈ [Nk], all patches Xp in the area Pk,j are given the same content
Xp = vk,jzj(X), where vk,j ∈ Rd is the visual feature and zj(X) is the latent variable. We
assume

⋃K
k=1

⋃Nk

j=1{vk,j} are orthogonal to each other with unit norm.

• Given k ∈ [K], for any j ∈ [Nk], zj(X) ∈ [L,U ], where 0 ≤ L < U are on the order of Θ(1).2

Global and local features, and empirical observations in prior works. Image data naturally
contains two types of features: the global features and the local features. For instance, in an image of
an object, global features can capture the shape and texture of the object, such as the fur color of an
animal, whereas local features describe specific details of local areas, such as the texture of leaves in
the background. Recent empirical studies on self-supervised pretraining with ViTs (Park et al., 2023;
Wei et al., 2022b) and observations in Figure 1 collectively show that masked pretraining exhibits
the capacity to avoid attention collapse concentrating towards those global shapes by identifying
diverse local attention patterns. Consequently, unraveling their mechanisms necessitates a thorough
examination of data characteristics that embody both global and local features. In this paper, we
characterize these two types of features by the following assumption on the data.

Assumption 2.2 (Global feature vs local feature). Let Dk with k ∈ [K] be a cluster from D. We let
Pk,1 be the global area of cluster Dk, and all the other areas Pk,j , j ∈ [Nk] \ {1} be the local areas.
Since each area corresponds to an assigned feature, we also call them the global and local features,
respectively. Moreover, we assume:

• Global area: given k ∈ [K], we set Ck,1 = |Pk,1| = Θ(Pκc) with κc ∈ [0.5005, 1], where Ck,1 is
the number of patches in the global area Pk,1.

• Local area: given k ∈ [K], we choose Ck,j = Θ(Pκs) with κs ∈ [0.001, 0.5] for j > 1, where
Ck,j denotes the number of patches in the local area Pk,j .

2The distribution of zj(X) can be arbitrary within the above support set.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 3: Attention Diversity Metric: We design a novel empirical metric, the attention diversity
metric, to probe the last layer of ViTs trained by masked reconstructions (MAE), CL(MoCo), another
discriminative SSL approach (DINO), and supervised learning (DeiT). Lower values of this metric
signify focused attention on a similar area across different patches, reflecting a global pattern of
focus. Conversely, higher values suggest that attention is dispersed, focusing on different, localized
areas. The results show that MAE model excels in capturing diverse local patterns compared to
discriminative methods like CL. (see Appendix B for details).

The rationale for defining the global feature in this manner stems from observing that patches
representing global features (Ck,1) typically occur more frequently than those representing local
features (Ck,j , for j > 1), since global features capture the primary visual information of an image,
offering a dominant view, while local features focus on subtler details within the image. Our empirical
observations (see Figure 3) further substantiate the significance of distinguishing between global and
local patterns in data distributions, which is essential for elucidating the distinct behaviors exhibited
by MAE and CL.

2.3 MASKED RECONSTRUCTION WITH TRANSFORMERS

Transformer architecture. A transformer block (Vaswani et al., 2017; Dosovitskiy et al., 2020)
consists of a self-attention layer followed by an MLP layer. The self-attention layer has multiple
heads, each of which consists of the following components: a query matrix WQ, a key matrix WK ,
and a value matrix WV . Given an input X , the output of one head in the self-attention layer can be
described by the following mapping:

G(X;WQ,WK ,WV ) = softmax
(
(WQX)⊤WKX

)
· (WV X)⊤, (2.4)

where the softmax(·) function is applied row-wisely and for a vector input z ∈ RP , the i-th entry of
softmax(z) is given by exp(zi)∑P

s=1 exp(zs)
.

To simplify the theoretical analysis, we consolidate the product of query and key matrices (WQ)⊤WK

into one weight matrix denoted as Q. Furthermore, we set WV to be the identity matrix and fixed
during the training. These simplifications are often taken in recent theoretical works (Jelassi et al.,
2022; Huang et al., 2023; Zhang et al., 2023a) in order to allow tractable analysis. With these
simplifications in place, eq. (2.4) can be rewritten as

G(X;Q) = softmax
(
X⊤QX

)
·X⊤. (2.5)

Input tokens in transformers are indistinguishable without explicit spatial information. Therefore,
positional encodings should be added to the input embeddings to retain this crucial positional context
as in practices (Dosovitskiy et al., 2020; He et al., 2022). Our assumptions regarding the positional
encodings are as follows:
Assumption 2.3 (Positional encoding). We assume fixed positional encodings, which is consistent
with the implementation in MAE (He et al., 2022): E = (ep)p∈P ∈ Rd×P where positional
embedding vectors ep are orthogonal to each other and to all the features vk,j , and are of unit-norm.

We now include positional embeddings in eq. (2.5) and introduce the network architecture for masked
reconstruction used in this study.
Definition 2.4 (ViTs network for MAE). We assume that our vision transformer F mae(X;Q) consists
of a single-head self-attention layer with an attention weight matrix Q ∈ Rd×d. For an input image

5
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X ∼ D, we add positional encoding by letting X̃ = X + E. The attention score from patch Xp to
patch Xq is denoted by

attnmp→q(X;Q) := e
X̃⊤

p QX̃q∑
r∈P e

X̃⊤
p QX̃r

, for p,q ∈ P. (2.6)

Then the output of the transformer is given by

[F mae(X;Q)]p =
∑
q∈P

attnmp→q(X;Q) ·Xq, for p ∈ P. (2.7)

Then we formally define the masking operation and the objective for our masked pretraining task.
Definition 2.5 (Random masking). Let M(X) → Rd×P denote the random masking operation,
which randomly selects (without replacement) a subset of patches M in X with a masking ratio
γ = Θ(1) ∈ (0, 1) and masks them to be M := 0 ∈ Rd. The masked samples obey eq. (2.1).

MAE objective. To train the model F mae(M(X);Q), following the methodology described in MAE
practice (He et al., 2022), we minimize the squared reconstruction error in eq. (2.2) only on masked
patches, where M(X) follows Def. 2.5. The training objective thus can be written as

Lmae(Q) :=
1

2
E

∑
p∈P

1{p ∈ M}
∥∥∥[F mae(M(X);Q)]p −Xp

∥∥∥2
 , (2.8)

where the expectation is with respect to both the data distribution and the masking. Note that our
objective remains highly nonconvex with the model defined in Definition 2.4.

Training algorithm. The learning objective in eq. (2.8) is minimized via GD with learning rate
η > 0. At t = 0, we initialize Q(0) := 0d×d as the zero matrix. The parameter is updated as follows:

Q(t+1) = Q(t) − η∇QLmae(Q
(t)).

Note that the initialization of Q(0) results in any query patch uniformly attending to all patches.

2.4 CONTRASTIVE LEARNING WITH TRANSFORMERS

The transformer architecture used for CL is similar to that of MAE, but with a minor modification to
accommodate contrastive loss, as outlined below.
Definition 2.6 (ViTs for CL). We consider a vision transformer F cl(X;Q) consisting of a single-
head self-attention layer with an attention weight matrix Q ∈ Rd×d. For an input image X , the
attention score from patch Xp to patch Xq is denoted by

attncp→q(X;Q) := e
e⊤p QXq∑

r∈P e
e⊤p QXr

, for p,q ∈ P. (2.9)

The output of the transformer is then computed as

F cl(X;Q) =
1

P

∑
p,q∈P

attncp→q(X;Q) ·Xq ∈ Rd. (2.10)

which represents the average pooling of all the patches.

The key distinction is that we separate the positional and patch embeddings within the attention
mechanism for technical simplicity. However, it is important to emphasize that these two types of
embeddings remain coupled for attention calculations.
Definition 2.7 (Data augmentation). For a sample X ∈ Rd, we generate two new samples X+ and
X++ by independently applying random masking as in Def. 2.5 with a ratio γ0 = Θ(1), similar to
the crop-resize operations used in practice. The unmasked sets for them are denoted as U+ and U++.

CL objective. Given a sample X , we first generate a pair of positive samples {X+, X++} via
Def. 2.7. Then we generate a batch of i.i.d. negative samples N = {X−,s}s∈[Nc]. Denoting
B = N ∪ {X++}, we minimize the expected contrastive loss in eq. (2.3) with ℓ2-regularization:

Lcl(Q) := EX+,X++,N

[
−τ log

(
eSimFcl(X+,X++)/τ∑
X′∈B eSimFcl (X+,X′)/τ

)]
+

λ

2
∥Q∥2F (2.11)
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where ∥ · ∥F denotes the Frobenius norm, λ > 0 is the regularization parameter, and the similarity of
the representations of X and X ′ obtained by F cl(·;Q) is defined as

SimF cl (X,X ′) :=
〈
F cl(X;Q), StopGrad

(
F cl (X ′;Q)

)〉
.

The StopGrad(·) operator ensures that no gradient is computed for this term. Additionally, no
augmentation is applied to the negative samples. Both practices are standard in the literature on the
theory of contrastive learning (Wen & Li, 2021; 2022). Similar to MAE, we update Q by GD with
zero-initialization:

Q(t+1) = Q(t) − η∇QLcl(Q
(t)). (2.12)

In the following, any variable with a superscript (t) represents that variable at the t-th step of training.

3 ATTENTION PATTERNS AND FEATURE-POSITION CORRELATIONS

To show the significance of the data distribution design and understand the nature of our self-
supervised learning tasks, in this section, we will provide some preliminary implications of the spatial
structures in Def. 2.1. Intuitively, for MAE, for a given cluster Dk, to reconstruct a missing patch
p ∈ Pk,j ∩ M, the attention head should exploit all unmasked patches in the target area Pk,j to
find the same visual feature vk,j to fill in the blank, which emphasizes the locality for p in different
areas. However, CL focuses on any discriminative patterns regardless of the location of p, which can
align positive pairs but may lead to collapsed attention patterns. We will elaborate on these points
by describing the area attentions and illustrating the intuition about how they can be learned via
attention correlations (Def. 3.1).

Area attention. We first define a new notation for a cleaner presentation. For X ∼ D and p ∈ P , we
write the attention of patch Xp to a subset A ⊂ P of patches by

Ãttn
†
p→A(X;Q) :=

∑
q∈A attn†

p→q(X;Q), for † ∈ {m,c}.

MAE’s ability to learn locality with ViTs. Let us first explain why the above notion of area attention
matters in understanding how attention works in masked reconstruction. Suppose we have a sample
X picked from Dk, and the patch Xp with p ∈ Pk,j is masked. Then the prediction of Xp given
masked input M(X) can be written as

[F mae(M(X);Q)]p =
∑

q∈P M(X)q · attnmp→q(M(X);Q)

=
∑

i∈[Nk]
zi(X)vk,i · Ãttn

m

p→U∩Pk,i
(M(X);Q) (since M(X)q = 0 if q ∈ M).

To reconstruct the original patch Xp, the transformer should not only focus on the correct area Pk,j ,
but must also prioritize attention to the unmasked patches within this area. This specificity is denoted
by the area attention Ãttn

m

p→U∩Pk,j
over U ∩ Pk,j , a requirement imposed by masking operations.

We refer to these location-dependent attention patterns as locality.

To further explain how ViTs perform such prioritization, we introduce the following quantities, which
capture the major insights of our analysis to distinguish between MAE and contrastive learning.
Definition 3.1. (Attention correlations) Let p ∈ P , and we define attention correlations as:

1. Feature-Position (FP) Correlation: Φp→vk,m
:= e⊤pQvk,m, for k ∈ [K] and m ∈ [Nk];

2. Position-Position (PP) Correlation: Υp→q := e⊤pQeq, ∀q ∈ P.

Due to our (zero) initialization of Q(0), we have Φ
(0)
p→vk,m = Υ

(0)
p→q = 0.

These two types of attention correlations, FP correlation Φp→vk,m
and PP correlation Φp→q, act as

the exponent terms within the softmax calculations for attention scores. Given p ∈ Pk,j is masked,
the (unnormalized) attention attnmp→q directed towards an unmasked patch q is influenced jointly
by these correlations. Hence, the described attention pattern for MAE can emerge from either a
substantial FP correlation Φp→vk,j

or a significant PP correlation Φp→q for q in the same area as p.
However, in our setting, the latter mechanism—learning via PP correlation—fails to produce desired
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Figure 4: The mechanism of how the masked patch attends to other patches via attention correlations.

attention patterns: i). such a mechanism inadvertently directs attention to the masked patches, which
is not desirable; ii). such position association could be vulnerable to the variation across different
clusters, i.e., p,q ∈ Pk,j does not necessarily hold for all k ∈ [K]. This also highlights that prior
work (Jelassi et al., 2022) that relied solely on pure positional attention cannot fully explain the ViTs’
ability to learn locality when the patch-wise associations are not fixed.

Why CL may fail to explore the locality. Now turning to CL, for X ∈ Dk, we have the following
form of similarity between the positive pair:

⟨F cl(X+;Q), F cl(X++;Q)⟩

=
1

P 2

∑
p,p′∈P

Nk∑
i=1

Ãttn
c

p→U+∩Pk,i
(X+;Q)Ãttn

c

p′→U++∩Pk,i
(X++;Q).

Thus, to align the positive representations effectively, the optimal strategy is also to direct atten-
tion toward a specific area for each patch p, i.e., greedily ensuring that only one area attention
Ãttn

c

p→U+∩Pk,i
is activated for some i ∈ [Nk]. However, the above expression suggests that the

selected area by the optimal strategy may not necessarily depend on the location p, which could
lead to a collapsed attention scenario where all patches focus on the same area. Regarding attention
correlations, the attention mechanism defined in eq. (2.9) requires us to handle only the FP corre-
lations among different features for CL. Theorem 4.4 in the next section confirms that a collapsed
solution indeed occurs: ViTs trained with CL concentrate attention on the global area across all
patches by exclusively capturing global FP correlations across all patches, i.e., Φp→vk,1

becomes
large for ∀p ∈ P .

4 STATEMENTS OF MAIN RESULTS

In this section, we present our main theorems on the learning processes of ViTs in MAE and CL. We
begin by introducing notations that will be used in theorem presentations.

Information gap and a technical condition. Based on our data model in Section 2.2, we introduce
a notion of information gap to quantify the degree of imbalance between global and local areas
(cf. Assumption 2.2). Denoted as ∆, the information gap is defined as follows:

∆ := (1− κs)− 2(1− κc). (4.1)

Broadly speaking, a larger ∆ means that the number of global features is much greater than local
ones, indicating a significant imbalance. In contrast, a smaller value reflects only a slight imbalance.3

Unmasked area attention. Based on the crucial role of those unmasked patches for both reconstruc-
tion task and positive contrastive pairs, we further define the unmasked area attention as follows:

Attn†
p→Pk,m

(X;Q) := Ãttn
†
p→U∩Pk,m

(X;Q), for † ∈ {m,c}.

3Our study focuses on the regime where ∆ is not too close to zero, i.e., |∆| = Ω(1), which allows for cleaner
induction arguments. This condition could be potentially relaxed via more involved analysis.
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4.1 MAE LEARNS DIVERSE ATTENTION PATTERNS

Our results are structured into two parts: i). analysis of convergence (Theorem 4.1), which includes
the global convergence guarantee of the masked reconstruction loss and characterization of the
attention pattern at the end of training to demonstrate the diverse locality; ii). learning dynamics of
attention correlations (Theorem 4.2), which shows how transformers capture target FP correlations
while downplaying PP correlations as discussed in Section 3.

To properly evaluate the reconstruction performance, we further introduce the following notion of the
reconstruction loss with respect to a specific patch p ∈ P:

Lmae,p(Q) =
1

2
E
[
1{p ∈ M}

∥∥∥[F mae(M(X);Q)]p −Xp

∥∥∥2] . (4.2)

Now we present our first main result regarding the convergence of MAE.
Theorem 4.1 (Training convergence). Suppose the information gap ∆ ∈ [−0.5,−Ω(1)] ∪ [Ω(1), 1].
For any 0 < ϵ < 1, suppose polylog(P ) ≫ log( 1ϵ ). We train the ViTs in Def. 2.4 by GD to minimize
reconstruction loss in eq. (2.8) with η ≪ poly(P ). Then for each patch p ∈ P , we have

1. Loss converges: Lmae,p(Q
(T⋆)) − L⋆

mae,p ≤ ϵ in T ⋆ = O
(

1
η log(P )Pmax{2(U

L−1),1}(1−κs) +

1
ηϵ log

(
P
ϵ

))
iterations, where L⋆

mae,p is the global minimum of the patch-level reconstruction loss
in equation 4.2.

2. Area-wide pattern of attention: given cluster k ∈ [K], and p ∈ Pk,j for some j ∈ [Nk], if Xp is
masked, then the one-layer transformer nearly “pays all attention" to all unmasked patches in the
same area Pk,j as p, i.e., (

1−Attnmp→Pk,j

(
X;Q(T⋆)

))2
≤ O(ϵ).

Theorem 4.1 indicates that, at the time of convergence, for any masked query patch Xp in the k-th
cluster, the transformer exhibits an area-wide pattern of attention, concentrating on those unmasked
patches within the area that p lies in, as demonstrated in Section 3. The location of the patch
determines such area-wide attention and can be achieved no matter if p belongs to the global or local
areas, which jointly highlight the diverse local patterns for masked vision pretraining no matter
degree of the imbalance.

Next, we detail the training phases of attention correlations in the following theorem, which explicitly
confirms that the model learns target FP correlations while ignoring PP correlations to achieve the
desirable area-wide attention patterns as suggested in Section 3 (illustrated in Figure 4).
Theorem 4.2 (Learning Feature-Position correlations). Following the same assumptions in Theo-
rem 4.1, for p ∈ P , given k ∈ [K], if p ∈ Pk,j for some j ∈ [Nk], we have

For positive information gap ∆ ∈ [Ω(1), 1]:

a. Global areas (j = 1) learn FP correlation in one-phase: Φ(t)
p→vk,1 monotonically increases to

O(log(P/ϵ)) throughout the training, with all other attention correlations remain close to 0.
b. Local areas (j > 1) learn FP correlation in two-phase: In phase one, FP correlation Φ

(t)
p→vk,1

between local area and the global area feature quickly decreases to −Θ(log(P )) whereas all
other attention correlation stay close to zero; In phase two, FP correlation Φ

(t)
p→vk,j for the target

local area starts to grow until convergence with all other attention correlations nearly unchanged.

For negative information gap ∆ ∈ [−0.5,−Ω(1)]:

c. All areas learn FP correlation through one-phase: Φ
(t)
p→vk,j monotonically increases to

O(log(P/ϵ)) throughout the training, with all other attention correlations remain close to 0.

The training dynamics are different depending on whether ∆ is positive or negative, and further vary
for positive ∆ depending on whether Xp is situated in global or local areas. Typically, the target FP
correlations are learned directly in a single phase. However, for a positive information gap ∆, when
patch p is located in a local area, the learning process contains an additional decoupling phase, to
reduce the FP correlation with the non-target global features.

9
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4.2 CONTRASTIVE LEARNING COLLAPSES TO GLOBAL ATTENTION PATTERNS

In contrast to MAE’s ability to learn diverse local features regardless of the information gap, our
results in this section demonstrate that CL inevitably collapses to global attention patterns by solely
learning global FP correlations, even under a slight structural imbalance.

To prevent trivial solutions in CL, we adopt a noisy variant of the data distribution.
Assumption 4.3 (Noisy data). We assume that the data used for contrastive learning is sampled
from Dcl. Specifically, to generate a sample X ∼ Dcl, we first draw Z ∼ D, then add independent
and identically distributed (i.i.d.) noise ζp ∼ N (0, σ2

0Id) to each patch Zp. The resulting sample is
defined as Xp = Zp + ζp. We denote X ∈ Dcl

k if Z ∈ Dk.
Theorem 4.4 (Learning with contrastive objective). Suppose the information gap ∆ ∈
[−0.5,−Ω(1)] ∪ [Ω(1), 1]. We train the ViTs in Def. 2.6 by GD to minimize eq. (2.11) with
η ≪ poly(P ), σ2

0 = 1
d , τ = O( 1

log d ). Then after T ⋆ = O(poly(P ) logP
η ) iterations, we have

1. Loss converges: Lcl(Q
(T⋆)) ≤ OPT + 1

poly(P ) , where OPT is the global minimum of the
contrastive loss in eq. (2.11).

2. Attention concentration on global area : given X ∈ Dcl
k with k ∈ [K], for any p ∈ P , with high

probability, we have 1−Attncp→Pk,1
(X ′;Q(T⋆)) = 1

poly(P ) for X ′ ∈ {X+, X++}.4

3. All patches learn global FP correlation: given k ∈ [K], for any p ∈ P , t ∈ [0, T ⋆], Φ(t)
p→vk,1 ≫

Φ
(t)
p→vk,m with m > 1, and at the convergence, Φ(T⋆)

p→vk,1 = Θ(logP ),Φ
(T⋆)
p→vk,m = o(1).

Intuition behind learning global correlations. As discussed in Section 3, the optimal alignment of
two positive representations F cl(Q;X+) and F cl(Q;X++) involves directing attention towards the
same feature for each patch p, possibly irrespective of its location. As long as the imbalanced structure,
where global features dominate the data distribution, exists—even to a small degree—it leads to an
order-wise stronger concentration of attention on global areas at initialization. Consequently, global
FP correlations receive larger gradients compared to local ones. Therefore, global FP correlations are
learned first, and focusing on these global correlations is sufficient for the CL objective to converge.

Significance of the results. Theorem 4.1 and Theorem 4.4 address a critical gap in understanding self-
supervised pretraining by offering the first theoretical framework for learning with ViTs, one of the
most advanced architectures in vision practice, whereas prior studies have primarily focused on linear
models, CNNs, or MLPs (Wen & Li, 2021; Ji et al., 2023; Pan et al., 2022). Moreover, by identifying
the collapsed solution in CL and emphasizing the effectiveness of MAE in capturing diverse attention
patterns, we provide a qualitative comparison between MAE and contrastive learning, validating a
non-trivial empirical observation (Park et al., 2023). This offers a comprehensive theoretical analysis
of self-supervised learning with ViTs.

5 CONCLUSION

In this work, we study the training process of MAE and CL with one-layer softmax-based ViTs. Our
key contribution is providing the first end-to-end convergence guarantees for these two prominent
self-supervised approaches with transformer architectures. We characterize the attention patterns
at convergence and show that MAE exhibits diverse attention patterns by learning feature-position
correlations across all features, even with highly skewed feature distributions. In contrast, CL
collapses to global attention patterns by focusing solely on global feature-position correlations,
despite minimal distributional deviations between features. This provides theoretical justification for
the behavior gap of MAE and CL observed in practice. Our proof techniques use phase decomposition
based on the interplay between feature-position and position-wise correlations, avoiding the need to
disentangle patches and positional encodings as in prior work. We anticipate that our theory will be
valuable for future studies of spatial or temporal structures in state-of-the-art transformers and will
advance theoretical research in deep learning.

4This also holds when no data augmentation is applied to X .
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Reproducibility Statement: The main body of the paper presents only theoretical results, with all
proofs provided in the appendices. Additionally, the appendices include proof sketches that offer
intuitive explanations of the proof steps. The appendix also contains experimental results, with
detailed descriptions of the experimental settings to facilitate result reproduction.
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A RELATED WORK

Empirical studies of transformers in vision. A number of works have aimed to understand the
transformers in vision from different perspectives: comparison with CNNs (Raghu et al., 2021; Ghiasi
et al., 2022; Park & Kim, 2022), robustness (Bhojanapalli et al., 2021; Paul & Chen, 2022), and role
of positional embeddings (Melas-Kyriazi, 2021; Trockman & Kolter, 2022). Recent studies (Xie
et al., 2023; Wei et al., 2022b; Park et al., 2023) have delved into ViTs with self-supervision to
uncover the mechanisms at play, particularly through visualization and analysis of metrics related to
self-attention. Xie et al. (2023) compared the masked image modeling (MIM) method with supervised
models, revealing MIM’s capacity to enhance diversity and locality across all ViT layers, w which
significantly boosts performance on tasks with weak semantics following fine-tuning. Building on
MIM’s advantages, Wei et al. (2022b) further proposed a simple feature distillation method that
incorporates locality into various self-supervised methods, leading to an overall improvement in the
finetuning performance. Park et al. (2023) conducted a detailed comparison between masked image
modeling (MIM) and contrastive learning. They demonstrated that contrastive learning will make the
self-attentions collapse into homogeneity for all query patches due to the nature of discriminative
learning, while MIM leads to a diverse self-attention map since it focuses on local patterns.

Theory of self-supervised learning. A major line of theoretical studies falls into one of the most
successful self-supervised learning approaches, contrastive learning (Wen & Li, 2021; Robinson
et al., 2021; Chen et al., 2021a; Arora et al., 2019), and its variant non-contrastive self-supervised
learning (Wen & Li, 2022; Pokle et al., 2022; Wang et al., 2021). Some other works study the mask
prediction approach (Lee et al., 2021; Wei et al., 2021; Liu et al., 2022), which is the focus of this
paper. Lee et al. (2021) provided statistical downstream guarantees for reconstructing missing patches.
Wei et al. (2021) studied the benefits of head and prompt tuning with masked pretraining under a
Hidden Markov Model framework. Liu et al. (2022) provided a parameter identifiability view to
understand the benefit of masked prediction tasks, which linked the masked reconstruction tasks to
the informativeness of the representation via identifiability techniques from tensor decomposition.

Theory of transformers and attention models. Prior work has studied the theoretical properties
of transformers from various aspects: representational power (Yun et al., 2019; Edelman et al., 2022;
Vuckovic et al., 2020; Wei et al., 2022a; Sanford et al., 2024a), internal mechanism (Tarzanagh et al.,
2023a; Weiss et al., 2021), limitations (Hahn, 2020; Sanford et al., 2024b), and PAC learning (Chen
& Li, 2024). Recently, there has been a growing body of research studying in-context learning with
transformers due to the remarkable emergent in-context ability of large language models (Zhang
et al., 2023b; Von Oswald et al., 2023; Giannou et al., 2023; Ahn et al., 2023; Zhang et al., 2023a;
Huang et al., 2023; Nichani et al., 2024; Li et al., 2024). Regarding the training dynamics of attention-
based models, Li et al. (2023a) studied the training process of shallow ViTs in a classification
task. Subsequent research expanded on this by exploring the graph transformer with positional
encoding (Li et al., 2023b) and in-context learning performance of transformers with nonlinear
self-attention and nonlinear MLP (Li et al., 2024). However, all of these analyses rely crucially on
stringent assumptions on the initialization of transformers and hardly generalize to our setting. Tian
et al. (2023) mathematically described how the attention map evolves trained by SGD for one-layer
transformer but did not provide any convergence guarantee, and the follow-up work Tian et al. (2024)
considered a generalized case with multiple layers. Tarzanagh et al. (2023b); Vasudeva et al. (2024)
investigated the implicit bias for self-attention models trained with GD. Furthermore, Huang et al.
(2023) proved the in-context convergence of a one-layer softmax transformer trained via GD and
illustrated the attention dynamics throughout the training process. Yang et al. (2024) generalized such
an in-context learning problem to a mult-head setting with non-linear task functions. Nichani et al.
(2024) studied GD dynamics on a simplified two-layer attention-only transformer and proved that
it can encode the causal structure in the first attention layer. However, none of the previous studies
analyzed the training of transformers under self-supervised learning, which is the focus of this paper.

B EXPERIMENTS

Previous studies on the attention mechanisms of ViT-based pre-training approaches have mainly
utilized a metric known as the attention distance (Dosovitskiy et al., 2020). Such a metric quantifies the
average spatial distance between the query and key tokens, weighted by their self-attention coefficients.
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The general interpretation is that larger attention distances indicate global understanding, and smaller
values suggest a focus on local features. However, such a metric does not adequately determine if the
self-attention mechanism is identifying a unique global pattern. A high attention distance could result
from different patches focusing on varied distant areas, which does not necessarily imply that global
information is being effectively synthesized. To address this limitation, we introduce a novel and
revised version of average attention distance, called the attention diversity metric, which is designed
to assess whether various patches are concentrating on a similar region, thereby directly capturing
global information.

Attention diversity metric, in distance. This metric is computed for self-attention with a single
head of the specific layer. For a given image divided into N × N patches, the process unfolds as
follows: for each patch, it is employed as the query patch to calculate the attention weights towards
all N2 patches, and those with the top-n attention weights are selected. Subsequently, the coordinates
(e.g. (i, j) with i, j ∈ [N ]) of these top-n patches are concatenated in sequence to form a 2 × n-
dimensional vector. The final step computes the average distance between all these 2n-dimensional
vectors, i.e., N2 ×N2 vector pairs.

Setup. In this work, we compare the performance of ViT-B/16 encoder pre-trained on ImageNet-
1K (Russakovsky et al., 2015) among the following four models: masked reconstruction model
(MAE), contrastive learning model (MoCo v3 (Chen et al., 2021b)), other self-supervised model
(DINO Caron et al. (2021)), and supervised model (DeiT Touvron et al. (2021)). We focus on 12
different attention heads in the last layer of ViT-B on different pre-trained models. The box plot
visualizes the distribution of the top-10 averaged attention focus across 152 example images, as
similarly done in Dosovitskiy et al. (2020).

Implications. The experiment results based on our new metric are provided in Figure 3. Lower
values of the attention diversity metric signify a focused attention on a coherent area across different
patches, reflecting a global pattern of focus. On the other hand, higher values suggest that attention is
dispersed, focusing on different, localized areas. It can be seen that the masked pretraining model is
particularly effective in learning more diverse attention patterns, setting it apart from other models
that prioritize a uniform global information with less attention diversity. This aligns with and provides
further evidence for the findings in Park et al. (2023).

C OVERVIEW OF THE PROOF TECHNIQUES

In this section, we explain our key proof techniques in analyzing the self-supervised pretraining of
transformers, using MAE as an example. We focus on the reconstruction of a specific patch Xp for
p ∈ P . We aim to elucidate the training phases through which the model learns FP correlations
related to the area associated with p across different clusters k ∈ [K].

Our characterization of training phases differentiates between whether Xp is located in the global
or local areas and further varies based on whether ∆ is positive or negative. Specifically, for
∆ ∈ [Ω(1), 1], we observe distinct learning dynamics for FP correlations between local and global
areas:

• Local area attends to FP correlation in two-phase: given k ∈ [K], if ak,p ̸= 1, then

1. Φ
(t)
p→vk,1 first quickly decreases whereas all other Φ(t)

p→vk,m with m ̸= 1 and Υ
(t)
p→q do

not change much;

2. after some point, the increase of Φ(t)
p→vk,ak,p

takes dominance. Such Φ
(t)
p→vk,ak,p

will
keep growing until convergence with all other FP and PP attention correlations nearly
unchanged.

• Global areas learn FP correlation in one-phase: given k ∈ [K], if ak,p = 1, the update of
Φ

(t)
p→vk,1 will dominate throughout the training, whereas all other Φ(t)

p→vk,m with m ̸= 1 and
learned PP correlations remain close to 0.

For ∆ ∈ [−0.5,−Ω(1)], the behaviors of learning FP correlations are uniform for all areas. Namely,
all areas learn FP correlation through one-phase: given k ∈ [K], throughout the training, the increase

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

of Φ(t)
p→vk,ak,p

dominates, whereas all other Φ(t)
p→vk,m with m ̸= ak,p and PP correlations Υ

(t)
p→q

remain close to 0.

For clarity, this section will mainly focus on the learning of local feature correlations with a positive
information gap ∆ ≥ Ω(1) in Appendices C.2 and C.3, which exhibits a two-phase process. The
other scenarios will be discussed briefly in Appendix C.4.

C.1 GD DYNAMICS OF ATTENTION CORRELATIONS

Based on the crucial roles that attention correlations play in determining the reconstruction loss, the
main idea of our analysis is to track the dynamics of those attention correlations. We first provide the
following GD updates of Φ(t)

p→vk,m and Υ
(t)
p→q (see Appendix D.1.1 for formal statements).

Lemma C.1 (FP correlations, informal). Given k ∈ [K], for p ∈ P , denote n = ak,p, let α(t)
p→vk,m =

1
η

(
Φ

(t+1)
p→vk,m − Φ

(t)
p→vk,m

)
for m ∈ [Nk], and suppose Xp is masked. Then

1. for the same area, α(t)
p→vk,n ≈ Attn

(t)
p→Pk,n

(
1−Attn

(t)
p→Pk,n

)2
;

2. if k ∈ Bp, for the global area,

α(t)
p→vk,1

≈ −Attn
(t)
p→Pk,1

·

(
Attn

(t)
p→Pk,1

(
1−Attn

(t)
p→Pk,1

)
+Attn

(t)
p→Pk,n

(
1−Attn

(t)
p→Pk,n

))
;

3. for other area m /∈ {n} ∪ {1},

α(t)
p→vk,m

≈ Attn
(t)
p→Pk,m

(
1 {n ̸= 1}

(
Attn

(t)
p→Pk,1

)2
−
(
1−Attn

(t)
p→Pk,n

)
Attn

(t)
p→Pk,n

)
.

From Lemma C.1, it is observed that for p ∈ Pk,n, the feature correlation Φ
(t)
p→vk,n exhibits a

monotonically increasing trend over time because α
(t)
p→vk,n ≥ 0. Furthermore, if n > 1, i.e., Pk,n is

the local area, Φ(t)
p→vk,1 will monotonically decrease.

Lemma C.2 (PP attention correlations, informal). Given p,q ∈ P , let β(t)
p→q = 1

η

(
Υ

(t+1)
p→q −Υ

(t)
p→q

)
,

and suppose Xp is masked. Then β
(t)
p→q =

∑
k∈[N ] β

(t)
k,p→q, where β

(t)
k,p→q satisfies

1. if ak,p = ak,q = n, β(t)
k,p→q ≈ attn

(t)
p→q

(
1−Attn

(t)
p→Pk,n

)2
;

2. if k ∈ Bp ∩ Cq, where ak,p = n > 1 and ak,q = 1:

β
(t)
k,p→q ≈ −attn(t)

p→q ·

(
Attn

(t)
p→Pk,1

(
1−Attn

(t)
p→Pk,1

)
+Attn

(t)
p→Pk,n

(
1−Attn

(t)
p→Pk,n

))
;

3. if ak,q = m /∈ {n} ∪ {1}, where ak,p = n,

β
(t)
k,p→q ≈ attn(t)

p→q ·

(
1 {n ̸= 1}

(
Attn

(t)
p→Pk,1

)2
−
(
1−Attn

(t)
p→Pk,n

)
Attn

(t)
p→Pk,n

)
.

Based on the above gradient update for Υ(t)
p→q, we further introduce the following auxiliary quantity

Υ
(t)
k,p→q, which can be interpreted as the PP attention correlation “projected" on the k-th cluster Dk,

and will be useful in the later proof.

Υ
(t+1)
k,p→q := Υ

(t)
k,p→q + ηβ

(t)
k,p→q, with Υ

(0)
k,p→q = 0. (C.1)

We can directly verify that Υ(t)
p→q =

∑
k∈[K] Υ

(t)
k,p→q.
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The key observation by comparing Lemma C.1 and C.2 is that the gradient of projected PP attention
β
(t)
k,p→q is smaller than the corresponding FP gradient α(t)

p→vk,ak,q
in magnitude since attn

(t)
p→q ≈

Attn
(t)
p→Pk,ak,q

(1−γ)Ck,ak,q
. We will show that the interplay between the increase of Φ(t)

p→vk,n and the decrease

of Φ(t)
p→vk,1 determines the learning behaviors for the local patch p ∈ Pk,n with n > 1, and which

effect will happen first depends on the initial attention, which is also determined by the value of
information gap ∆.

C.2 PHASE I: DECOUPLING THE GLOBAL FP CORRELATIONS

We now explain how the attention correlations evolve at the initial phase of the training to decouple
the correlations of the non-target global features when p is located in the local area for the k-th
cluster. This phase can be further divided into the following two stages.

Stage 1. At the beginning of training, Φ(0)
p→vk,m = Υ

(0)
k,p→q = 0, and hence attn

(0)
p→q = 1

P for
any q ∈ P , which implies that the transformer equally attends to each patch. However, with high
probability, the number of unmasked global features in the global area Pk,1 is much larger than
others. Hence, Attn

(0)
p→Pk,1

=
|U∩Pk,1|

P ≥ Ω( 1
P 1−κc ) ≫ Θ( 1

P 1−κs ) = Attn
(0)
p→Pk,m

for m > 1.
Therefore, by Lemma C.1 and C.2, we immediately obtain

• α
(0)
p→vk,1 = −Θ

(
1

P 2(1−κc)

)
, whereas α(0)

p→vk,ak,p
= Θ

(
1

P (1−κs)

)
;

• all other FP correlation gradients α(0)
p→vk,m with m ̸= 1, ak,p are small;

• all projected PP correlation gradients β(0)
k,p→q are small.

Since ∆ = (1−κs)−2(1−κc) ≥ Ω(1), it can be seen that Φ(t)
p→vk,1 enjoys a much larger decreasing

rate initially. This captures the decoupling process of the feature correlations with the global feature
vk,1 in the global area for p. It can be shown that such an effect will dominate over a certain period
that defines stage 1 of phase I. At the end of this stage, we will have Φ

(t)
p→vk,1 ≤ −Ω (log(P )),

whereas all FP attention correlation Φ
(t)
p→vk,m with m > 1 and all projected PP correlations Υ(t)

k,p→q

stay close to 0 (see Appendix F.1).

During stage 1, the significant decrease of the global FP correlation Φ
(t)
p→vk,1 leads to a reduction

in the attention score Attn
(t)
p→Pk,1

. Meanwhile, attention scores Attn
(t)
p→Pk,m

(where m > 1) for
other patches remain consistent, reflecting a uniform distribution over unmasked patches within each
area. By the end of stage 1, Attn

(t)
p→Pk,1

drops to a certain level, resulting in a decrease in |α(t)
p→vk,1 |

as it approaches α(t)
p→vk,n , which indicates that stage 2 begins.

Stage 2. Soon as stage 2 begins, the dominant effect switches as |α(t)
p→vk,1 | reaches the same order

of magnitude as α(t)
p→vk,ak,p

. The following result shows that Φ(t)
p→vk,ak,p

must update during stage 2.

Lemma C.3 (Switching of dominant effects (See Appendix F.2)). Under the same conditions as
Theorem 4.1, for p ∈ P , there exists T̃1, such that at iteration t = T̃1 + 1, we have

a. Φ
(T̃1+1)
p→vk,ak,p

≥ Ω (log(P )), and Φ
(T̃1+1)
p→vk,1 = −Θ(log(P ));

b. all other FP correlations Φ(t)
p→vk,m with m ̸= 1, ak,p are small;

c. all projected PP correlations Υ(t)
k,p→q are small.

Intuition of the transition. Once Φ(t)
p→vk,1 decreases to − ∆

2L log(P ), we observe that |α(t)
p→vk,1 | is

approximately equal to α
(t)
p→vk,ak,p

. After this point, reducing Φ
(t)
p→vk,1 further is more challenging

compared to the increase in Φ
(t)
p→vk,ak,p

. To illustrate, a minimal decrease of Φ(t)
p→vk,1 by an amount
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of 0.001
L log(P ) will yield |α(t)

p→vk,1 | ≤ O(
α(t)

p→vk,n

P 0.002 ). Such a discrepancy triggers the switch of the
dominant effect.

C.3 PHASE II: GROWTH OF TARGET LOCAL FP CORRELATION

Moving beyond phase I, FP correlation Φ
(t)
p→vk,ak,p

within the target local area p already enjoys a

larger gradient α(t)
p→vk,ak,p

than other Φ(t)
p→vk,m with m ̸= ak,p and all projected PP correlations

Υ
(t)
k,p→q. We can show that the growth of Φ(t)

p→vk,ak,p
will continue to dominate until the end of

training by recognizing the following two stages.

Rapid growth stage. At the beginning of phase II, α(t)
p→vk,ak,p

is mainly driven by Attn
(t)
p→Pk,ak,p

since 1−Attn
(t)
p→Pk,ak,p

remains at the constant order. Therefore, the growth of Φ(t)
p→vk,ak,p

naturally

results in a boost in Attn
(t)
p→Pk,ak,p

, thereby promoting an increase in its own gradient α(t)
p→vk,ak,p

,
which defines the rapid growth stage. On the other hand, we can prove that the following gap holds
for FP and projected PP correlation gradients (see Appendix F.3):

• all other FP correlation gradients α(t)
p→vk,m with m ̸= ak,p are small;

• all projected PP correlation gradients β(t)
k,p→q are small.

Convergence stage. After the rapid growth stage, the desired local pattern with a high target
feature-position correlation Φ

(t)
p→vk,ak,p

is learned. In this last stage, it is demonstrated that the
above conditions for non-target FP and projected PP correlations remain valid, while the growth of
Φ

(t)
p→vk,ak,p

starts to decelerate as Φ(t)
p→vk,ak,p

reaches Θ(log(P )), resulting in Attn
(t)
p→Pk,n

≈ Ω(1),
which leads to convergence (see Appendix F.4).

C.4 LEARNING PROCESSES IN OTHER SCENARIOS

In this section, we talk about the learning process in other settings, including learning FP correlations
for the local area when the information gap is negative, learning FP correlations for the global area,
and failure to learn PP correlations.

What is the role of positive information gap? As described in stage 1 of phase 1 in Appendix C.2,
the decoupling effect happens at the beginning of the training because α

(0)
p→vk,1 ≫ α

(0)
p→vk,ak,p

attributed to ∆ ≥ Ω(1). However, in cases where ∆ ≤ −Ω(1), this relationship reverses, with
α
(0)
p→vk,1 becoming significantly smaller than α

(0)
p→vk,ak,p

. Similarly, other FP gradients α
(0)
p→vk,m

with m ̸= 1, ak,p and all the projected gradients of PP correlation β
(0)
p→q are small in magnitude.

Consequently, Φ(t)
p→vk,ak,p

starts with a larger gradient, eliminating the need to decouple FP correla-
tions for the global area. As a result, training skips the initial phase, and moves directly into Phase II,
during which Φ

(t)
p→vk,ak,p

continues to increase until it converges (see Appendix G).

Learning FP correlations for the global area. When the patch Xp is located in the global area
of cluster k, i.e., ak,p = 1, the attention score Attn

(0)
p→Pk,1

directed towards the target area Pk,1

is initially higher compared to other attention scores due to the presence of a significant number
of unmasked patches in the global area. This leads to an initially larger gradient α(0)

p→vk,ak,p
. Such

an effect is independent of the value of ∆. As a result, the training process skips the initial phase,
which is typically necessary for the cases where ak,p > 1 with a positive information gap, and moves
directly into Phase II (see Appendix H).

All PP correlations are small. Integrating the analysis from all previous discussions, we establish
that for every cluster k ∈ [K], regardless of its association with Cp (global area) or Bp (local area),
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and for any patch Xq with q ∈ P , the projected PP correlation Υ
(t)
k,p→q remains nearly zero in

comparison to the significant changes observed in the FP correlation, because the gradient β(t)
k,p→q is

relatively negligible. Therefore, the overall PP correlation Υ
(t)
p→q =

∑K
k=1 Υ

(t)
k,p→q also stays close

to zero, given that the number of clusters K = Θ(1).

D PRELIMINARIES

In this section, we will introduce warm-up gradient computations and probabilistic lemmas that
establish essential properties of the data and the loss function, which are pivotal for the technical
proofs in the upcoming sections for masked pretraining. Throughout the appendix, we assume
Nk = N and Ck,n = Cn for all k ∈ [K] for simplicity. We will also omit the explicit dependence
on X for zn(X). We use kX ∈ [K] to denote the cluster index that a given image X is drawn
from. Furthermore, we will abbreviate Lmae(Lmae,p) as L(Lp), and F mae as F for simplicity,
when the context makes it clear. We abbreviate Attnmp→Pk,m

(X;Q(t)) (attnmp→q(X;Q(t))) as

Attn
(t)
p→Pk,m

( attn(t)
p→q), when the context makes it clear.

D.1 GRADIENT COMPUTATIONS

We first calculate the gradient with respect to Q. We omit the superscript ‘(t)’ and write L(Q) as L
here for simplicity.
Lemma D.1. The gradient of the loss function with respect to Q is given by

∂L
∂Q

= −E

∑
p∈M

∑
q

attnp→qM(X)⊤q (Xp − [F (M(X);Q)]p)·

M̃(X)p

(
M̃(X)q −

∑
r

attnp→rM̃(X)r

)⊤
 .

Proof. We begin with the chain rule and obtain

∂L
∂Q

= E[
∑
p∈M

∂[F (M(X);Q)]p
∂Q

([F (M(X);Q)]p −Xp)]

= E[
∑
p∈M

∑
q

∂attnp→q

∂Q
M(X)⊤q ([F (M(X);Q)]p −Xp)]. (D.1)

We focus on the gradient for each attention score:

∂attnp→q

∂Q
=
∑
r

exp
(
M̃(X)⊤pQ(M̃(X)r + M̃(X)q)

)
(∑

r exp(M̃(X)⊤pQM̃(X)r)
)2 M̃(X)p(M̃(X)q − M̃(X)r)

⊤

= attnp→q

∑
r

attnp→rM̃(X)p(M̃(X)q − M̃(X)r)
⊤

= attnp→qM̃(X)p ·

[
M̃(X)q −

∑
r

attnp→rM̃(X)r

]⊤
.

Substituting the above equation into equation D.1, we complete the proof.

Recall that the quantities Φ(t)
p→vk,m and Υ

(t)
p→q are defined in Definition 3.1. These quantities are

associated with the attention weights for each token, and they play a crucial role in our analysis of
learning dynamics. We will restate their definitions here for clarity.
Definition D.2. (Attention correlations) Given p,q ∈ P , for t ≥ 0, we define two types of attention
correlations as follows:
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1. Feature Attention Correlation: Φ(t)
p→vk,m

:= e⊤pQ
(t)vk,m for k ∈ [K] and m ∈ [N ];

2. Positional Attention Correlation: Υ(t)
p→q := e⊤pQ

(t)eq.

By our initialization, we have Φ
(0)
p→vk,m = Υ

(0)
p→q = 0.

Next, we will apply the expression in Lemma D.1 to compute the gradient dynamics of these attention
correlations.

D.1.1 FORMAL STATEMENTS AND PROOF OF LEMMA C.1 AND C.2

We first introduce some notations. Given r ∈ U , for p ∈ P , k ∈ [K] and n ∈ [N ] define the
following quantities:

Jp
r := M(X)⊤r (Xp − [F (M(X);Q)]p)

Ip,k,nr :=

(
M̃(X)r −

∑
w∈P

attnp→wM̃(X)w

)⊤

vk,n

Kp,q
r :=

(
M̃(X)r −

∑
w∈P

attnp→wM̃(X)w

)⊤

eq

Lemma D.3 (Formal statement of Lemma C.1). Given k ∈ [K], for p ∈ P , denote n = ak,p, let
α
(t)
p→vk,m = 1

η

(
Φ

(t+1)
p→vk,m − Φ

(t)
p→vk,m

)
for m ∈ [Nk], then

a. for m = n,

α(t)
p→vk,n

= E

[
1{p ∈ M, kX = k}Attn

(t)
p→Pk,n

·z3n

(
1−Attn

(t)
p→Pk,n

)2
+
∑
a ̸=n

z2azn

(
Attn

(t)
p→Pk,a

)2];
b. for m ̸= n,

α(t)
p→vk,m

= E

[
1{p ∈ M, kX = k}Attn

(t)
p→Pk,m

·

( ∑
a ̸=m,n

z2azm

(
Attn

(t)
p→Pk,a

)2
−

(
zmz2n

(
1−Attn

(t)
p→Pk,n

)
Attn

(t)
p→Pk,n

+ z3m

(
1−Attn

(t)
p→Pk,m

)
Attn

(t)
p→Pk,m

))]
.

Proof. From Lemma D.1, we have

α(t)
p→vk,m

= e⊤p (−
∂L
∂Q

)vk,m

= E[1{p ∈ M}
∑
r∈U

attnp→rJ
p
r · Ip,k,mr ]

= E[1{p ∈ M, kX = k}
∑
r∈U

attnp→rJ
p
r · Ip,k,mr ]

where the last equality holds since when kX ̸= k, Ip,k,mr = 0 due to orthogonality. Thus, in the
following, we only need to consider the case kX = k.

Case 1: m = n.
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• For r ∈ U ∩ Pk,n, since vk,n′ ⊥ vk,n for n′ ̸= n, and vk,n ⊥ {eq}q∈P we have

Jp
r = znv

⊤
k,n

znvk,n −
∑

q∈U∩Pk,n

attnp→qznvk,n


= z2n

(
1−Attnp→Pk,n

)
Ip,k,nr = (znvk,n −

∑
q∈U∩Pk,n

attnp→qznvk,n)
⊤vk,n = Jp

r /zn

• For r ∈ U ∩ Pk,n′ with n′ ̸= n

Jp
r = zn′v⊤k,n′

znvk,n −
∑

q∈U∩Pk,n′

attnp→qzn′vk,n′


= −z2n′Attnp→Pk,n′

Ip,k,nr =

zn′vk,n′ −
∑

q∈U∩Pk,n

attnp→qznvk,n

⊤

vk,n

= −znAttnp→Pk,n

Putting it together, then we obtain:

e⊤p (−
∂L

∂Q
)vk,n = E

[
1{{p ∈ M, kX = k}}Attn

(t)
p→Pk,n

·z3n

(
1−Attn

(t)
p→Pk,n

)2
+
∑
a̸=n

z2azn

(
Attn

(t)
p→Pk,a

)2
Case 2: m ̸= n. Similarly

• For r ∈ U ∩ Pk,n

Jp
r = znv

⊤
k,n

znvk,n −
∑

q∈U∩Pk,n

attnp→qznvk,n


= z2n(1−Attnp→Pk,n

)

Ip,k,mr =

znvk,n −
∑

q∈U∩Pk,m

attnp→qzmvk,m

⊤

vk,m

= −zmAttnp→Pk,m

• For r ∈ U ∩ Pk,m

Jp
r = zmv⊤k,m

znvk,n −
∑

q∈U∩Pk,m

attn(t)
p→qzmvk,m


= −z2mAttnp→Pk,m

Ip,k,nr =

zmvk,m −
∑

q∈U∩Pk,m

attn(t)
p→qzmvk,m

⊤

vk,m

= zn(1−Attnp→Pk,m
)
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• For r ∈ U ∩ Pk,a, a ̸= n,m

Jp
r = zav

⊤
k,a

znvk,n −
∑

q∈U∩Pk,a

attn(t)
p→qzavk,a


= −z2aAttnp→Pk,a

Ip,k,nr =

zavk,a −
∑

q∈U∩Pk,m

attn(t)
p→qzmvk,m

⊤

vk,m

= −zmAttnp→Pk,m

Putting them together, then we complete the proof.

Lemma D.4 (Formal statement of Lemma C.2). Given p,q ∈ P , let β(t)
p→q = 1

η

(
Υ

(t+1)
p→q) −Υ

(t)
p→q)

)
,

then
β(t)
p→q =

∑
k∈[K]

β
(t)
k,p→q, where β

(t)
k,p→q satisfies

a. if ak,p = ak,q = n,

β
(t)
k,p→q = E

[
1{p ∈ M, kX = k}attn(t)

p→q ·

(∑
a ̸=n

z2a

(
Attn

(t)
p→Pk,a

)2
+

z2n

(
1−Attn

(t)
p→Pk,n

)(
1{q ∈ U} −Attn

(t)
p→Pk,n

))]
;

b. for ak,p = n ̸= m = ak,q,

β
(t)
k,p→q = E

[
1{p ∈ M, , kX = k}attn(t)

p→q ·

(∑
a̸=n

z2a

(
Attn

(t)
p→Pk,a

)2
−

(
z2n

(
1−Attn

(t)
p→Pk,n

)
Attn

(t)
p→Pk,n

+ 1{q ∈ U}z2mAttn
(t)
p→Pk,m

))]
.

Proof.

β(t)
p→q = e⊤p (−

∂L
∂Q

)eq = E[1{p ∈ M}
∑
r∈U

attn(t)
p→rJ

p
r K

p,q
r ]

Then we let
β
(t)
k,p→q := E[1{p ∈ M, kX = k}

∑
r∈U

attn(t)
p→rJ

p
r K

p,q
r ].

In the following, we denote ak,p = n and ak,q = m for simplicity.

Case 1: m = n. If q ∈ U ∩ Pk,n:

• For r = q

Jp
r = znv

⊤
k,n

znvk,n −
∑

w∈U∩Pk,n

attnp→wznvk,n


= z2n

(
1−Attnp→Pk,n

)
Kp,q

r = (eq − (attnp→qeq +
∑
w ̸=q

attnp→wew))⊤eq

= 1− attnp→q.
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• For r ∈ U ∩ Pk,n, and r ̸= q

Jp
r = znv

⊤
k,n

znvk,n −
∑

w∈U∩Pk,n

attnp→wznvk,n


= z2n

(
1−Attnp→Pk,n

)
Kp,q

r = (er − (attnp→qeq +
∑
w ̸=q

attnp→wew))⊤eq

= −attnp→q

Thus ∑
r∈U∩Pk,n

attnp→rJ
p
r ·Kp,q

r

= z2n

1−
∑

w∈U∩Pk,n

attnp→w


·

−
∑

r∈U∩Pk,n

attnp→rattnp→q + attnp→q


= z2n

(
1−Attnp→Pk,n

)2
attn(t)

p→q

• For r ∈ U ∩ Pk,a, a ̸= n

Jp
r = zav

⊤
k,a

znvk,n −
∑

w∈U∩Pk,a

attnp→wzavk,a


= −z2a

∑
w∈U∩Pk,a

attnp→w

Kp,q
r = (er − (attnp→qeq +

∑
w ̸=q

attnp→wew))⊤eq

= −attnp→q

Thus∑
r∈U

attnp→rJ
p
r K

p,q
r = attnp→q ·

z2n
(
1−Attnp→Pk,n

)2
+
∑
a ̸=n

z2a
(
Attnp→Pk,a

)2
If q ∈ M∩Pk,n:

• For r ∈ U ∩ Pk,n,

Jp
r = znv

⊤
k,n

znvk,n −
∑

w∈U∩Pk,n

attnp→wznvk,n


= z2n

(
1−Attnp→Pk,n

)
Kp,q

r = (er − (attnp→qeq +
∑
w ̸=q

attnp→wew))⊤eq

= −attnp→q

• For r ∈ U ∩ Pk,a, a ̸= n

Jp
r = zav

⊤
k,a

znvk,n −
∑

w∈U∩Pk,a

attnp→wzavk,a
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= −z2a
∑

w∈U∩Pk,a

attnp→w

Kp,q
r = (er − (attnp→qeq +

∑
w ̸=q

attnp→wew))⊤eq

= −attnp→q

Thus∑
r∈U

attnp→rJ
p
r K

p,q
r

= attnp→q ·

z2n
(
1−Attnp→Pk,n

)2 − z2n
(
1−Attnp→Pk,n

)
+
∑
a̸=n

z2a
(
Attnp→Pk,a

)2
Putting it together,

β
(t)
k,p→q = E [1{p ∈ M, kX = k}attnp→q·−z2n

(
1−Attnp→Pk,n

)
1{q ∈ M}+ z2n

(
1−Attnp→Pk,n

)2
+
∑
m ̸=n

z2m
(
Attnp→Pk,m

)2
Case 2: m ̸= n. Similarly, if q ∈ U ∩ Pk,m:

• For r ∈ U ∩ Pk,n,

Jp
r = znv

⊤
k,n

znvk,n −
∑

w∈U∩Pk,n

attnp→wznvk,n


= z2n(1−Attnp→Pk,n

)

Kp,q
r = (er − attnp→qeq −

∑
w ̸=q

attnp→wew)⊤eq

= −attnp→q

• For r = q

Jp
r = zmv⊤k,m

znvk,n −
∑

w∈U∩Pk,m

attnp→wzmvk,m


= −z2mAttnp→Pk,m

Kp,q
r = (eq − attnp→qeq −

∑
w ̸=w

attnp→wew)⊤eq

= 1− attnp→q

• For r ∈ U ∩ Pk,a, a ̸= n, and r ̸= q

Jp
r = zav

⊤
k,a

znvk,n −
∑

w∈U∩Pk,a

attnp→wzavk,a


= −z2aAttnp→Pk,a

Kp,q
r = (er − attnp→qeq −

∑
w ̸=q

attnp→wew)⊤eq

= −attnp→q
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Thus∑
r∈U

attnp→rJ
p
r K

p,q
r

= attnp→q ·

−z2n
(
1−Attnp→Pk,n

)
Attnp→Pk,n

− z2mAttnp→Pk,m
+
∑
a ̸=n

z2a
(
Attnp→Pk,a

)2
If q ∈ M∩Pk,m:

• For r ∈ U ∩ Pk,n,

Jp
r = znv

⊤
k,n

znvk,n −
∑

w∈U∩Pk,n

attnp→wznvk,n


= z2n(1−Attnp→Pk,n

)

Kp,q
r = (er − attnp→qeq −

∑
w ̸=q

attnp→wew)⊤eq

= −attnp→q

• For r ∈ U ∩ Pk,a, a ̸= n

Jp
r = zav

⊤
k,a

znvk,n −
∑

w∈U∩Pk,a

attnp→wzavk,a


= −z2aAttnp→Pk,a

Kp,q
r = (er − attnp→qeq −

∑
w ̸=q

attnp→wew)⊤eq

= −attnp→q

Thus ∑
r∈U

attnp→rJ
p
r K

p,q
r

= attnp→q ·

−z2n
(
1−Attnp→Pk,n

)
Attnp→Pk,n

+
∑
a ̸=n

z2a
(
Attnp→Pk,a

)2 .

Therefore

β
(t)
k,p→q = E [1{p ∈ M, kX = k}attnp→q·(

−z2n
(
1−Attnp→Pk,n

)
Attnp→Pk,n

− 1{q ∈ U}z2mAttnp→Pk,m

+
∑
a ̸=n

z2a
(
Attnp→Pk,a

)2 .

Based on the above gradient update for Υ(t)
p→q, we further introduce the following auxiliary quantity,

which will be useful in the later proof.

Υ
(t+1)
k,p→q := Υ

(t)
k,p→q + ηβ

(t)
k,p→q, with Υ

(0)
k,p→q = 0 (D.2)

It is easy to verify that Υ(t)
p→q =

∑
k∈[K] Υ

(t)
k,p→q.
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D.2 HIGH-PROBABILITY EVENT

We first introduce the following exponential bounds for the hypergeometric distribution Hyper
(m,D,M). Hyper (m,D,M) describes the probability of certain successes (random draws for
which the object drawn has a specified feature) in m draws, without replacement, from a finite
population of size M that contains exactly D objects with that feature, wherein each draw is either a
success or a failure.
Proposition D.5 (Greene & Wellner (2017)). Suppose S ∼ Hyper (m,D,M) with 1 ≤ m,D ≤ M .
Define µM := D/M . Then for all t > 0

P (|S −mµM | > t) ≤ 2 exp

(
− t2

4mµM + 2t

)
.

We then utilize this property to prove the high-probability set introduced in Appendix C.1.
Lemma D.6. For k ∈ [K] n ∈ [N ], define

Ek,n(γ, P ) := {M : |Pk,n ∩ U| = Θ(Cn)}, (D.3)
we have

P(M ∈ Ek,n) ≥ 1− 2 exp(−cn,1Cn) (D.4)
where cn,0 > 0 is some constant.

Proof. Under the random masking strategy, given k ∈ [K] and n ∈ [N ], Yk,n = |U ∩ Pk,n| follows
the hypergeometric distribution, i.e. Yk,n ∼ Hyper((1− γ)P,Cn, P ). Then by tail bounds, for t > 0,
we have:

P[|Yk,n − (1− γ)Cn| > t] ≤ 2 exp(− t2

4(1− γ)Cn + 2t
)

Letting t = Θ(Cn), we have

P[Yk,n = Θ(Cn)] ≥ 1− 2e−cn,1Cn .

We further have the following fact, which will be useful for proving the property of loss objective in
the next subsection.
Lemma D.7. For k ∈ [K] and n ∈ [N ], we have

P(|U ∩ Pk,n| = 0) ≤ exp(−cn,0Cn). (D.5)
where cn,0 > 0 is some constant.

Proof. By the form of probability density for Hyper((1− γ)P,Cn, P ), we have

P(|U ∩ Pk,n| = 0) =

(
Cn

0

)(
(P−Cn)
(1−γ)P

)(
P

(1−γ)P

)
≤ γCn = exp(−cn,0Cn)).

D.3 PROPERTIES OF LOSS FUNCTION

Recall the training and regional reconstruction loss we consider are given by:

L(Q) :=
1

2
E

∑
p∈P

1{p ∈ M}∥[F (M(X);Q,E)]p −Xp∥2
 (D.6)

Lp(Q) =
1

2
E
[
1{p ∈ M}∥[F (M(X), E)]p −Xp∥2

]
(D.7)

In this part, we will present several important lemmas for such a training objective. We first single
out the following lemma, which connects the loss form with the attention score.
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Lemma D.8 (Loss Calculation). The population loss L(Q) can be decomposed into the following
form:

L(Q) =
∑
p∈P

Lp(Q), where

Lp(Q) =
1

2

K∑
k=1

E [1{p ∈ M, kX = k} ·z2ak,p

(
1−Attn

(t)
p→Pk,ak,p

)2
+
∑

a̸=ak,p

z2a

(
Attn

(t)
p→Pk,a

)2
Proof.

Lp(Q)

=
1

2

K∑
k=1

E
[
1{p ∈ M, kX = k} ∥[F (M(X), E)]p −Xp∥2

]

=
1

2

K∑
k=1

E

1{p ∈ M, kX = k}

∥∥∥∥∥∥
∑

m∈[N ]

Attnp→Pk,m
zmvk,m − zak,p

vk,ak,p

∥∥∥∥∥∥
2


(i)
=

1

2

K∑
k=1

E

1{p ∈ M, kX = k}

z2ak,p

(
1−Attnp→Pk,ak,p

)2
+

∑
m̸=ak,p

z2m
(
Attnp→Pk,m

)2
where (i) follows since the features are orthogonal.

We then introduce some additional crucial notations for the loss objectives.

L∗
p = min

Q∈Rd×d
Lp(Q), (D.8a)

Llow
p =

1

2
(σ2

z +
L2

N − 1
)
∑

k∈[K]

P
(
|U ∩ Pk,zak,p

| = 0
)

(D.8b)

L̃p(Q) =

K∑
k=1

L̃k,p(Q), where

L̃k,p(Q) =
1

2
E
[
1{p ∈ M, kX = k,M ∈ Ek,zak,p

} ·z2ak,p

(
1−Attn

(t)
p→Pk,ak,p

)2
+
∑

a ̸=ak,p

z2a

(
Attn

(t)
p→Pk,a

)2 (D.8c)

Here σ2
z = E[Zn(X)2]. L⋆

p denotes the minimum value of the population loss in equation D.7, and
Llow
p represents the unavoidable errors for p ∈ P , given that all the patches in Pk,ak,p

are masked.
We will show that Llow

p serves as a lower bound for L⋆
p, and demonstrate that the network trained

with GD will attain nearly zero error compared to Llow
p . Our convergence will be established by the

sub-optimality gap with respect to Llow
p , which necessarily implies the convergence to L⋆

p. (It also
implies L⋆

p − Llow
p is small.)

Lemma D.9. For L⋆
p and Llow

p defined in equation D.8a and equation D.8b, respectively, we have

Llow
p ≤ L⋆

p and they are both at the order of Θ
(
exp

(
−
(
c1P

κc +1
{
1 ̸∈ ∪k∈[K]{ak,p}

}
c2P

κs
)))

where c1, c2 > 0 are some constants.
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Proof. We first prove Llow
p ≤ L⋆

p:

L⋆
p = min

Q∈Rd×d

1

2

K∑
k=1

E [1{p ∈ M, kX = k} ·z3ak,p

(
1−Attn

(t)
p→Pk,ak,p

)2
+
∑

a ̸=ak,p

z2azak,p

(
Attn

(t)
p→Pk,a

)2
≥ min

Q∈Rd×d

1

2

K∑
k=1

E
[
1{p ∈ M, kX = k}1{|U ∩ Pk,ap,k

| = 0} ·z3ak,p

(
1−Attn

(t)
p→Pk,ak,p

)2
+
∑

a ̸=ak,p

z2azak,p

(
Attn

(t)
p→Pk,a

)2

Notice that when all patches in Pk,ak,p
are masked, Attn

(t)
p→Pk,ak,p

= 0. Moreover,∑
m̸=ak,p

z2mAttn
(t)
p→Pk,m

≥ L2

N − 1

by Cauchy–Schwarz inequality. Thus

L⋆
p ≥ 1

2

K∑
k=1

(σ2
z +

L2

N − 1
)P
(
|U ∩ Pk,ak,p

| = 0
)
= Llow

p .

Llow
p = Θ

(
exp

(
−
(
c1P

κc + 1
{
1 ̸∈ ∪k∈[K]{ak,p}

}
c2P

κs
)))

immediately comes from

Lemma D.7. Furthermore, we only need to show L⋆
p = O

(
exp

(
−
(
c1P

κc + 1
{
1 ̸∈

∪k∈[K]{ak,p}
}
c2P

κs
)))

. This can be directly obtained by choosing Q = σId for some suffi-
ciently large σ and hence omitted here.

Lemma D.10. Given p ∈ P , for any Q, we have

L̃p(Q) ≤ Lp(Q)− Llow
p ≤ L̃p(Q) +O

(
exp

(
−
(
c3P

κc + 1
{
1 ̸∈ ∪k∈[K]{ak,p}

}
c4P

κs
)))

.

where c3, c4 > 0 are some constants.

Proof. The lower bound is directly obtained by the definition and thus we only prove the upper
bound.
Lp(Q)− L̃p(Q)

=
1

2

K∑
k=1

E

1{p ∈ M, kX = k,M ∈ Ec
k,zak,p

} ·
(
z2ak,p

(
1−Attn

(t)
p→Pk,ak,p

)2
+
∑

a̸=ak,p

z2a

(
Attn

(t)
p→Pk,a

)2 )
≤

K∑
k=1

U2P(M ∈ Ec
k,zak,p

)

≤ O
(
exp

(
−
(
c3P

κc + 1
{
1 ̸∈ ∪k∈[K]{ak,p}

}
c4P

κs
)))

.

where the last inequality follows from Lemma D.6.

E OVERALL INDUCTION HYPOTHESES AND PROOF PLAN FOR MAE

Our main proof utilizes the induction hypotheses. In this section, we introduce the main induction
hypotheses for the positive and negative information gaps, which will later be proven to be valid
throughout the entire learning process.
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E.1 POSITIVE INFORMATION GAP

We first state our induction hypothesis for the case that the information gap ∆ is positive.

Induction Hypothesis E.1. For t ≤ T , given p,q ∈ P , for k ∈ [K], the following holds

a. Φ
(t)
p→vk,ak,p

is monotonically increasing, and Φ
(t)
p→vk,ak,p

∈ [0, Õ(1)];

b. if ak,p ̸= 1, then Φ
(t)
p→vk,1 is monotonically decreasing and Φ

(t)
p→vk,1 ∈ [−Õ(1), 0];

c. |Φ(t)
p→vk,m | = Õ( 1

P 1−κs ) for m /∈ {1} ∪ {ak,p};

d. for q ̸= p, Υ(t)
p→q = Õ( 1

Pκs );

e. Υ
(t)
p→p = Õ( 1

P ).

E.2 NEGATIVE INFORMATION GAP

Now we turn to the case that ∆ ≤ −Ω(1).

Induction Hypothesis E.2. For t ≤ T , given p,q ∈ P , for k ∈ [K], the following holds

a. Φ
(t)
p→vk,ak,p

is monotonically increasing, and Φ
(t)
p→vk,ak,p

∈ [0, Õ(1)];

b. if ak,p ̸= 1, then Φ
(t)
p→vk,1 is monotonically decreasing and Φ

(t)
p→vk,1 ∈ [−Õ( 1

P−∆ ), 0];

c. |Φ(t)
p→vk,m | = Õ( 1

P 1−κs ) for m /∈ {1} ∪ {ak,p};

d. for q ̸= p, Υ(t)
p→q = Õ( 1

Pκs );

e. Υ
(t)
p→p = Õ( 1

P ).

E.3 PROOF OUTLINE

In both settings, we can classify the process through which transformers learn the feature attention
correlation Φ

(t)
p→vk,ak,p

into two distinct scenarios. These scenarios hinge on the spatial relation of
the area p within the context of the k-th partition Dk, specifically, whether p is located in the global
area of the k-th cluster, i.e. whether ak,p = 1. The learning dynamics exhibit different behaviors
of learning the local FP correlation in the local area with different ∆, while the behaviors for
features located in the global area are very similar, unaffected by the value of ∆. Therefore, through
Appendices F to H, we delve into the learning phases and provide technical proofs for the local area
with ∆ ≥ Ω(1), local area with ∆ ≤ −Ω(1) and the global area respectively. Finally, we will put
this analysis together to prove that the Induction Hypothesis E.1 (resp. Induction Hypothesis E.2)
holds during the entire training process, thereby validating the main theorems in Appendix I.

F ANALYSIS FOR THE LOCAL AREA WITH POSITIVE INFORMATION GAP

In this section, we focus on a specific patch p ∈ P with the k-th cluster for k ∈ [K], and present the
analysis for the case that Xp is located in the local area for the k-th cluster, i.e. ak,p > 1. We will
analyze the case that ∆ ≥ Ω(1). Throughout this section, we denote ak,p = n for simplicity. We
will analyze the convergence of the training process via two phases of dynamics. At the beginning of
each phase, we will establish an induction hypothesis, which we expect to remain valid throughout
that phase. Subsequently, we will analyze the dynamics under such a hypothesis within the phase,
aiming to provide proof of the hypothesis by the end of the phase.
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F.1 PHASE I, STAGE 1

In this section, we shall discuss the initial stage of phase I. Firstly, we present the induction hypothesis
in this stage.

We define the stage 1 of phase I as all iterations t ≤ T1, where

T1 ≜ max

{
t : Φ(t)

p→vk,n
≥ − 1

U

(
∆

2
− 0.01

)
log(P )

}
.

We state the following induction hypotheses, which will hold throughout this period:

Induction Hypothesis F.1. For each 0 ≤ t ≤ T1, q ∈ P \ {p}, the following holds:

a. Φ
(t)
p→vk,n is monotonically increasing, and Φ

(t)
p→vk,n ∈ [0, O

(
(∆

2 −0.01) log(P )

P 0.02

)
];

b. Φ
(t)
p→vk,1 is monotonically decreasing and Φ

(t)
p→vk,1 ∈ [− 1

U

(
∆
2 − 0.01

)
log(P ), 0];

c. |Φ(t)
p→vk,m | = O

(Φ(t)
p→vk,n

−Φ(t)
p→vk,1

P 1−κs

)
for m ̸= 1, n;

d. Υ
(t)
k,p→q = O

(Φ(t)
p→vk,n

Cn

)
for ak,q = n, |Υ(t)

k,p→p| = O
(Φ(t)

p→vk,n
−Φ(t)

p→vk,1

P

)
;

e. |Υ(t)
k,p→q| = O

( |Φ(t)
p→vk,1

|
C1

)
+O

(Φ(t)
p→vk,n

−Φ(t)
p→vk,1

P

)
for ak,q = 1;

f. |Υ(t)
k,p→q| = O

(Φ(t)
p→vk,n

−Φ(t)
p→vk,1

P

)
for ak,q ̸= 1, n.

F.1.1 PROPERTY OF ATTENTION SCORES

We first introduce several properties of the attention score if Induction Hypothesis E.1 and Induction
Hypothesis F.1 hold.

Lemma F.1. For n > 1, if Induction Hypothesis E.1 and Induction Hypothesis F.1 hold at iteration
t ≤ T1, then the following holds

1. 1−Attn
(t)
p→Pk,n

−Attn
(t)
p→Pk,1

≥ Ω(1);

2. If M ∈ Ek,n, Attn
(t)
p→Pk,n

= Θ
(

1
P 1−κs

)
;

3. Moreover, if M ∈ Ek,1, we have Attn
(t)
p→Pk,1

= Ω
(

1

P
1−κs

2
−0.01

)
;

4. For q ∈ M∩ (Pk,n ∪ Pk,1), attn
(t)
p→q = O

( 1−Attn
(t)
p→Pk,1

−Attn
(t)
p→Pk,n

P

)
.

Lemma F.2. For n > 1, if Induction Hypothesis E.1 and Induction Hypothesis F.1 hold at iteration
t ≤ T1, then for m ̸= n, 1, the following holds:

1. For any q ∈ Pk,m, attn(t)
p→q ≤ O

( 1−Attn
(t)
p→Pk,1

−Attn
(t)
p→Pk,n

)
P ).

2. Moreover, Attn
(t)
p→Pk,m

≤ O
( 1−Attn

(t)
p→Pk,1

−Attn
(t)
p→Pk,n

N

)
.

The above properties can be easily verified through direct calculations by using the definition in
equation 2.6 and conditions in Induction Hypothesis F.1, which are omitted here for brevity.
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F.1.2 BOUNDING THE GRADIENT UPDATES FOR FP CORRELATIONS

Lemma F.3. For n > 1, if Induction Hypothesis E.1 and Induction Hypothesis F.1 hold at iteration
0 ≤ t ≤ T1, then α

(t)
p→vk,n ≥ 0 and satisfies:

α(t)
p→vk,n

= Θ
(Cn

P

)
= Θ

( 1

P 1−κs

)
.

Proof. By Lemma C.2, we have

α(t)
p→vk,n

= E

1{kX = k,p ∈ M}Attn
(t)
p→Pk,n

·

z3n

(
1−Attn

(t)
p→Pk,n

)2
+
∑
m ̸=n

z2mzn

(
Attn

(t)
p→Pk,m

)2
= E

1{kX = k, Ek,n ∩ p ∈ M}Attn
(t)
p→Pk,n

·

z3n

(
1−Attn

(t)
p→Pk,n

)2
+
∑
m̸=n

z2mzn

(
Attn

(t)
p→Pk,m

)2
+ E

1{kX = k, Ec
k,n ∩ p ∈ M}Attn

(t)
p→Pk,n

·

z3n

(
1−Attn

(t)
p→Pk,n

)2
+
∑
m ̸=n

z2mzn

(
Attn

(t)
p→Pk,m

)2
≤P(M ∈ Ek,n)

· E

1{kX = k,p ∈ M}Attn
(t)
p→Pk,n

·

z3n

(
1−Attn

(t)
p→Pk,n

)2
+
∑
m̸=n

z2mzn

(
Attn

(t)
p→Pk,m

)2∣∣∣Ek,n


+O(1) · P(M ∈ Ec
k,n)

≤ O
(Cn

P
) +O(exp(−cn,1Cn)

)
≤ O

(Cn

P

)
,

where the second inequality invokes Lemma F.1 and Lemma D.6, and the last inequality is due to
exp(−cn,1Cn) ≪ Cn

P . Similarly, we can show that α(t)
p→vk,n ≥ Ω(Cn

P ).

Lemma F.4. For n > 1, if Induction Hypothesis E.1 and Induction Hypothesis F.1 hold at iteration
0 ≤ t ≤ T1, then α

(t)
p→vk,1 < 0 and satisfies

|α(t)
p→vk,1

| ≥ Ω
( 1

P 2( 1−κs
2 −0.01)

)
= Ω

( 1

P 0.98−κs

)
.

Proof. We first single out the following fact:

− z1z
2
n

(
1−Attn

(t)
p→Pk,n

)
Attn

(t)
p→Pk,n

− z31

(
1−Attn

(t)
p→Pk,1

)
Attn

(t)
p→Pk,1

+
∑

a̸=1,n

z2az1

(
Attn

(t)
p→Pk,a

)2
≤ z1

(
max
a̸=1,n

z2aAttn
(t)
p→Pk,a

− z2nAttn
(t)
p→Pk,n

− z21Attn
(t)
p→Pk,1

)
(1−Attn

(t)
p→Pk,n

−Attn
(t)
p→Pk,1

)

= −z1(1−Attn
(t)
p→Pk,n

−Attn
(t)
p→Pk,1

)

(
z2nAttn

(t)
p→Pk,n

+ z21Attn
(t)
p→Pk,1

− max
a ̸=1,n

z2aAttn
(t)
p→Pk,a

)
.

(F.1)

Therefore, by Lemma C.1, we have

α(t)
p→vk,1

≤ E

[
1{kX = k, Ek,1 ∩ p ∈ M}Attn

(t)
p→Pk,1

·
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(
−z1(1−Attn

(t)
p→Pk,n

−Attn
(t)
p→Pk,1

)

(
z2nAttn

(t)
p→Pk,n

+ z21Attn
(t)
p→Pk,1

− max
a ̸=1,n

z2aAttn
(t)
p→Pk,a

))]

+ E

1{kX = k, Ec
k,1 ∩ p ∈ M}Attn

(t)
p→Pk,1

·
∑

a ̸=1,n

z21za

(
Attn

(t)
p→Pk,a

)2
≤ P(M ∈ Ek,1) ·

(
−
(
Ω(1) · Ω( 1

P 2×( 1−κs
2 −0.01)

)
))

+O(1) · P(M ∈ Ec
k,1)

≤ −Ω
( 1

P 2×( 1−κs
2 −0.01)

)
= −Ω

( 1

P 0.98−κs

)
where the second inequality invokes Lemma F.1 and the last inequality comes from Lemma D.6.

Lemma F.5. At each iteration t ≤ T1, if Induction Hypothesis E.1 and Induction Hypothesis F.1
hold, then for any m > 1 with m ̸= n, the following holds

|α(t)
p→vk,m

| ≤ O
(α(t)

p→vk,n − α
(t)
p→vk,1

N

)
= O

(α(t)
p→vk,n − α

(t)
p→vk,1

P 1−κs

)
.

Proof. By Lemma C.1, for m ̸= n, we have

α(t)
p→vk,m

≤ E

1{kX = k,p ∈ M}Attn
(t)
p→Pk,m

·

 ∑
a ̸=m,n

z2azm

(
Attn

(t)
p→Pk,a

)2 (F.2)

−α(t)
p→vk,m

≤ E

[
1{kX = k,p ∈ M}Attn

(t)
p→Pk,m

·
(
zmz2n

(
1−Attn

(t)
p→Pk,n

)
Attn

(t)
p→Pk,n

+z3m

(
1−Attn

(t)
p→Pk,m

)
Attn

(t)
p→Pk,m

)]
(F.3)

For equation F.2, we have

α(t)
p→vk,m

≤ E

1{kX = k, Ek,1 ∩ Ek,n ∩ p ∈ M}Attn
(t)
p→Pk,m

·

 ∑
a ̸=m,n

z2azm

(
Attn

(t)
p→Pk,a

)2
+ E

1{kX = k, (Ek,1 ∩ Ek,n)c ∩ p ∈ M}Attn
(t)
p→Pk,m

·

 ∑
a ̸=m,n

z2azm

(
Attn

(t)
p→Pk,a

)2
≤ E

1{kX = k, Ek,1 ∩ Ek,n ∩ p ∈ M}O

(
1−Attn

(t)
p→Pk,1

−Attn
(t)
p→Pk,n

N

)

·
(
z21zm

(
Attn

(t)
p→Pk,1

)2
+O

( 1

N

))]
+O(1) · P(M ∈ (Ek,1 ∩ Ek,n)c)

≤ O
( |α(t)

p→vk,1 |
N

)
+O(1) · P(M ∈ (Ek,1 ∩ Ek,n)c)

≤ O
( |α(t)

p→vk,1 |
P 1−κs

)
where the second inequality is due to Lemma F.2, the last inequality follows from Lemma F.4 and
Lemma D.6.

On the other hand, for equation F.3, we can use the similar argument by invoking Lemma F.2 and
Lemma F.3, and thus obtain

−α(t)
p→vk,m

≤ O
(α(t)

p→vk,n

P 1−κs

)
.
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Putting them together, we have

|α(t)
p→vk,m

| ≤ O
(α(t)

p→vk,n − α
(t)
p→vk,1

P 1−κs

)
.

F.1.3 BOUNDING THE GRADIENT UPDATES FOR POSITIONAL CORRELATIONS

Lemma F.6. For n > 1, if Induction Hypothesis E.1 and Induction Hypothesis F.1 hold at iteration
0 ≤ t ≤ T1, then for q ∈ P \ {p} and ak,q = n, we have β

(t)
k,p→q ≥ 0 and satisfies:

β
(t)
k,p→q = Θ

(α(t)
p→vk,n

Cn

)
.

Furthermore, we have |β(t)
k,p→p| = O

(α(t)
p→vk,n

−α(t)
p→vk,1

P

)
.

Proof. By Lemma C.2, for q ∈ Pk,n with q ̸= p, we have

β
(t)
k,p→q =

E

1{kX = k,p ∈ M,q ∈ U}attn(t)
p→q ·

z2n

(
1−Attn

(t)
p→Pk,n

)2
+
∑
m ̸=n

z2m

(
Attn

(t)
p→Pk,m

)2
︸ ︷︷ ︸

H1

+ E
[
1{kX = k,p ∈ M,q ∈ M}attn(t)

p→q ·
(
−z2nAttn

(t)
p→Pk,n

(
1−Attn

(t)
p→Pk,n

))]
︸ ︷︷ ︸

H2

+ E

1{kX = k,p ∈ M,q ∈ M}attn(t)
p→q ·

∑
m ̸=n

z2m

(
Attn

(t)
p→Pk,m

)2
︸ ︷︷ ︸

H3

.

Firstly, for H1, notice that

(Cn − 1)H1 = E

1{kX = k,p ∈ M}Attn
(t)
p→Pk,n

·

z2n

(
1−Attn

(t)
p→Pk,n

)2
+
∑
m ̸=n

z2m

(
Attn

(t)
p→Pk,m

)2
= Θ(α(t)

p→vk,n
).

For H2, since p,q ∈ M, by Lemma F.1, we can upper bound attn
(t)
p→q by O

(
1
P

)
, thus

−H2 ≤ E
[
1{kX = k,p ∈ M}O

( 1

P

)
·
(
z2nAttn

(t)
p→Pk,n

(
1−Attn

(t)
p→Pk,n

))]
≤ O

(α(t)
p→vk,n

P

)
.

Further notice that H3 can be upper bounded by O(H1), putting it together, we have

β
(t)
k,p→q = Θ

(α(t)
p→vk,n

Cn

)
.

Turn to β
(t)
k,p→p, when q = p,

β(t)
n = E

[
1{kX = k,p ∈ M}attn(t)

p→p ·
(
−z2nAttn

(t)
p→Pk,n

(
1−Attn

(t)
p→Pk,n

))]
︸ ︷︷ ︸

J2
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+ E

1{kX = k,p ∈ M}attn(t)
p→p ·

∑
m ̸=n

z2m

(
Attn

(t)
p→Pk,m

)2
︸ ︷︷ ︸

J3

.

We can bound J2 in a similar way as H2. Thus, we only focus on further bounding J3:

J3 ≤ E

1{kX = k,p ∈ M}O(
1−Attn

(t)
p→Pk,1

−Attn
(t)
p→Pk,n

P
) ·

∑
m̸=n

z2m

(
Attn

(t)
p→Pk,m

)2
≤ O

(
|α(t)

p→vk,1 |
P

)
.

where the first inequality holds by invoking Lemma F.1 and the last inequality follows similar
arguments as analysis for equation F.2.

Lemma F.7. For n > 1, if Induction Hypothesis E.1 and Induction Hypothesis F.1 hold at iteration
0 ≤ t ≤ T1, then for q ∈ P \ {p} and ak,q = 1, we have β

(t)
k,p→q satisfies:

|β(t)
k,p→q| = O

(
|α(t)

p→vk,n − α
(t)
p→vk,1 |

P

)
+O

(
|α(t)

p→vk,1 |
C1

)
.

Proof. By Lemma C.2, for q ∈ Pk,1, we have

β
(t)
k,p→q =

− E
[
1{kX = k,p ∈ M,q ∈ U}attn(t)

p→q·z21Attn
(t)
p→Pk,1

(1−Attn
(t)
p→Pk,1

) + z2n

(
1−Attn

(t)
p→Pk,n

)
Attn

(t)
p→Pk,n

−
∑

a ̸=1,n

z2a

(
Attn

(t)
p→Pk,a

)2
(F.4)

−E
[
1{kX = k,p ∈ M,q ∈ M}attn(t)

p→q ·
(
z2n

(
1−Attn

(t)
p→Pk,n

)
Attn

(t)
p→Pk,n

)]
︸ ︷︷ ︸

G2

+E

1{kX = k,p ∈ M,q ∈ M}attn(t)
p→q ·

∑
a ̸=n

z2a

(
Attn

(t)
p→Pk,a

)2
︸ ︷︷ ︸

G3

.

For equation F.4 denoted as G1, following the direct calculations, we have

−(C1 − 1)G1 = Θ(α(t)
p→vk,1

)

We can further bound G2 and G3 in a similar way as H2 and H3 in Lemma F.6 and thus obtain

−G2 ≤ O
(α(t)

p→vk,n

P

)
,

G3 ≤ O

(
|α(t)

p→vk,1 |
P

)
.

which completes the proof.

Lemma F.8. For n > 1, if Induction Hypothesis E.1 and Induction Hypothesis F.1 hold at iteration
0 ≤ t ≤ T1, then for q ∈ P \ {p} and n ̸= ak,q, β(t)

k,p→q satisfies:

|β(t)
k,p→q| = O

(α(t)
p→vk,n − α

(t)
p→vk,1

P

)
.
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Proof. By Lemma C.2, for q ∈ Pk,m, we have

β
(t)
k,p→q =

− E
[
1{kX = k,p ∈ M,q ∈ U}attn(t)

p→q·z2mAttn
(t)
p→Pk,m

(1−Attn
(t)
p→Pk,m

) + z2n

(
1−Attn

(t)
p→Pk,n

)
Attn

(t)
p→Pk,n

−
∑

a̸=n,m

z2a

(
Attn

(t)
p→Pk,a

)2
(F.5)

−E
[
1{kX = k,p ∈ M,q ∈ M}attn(t)

p→q ·
(
z2n

(
1−Attn

(t)
p→Pk,n

)
Attn

(t)
p→Pk,n

)]
︸ ︷︷ ︸

I2

+E

1{kX = k,p ∈ M,q ∈ M}attn(t)
p→q ·

∑
a ̸=n

z2a

(
Attn

(t)
p→Pk,a

)2
︸ ︷︷ ︸

I3

.

equation F.5 can be upper bounded by O
( |α(t)

p→vk,m
|

Cm

)
= O

( |α(t)
p→vk,1

−α(t)
p→vk,1

|
NCm

)
=

O
( |α(t)

p→vk,1
−α(t)

p→vk,1
|

P

)
, where the first equality holds by invoking Lemma F.5. I2 and I3 can

be bounded similarly as G2 and G3, which is omitted here.

F.1.4 AT THE END OF PHASE I, STAGE 1

Lemma F.9. For n > 1, if Induction Hypothesis E.1 and Induction Hypothesis F.1 hold for all
0 ≤ t ≤ T1 = O

(
log(P )P 0.98−κs

η

)
, At iteration t = T1 + 1, we have

a. Φ
(T1+1)
p→vk,1 ≤ − 1

U

(
∆
2 − 0.01

)
log(P );

b. Attn
(T1+1)
p→Pk,1

= O
(

1

P (1−κc)+
L
U

(∆
2

−0.01)

)
.

Proof. By comparing Lemma F.3 and Lemma F.4, we have |α(t)
p→vk,1 | ≫ α

(t)
p→vk,n . Then the

existence of T1,k = O
(

log(P )P 0.98−κs

η

)
directly follows from Lemma F.4.

F.2 PHASE I, STAGE 2

During stage 1, Φ(t)
p→vk,1 significantly decreases to decouple the FP correlations with the global

feature, resulting in a decrease in Attn
(t)
p→Pk,1

, while other Attn
(t)
p→Pk,n

with m > 1 remain

approximately at the order of O
(

1
P 1−κs

)
(Θ
(

1
P 1−κs

)
). By the end of phase I, (Attn

(t)
p→Pk,1

)2

decreases to O( 1
P 1.96−2κs ), leading to a decrease in |α(t)

p→vk,1 | as it approaches towards α(t)
p→vk,n . At

this point, stage 2 begins. Shortly after entering this phase, the prior dominant role of the decrease
of Φ(t)

p→vk,1 in learning dynamics diminishes as |α(t)
p→vk,1 | reaches the same order of magnitude as

α
(t)
p→vk,n .

We define stage 2 of phase I as all iterations T1 < t ≤ T̃1, where

T̃1 ≜ max

{
t > T1 : Φ(t)

p→vk,n
− Φ(t)

p→vk,1
≤
(

∆

2L
+

0.01

L
+

c∗1(1− κs)

U

)
log(P )

}
.

for some small constant c∗1 > 0.

For computational convenience, we make the following assumptions for κc and κs, which can be
easily relaxed with the cost of additional calculations.

∆

2

( 1
L

− 1

U

)
+

0.01

L
+

0.01

U
≤ c∗0(1− κs)

U
(F.6a)
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(1− c∗1L

U
)(1− κs) ≤ (1− κc) +

U

L
(
∆

2
+ 0.01) (F.6b)

Here c∗0 is some small. We state the following induction hypotheses, which will hold throughout this
period:

Induction Hypothesis F.2. For each T1 < t ≤ T̃1, q ∈ P \ {p}, the following holds:

a. Φ
(t)
p→vk,n is monotonically increasing, and Φ

(t)
p→vk,n ∈ [0,

c∗0+c∗1
U log(P )];

b. Φ
(t)
p→vk,1 is monotonically decreasing and Φ

(t)
p→vk,1 ∈

[− 1
L

(
∆
2 + 0.01

)
log(P ),− 1

U

(
∆
2 − 0.01

)
log(P )];

c. |Φ(t)
p→vk,m | = O

(Φ(t)
p→vk,n

−Φ(t)
p→vk,1

P 1−κs

)
for m ̸= 1, n;

d. Υ
(t)
k,p→q = O

(Φ(t)
p→vk,n

Cn

)
for ak,q = n, |Υ(t)

k,p→p| = O
(Φ(t)

p→vk,n
−Φ(t)

p→vk,1

P

)
;

e. |Υ(t)
k,p→q| = O

( |Φ(t)
p→vk,1

|
C1

)
+O

(Φ(t)
p→vk,n

−Φ(t)
p→vk,1

P

)
for ak,q = 1.;

f. |Υ(t)
k,p→q| = O

(Φ(t)
p→vk,n

−Φ(t)
p→vk,1

P

)
for ak,q ̸= 1, n.

F.2.1 PROPERTY OF ATTENTION SCORES

We first single out several properties of attention scores that will be used for the proof of Induction
Hypothesis F.2.

Lemma F.10. if Induction Hypothesis E.1 and Induction Hypothesis F.2 hold at iteration T1 + 1 ≤
t ≤ T̃1, then the following holds

1. 1−Attn
(t)
p→Pk,n

−Attn
(t)
p→Pk,1

≥ Ω(1);

2. if M ∈ Ek,n, Attn
(t)
p→Pk,n

∈
[
Ω
(

1
P 1−κs

)
, O
(

1

P (1−c∗1−c∗0)(1−κs)

)]
;

3. Moreover, Attn
(t)
p→Pk,1

= O
(

1

P (1−κc)+
L
U

(∆
2

−0.01)

)
; if M ∈ Ek,1, we have Attn

(t)
p→Pk,1

=

Ω
(

1

P (1−κc)+
U
L

(∆
2

+0.01)

)
;

4. for q ∈ M∩ (Pk,n ∪ Pk,1), attn
(t)
p→q = O

( 1−Attn
(t)
p→Pk,n

−Attn
(t)
p→Pk,1

P

)
.

Lemma F.11. if Induction Hypothesis E.1 and Induction Hypothesis F.2 hold at iteration T1 + 1 ≤
t ≤ T̃1, then for m ̸= n, the following holds:

1. for any q ∈ Pk,m, attn(t)
p→q ≤ O

( 1−Attn
(t)
p→Pk,n

−Attn
(t)
p→Pk,1

P

)
;

2. Moreover, Attn
(t)
p→Pk,m

≤ O
( 1−Attn

(t)
p→Pk,1

−Attn
(t)
p→Pk,n

N

)
.

F.2.2 BOUNDING THE GRADIENT UPDATES OF FP CORRELATIONS

Lemma F.12. For n > 1, if Induction Hypothesis E.1 and Induction Hypothesis F.2 hold at iteration
T1 + 1 ≤ t ≤ T̃1, then α

(t)
p→vk,n ≥ 0 and satisfies:

α(t)
p→vk,n

= Ω
( 1

P 1−κs

)
.
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Proof. By Lemma C.2, we have

α(t)
p→vk,n

= E

1{kX = k,p ∈ M}Attn
(t)
p→Pk,n

·

z3n

(
1−Attn

(t)
p→Pk,n

)2
+
∑
m ̸=n

z2mzn

(
Attn

(t)
p→Pk,m

)2
= E

1{kX = k, Ek,n ∩ p ∈ M}Attn
(t)
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·

z3n

(
1−Attn

(t)
p→Pk,n

)2
+
∑
m̸=n

z2mzn

(
Attn

(t)
p→Pk,m

)2
+ E

1{kX = k, Ec
k,n ∩ p ∈ M}Attn

(t)
p→Pk,n

·

z3n

(
1−Attn

(t)
p→Pk,n

)2
+
∑
m̸=n

z2mzn

(
Attn

(t)
p→Pk,m

)2
≳P(M ∈ Ek,n)

· E

1{kX = k,p ∈ M}Attn
(t)
p→Pk,n

·

z3n

(
1−Attn

(t)
p→Pk,n

)2
+
∑
m̸=n

z2mzn

(
Attn

(t)
p→Pk,m

)2∣∣∣Ek,n


≥ Ω
(Cn

P

)
where the last inequality invokes Lemma F.10.

Lemma F.13. For n > 1, if Induction Hypothesis E.1 and Induction Hypothesis F.2 hold at iteration
T1 + 1 ≤ t ≤ T̃1, then α

(t)
p→vk,1 < 0 and satisfies

|α(t)
p→vk,1

| ≥ Ω
( 1

P 2(1−κc)+
U
L (∆+0.02)

)
.

Proof. Following equation F.1, we have

− z1z
2
n

(
1−Attn

(t)
p→Pk,n

)
Attn

(t)
p→Pk,n

− z31

(
1−Attn

(t)
p→Pk,1

)
Attn

(t)
p→Pk,1

+
∑

a̸=1,n

z2az1

(
Attn

(t)
p→Pk,a

)2
≤ −z1(1−Attn

(t)
p→Pk,n

−Attn
(t)
p→Pk,1

)

(
z2nAttn

(t)
p→Pk,n

+ z21Attn
(t)
p→Pk,1

− max
a ̸=1,n

z2aAttn
(t)
p→Pk,a

)
Therefore, by Lemma C.1, we obtain

α(t)
p→vk,1

≤ E
[
1{kX = k, Ek,1 ∩ p ∈ M}Attn

(t)
p→Pk,1

·(
−z1(1−Attn

(t)
p→Pk,n

−Attn
(t)
p→Pk,1

)

·
(
z2nAttn

(t)
p→Pk,n

+ z21Attn
(t)
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− max
a̸=1,n

z2aAttn
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))
]

+ E

1{kX = k, Ec
k,1 ∩ p ∈ M}Attn

(t)
p→Pk,1

·
∑

a̸=1,n

z21za

(
Attn

(t)
p→Pk,a

)2
≤ P(M ∈ Ek,1) ·

(
− Ω(1) · Ω

( 1

P 2(1−κc)+
2U
L (∆

2 +0.01)

))
+O(1) · P(M ∈ Ec

k,1)

≤ −Ω
( 1

P 2(1−κc)+
U
L (∆+0.02)

)
where the second inequality invokes Lemma F.10 and the last inequality comes from Lemma D.6.
The upper bound can be obtained by using similar arguments and invoking the upper bound for
Attn

(t)
p→Pk,1

in Lemma F.10.
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Lemma F.14. For n > 1, if Induction Hypothesis E.1 and Induction Hypothesis F.2 hold at iteration
T1 + 1 ≤ t ≤ T̃1, then for any m > 1 with m ̸= n, the following holds

|α(t)
p→vk,m

| ≤ O
(α(t)

p→vk,n − α
(t)
p→vk,1

P 1−κs

)
.

The proof is similar to Lemma F.5, and thus omitted here.

F.2.3 BOUNDING THE GRADIENT UPDATES OF POSITIONAL CORRELATIONS

We then summarize the properties for gradient updates of positional correlations, which utilize the
identical calculations as in Section F.1.3.
Lemma F.15. For n > 1, if Induction Hypothesis E.1 and Induction Hypothesis F.2 hold at iteration
T1 + 1 ≤ t ≤ T̃1, then

a. if ak,q = n and q ̸= p, β
(t)
k,p→q ≥ 0; β

(t)
k,p→q = Θ

(α(t)
p→vk,n

Cn

)
and |β(t)

n | =

O(
α(t)

p→vk,n
−α(t)

p→vk,1

P ).

b. if ak,q = 1, |β(t)
k,p→q| = O

(α(t)
p→vk,n

−α(t)
p→vk,1

P

)
+O

( |α(t)
p→vk,1

|
C1

)
.

c. if ak,q = m and m ̸= 1, n, |β(t)
k,p→q| = O

(α(t)
p→vk,n

−α(t)
p→vk,1

P

)
.

F.2.4 END OF PHASE I, STAGE 2

Lemma F.16. Induction Hypothesis F.2 holds for all iteration T1 + 1 ≤ t ≤ T̃1 = T1 +

O
(

log(P )P 1−κs

η

)
, and at iteration t = T̃1 + 1, we have

a. Φ
(T̃1+1)
p→vk,n ≥ c∗1(1−κs) log(P )

U ;

b. Φ
(T̃1+1)
p→vk,1 ≥ −( ∆

2L + 0.01
L ) log(P ).

Proof. The existence of T̃1 = T1 + O
(

log(P )P 1−κs

η

)
directly follows from Lemma F.12 and

Lemma F.13. Moreover, since α
(t)
p→vk,1 < 0, then

Φ(T̃1+1)
p→vk,n

≤
(

∆

2L
+

0.01

L
+

c∗1(1− κs)

U

)
log(P )− 1

U
(
∆

2
− 0.01) ≤ (c∗0 + c∗1)(1− κs)

U
log(P )

where the last inequality invokes equation F.6a. Now suppose Φ
(T̃1+1)
p→vk,n <

c∗1(1−κs) log(P )
U , then

Φ
(T̃1+1)
p→vk,1 < −( ∆

2L + 0.01
L ) log(P ). Denote the first time that Φ(t)

p→vk,1 reaches −( ∆
2L + 0.001

L ) log(P )

as T̃ . Note that T̃ < T̃1 since α
(t)
p→vk,1 , the change of Φ(t)

p→vk,1 , satisfies |α(t)
p→vk,1 | ≪ log(P ). Then

for t ≥ T̃ , the following holds:

1. Attn
(t)
p→Pk,n

≥ Ω
(

1
P 1−κs

)
;

2. Attn
(t)
p→Pk,1

≤ O
(

1

P
1−κs

2
+0.001

)
.

Therefore,

|α(t)
p→vk,1

| ≤ E
[
1{kX = k, Ek,1 ∩ p ∈ M}Attn

(t)
p→Pk,1

·

z1

(
z2nAttn

(t)
p→Pk,n

(1−Attn
(t)
p→Pk,n

) + z21Attn
(t)
p→Pk,1

(1−Attn
(t)
p→Pk,1

)
)
]
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+ E

1{kX = k, Ec
k,1 ∩ p ∈ M}Attn

(t)
p→Pk,1

·
∑

a ̸=1,n

z21za

(
Attn

(t)
p→Pk,a

)2
≤ O(

α
(t)
p→vk,1

P
1−κs

2 +0.001
) + P(M ∈ Ek,1) ·

(
O(1) ·O

( 1

P
1−κs

2 +0.001

))
+O(1) · P(M ∈ Ec

k,1)

≤ O
( α

(t)
p→vk,1

P
1−κs

2 +0.001

)
+O

( 1

P (1−κs)+0.002

)
.

Lemma F.12 still holds, and thus

|α(t)
p→vk,1

| ≤ O
(α(t)

p→vk,n

P 0.002

)
.

Since |Φ(T̃1+1)
p→vk,1 − Φ

(T̃ )
p→vk,1 | ≥ Ω (log(P )), we have

Φ(T̃1+1)
p→vk,n

≥ |Φ(T̃1+1)
p→vk,1

− Φ(T̃ )
p→vk,1

| · Ω(P 0.002) + Φ(T̃ )
p→vk,n

≫ Ω(P 0.002 log(P )),

which contradicts the assumption that Φ(T̃1+1)
p→vk,n <

c∗1(1−κs) log(P )
U .

F.3 PHASE II, STAGE 1

For n > 1, we define stage 1 of phase II as all iterations T̃1 + 1 ≤ t ≤ T2, where

T2 ≜ max

{
t : Φ(t)

p→vk,n
≤ (1− κs)

L
log(P )

}
.

We state the following induction hypotheses, which will hold throughout this stage:

Induction Hypothesis F.3. For each T̃1 + 1 ≤ t ≤ T2, q ∈ P \ {p}, the following holds:

a. Φ
(t)
p→vk,n is monotonically increasing, and Φ

(t)
p→vk,n ∈

[
c∗1(1−κs)

U log(P ), (1−κs)
L log(P )

]
;

b. Φ
(t)
p→vk,1 is monotonically decreasing and

Φ(t)
p→vk,1

∈
[
− 1

L

(
∆

2
+ 0.01

)
log(P )− o(1),− 1

U

(
∆

2
− 0.01

)
log(P )

]
;

c. |Φ(t)
p→vk,m | = O

(Φ(t)
p→vk,n

−Φ(t)
p→vk,1

P 1−κs

)
for m ̸= 1, n;

d. Υ
(t)
k,p→q = O

(Φ(t)
p→vk,n

Cn

)
for ak,q = n, |Υ(t)

k,p→p| = O
(Φ(t)

p→vk,n
−Φ(t)

p→vk,1

P

)
;

e. |Υ(t)
k,p→q| = O

( |Φ(t)
p→vk,1

|
C1

)
+O

(Φ(t)
p→vk,n

−Φ(t)
p→vk,1

P

)
for ak,q = 1.;

f. |Υ(t)
k,p→q| = O

(Φ(t)
p→vk,n

−Φ(t)
p→vk,1

P

)
for ak,q ̸= 1, n.

F.3.1 PROPERTY OF ATTENTION SCORES

We first single out several properties of attention scores that will be used for the proof of Induction
Hypothesis F.3.

Lemma F.17. if Induction Hypothesis E.1 and Induction Hypothesis F.3 hold at iteration T̃1 + 1 ≤
t ≤ T2, then the following holds

1. if M ∈ Ek,n, Attn
(t)
p→Pk,n

≥ Ω
(

1

P (1−
c∗1L

U
)(1−κs)

)
. Moreover, if Attn

(t)
p→Pk,n

does not

reach the constant level, 1 − Attn
(t)
p→Pk,n

= Ω(1); otherwise, 1 − Attn
(t)
p→Pk,n

=

Ω
(

1

P (U
L

−1)(1−κs)

)
.
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2. Attn
(t)
p→Pk,1

= O
( 1−Attn

(t)
p→Pk,n

P (1−κc)+
L
U

(∆
2

−0.01)

)
; if M ∈ Ek,1, we have Attn

(t)
p→Pk,1

=

Ω
(

1

P (1−κc)+
U
L

(∆
2

+0.01)

)
;

3. for q ∈ M∩ (Pk,n ∪ Pk,1), attn
(t)
p→q = O

( 1−Attn
(t)
p→Pk,n

P

)
Lemma F.18. if Induction Hypothesis E.1 and Induction Hypothesis F.3 hold at iteration T̃1 + 1 ≤
t ≤ T2, then for m ̸= n, the following holds:

1. for any q ∈ Pk,m, attn(t)
p→q ≤ O

( 1−Attn
(t)
p→Pk,n

P

)
.

2. Moreover, Attn
(t)
p→Pk,n

≤ O
( 1−Attn

(t)
p→Pk,1

−Attn
(t)
p→Pk,n

N

)
.

F.3.2 BOUNDING THE GRADIENT UPDATES OF FP CORRELATIONS

Lemma F.19. if Induction Hypothesis E.1 and Induction Hypothesis F.3 hold at iteration T̃1 + 1 ≤
t ≤ T2, then α

(t)
p→vk,n ≥ 0 and satisfies:

α(t)
p→vk,n

≥ min

{
Ω(

1

P (1− c∗1L

U )(1−κs)
),Ω

(
1

P 2(U
L−1)(1−κs)

)}
.

Proof. By Lemma C.2, we have

α(t)
p→vk,n

= E

1{kX = k,p ∈ M}Attn
(t)
p→Pk,n

·

z3n

(
1−Attn

(t)
p→Pk,n

)2
+
∑
m ̸=n

z2mzn

(
Attn

(t)
p→Pk,m

)2
= E

1{kX = k, Ek,n ∩ p ∈ M}Attn
(t)
p→Pk,n

·

z3n

(
1−Attn

(t)
p→Pk,n

)2
+
∑
m̸=n

z2mzn

(
Attn

(t)
p→Pk,m

)2
+ E

1{kX = k, Ec
k,n ∩ p ∈ M}Attn

(t)
p→Pk,n

·

z3n

(
1−Attn

(t)
p→Pk,n

)2
+
∑
m̸=n

z2mzn

(
Attn

(t)
p→Pk,m

)2
≳P(M ∈ Ek,n)·

E

1{kX = k,p ∈ M}Attn
(t)
p→Pk,n

·

z3n

(
1−Attn

(t)
p→Pk,n

)2
+
∑
m̸=n

z2mzn

(
Attn

(t)
p→Pk,m

)2∣∣∣Ek,n


+O(1) · P(M ∈ Ec
k,n)

≳ min

{
Ω

(
1

P (1− c∗1L

U )(1−κs)

)
,Ω

(
1

P 2(U
L−1)(1−κs)

)}

where the last inequality invokes Lemma F.17 by observing that for M ∈ Ek,n,

Attn
(t)
p→Pk,n

(1−Attn
(t)
p→Pk,n

)2 ≥ min

{
Ω

(
1

P (1− c∗1L

U )(1−κs)

)
· Ω(1),Ω(1) · Ω

(
1

P 2×(U
L−1)(1−κs)

)}
.

Lemma F.20. For n > 1, if Induction Hypothesis E.1 and Induction Hypothesis F.3 hold at iteration
T̃1 + 1 ≤ t ≤ T2, then α

(t)
p→vk,1 < 0 and satisfies

|α(t)
p→vk,m

| ≥ min

{
Ω

(
1

P (1− c∗1L

U )(1−κs)

)
,Ω

(
1

P (U
L−1)(1−κs)

)}
· Ω
( 1

P (1−κc)+
L
U (∆

2 −0.01)

)
,
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|α(t)
p→vk,m

| ≤ max
{
O
( α

(t)
p→vk,n

P (1−κc)+
L
U (∆/2−0.01)

)
, O
( α

(t)
p→vk,n

P 2(1−κc)+
L
U (∆−0.02)−(1− c∗1L

U )(1−κs)

)}
.

Proof. Following equation F.1, we have

− z1z
2
n

(
1−Attn

(t)
p→Pk,n

)
Attn

(t)
p→Pk,n

− z31

(
1−Attn

(t)
p→Pk,1

)
Attn

(t)
p→Pk,1

+
∑

a̸=1,n

z2az1

(
Attn

(t)
p→Pk,a

)2
≤ −z1(1−Attn

(t)
p→Pk,n

−Attn
(t)
p→Pk,1

)

(
z2nAttn

(t)
p→Pk,n

+ z21Attn
(t)
p→Pk,1

− max
a ̸=1,n

z2aAttn
(t)
p→Pk,a

)
.

Therefore, by Lemma C.1, we obtain

α(t)
p→vk,1

≤ E
[
1{kX = k, Ek,1 ∩ p ∈ M}Attn

(t)
p→Pk,1

·(
−z1(1−Attn

(t)
p→Pk,n

−Attn
(t)
p→Pk,1

)

(
z2nAttn

(t)
p→Pk,n

+ z21Attn
(t)
p→Pk,1

− max
a̸=1,n

z2aAttn
(t)
p→Pk,a

))
]

+ E

1{kX = k, Ec
k,1 ∩ p ∈ M}Attn

(t)
p→Pk,1

·
∑

a ̸=1,n

z21za

(
Attn

(t)
p→Pk,a

)2
≤ −min

{
Ω

(
1

P (1− c∗1L

U )(1−κs)

)
,Ω

(
1

P (U
L−1)(1−κs)

)}
· Ω
( 1

P (1−κc)+
L
U (∆

2 −0.01)

)
where the second inequality invokes Lemma F.17 and equation F.6b. Moreover,

|α(t)
p→vk,1

| ≲E
[
1{kX = k, Ek,1 ∩ Ek,n ∩ p ∈ M}Attn

(t)
p→Pk,1

·(
z1z

2
n

(
1−Attn

(t)
p→Pk,n

)
Attn

(t)
p→Pk,n

+ z31

(
1−Attn

(t)
p→Pk,1

)
Attn

(t)
p→Pk,1

)
]

= E
[
1{kX = k, Ek,1 ∩ Ek,n ∩ p ∈ M}z1z2nAttn

(t)
p→Pk,1

·
(
1−Attn

(t)
p→Pk,n

)
Attn

(t)
p→Pk,n

]
+ E

[
1{kX = k, Ek,1 ∩ Ek,n ∩ p ∈ M}z31(Attn

(t)
p→Pk,1

)2 ·
(
1−Attn

(t)
p→Pk,1

)]
≤ max

{
O

(
α
(t)
p→vk,n

P (1−κc)+
L
U (∆

2 −0.01)

)
, O

(
α
(t)
p→vk,n

P 2(1−κc)+
2L
U (∆

2 −0.01)−(1− c∗1L

U )(1−κs)

)}
where the second inequality invokes Lemma F.17.

Lemma F.21. For n > 1, if Induction Hypothesis E.1 and Induction Hypothesis F.3 hold at iteration
T̃1 + 1 ≤ t ≤ T2 for any m > 1 with m ̸= n, the following holds

|α(t)
p→vk,m

| ≤ O
(α(t)

p→vk,n − α
(t)
p→vk,1

P 1−κs

)
.

The proof is similar to Lemma F.5, and thus omitted here.

F.3.3 BOUNDING THE GRADIENT UPDATES OF POSITIONAL CORRELATIONS

We then summarize the properties for gradient updates of positional correlations, which utilizes the
identical calculations as in Section F.1.3.
Lemma F.22. For n > 1, if Induction Hypothesis E.1 and Induction Hypothesis F.3 hold at iteration
T̃1 + 1 ≤ t ≤ T2, then

a. if ak,q = n and q ̸= p, β
(t)
k,p→q ≥ 0; β

(t)
k,p→q = Θ(

α(t)
p→vk,n

Cn
) and |β(t)

n | =

O
(α(t)

p→vk,n
−α(t)

p→vk,1

P

)
.

b. if ak,q = 1, |β(t)
k,p→q| = O

(α(t)
p→vk,n

−α(t)
p→vk,1

P

)
+O

( |α(t)
p→vk,1

|
C1

)
.

c. if ak,q = m and m ̸= 1, n, |β(t)
k,p→q| = O

(α(t)
p→vk,n

−α(t)
p→vk,1

P

)
.
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F.3.4 END OF PHASE II, STAGE 1

Lemma F.23. Induction Hypothesis F.3 holds for all T̃1 + 1 ≤ t ≤ T2, and at iteration t = T2 + 1,
we have

a. Φ
(t)
p→vk,n > (1−κs)

L log(P );

b. Attn
(t)
p→Pk,n

= Ω(1) if M ∈ Ek,n.

Proof. By comparing Lemma F.19 and Lemma F.20-F.23, we have α(t)
p→vk,n ≫ |α(t)

p→vk,m |, |β(t)
k,p→q|.

Then the existence of T2 = T̃1 +O
(

log(P )PΛ

η

)
directly follows from Lemma F.19, where

Λ = max
{
(1− c∗1L

U
), 2(

U

L
− 1)

}
· (1− κs).

The second statement can be directly verified by noticing that Φ(t)
p→vk,n > (1−κs)

L log(P ) while all
other attention correlations are sufficiently small.

F.4 PHASE II, STAGE 2

In this final stage, we establish that these structures indeed represent the solutions toward which the
algorithm converges.

Given any 0 < ϵ < 1, for n > 1, define

T ϵ
2 ≜ max

{
t > T2 : Φ(t)

p→vk,n
≤ log

(
c5

((
3

ϵ

) 1
2

− 1

)
N

)}
. (F.7)

where c5 is some largely enough constant.

We state the following induction hypotheses, which will hold throughout this stage:

Induction Hypothesis F.4. For n > 1, suppose polylog(P ) ≫ log( 1ϵ ), for each T2 + 1 ≤ t ≤ T ϵ
2 ,

q ∈ P \ {p}, the following holds:

a. Φ
(t)
p→vk,n is monotonically increasing, and Φ

(t)
p→vk,n ∈ [ (1−κs)

L log(P ), O(log(P/ϵ))];

b. Φ
(t)
p→vk,1 is monotonically decreasing and Φ

(t)
p→vk,1 ∈

[
− 1

L

(
∆
2 + 0.01

)
log(P ) −

o(1),− 1
U

(
∆
2 − 0.01

)
log(P )

]
;

c. |Φ(t)
p→vk,m | = O

(Φ(t)
p→vk,n

−Φ(t)
p→vk,1

P 1−κs

)
for m ̸= 1, n;

d. Υ
(t)
k,p→q = O

(Φ(t)
p→vk,n

Cn

)
for ak,q = n, |Υ(t)

k,p→p| = O
(Φ(t)

p→vk,n
−Φ(t)

p→vk,1

P

)
;

e. |Υ(t)
k,p→q| = O

( |Φ(t)
p→vk,1

|
C1

)
+O

(Φ(t)
p→vk,n

−Φ(t)
p→vk,1

P

)
for ak,q = 1.;

f. |Υ(t)
k,p→q| = O

(Φ(t)
p→vk,n

−Φ(t)
p→vk,1

P

)
for ak,q ̸= 1, n.

F.4.1 PROPERTY OF ATTENTION SCORES

We first single out several properties of attention scores that will be used for the proof of Induction
Hypothesis F.4.

Lemma F.24. if Induction Hypothesis E.1 and Induction Hypothesis F.4 hold at iteration Tn,2 < t ≤
T ϵ
n,2, then the following holds
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1. if M ∈ Ek,n, Attn
(t)
p→Pk,n

= Ω(1) and (1−Attn
(t)
p→Pk,n

)2 ≥ O(ϵ).

2. Moreover, Attn
(t)
p→Pk,1

= O
( 1−Attn

(t)
p→Pk,n

P (1−κc)+
L
U

(∆
2

−0.01)

)
; if M ∈ Ek,1, we have Attn

(t)
p→Pk,1

=

Ω
( 1−Attn

(t)
p→Pk,n

P (1−κc)+
U
L

(∆
2

+0.01)

)
;

3. for q ∈ M∩ (Pk,n ∪ Pk,1), attn
(t)
p→q = O

( 1−Attn
(t)
p→Pk,n

P

)
.

Lemma F.25. if Induction Hypothesis E.1 and Induction Hypothesis F.4 hold at iteration Tn,2 < t ≤
T ϵ
n,2,then for m ̸= n, the following holds:

1. for any q ∈ Pk,m, attn(t)
p→q ≤ O

( 1−Attn
(t)
p→Pk,n

P

)
.

2. Attn
(t)
p→Pk,n

≤ O
( 1−Attn

(t)
p→Pk,n

N

)
, and if M ∈ Ek,m, Attn

(t)
p→Pk,n

=

Θ
( 1−Attn

(t)
p→Pk,n

N

)
.

F.4.2 BOUNDING THE GRADIENT UPDATES OF FP CORRELATIONS

Lemma F.26. For n > 1, if Induction Hypothesis E.1 and Induction Hypothesis F.4 hold at iteration
T2 + 1 ≤ t ≤ T ϵ

2 , then α
(t)
p→vk,n ≥ 0 and satisfies:

α(t)
p→vk,n

≥ Ω(ϵ).

Proof. By Lemma C.2, we have

α(t)
p→vk,n

= E

1{kX = k,p ∈ M}Attn
(t)
p→Pk,n

·

z3n

(
1−Attn

(t)
p→Pk,n

)2
+
∑
m ̸=n

z2mzn

(
Attn

(t)
p→Pk,m

)2
= E

1{kX = k, Ek,n ∩ p ∈ M}Attn
(t)
p→Pk,n

·

z3n

(
1−Attn

(t)
p→Pk,n

)2
+
∑
m̸=n

z2mzn

(
Attn

(t)
p→Pk,m

)2
+ E

1{kX = k, Ec
k,n ∩ p ∈ M}Attn

(t)
p→Pk,n

·

z3n

(
1−Attn

(t)
p→Pk,n

)2
+
∑
m ̸=n

z2mzn

(
Attn

(t)
p→Pk,m

)2
≳P(M ∈ Ek,n)·

E

1{kX = k,p ∈ M}Attn
(t)
p→Pk,n

·

z3n

(
1−Attn

(t)
p→Pk,n

)2
+
∑
m̸=n

z2mzn

(
Attn

(t)
p→Pk,m

)2∣∣∣Ek,n


+O(1) · P(M ∈ Ec
k,n)

≳ Ω(ϵ)

where the last inequality invokes Lemma F.24, Lemma D.6 and the fact that

ϵ ≥ exp(−polylog(K)) ≫ exp (−cn,1Cn) .

Lemma F.27. For n > 1, if Induction Hypothesis E.1 and Induction Hypothesis F.4 hold at iteration
Tn,3 < t ≤ T ϵ

n,4, then α
(t)
p→vk,1 < 0 and satisfies

|α(t)
p→vk,m

| ≤ max

{
O
( α

(t)
p→vk,n

P (1−κc)+
L
U (∆/2−0.01)

)
, O

(
α
(t)
p→vk,n

P 2(1−κc)+
L
U (∆−0.02)−(1− c∗1L

U )(1−κs)

)}
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The proof follows the similar arguments Lemma F.20 by noticing that ϵ ≫ P(M ∈ Ec
k,m) for any

m ̸= n.
Lemma F.28. For n > 1, if Induction Hypothesis E.1 and Induction Hypothesis F.4 hold at iteration
T2 < t ≤ T ϵ

2 , then for any m > 1 with m ̸= n, the following holds

−O(
α
(t)
p→vk,n

P 1−κs
) ≤ α(t)

p→vk,m
≤ 0

Proof. We first note that

− z1z
2
n

(
1−Attn

(t)
p→Pk,n

)
Attn

(t)
p→Pk,n

− z3m

(
1−Attn

(t)
p→Pk,m

)
Attn

(t)
p→Pk,1

+
∑

a̸=1,n

z2azm

(
Attn

(t)
p→Pk,a

)2
≤ zm

(
max
a ̸=m,n

z2aAttn
(t)
p→Pk,a

− z2nAttn
(t)
p→Pk,n

− z2mAttn
(t)
p→Pk,m

)(
1−Attn

(t)
p→Pk,n

−Attn
(t)
p→Pk,m

)
≲ −Ω(1−Attn

(t)
p→Pk,n

)

since when M ∈ Ek,n, we have Attn
(t)
p→Pk,n

= Ω(1) ≫ Attn
(t)
p→Pk,a

. Thus, we have

0 ≥ α(t)
p→vk,m

≳ −E
[
1{kX = k, Ek,n ∩ p ∈ M}Attn

(t)
p→Pk,m

· Ω(1−Attn
(t)
p→Pk,n

)
]

≥ −O
(α(t)

p→vk,n

P 1−κs

)
.

F.4.3 BOUNDING THE GRADIENT UPDATES OF POSITIONAL CORRELATIONS

We then summarize the properties for gradient updates of positional correlations, which utilizes the
identical calculations as in Section F.1.3.
Lemma F.29. For n > 1, if Induction Hypothesis E.1 and Induction Hypothesis F.4 hold at iteration
T2 + 1 ≤ t ≤ T ϵ

2 , then

a. if ak,q = n and q ̸= p, β
(t)
k,p→q ≥ 0; β

(t)
k,p→q = Θ

(α(t)
p→vk,n

Cn

)
and |β(t)

n | =

O
(α(t)

p→vk,n
−α(t)

p→vk,1

P

)
.

b. if ak,q = 1, |β(t)
k,p→q| = O

(α(t)
p→vk,n

−α(t)
p→vk,1

P

)
+O

( |α(t)
p→vk,1

|
C1

)
.

c. if ak,q = m and m ̸= 1, n, |β(t)
k,p→q| = O

(α(t)
p→vk,n

−α(t)
p→vk,1

P

)
.

F.4.4 END OF PHASE II, STAGE 2

Lemma F.30. For n > 1, and 0 < ϵ < 1, suppose polylog(P ) ≫ log( 1ϵ ). Then Induction

Hypothesis F.4 holds for all T2 < t ≤ T ϵ
2 = T2 + O

(
log(Pϵ−1)

ηϵ

)
, and at iteration t = T ϵ

2 + 1, we
have

1. L̃k,p(Q
T ϵ
2+1) < ϵ

2K ;

2. If M ∈ Ek,n , we have (1−Attn
(T ϵ

2+1)
p→Pk,n

)2 ≤ O(ϵ).

Proof. The existence of T ϵ
2,k = T2,k +O( log(Pϵ−1)

ηϵ ) directly follows from Lemma F.26. We further
derive

L̃k,p(Q
T ϵ
2+1) =
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1

2
E

1{kX = k,p ∈ M∩M ∈ Ek,n}

z2n
(
1−Attnp→Pk,n

)2
+
∑
m̸=n

z2m (Attnn,m)
2


≤ 1

2K
· γ · U2 · (1 + o(1)) ·O(ϵ)

≤ ϵ

2K

where the first inequality is due to direct calculations by the definition of T ϵ
2 , and the second inequality

can be obtained by setting cn,2 in equation F.7 sufficiently large.

G ANALYSIS FOR LOCAL AREAS WITH NEGATIVE INFORMATION GAP

In this section, we focus on a specific patch p ∈ P with the k-th cluster for k ∈ [K], and present the
analysis for the case that Xp is located in the local area for the k-th cluster, i.e. ak,p > 1. Throughout
this section, we denote ak,p = n for simplicity. When ∆ ≤ −Ω(1), we can show that the gap
of attention correlation changing rate for the positive case does not exist anymore, and conversely
α
(t)
p→vk,n ≫ α

(t)
p→vk,1 from the beginning. We can reuse most of the gradient calculations in the

previous section and only sketch them in this section.

Stage 1: we define stage 1 as all iterations 0 ≤ t ≤ Tneg,1, where

Tneg,1 ≜ max

{
t : Φ(t)

p→vk,n
≤ (1− κs)

L
log(P )

}
.

We state the following induction hypothesis, which will hold throughout this stage:

Induction Hypothesis G.1. For each 0 ≤ t ≤ Tneg,1, q ∈ P \ {p}, the following holds:

a. Φ
(t)
p→vk,n is monotonically increasing, and Φ

(t)
p→vk,n ∈

[
0, (1−κs)

L log(P )
]
;

b. Φ
(t)
p→vk,1 is monotonically decreasing and Φ

(t)
p→vk,1 ∈

[
−O

(Φ(t)
p→vk,n

P−∆

)
, 0

]
;

c. |Φ(t)
p→vk,m | = O

(Φ(t)
p→vk,n

−Φ(t)
p→vk,1

P 1−κs

)
for m ̸= 1, n;

d. Υ
(t)
k,p→q = O

(Φ(t)
p→vk,n

Cn

)
for ak,q = n, |Υ(t)

k,p→p| = O
(Φ(t)

p→vk,n
−Φ(t)

p→vk,1

P

)
;

e. |Υ(t)
k,p→q| = O

( |Φ(t)
p→vk,1

|
C1

)
+O

(Φ(t)
p→vk,n

−Φ(t)
p→vk,1

P

)
for ak,q = 1;

f. |Υ(t)
k,p→q| = O

(Φ(t)
p→vk,n

−Φ(t)
p→vk,1

P

)
for ak,q ̸= 1, n.

Through similar calculations for phase II, stage 1 in Appendix F.3, we obtain the following lemmas
to control the gradient updates for attention correlations.

Lemma G.1. If Induction Hypothesis E.2 and Induction Hypothesis G.1 hold for 0 ≤ t ≤ Tneg,1,
then we have

α(t)
p→vk,n

≥ min

{
Ω
( 1

P (1−κs)

)
,Ω

(
1

P 2(U
L−1)(1−κs)

)}
, (G.1a)

0 ≥ α(t)
p→vk,1

≥ −O
(α(t)

p→vk,n

P−∆

)
, (G.1b)

|α(t)
p→vk,m

| ≤ O
(α(t)

p→vk,n − α
(t)
p→vk,1

P 1−κs

)
for all m ̸= n, 1 (G.1c)
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β
(t)
k,p→q = Θ

(α(t)
p→vk,n

Cn

)
for ak,q = n,q ̸= p (G.1d)

|β(t)
k,p→q| = O

(α(t)
p→vk,n

P

)
+O

( |α(t)
p→vk,1 |
C1

)
for ak,q = 1, (G.1e)

|β(t)
k,p→p|, |β

(t)
k,p→q| = O

(α(t)
p→vk,n − α

(t)
p→vk,1

P

)
for all ak,p ̸= n, 1. (G.1f)

Here ∆ < 0 implies |α(t)
p→vk,1 | ≪ α

(t)
p→vk,n . Induction Hypothesis G.1 can be directly proved by

Lemma G.1 and we have

Tneg,1 = O
(Pmax{1,2(U

L−1)}·(1−κs) log(P )

η

)
. (G.2)

Stage 2: Given any 0 < ϵ < 1, define

T ϵ
neg,1 ≜ max

{
t > T1 : Φ(t)

p→vk,n
≤ log

(
c6

((
3

ϵ

) 1
2

− 1

)
P 1−κs

)}
. (G.3)

where c6 is some largely enough constant. We then state the following induction hypotheses, which
will hold throughout this stage:

Induction Hypothesis G.2. For n > 1, suppose polylog(P ) ≫ log( 1ϵ ), for q ∈ P \ {p}, and each
Tneg,1 < t ≤ T ϵ

neg,1, the following holds:

a. Φ
(t)
p→vk,n is monotonically increasing, and Φ

(t)
p→vk,n ∈

[
(1−κs)

L log(P ), O(log(P/ϵ))
]
;

b. Φ
(t)
p→vk,1 is monotonically decreasing and Φ

(t)
p→vk,1 ∈

[
−O

(Φ(t)
p→vk,n

P−∆

)
, 0

]
;

c. |Φ(t)
p→vk,m | = O

(Φ(t)
p→vk,n

−Φ(t)
p→vk,1

P 1−κs

)
for m ̸= 1, n;

d. Υ
(t)
k,p→q = O

(Φ(t)
p→vk,n

Cn

)
for ak,q = n, |Υ(t)

k,p→p| = O
(Φ(t)

p→vk,n
−Φ(t)

p→vk,1

P

)
;

e. |Υ(t)
k,p→q| = O

( |Φ(t)
p→vk,1

|
C1

)
+O

(Φ(t)
p→vk,n

−Φ(t)
p→vk,1

P

)
for ak,q = 1;

f. |Υ(t)
k,p→q| = O

(Φ(t)
p→vk,n

−Φ(t)
p→vk,1

P

)
for ak,q ̸= 1, n.

Lemma G.2. If Induction Hypothesis E.2 and Induction Hypothesis G.2 hold for Tneg,1 < t ≤ T ϵ
neg,1,

then we have

α(t)
p→vk,n

≥ Ω(ϵ), (G.4a)

0 ≥ α(t)
p→vk,1

≥ −O
(α(t)

p→vk,n

P−∆

)
, (G.4b)

|α(t)
p→vk,m

| ≤ O
(α(t)

p→vk,n − α
(t)
p→vk,1

P 1−κs

)
for all m ̸= n, 1 (G.4c)

β
(t)
k,p→q = Θ(

α
(t)
p→vk,n

Cn
) for ak,q = n,q ̸= p (G.4d)

|β(t)
k,p→q| = O

(α(t)
p→vk,n

P

)
+O

( |α(t)
p→vk,1 |
C1

)
for ak,q = 1, (G.4e)

|β(t)
k,p→p|, |β

(t)
k,p→q| = O

(α(t)
p→vk,n − α

(t)
p→vk,1

P

)
for all ak,p ̸= n, 1. (G.4f)
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Induction Hypothesis G.2 can be directly proved by Lemma G.2. Furthermore, at the end of this
stage, we will have:

Lemma G.3. Suppose polylog(P ) ≫ log( 1ϵ ), then Induction Hypothesis G.2 holds for all Tneg,1 <

t ≤ T ϵ
neg,1 = Tneg,1 +O

(
log(Pϵ−1)

ηϵ

)
, and at iteration t = T ϵ

neg,1 + 1, we have

1. L̃k,p(Q
T ϵ
neg,1+1) < ϵ

2K ;

2. If M ∈ Ek,n , we have
(
1−Attn

(T ϵ
neg,1+1)

p→Pk,n

)2
≤ O(ϵ).

H ANALYSIS FOR THE GLOBAL AREA

When ap,k = 1, i.e. the patch lies in the global area, the analysis is much simpler and does not
depend on the value of ∆. We can reuse most of the gradient calculations in Appendix F and only
sketch them in this section.

For Xp in the global region Pk,1, since the overall attention Attn
(0)
p→Pk,1

to the target feature already

reaches Ω
(

C1

P

)
= Ω

(
1

P 1−κc

)
due to the large number of unmasked patches featuring vk,1 when

M ∈ Ek,1, which is significantly larger than Attn
(0)
p→Pk,m

= Θ
(

1
P 1−κs

)
for all other m > 1. This

results in large α
(t)
p→vk,1 initially, and thus the training directly enters phase II.

Stage 1: we define stage 1 as all iterations 0 ≤ t ≤ Tc,1, where

Tc,1 ≜ max

{
t : Φ(t)

p→vk,1
≤ (1− κc)

L
log(P )

}
.

We state the following induction hypotheses, which will hold throughout this stage:

Induction Hypothesis H.1. For each 0 ≤ t ≤ Tc,1, q ∈ P \ {p}, the following holds:

a. Φ
(t)
p→vk,1 is monotonically increasing, and Φ

(t)
p→vk,1 ∈

[
0, (1−κc)

L log(P )
]
;

b. Φp→vk,m
is monotonically decreasing for m > 1 and Φp→vk,m

∈
[
−O

( log(P )
N

)
, 0
]
;

c. Υ
(t)
k,p→q = O

(Φ(t)
p→vk,1

C1

)
for ak,q = 1, |Υ(t)

k,p→p| = O
(Φ(t)

p→vk,1

P

)
;

d. |Υ(t)
k,p→q| = O

(Φ(t)
p→vk,1

P

)
for ak,q ̸= 1.

Through similar calculations for phase II, stage 1 in Appendix F.3, we obtain the following lemmas
to control the gradient updates for attention correlations.

Lemma H.1. If Induction Hypothesis E.1 (or Induction Hypothesis E.2) and Induction Hypothesis H.1
hold for 0 ≤ t ≤ Tc,1, then we have

α(t)
p→vk,1

≥ min

{
Ω
( 1

P (1−κc)

)
,Ω

(
1

P 2(U
L−1)(1−κc)

)}
, (H.1a)

|α(t)
p→vk,m

| ≤ O
(α(t)

p→vk,1

P 1−κs

)
for all m ̸= 1, (H.1b)

β
(t)
k,p→q = Θ

(α(t)
p→vk,1

C1

)
, for ak,q = 1,q ̸= p, (H.1c)

|β(t)
k,p→p|, |β

(t)
k,p→q| = O

(α(t)
p→vk,1

P

)
for all ak,q > 1. (H.1d)
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Induction Hypothesis H.1 can be directly proved by Lemma H.1 and we have

Tc,1 = O

(
Pmax{1,2(U

L−1)}·(1−κc) log(P )

η

)
. (H.2)

Stage 2: Given any 0 < ϵ < 1, define

T ϵ
c,1 ≜ max

{
t > Tc,1 : Φ(t)

p→vk,1
≤ log

(
c7

((
3

ϵ

) 1
2

− 1

)
P 1−κc

)}
. (H.3)

where c7 is some largely enough constant. We then state the following induction hypotheses, which
will hold throughout this stage:
Induction Hypothesis H.2. For n > 1, suppose polylog(P ) ≫ log( 1ϵ ), q ∈ P \ {p}, for each
Tc,1 + 1 ≤ t ≤ T ϵ

c,1, the following holds:

a. Φ
(t)
p→vk,1 is monotonically increasing, and Φ

(t)
p→vk,1 ∈

[
(1−κc)

L log(P ), O(log(P/ϵ))
]
;

b. Φp→vk,m
is monotonically decreasing for n > 1 and Φp→vk,m

∈
[
−O

( log(P )
N

)
, 0
]
;

c. Υ
(t)
k,p→q = O

(Φ(t)
p→vk,1

C1

)
for ak,q = 1, |Υ(t)

k,p→p| = O
(Φ(t)

p→vk,1

P

)
;

d. |Υ(t)
k,p→q| = O

(Φ(t)
p→vk,1

P

)
for ak,q ̸= 1.

We also have the following lemmas to control the gradient updates for attention correlations.
Lemma H.2. If Induction Hypothesis E.1 (or Induction Hypothesis E.2) and Induction Hypothesis H.1
hold for Tc,1 + 1 ≤ t ≤ T ϵ

c,1, then we have

α(t)
p→vk,1

≥ Ω (ϵ) , |α(t)
p→vk,m

| ≤ O
(α(t)

p→vk,1

P 1−κs

)
for all m ̸= 1 (H.4a)

β
(t)
k,p→q = Θ

(α(t)
p→vk,1

C1

)
, for ak,q = 1,q ̸= p (H.4b)

|β(t)
k,p→p|, |β

(t)
k,p→q| = O

(α(t)
p→vk,1

P

)
for all ak,q > 1. (H.4c)

Induction Hypothesis H.2 can be directly proved by Lemma H.2. Furthermore, at the end of this
stage, we will have:
Lemma H.3. Suppose polylog(P ) ≫ log( 1ϵ ), then Induction Hypothesis H.2 holds for all Tc,1 <

t ≤ T ϵ
c,1 = Tc,1 +O

(
log(Pϵ−1)

ηϵ

)
, and at iteration t = T ϵ

c,1 + 1, we have

1. L̃k,p(Q
T ϵ
c,1+1) < ϵ

2K ;

2. If M ∈ Ek,1 , we have
(
1−Attn

(T ϵ
c,1+1)

p→Pk,1

)2
≤ O(ϵ).

I PROOF OF MAIN THEOREMS FOR MAE

I.1 PROOF OF INDUCTION HYPOTHESES

We are now ready to show Induction Hypothesis E.1 (resp. Induction Hypothesis E.2) holds through
the learning process.
Theorem I.1 (Positive Information Gap). For sufficiently large P > 0, η ≪ log(P ), Ω(1) ≤ ∆ < 1,

Induction Hypothesis E.1 holds for all iterations t = 0, 1, · · · , T = O
(

epolylog(P )

η

)
.

Theorem I.2 (Negative Information Gap). For sufficiently large P > 0, η ≪ log(P ), −0.5 < ∆ ≤
−Ω(1), Induction Hypothesis E.2 holds for all iterations t = 0, 1, · · · , T = O

(
epolylog(P )

η

)
.
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Proof of Theorem I.1. It is easy to verify Induction Hypothesis E.1 holds at iteration t = 0 due to
the initialization Q(0) = 0d×d. At iteration t > 0:

• Induction Hypothesis E.1a. can be proven by Induction Hypothesis F.1-F.4 a and Induction
Hypothesis H.1-H.2 a, combining with the fact that log(1/ϵ) ≪ polylog(P ).

• Induction Hypothesis E.1b. can be obtained by invoking Induction Hypothesis F.1-F.4 b.
• Induction Hypothesis E.1c. can be obtained by invoking Induction Hypothesis F.1-F.4 c and

Induction Hypothesis H.1-H.2 b.

• To prove Induction Hypothesis E.1d., for q ̸= p, Υ(t)
p→q =

∑K
k=1 Υ

(t)
k,p→q. By item d-f

in Induction Hypothesis F.1-F.4 and item c-d in Induction Hypothesis H.1-H.2, we can
conclude that no matter the relative areas q and p belong to for a specific cluster, for all
k ∈ [K], throughout the entire learning process, the following upper bound always holds:

Υ
(t)
k,p→q ≤ max

t∈[T ]
(|Φ(t)

p→vk,n
|+ |Φ(t)

p→vk,1
|)max

{
O
( 1

C1

)
, O
( 1

Cn

)
, O
( 1

P

)}
≤ Õ

( 1

Cn

)
.

Moreover, since K = O(polylog(P )), we then have Υ
(t)
p→q = Õ( 1

Cn
), which completes

the proof.

• The proof for Induction Hypothesis E.1d. is similar as before, by noticing that Υ(t)
k,p→p =

Õ( 1
P ) for each k ∈ [K], which is due to Induction Hypothesis F.1-F.4 d and Induction

Hypothesis H.1-H.2 c.

The proof of Theorem I.2 mirrors that of Theorem I.1, with the only difference being the substitution
of relevant sections with Induction Hypothesis E.2. For the sake of brevity, this part of the proof is
not reiterated here.

I.2 PROOF OF THEOREM 4.1 AND THEOREM 4.2 WITH POSITIVE INFORMATION GAP

Theorem I.3. Suppose Ω(1) ≤ ∆ ≤ 1. For any 0 < ϵ < 1, suppose polylog(P ) ≫ log( 1ϵ ). We
apply GD to train the loss function given in equation 2.8 with η ≪ poly(P ). Then for each p ∈ P ,
we have

1. The loss converges: after T ⋆ = O
(

log(P )Pmax{2(U
L

−1),1}(1−κs)

η + log(Pϵ−1)
ηϵ

)
iterations,

Lp(Q
(T⋆))− L∗

p ≤ ϵ, where L⋆
p is the global minimum of patch-level construction loss in

equation 4.2.

2. Attention score concentrates: given cluster k ∈ [K], if Xp is masked, then the one-layer
transformer nearly “pays all attention" to all unmasked patches in the same area Pk,ak,p

,

i.e.,
(
1−Attn

(T⋆)
p→Pk,ak,p

)2
≤ O(ϵ).

3. Local area learning feature attention correlation through two-phase: given k ∈ [K], if
ak,p > 1, then we have

(a) Φ
(t)
p→vk,1 first quickly decrease with all other Φ(t)

p→vk,m , Υ(t)
p→q not changing much;

(b) after some point, the increase of Φ(t)
p→vk,ak,p

takes dominance. Such Φ
(t)
p→vk,ak,p

will
keep growing until convergence with all other feature and positional attention correla-
tions nearly unchanged.

4. Global area learning feature attention correlation through one-phase: given k ∈ [K], if
ak,p = 1, throughout the training, the increase of Φ(t)

p→vk,1 dominates, whereas all A(t)
1,m

with m ̸= 1 and position attention correlations remain close to 0.

Proof. The first statement is obtained by letting T ⋆ = max{T ϵ
2 , T

ϵ
c,1} + 1 in Lemma F.30 and

Lemma H.3, combining wth Lemma D.9 and Lemma D.10, which lead to

Lp(Q
(T⋆))− L∗

p ≤ Lp(Q
(T⋆))− Llow

p
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≤ L̃p(Q
T⋆

) +O
(
exp

(
−
(
c3P

κc + 1
{
1 ̸∈ ∪k∈[K]{ak,p}

}
c4P

κs
)))

≤ K · ϵ

2K
+O

(
exp

(
−
(
c3P

κc + 1
{
1 ̸∈ ∪k∈[K]{ak,p}

}
c4P

κs
)))

< ϵ.

The second statement follows from Lemma F.30 and Lemma H.3. The third and fourth statements
directly follow from the learning process described in Appendix F and Appendix H when Induction
Hypothesis E.1 holds.

I.3 PROOF OF THEOREM 4.1 AND THEOREM 4.2 WITH NEGATIVE INFORMATION GAP

Theorem I.4. Suppose −0.5 ≤ ∆ ≤ Ω(1). For any 0 < ϵ < 1, suppose polylog(P ) ≫ log( 1ϵ ). We
apply GD to train the loss function given in equation 2.8 with η ≪ poly(P ). Then for each p ∈ P ,
we have

1. The loss converges: after T ⋆ = O
(

log(P )Pmax{2(U
L

−1),1}(1−κs)

η + log(Pϵ−1)
ηϵ

)
iterations,

Lp(Q
(T⋆))− L∗

p ≤ ϵ, where L⋆
p is the global minimum of patch-level construction loss in

equation 4.2.

2. Attention score concentrates: given cluster k ∈ [K], if Xp is masked, then the one-layer
transformer nearly “pays all attention" to all unmasked patches in the same area Pk,ak,p

,

i.e.,
(
1−Attn

(T⋆)
p→Pk,ak,p

)2
≤ O(ϵ).

3. All areas learning feature attention correlation through one-phase: given k ∈ [K], through-
out the training, the increase of Φ(t)

p→vk,ak,p
dominates, whereas all Φ(t)

p→vk,m with m ̸= 1

and position attention correlations Υ(t)
p→q remain close to 0.

Proof. The first statement is obtained by letting T ⋆ = max{T ϵ
neg,1, T

ϵ
c,1} + 1 in Lemma G.3 and

Lemma H.3, combining wth Lemma D.9 and Lemma D.10, which lead to

Lp(Q
(T⋆))− L∗

p ≤ Lp(Q
(T⋆))− Llow

p

≤ L̃p(Q
T⋆

) +O
(
exp

(
−
(
c3P

κc + 1
{
1 ̸∈ ∪k∈[K]{ak,p}

}
c4P

κs
)))

≤ K · ϵ

2K
+O

(
exp

(
−
(
c3P

κc + 1
{
1 ̸∈ ∪k∈[K]{ak,p}

}
c4P

κs
)))

< ϵ.

The second statement follows from Lemma G.3 and Lemma H.3. The third and fourth statements
directly follow from the learning process described in Appendix G and Appendix H when Induction
Hypothesis E.2 holds.

J PROOF OF MAIN THEOREMS IN CONTRASTIVE LEARNING

Notations. Throughout this section, we abbreviate attnp→q(X;Q(t)) as attn
(t)
p→q(X). We

also write F cl as F and Lcl as L for simplicity. We abbreviate Attncp→Pk,m
(X;Q(t))

(attncp→q(X;Q(t))) as Attn
(t)
p→Pk,m

( attn(t)
p→q), when the context makes it clear. Furthermore,

we denote

ℓp(X,B) :=
eSimF (X+,X++)/τ∑
X∈B eSimF (X+,X)/τ

, ℓs(X,B) :=
eSimF (X+,X−,s)/τ∑
X∈B eSimF (X+,X)/τ

.

Theorem J.1 (Learning with contrastive objective). Suppose the information gap ∆ ∈
[−0.5,−Ω(1)]∪ [Ω(1), 1]. We train the ViTs in Def. 2.6 by GD to minimize (2.11) with η ≪ poly(P ),
σ2
0 = 1

d , τ = O( 1
log d ), after T ⋆ = O(poly(P ) logP

η ) iterations, we have
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1. Objective converges: Lcl(Q
(T⋆)) ≤ OPT + 1

poly(P ) , where OPT is the global minimum of the
contrastive objective in (2.11).

2. Attention concentration on global area : given X ∈ Dcl
k with k ∈ [K], for any p ∈ P , with high

probability, we have 1−Attnp→Pk,1
(X ′;Q(T⋆)) = o(1) for X ′ ∈ {X+, X++}.

3. All patches learn global FP correlation: given k ∈ [K], for any p ∈ P , t ∈ [0, T ⋆], Φ(t)
p→vk,1 ≫

Φ
(t)
p→vk,m with m > 1, and at the convergence, Φ(T⋆)

p→vk,1 = Θ(logP ),Φ
(T⋆)
p→vk,m = o(1).

In the following, we will sketch the proof of the above theorem. Indeed, the roadmap of the analysis
is similar to the masked reconstruction loss by using the induction argument, where the key difference
is the properties for the gradient of the contrastive objective.

J.1 PRELIMINARIES

In the following, we denote the contrastive loss without regularization as

L(Q) ≜ EX+,X++,N

[
−τ log

(
eSimFcl(X+,X++)/τ∑
X′∈B eSimF cl(X+,X′)/τ

)]
.

Lemma J.2 (feature gradient of contrastive loss). Given k ∈ [K], for p ∈ P , let α̃(t)
p→vk,m

:=
1
η

(
Φ

(t+1)
p→vk,m − Φ

(t)
p→vk,m

)
for m ∈ [Nk], then

α̃(t)
p→vk,m

= e⊤p
(
− ∂L

∂Q
(Q(t))

)
vk,m = α(t)

p→vk,m
− λΦ(t)

p→vk,m
,

where

α(t)
p→vk,m

= e⊤p
(
− ∂L

∂Q
(Q(t))

)
vk,m

=
1

P
E
[∑
q∈P

attn(t)
p→q(X

+)X+
q

⊤
(
F (X++;Q(t))−

∑
X′∈B

eSimF (X+,X′)/τ∑
X′∈B eSimF (X+,X′)/τ

F (X ′;Q(t))
)

·
[
X+

q −
∑
r

attn(t)
p→r(X

+)X+
r

]⊤
vk,m

]
.

Proof. Notice that

− ∂L
∂Q

= − ∂L
∂Q

+ λQ.

Then for − ∂L
∂Q , we begin with the chain rule and obtain

− ∂L
∂Q

= E
[

∂

∂Q

(
SimF (X

+, X++)− τ log
( ∑
X′∈B

eSimF (X+,X′)/τ
))]

= E
[
∂F (X+;Q)

∂Q

(
F (X++;Q)−

∑
X′∈B

eSimF (X+,X′)/τ∑
X′∈B eSimF (X+,X′)/τ

F (X ′;Q)
)]

=
1

P
E
[ ∑
p,q∈P

∂attnp→q(X
+)

∂Q
X+

q
⊤
(
F (X++;Q)−

∑
X′∈B

eSimF (X+,X′)/τ∑
X′∈B eSimF (X+,X′)/τ

F (X ′;Q)
)]

.

(J.1)

We focus on the gradient for each attention score:

∂attnp→q(X
+)

∂Q
=
∑
r

exp
(
e⊤pQ(X+

b +X+
q )
)(∑

r exp(e
⊤
pQXr)

)2 ep(X
+
q −X+

r )⊤
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= attnp→q

∑
r

attnp→rep(X
+
q −X+

r )⊤

= attnp→q(X
+)ep ·

[
X+

q −
∑
r

attnp→r(X
+)X+

r

]⊤
.

Substituting the above equation into equation J.1, we have

− ∂L
∂Q

=
1

P
E
[ ∑
p,q∈P

attnp→q(X
+)X+

q
⊤
(
F (X++;Q)−

∑
X′∈B

eSimF (X+,X′)/τ∑
X′∈B eSimF (X+,X′)/τ

F (X ′;Q)
)

· ep
[
X+

q −
∑
r

attnp→r(X
+)X+

r

]⊤]
.

Therefore,

α(t)
p→vk,m

= e⊤p (−
∂L
∂Q

)vk,m

=
1

P
E
[∑
q∈P

attnp→q(X
+)X+

q
⊤
(
F (X++;Q)−

∑
X′∈B

eSimF (X+,X′)/τ∑
X′∈B eSimF (X+,X′)/τ

F (X ′;Q)
)

·
[
X+

q −
∑
r

attnp→r(X
+)X+

r

]⊤
vk,m

]
.

We then present a high-probability event ensuring that the number of common unmasked patches in
each area between positive augmented data pairs is proportional to the total number of patches in that
area.
Lemma J.3 (masking overlap). Given a sample X ∼ Dcl, with propbability 1− e−Θ(Pκs ) over the
randomness of masking augmentation to obtain X+, X++, supposing X belongs to the k-th cluster,
it holds that ∑

p∈Pk,m

1
{
X+

p ̸= 0
}
1
{
X++

p ̸= 0
}
= Θ(Ck,m), ∀m ∈ [Nk]

We denote the event that the above inequalities hold as A1,com. Similarly, we have the following
event for X+ and X++ hols with high probability:

A1,+ :=

{ ∑
p∈Pk,m

1
{
X+

p ̸= 0
}
= Θ(Ck,m),∀m ∈ [Nk]

}

A1,++ :=

{ ∑
p∈Pk,m

1
{
X++

p ̸= 0
}
= Θ(Ck,m),∀m ∈ [Nk]

}
.

Proof. The proof is similar to the analysis of Lemma D.6 by using the concentration property of
hypergeometric distribution.

J.2 INITIAL STAGE: GLOBAL CORRELATIONS EMERGE

For the training process at the initial stage, we define the stage transition time T1 to be the iteration
when Φ

(t)
p→vk,1 ≥ (1− κc) log(P ) for all p ∈ P and k ∈ [K].

We state the following induction hypothesis, which will hold throughout this stage:

Induction Hypothesis J.1. For each 0 ≤ t ≤ T1 = O( log(P )P 3−2κc

η ), k ∈ [K], letting λ =
2

P 3−sκc log(P ) the following holds:

a. Φ
(t)
p→vk,1 is monotonically increasing, and Φ

(t)
p→vk,1 ∈

[
0, (1− κc) log(P )

]
;
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b. |Φ(t)
p→vk,m | ≤ O

(
max{Pκs−1, P 2(κs−κc) · Φ(t)

p→vk,1}
)

for m > 1.

Lemma J.4 (bounding the noise correlation). Let us define a noiseless version of the attention score
and the network output as

âttnp→q(X) :=
ee

⊤
p Q(Xq−ξq)∑

r∈P ee
⊤
p Q(Xr−ξr)

, for p,q ∈ P. (J.2)

F̂ (X;Q) :=
1

P

∑
p,q∈P

âttnp→q(X) ·Xq ∈ Rd. (J.3)

ℓ̂p(X,B) :=
eSimF̂ (X

+,X++)/τ∑
X∈B eSimF̂ (X+,X)/τ

, ℓ̂s(X,B) :=
eSimF̂ (X

+,X−,s)/τ∑
X∈B eSimF̂ (X+,X)/τ

.

Then supposing Induction Hypothesis J.1 holds for t ≤ T1, with high probability over the randomness
of X+, X++,N, then for X ∈ B, any p,q ∈ P , s ∈ [Nc], it holds that∣∣∣∣âttn(t)

p→q(X)− attn(t)
p→q(X)

∣∣∣∣ ≤ 1

poly(d)
;∥∥∥F̂ (t)(X;Q)− F (t)(X;Q)

∥∥∥ ≤ 1

poly(d)
;∣∣∣ℓ(t)p (X,B)− ℓ̂(t)p (X,B)

∣∣∣ , ∣∣∣ℓ(t)s (X,B)− ℓ̂(t)s (X,B)
∣∣∣ ≤ 1

poly(d)
.

We denote the event that the above inequalities hold as A2.

Proof. The result follows directly from the concentration of Gaussian random variables, the bound-
edness of the feature vectors and the boundedness of ∥epQ∥2 ≤ Φk→vk,m

due to the Induction
Hypothesis J.1 .

Lemma J.5 (attention score). Suppose the Induction Hypothesis J.1 holds for t ≤ T1, given
{X+, X++,N}, assuming X ∈ Dcl

k with k ∈ [K], then for m ∈ [Nk], p ∈ P , we have

1. for a ∈ {+,++}, if Xa ∈ A2,a, then

(a) 1−Attn
(t)
p→Pk,1

(Xa) ≥ Ω(1) and Attn
(t)
p→Pk,1

(Xa) ≥ Ω( 1
P 1−κc ) ;

(b) for m > 1, Attn
(t)
p→Pk,m

(Xa) = Θ(
1−Attn

(t)
p→Pk,1

(Xa)

P 1−κs );

2. for X ′ ∈ N, we have

(a) 1− Ãttn
(t)

p→Pk,1
(X ′) ≥ Ω(1) and Ãttn

(t)

p→Pk,1
(X ′) ≥ Ω( 1

P 1−κc );

(b) for m > 1, Ãttn
(t)

p→Pk,m
(X ′) = Θ(

1−Ãttn
(t)

p→Pk,1
(X′)

P 1−κs ).

The intuition behind this lemma is that, due to the zero initialization of Q, the attention scores are
nearly uniform. As a result, the area attention score Attnp→Pk,m

(X+) is proportional to the number
of unmasked patches in this area. If Induction Hypothesis J.1 holds, we can easily conclude that only
the area attention score for the global area will increase, while the relative relationships among the
local area attention scores will be preserved.
Lemma J.6 (logit score). Suppose the Induction Hypothesis J.1 holds for t ≤ T1, given
{X+, X++,N}, suppose X ∈ Dcl

k , we have

1− ℓ(t)q (X,B) ≥ Ω(1), ℓ(t)q (X,B) ≥ Ω(
1

Ns
), q ∈ B ∩ Dcl

k

ℓ(t)q (X,B) ≤ O(
1

Ns
), else.
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Lemma J.7 (feature gradient near initialization). Suppose the Induction Hypothesis J.1 holds for
t ≤ T0, then for t ≤ T1, given k ∈ [K], m ∈ [Nk], for p ∈ P ,

• For the global feature m = 1,

α(t)
p→vk,1

= Θ

(
1

P
E
[
z1(1− ℓp)Attnp→Pk,1

(X+)Attnp→Pk,1
(X++)

])

• For the local feature m > 1

α(t)
p→vk,m

= Θ

(
1

P
E
[
zm(1− ℓp)Attnp→Pk,m

(X+)Attnp→Pk,m
(X++)

])

+O

(
1

P
E
[
zm(1− ℓp)Attnp→Pk,m

(X+)Attnp→Pk,1
(X+)Attnp→Pk,1

(X++)

])

Proof.

α(t)
p→vk,m

=
1

P
E
[∑
q∈P

attnp→q(X
+)X+

q
⊤
(
(1− ℓp)F (X++;Q)−

Nc∑
s=1

ℓsF (X−,s;Q)
)

·
[
X+

q −
∑
r

attnp→r(X
+)X+

r

]⊤
vk,m(1A1

+ 1Ac
1
)

]
(a)
=

1

P
E
[∑
q∈P

âttnp→q(X
+)X+

q
⊤
(
(1− ℓ̂p)F̂ (X++;Q)−

Nc∑
s=1

ℓ̂sF̂ (X−,s;Q)
)

·
[
X+

q −
∑
r

âttnp→r(X
+)X+

r

]⊤
vk,m(1A1

+ 1Ac
1
)

]
+ Ξp,k,m,1

=
1

P
E
[ Nk∑

i=1

∑
q∈Pk,i∩U+

âttnp→q(X
+)(zivk,i)

⊤
(
(1− ℓ̂p)F̂ (X++;Q)−

Nc∑
s=1

ℓ̂sF̂ (X−,s;Q)
)

·
[
zivk,i −

Nk∑
j=1

∑
r∈Pk,j∩U+

âttnp→r(X
+)zjvk,j

]⊤
vk,m

]
(J1)

+
1

P
E
[ Nk∑

i=1

∑
q∈Pk,i∩U+

âttnp→q(X
+)(zivk,i)

⊤
(
(1− ℓ̂p)F̂ (X++;Q)−

Nc∑
s=1

ℓ̂sF̂ (X−,s;Q)
)

·
[
ξq −

∑
r∈P∩U+

âttnp→r(X
+)ξr

]⊤
vk,m

]
(J2)

+
1

P
E
[ ∑
q∈P∩U+

âttnp→q(X
+)ξ⊤q

(
(1− ℓ̂p)F̂ (X++;Q)−

Nc∑
s=1

ℓ̂sF̂ (X−,s;Q)
)

·
[
zivk,i −

Nk∑
j=1

∑
r∈Pk,j∩U+

âttnp→r(X
+)zjvk,j

]⊤
vk,m

]
(J3)

+
1

P
E
[ ∑
q∈P∩U+

âttnp→q(X
+)ξ⊤q

(
(1− ℓ̂p)F̂ (X++;Q)−

Nc∑
s=1

ℓ̂sF̂ (X−,s;Q)
)

·
[
ξq −

∑
r∈P∩U+

âttnp→r(X
+)ξr

]⊤
vk,m

]
(J4)

+ Ξp,k,m,1

57



3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2025

where (a) is bounded by Lemma J.4 with error up to Ξp,k,m,1 ≤ 1
poly(d) , U+ is the set of masked

patches for X+. We first look at the term J1, notice that ξq is the random Gaussian noise with zero
mean, and is independent of âttn and ℓ̂, we then have

J4 =
1

P 2
E
[ ∑
q∈Pk,m∩U+

âttnp→q(X
+)ξ⊤q

(
(1− ℓ̂p)

∑
p′∈P

∑
r∈Pk,m∩U++

âttnp′→r(X
++)zmvk,m

)
·
[
ξq −

∑
r∈P∩U+

âttnp→r(X
+)ξr

]⊤
vk,m

]
+

1

P 2
E
[ ∑
q∈Pk,m∩U+

âttnp→q(X
+)ξ⊤q

(
(1− ℓ̂p)

∑
p′∈P

∑
r∈U++

âttnp′→r(X
++)ξr

)
·
[
ξq −

∑
r∈P∩U+

âttnp→r(X
+)ξr

]⊤
vk,m

]
=

1

P 2
E
[
zm

∑
q∈Pk,m∩U+

âttnp→q(X
+)
(
(1− ℓ̂p)

∑
p′∈P

∑
r∈Pk,m∩U++

âttnp′→r(X
++)

)[
1− âttnp→q(X

+)
]]

=
1

P 2
E
[
zm

[
Attnp→Pk,m

(X+)−
∑

q∈Pk,m∩U+

attn2
p→q(X

+)
](

(1− ℓp)
∑
p′∈P

Attnp′→Pk,m
(X++)

)]
+ Ξp,k,m,2

= Θ

(
1

P
E
[
zm(1− ℓp)Attnp→Pk,m

(X+)Attnp→Pk,m
(X++)

])
where (a) is bounded by invoking Lemma J.4 with error up to Ξp,k,m,2 ≤ 1

poly(d) , and the last
equality is due to Lemma J.5.

J2 =
1

P
E
[
E
[ Nk∑

i=1

∑
q∈Pk,i∩U+

âttnp→q(X
+)(zivk,i)

⊤(1− ℓ̂p)F̂ (X++;Q)

·
[
ξq −

∑
r∈P∩U+

âttnp→r(X
+)ξr

]⊤
vk,m

∣∣ξ]]

=
1

P 2
E
[
E
[ Nk∑

i=1

∑
q∈Pk,i∩U+

âttnp→q(X
+)(zivk,i)

⊤(1− ℓ̂p)
∑

p′∈P,r∈P∩U++

âttnp′→r(X
++)ξr

·
[
ξq −

∑
r∈P∩U+

âttnp→r(X
+)ξr

]⊤
vk,m

∣∣ξ]]
=

1

P 2
E
[
E
[ ∑
q∈Pk,m∩U+

âttnp→q(X
+)(zmvk,m)⊤(1− ℓ̂p)

∑
p′∈P,r∈P∩U++

âttnp′→r(X
++)ξr

·
[
ξq −

∑
r∈P∩U+

âttnp→r(X
+)ξr

]⊤
vk,m

∣∣ξ]]
=

1

P 2
E
[
zm

∑
q∈Pk,m∩U+

âttnp→q(X
+)(1− ℓ̂p)

·
(
âttnp→q(X

+)1q∈U++ −
∑

p′∈P,r∈P∩U++∩U+

âttnp′→r(X
++)âttnp→r(X

+)
)]

=
1

P 2
E
[
zm

∑
q∈Pk,m∩U+

attnp→q(X
+)(1− ℓp)

·
(
attnp→q(X

+)1q∈U++ −
∑

p′∈P,r∈P∩U++∩U+

attnp′→r(X
++)attnp→r(X

+)
)]

+ Ξp,k,m,3
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Thus, by invoking Lemma J.5, we have

|J2| ≤ O
( 1

P
E
[
zm

∑
q∈Pk,m∩U+

attnp→q(X
+)(1− ℓp) ·

(
max

r∈P∩U++∩U+
attnp→r(X

+)
)])

+ Ξp,k,m,3

≤ O
( 1

P · Ck,1
E
[
zm(1− ℓp)Attnp→Pk,m

(X+) ·Attnp→Pk,1
(X++)

])

J3 =
1

P
E
[ ∑
q∈P∩U+

âttnp→q(X
+)ξ⊤q

(
(1− ℓ̂p)F̂ (X++;Q)−

n∑
s=1

ℓ̂sF̂ (X−,s;Q)
)

·
[
zivk,i −

Nk∑
j=1

∑
r∈Pk,j∩U+

âttnp→r(X
+)zjvk,j

]⊤
vk,m

]

=
1

P
E
[
E
[ ∑
q∈Pk,m∩U+

âttnp→q(X
+)ξ⊤q

(
(1− ℓ̂p)F̂ (X++;Q)

)
· zm

[
1−

∑
r∈Pk,m∩U+

âttnp→r(X
+)
]∣∣ξ]]

=
1

P 2
E
[
zm

∑
q∈Pk,m∩U+∩U++

âttnp→q(X
+)(1− ℓ̂p)

·
∑
p′∈P

âttnp′→q(X
++)

[
1−

∑
r∈Pk,m∩U+

âttnp→r(X
+)
]]

=
1

P 2
E
[
zm

∑
q∈Pk,m∩U+∩U++

attnp→q(X
+)(1− ℓp)

·
∑
p′∈P

attnp′→q(X
++)

[
1−Attnp→Pk,m

(X+)
]]

+ Ξp,k,m,4

≤O
( 1

P 2
E
[
zmAttnp→Pk,m

(X+)
(
1−Attnp→Pk,m

(X+)
)
(1− ℓp) ·

∑
p′∈P

O(
1

Ck,m
) ·Attnp′→Pk,m

(X++)

])
≤ O(

J4
Ck,m

).

where the last inequality is due to Lemma J.5.

J1 =
1

P 2
E
[ Nk∑

i=1

∑
q∈Pk,i∩U+

âttnp→q(X
+)(zivk,i)

⊤

·
(
(1− ℓ̂p)

∑
p′∈P

Nk∑
j=1

∑
q′∈Pk,j∩U++

âttnp′→q′(X+,+)zjvk,j

−
∑

X−,s∈N∩Dcl
k

ℓ̂s
∑
p′∈P

Nk∑
j=1

∑
q′∈Pk,j

âttnp′→q′(X−,s)zs,jvk,j

)

·
[
zivk,i −

Nk∑
j=1

∑
r∈Pk,j∩U+

âttnp→rzjvk,j

]⊤
vk,m

]

=
1

P 2
E
[ Nk∑

i=1

∑
q∈Pk,i∩U+

attnp→q(X
+)(zivk,i)

⊤
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·
(
(1− ℓp)

∑
p′∈P

Nk∑
j=1

∑
q′∈Pk,j∩U++

attnp′→q′(X+,+)zjvk,j

−
∑

X−,s∈N∩Dcl
k

ℓs
∑
p′∈P

Nk∑
j=1

∑
q′∈Pk,j

attnp′→q′(X−,s)zs,jvk,j

)

·
[
zivk,i −

Nk∑
j=1

∑
r∈Pk,j∩U+

attnp→rzjvk,j

]⊤
vk,m

]
+ Ξp,k,m,5

=
1

P 2
E
[
Attnp→Pk,m

(X+)

(
z2m

(
1−Attnp→Pk,m

(X+)
)
vk,m −

∑
i̸=m

zmziAttnp→Pk,i
(X+)vk,i

)⊤

·
(
(1− ℓp)

∑
p′∈P

Nk∑
j=1

∑
q′∈Pk,j∩U++

attnp′→q′(X+,+)zjvk,j

−
∑

X−,s∈N∩Dcl
k

ℓs
∑
p′∈P

Nk∑
j=1

∑
q′∈Pk,j

attnp′→q′(X−,s)zs,jvk,j

)]
+ Ξp,k,m,5

=
1

P 2
E
[
Attnp→Pk,m

(X+)

(
z2m

(
1−Attnp→Pk,m

(X+)
)
vk,m −

∑
i̸=m

zmziAttnp→Pk,i
(X+)vk,i

)⊤

·
(
(1− ℓp)

∑
p′∈P

Nk∑
j=1

Attnp′→Pk,j
(X++)zjvk,j −

∑
X−,s∈N∩Dcl

k

ℓs
∑
p′∈P

Nk∑
j=1

Ãttnp′→Pk,j
(X−,s)zs,jvk,j

)]
+ Ξp,k,m,5

=
1

P 2
E
[
Attnp→Pk,m

(X+)

(
z2m

(
1−Attnp→Pk,m

(X+)
)

·
( ∑

p′∈P

(
(1− ℓp)zmAttnp′→Pk,m

(X++)−
∑

X−,s∈N∩Dcl
k

zs,mℓsÃttnp′→Pk,m
(X−,s)

)))]
(J1,1)

− 1

P 2
E
[
Attnp→Pk,m

(X+)

(∑
i ̸=m

zmziAttnp→Pk,i
(X+)

·
( ∑

p′∈P

(
(1− ℓp)ziAttnp′→Pk,i

(X++)−
∑

X−,s∈N∩Dcl
k

zs,iℓsÃttnp′→Pk,i
(X−,s)

)))]
(J1,2)

+ Ξp,k,m,5

Notice that J1,1 = Θ(J4). Furthermore, when m = 1, J1,2 is negligible compared to J1, else

|J1,2| ≤ O
( 1

P 2
E
[
Attnp→Pk,m

(X+)

(
zmz1Attnp→Pk,1

(X+)

·
( ∑

p′∈P

(
(1− ℓp)z1Attnp′→Pk,1

(X++)−
∑

X−,s∈N∩Dcl
k

zs,1ℓsÃttnp′→Pk,1
(X−,s)

)))])

≤ O

(
1

P
E
[
zm(1− ℓp)Attnp→Pk,m

(X+)Attnp→Pk,1
(X+)Attnp→Pk,1

(X++)

])
Putting all the terms together, and noticed that

O

(
1

P
E
[
zm(1− ℓp)Attnp→Pk,m

(X+)Attnp→Pk,1
(X+)Attnp→Pk,1

(X++)

])
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≥ O
( 1

P · Ck,1
E
[
zm(1− ℓp)Attnp→Pk,m

(X+) ·Attnp→Pk,1
(X++)

])
,

then we complete the proof.

Proof of Induction Hypothesis J.1. By Lemma J.7 and Lemma J.6, at the initial stage of the learning
process, we have

α(0)
p→vk,1

∝ 1

P
E
[
Attnp→Pk,1

(X+)Attnp→Pk,1
(X++)

]
α(0)
p→vk,1

≲
1

P
max

{
E
[
Attnp→Pk,m

(X+)Attnp→Pk,m
(X++)

]
,

E
[
Attnp→Pk,m

(X+)Attnp→Pk,1
(X+)Attnp→Pk,1

(X++)

]}
Then by the relations of attention score in Lemma J.5, focusing on the high-propbability event A1,+

and A1,++ we have

|α(t)
p→vk,m

| ≤ O
(
max{Pκs−1, P 2(κs−κc) · Φ(t)

p→vk,1
}
)
|α(t)

p→vk,1
| for m > 1 (J.4)

By Lemma J.7 and Lemma J.5, we have α
(t)
p→Pk,1

≥ Ω( 1
P 3−2κc ) ≥ λΦ

(t)
p→Pk,1

, which implies the

regularization in this stage is not violated for the dominated FP correlation Φ
(t)
p→Pk,1

. Hence, we

could focus on the relation between α
(t)
p→Pk,m

and α
(t)
p→Pk,1

for m > 1.

Therefore, the existence of T1 can be directly obtained by the gradient estimation in Lemma J.7 and
the lower bound for the area attention of the global area in Lemma J.5. The induction argument
follows directly from J.4.

The key takeaway from the first stage is that the growth of feature-position attention correlation for
the global area is dominant, specifically, α(t)

p→vk,1 ≫ |α(t)
p→vk,m |. After this initial stage, Φp→vk,1

reaches Ω(log(P )), Attnp→Pk,1
has reached Ω(1) and 1 − ℓp still keeps at a constant level. The

dominance of global FP correlation will be preserved in the following and the learning process will
enter the convergence stage.

J.3 CONVERGENCE

At this stage, we are going to prove that as long as the ViTs have already learned the global FP
correlations, they will indeed converge to these global solutions, which leads to the collapsed global
representation. We present the statement of our convergence theorem below.

Theorem J.8 (Convergence guarantees). Letting T2 = Ω(P
4 logP
η ), for any T ∈

[T2, O((poly(P ) logP
η ))], letting λ = Θ( 1

P logP ) we have

1

T

T∑
t=T2

L(Q(t)) ≤ OPT +
1

polyP
.

where OPT is the global minimum of the regularized contrastive objective.

We have the following hypothesis for the end of the learning process.

Induction Hypothesis J.2. For t ∈ [Ω(P
4 logP
η ), O((poly(P ) logP

η ))], we have the following resutls:

• For any k ∈ [K], p ∈ P , and m ∈ [Nk]

Φ(t)
p→vk,1

∈ [C∗
1 , C

∗
2 ] logP |Φ(t)

p→vk,m
| ≤ Õ(

1

P δ∗
).

where C∗
1 , C

∗
2 > 0 are some constants and δ∗ ∈ (0, 1) is some small constant.
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• Attention score from the global area: given X ∈ Dk, 1−Attn
(t)
p→Pk,1

(Xa) ≤ 1
poly(P ) for

a ∈ {+,++} and 1− Ãttn
(t)

p→Pk,1
(Xn,s) ≤ 1

poly(P ) for s ∈ [Nc] with high probability.

• Bounded gradient for the loss:

∥∇QL(Q(t))∥2F ≤ Õ(
1

polyP
).

We can reuse most of the calculations in the proof of Induction Hypothesis J.1 to prove the hypothesis
and here we only discuss how to bound the gradient of the objective. If the regularization is not

violated, i.e., α(t)
p→vk,m ≥

Φ(t)
p→vk,m

λ , we have Φ
(t)
p→vk,m ≤ O(log(P )). For t ≥ T1, denote the first

time when α
(t)
p→vk,m −

Φ(t)
p→vk,m

λ ≤ O( 1
P 4 ) as T̃1, by Lemma J.7, we have α̃

(t)
p→vk,m ≥ Ω( 1

P 4 ) for

t ∈ [T1, T̃1], and Φ
(T̃1)
p→vk,m = C̃ logP for some constant C̃ > 0. Then we have T̃1 ≤ O(P

4 logP
η ).

Thus, for t ≥ T̃1,

∥∇QL(Q(t))∥2F ≤ O

( K∑
k=1

∑
p∈P

(α(t)
p→vk,1

−
Φ

(t)
p→vk,m

λ
)2
)

≤ O(
1

poly(P )
).

Proof of convergence. We first define a learning network that we deem as the “optimal” network
with the global feature-position attention pattern. Specifically, we define Q⋆ as a matrix satisfied
e⊤pQ

⋆vk,1 = σ⋆ with σ2
⋆ = ∥Q̄∥F

P (
∑K

k=1 Nk)
and e⊤pQ

⋆vk,m = 0 for p ∈ P and k ∈ [K], m ∈ [Nk].

Furthermore, w⊤
1 Q

⋆w2 = 0, where w1, w2 ∈ Span
(
{ep}p∈P ∩ {vk,m}k∈[K,m∈[Nk]]

)⊥
. Here we

suppose OPT is achieved at the matrix Q = Q̄.

Moreover, We consider the following pseudo losses and objective: define the linearized learner
F̃ (t)(Q,X) = F (Q(t), X) +∇QF (Q(t), X)(Q−Q(t)),

L̃t(Q) := E

[
−τ log

(
e⟨F̃

(t)(Q,X+),F (Q(t);X++)⟩/τ∑
X′∈B e⟨F̃ (t)(Q,X+),F (Q(t);X′)⟩/τ

)]
,

Õbjt(Q) := L̃t(Q) +
λ

2
∥Q∥22,

and

L̂t(Q) := E

[
−τ log

(
e⟨F (Q,X+),F (Q(t);X++)⟩/τ∑
X′∈B e⟨F (Q,X+),F (Q(t);X′)⟩/τ

)]
.

Then we discuss the values of different losses at Q = Q⋆. We have the following properties:

L(Q⋆) ≤ OPT +O(
1

poly(d)
), (J.5)

|L̂(Q⋆)− Lt(Q
⋆)| ≤ O(

1

poly(d)
), (J.6)

|L̃t(Q
⋆)− L̂t(Q

⋆)| ≤ 1

poly d
. (J.7)

For the first property, we only need to consider the contrastive loss at the global minimum. Notice
that for our data distribution, the global minimum of the contrastive loss is achieved when the network
can perfectly distinguish the samples from different clusters. Thus, we have OPT = Θ(log Nc

K ).
Notice that on the event A1,com, supposing X ∈ Dcl

k , which happens with prob ≥ 1 − e−Pκs we
have

⟨F (Q⋆, X+), F (Q⋆;X++)⟩ = ⟨vk,1, vk,1⟩+
1

|Θ(Ck,1)|2
∑

p∈Pk,1∩U+∩U++

∥ξp∥22 ± o(1)
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⟨F (Q⋆, X+), F (Q⋆;X ′)⟩ = ⟨vk,1, vk,1⟩ ± o(1) for X ′ ∈ N ∩ Dcl
k

Furthermore, by Bernstein’s inequality, we have with probability ≥ 1− 1
poly(d) , we have ∥ξp∥22 =

σ2
0d ± Õ( 1

poly(d) ) = 1 ± Õ( 1
poly(d) ), we denote such an event as A3. Suppose we consider the

temperature τ = O( 1
log d ), then conditioned on A1,com∩A3, we have ⟨F (Q⋆, X+), F (Q(t);X ′)⟩ =

ω(log d)± o(1) for X ′ ∈ B ∩ Dcl
k , which could minimize the loss to the level of Θ(log Nc

K ) up to
the error of O( 1

poly(d) ). Then we have

L(Q⋆) ≤ (1− 1

poly(d)
)Θ(log

Nc

K
) + Õ(

1

poly(d)
) ≤ L(Q) +O(

1

poly(d)
).

The second property follows from the observation that

|L̂t(Q
⋆)− L(Q⋆)| ≤ O(∥∇QL(Q⋆)∥2)∥F (Q⋆, X++)− F (Q(t), X++)∥2

≤ O
(
∥∇QL(Q⋆)∥2 ·

(
1−Attn

(t)
p→Pk,1

(X++)
)
≤ Õ(

1

poly(P )
).

Similarly, the third property follows from the fact that

|L̃t(Q
⋆)− L̂cl

t (Q
⋆)| ≤ O(∥∇QL̃t(Q

⋆)∥2)∥F̃ (t)(Q⋆, X+)− F (Q⋆, X+)∥2 ≤ Õ(
1

poly(P )
).

Now we will use the tools from online learning to obtain a loss guarantee:

η⟨∇QL(Q(t)), Q(t) −Q⋆⟩

=
1

2
η2∥∇QL(Q(t))∥2F − 1

2
∥Q(t) −Q⋆∥2F +

1

2
∥Q(t+1) −Q⋆∥2F

=
η2

2
· 1

poly(P )
− 1

2
∥Q(t) −Q⋆∥2F +

1

2
∥Q(t+1) −Q⋆∥2F .

Notice that Õbjt(Q) is a convex function over Q and Õbjt(Q
(t)) = L(Q(t)), thus

⟨∇QL(Q(t)), Q(t) −Q⋆⟩ = ⟨∇QÕbjt(Q
(t)), Q(t) −Q⋆⟩

≥ Õbjt(Q
(t))− Õptt(Q

⋆) (by convexity)

≥ Õbjt(Q
(t))− L(Q⋆)− Õ(

1

poly(P )
) (by J.6 and J.7)

≥ Õbjt(Q
(t))−OPT − Õ(

1

poly(P )
) (by J.5)

= L(Q(t))−OPT − Õ(
1

poly(P )
) (by definition of Õbj)

Thus by a telescoping summation, we have

1

T − T2

T∑
t=T2

L(Q(t))−OPT

≤
T∑

t=T2

⟨∇QL(Q(t)), Q(t) −Q⋆⟩+O(
1

poly(P )
)

≤ O(
∥Q(T ) −Q(⋆)∥22

Tη
) ≤ O(

1

poly(P )
)

which completes the proof.
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