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Detecting Approximate Reflection Symmetry in a
Point Set Using Optimization on Manifold

Rajendra Nagar and Shanmuganathan Raman

Abstract—We propose an algorithm to detect approximate re-
flection symmetry present in a set of volumetrically distributed
points belonging to Rd containing a distorted reflection symme-
try pattern. We pose the problem of detecting approximate re-
flection symmetry as the problem of establishing correspondences
between the points which are reflections of each other and we de-
termine the reflection symmetry transformation. We formulate an
optimization framework in which the problem of establishing the
correspondences amounts to solving a linear assignment problem
and the problem of determining the reflection symmetry transfor-
mation amounts to solving an optimization problem on a smooth
Riemannian product manifold. The proposed approach estimates
the symmetry from the geometry of the points and is descriptor in-
dependent. We evaluate the performance of the proposed approach
on the standard benchmark dataset and achieve the state-of-the-
art performance. We further show the robustness of our approach
by varying the amount of distortion in a perfect reflection sym-
metry pattern where we perturb each point by a different amount
of perturbation. We demonstrate the effectiveness of the method
by applying it to the problem of 2-D (two-dimensional) and 3-D
reflection symmetry detection along with comparisons.

Index Terms—Manifolds, optimization, symmetry.

I. INTRODUCTION

SYMMETRY present in natural and man-made objects en-
riches the objects to be physically balanced, beautiful, easy

to recognize, and easy to understand. Characterizing and finding
the symmetry has been an active topic of research in computer
vision and computer graphics as physical objects form the ba-
sis for these research areas. The digitized objects are mainly
represented in the form of meshes, volumes, sets of points, and
images. The primary objective has been to detect symmetry
in objects depicted through these different representations. We
particularly aim to detect reflection symmetry present in objects
represented by a set of finite number of points belonging to Rd .
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Fig. 1. Established correspondences (shown in (b)) between the reflection
symmetry points sampled from the input model (shown in (a)) using the proposed
approach.

In Fig. 1, we present an example result of the proposed approach
for illustration.

The motivation behind detecting symmetry in higher dimen-
sional spaces (d > 3) is inspired by the fact that many physical
data points reside in the space of dimensions greater than three.
For example, an RGB-D image captured using a Kinect sen-
sor, which has become a major tool for interaction of human
with machine, has four dimensions at each pixel location. An-
other example is the embedding of feature points or shapes
into a higher-dimensional space. In the scale invariant feature
transform (SIFT) algorithm, each keypoint is represented in a
128-dimensional space [1]. We not only target data residing in
2-D (image) and 3-D (point cloud), but also develop a generic
framework to detect symmetry in higher dimensional data.

The problem of establishing correspondences between reflec-
tion symmetry points and determining the hyperplane of reflec-
tion symmetry has been extensively studied due to its astounding
applications such as compression of objects, symmetrization,
shape matching, and symmetry aware segmentation of shapes
[2]. Most of the existing algorithms attempt this problem by
using surface signatures such as Gaussian curvature, eigenbases
of the Laplace-Beltrami operator, and heat kernels for the points
sampled on a given surface ([2]–[4]). The challenge we face is
that, we only have a set of discrete points in Rd . We can not take
benefits from local surface signatures by fitting a surface over
these points. For the case d = 2, an explanation could be that
the prominent surface signatures, such as Gaussian curvatures,
are meaningful only if the surface is non-linear. For the case
d ≥ 3, an explanation could be that if the point set represents a
volumetric shape, fitting a surface could be hard and eigenbases
of Laplace-Beltrami operator are not defined for a set of finite
points since it is not a compact manifold without the boundary
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[5]. Prominent methods such as [6] and [7] are independent of
surface features and employ randomized algorithms to establish
correspondences between the reflection symmetry points. How-
ever, they require fine tuning of a hyper-parameter to handle the
reflection symmetry patterns perturbed by an unknown source
of noise and an improper choice of this parameter could lead to
higher time complexity.

Both these categories of algorithms are sequential in the sense
that they first establish the correspondences between the reflec-
tion symmetry points and then determine the reflection symme-
try hyperplane. Therefore, many outlier correspondences could
be detected along with the correct correspondences. In sum-
mary, detecting symmetry in a set containing a finite number
of points is a non-trivial problem. In this work, we propose an
optimization framework where we jointly establish correspon-
dences between reflection symmetry points and determine the
reflection symmetry hyperplane in a set of points containing
a distorted reflection symmetry pattern. In order to design the
cost function, we introduce an affine transformation to obtain
the reflection point of a point in Rd . The main intuition behind
forming this cost function is that the reflection point of a point
obtained through the optimal reflection hyperplane should be
present closest to its ground-truth reflection point.

The primary contributions of this work are listed below.
1) We propose an optimization based algorithm to establish

correspondences between the reflection symmetry points
and determine the reflection symmetry transformation in a
set of discrete points residing in Rd containing a distorted
reflection symmetry pattern.

2) We show that the proposed optimization framework is
convex in translation and correspondences matrix, and
locally convex in each of the rotation matrices.

3) The proposed approach is shown to not use any shape
descriptors and can be applied to point sets obtained by
sampling any shape residing in Rd .

4) We demonstrate the effectiveness of the proposed ap-
proach by detecting symmetry in 2-D images and 3-D
point clouds.

We organize the remainder of the paper as follows. In §II,
we present the related works to our approach. In §III-A, we
formulate the energy minimization problem. In §III-B, we find
the optimal rotations and translation. In §III-C, we find the
optimal mirror symmetric correspondences. In §III-D, we prove
the convergence properties. In §IV, we report the computational
complexity of our algorithm. In §V, we report the results and
the evaluation of the proposed approach. In §VI, we conclude
the work with future directions.

II. RELATED WORKS

The problem of characterizing and detecting the reflection
symmetry in digitized objects has been extensively studied. The
works [8] and [2] provide a survey of the symmetry detection
algorithms. The symmetry detection algorithms can be cate-
gorized based on either the form of the input data or whether
the algorithm is dependent or independent of the surface fea-
tures. General forms of the input data are: set of points, mesh,

volume, and image. Most of the methods for symmetry detec-
tion in meshes first extract salient keypoints on the surface and
then describe each point using local surface features. The promi-
nent surface features are: Gaussian curvatures, slippage features,
moments, geodesic distances, and extended Gaussian images
([2], [8]).

Symmetry detection in a set of points without features.
These algorithms detect reflection symmetry in a set of points
without using surface features. Our work also falls in this cat-
egory. In the work by Zabrodsky et al., the authors find the
closest shape to a given shape represented by a set of points in
R2 and it requires point correspondences [9]. However, our goal
is different in the sense that we find reflection correspondences
within the given set of points in Rd . In the work by Lipman
et al., the authors propose the concept of symmetry factored
embedding where they represent pairs of points which are in the
same orbit in a new space and propose the concept of symmetry
factored distance to find the distance between such pairs [6]. In
the work by Xu et al., the authors detect multi-scale symmetry
[7]. The authors use a randomized algorithm to detect the corre-
spondences efficiently. However, performance degrades as the
perfect pattern gets perturbed due to noisy measurements. We
compare the correspondences established by our method to that
of this method and show that our method performs better than
this method when the patterns are perturbed. It is fair to compare
with this method on the perturbed patterns because most of the
real world patterns are not perfectly symmetric, e.g., human face
and butterfly wings. In the works by Combès et al. [10], Spe-
ciale et al. [11], Ecins et al. [12], Cicconet et al. [13], Li et al.
[14], and Sipiran et al. [15], the authors automatically detect the
symmetry plane in a point cloud. But, the methods in [10], [11],
[13], [14], and [15] do not establish correspondences. How-
ever, correspondences are an important aspect as shown in ([6],
[7]). Ecins et al. proposed an ICP based approach [12] where
they used the normals at each point to determine the symmetry.
However, this method is applicable only to non-volumetric point
clouds, i.e., points sampled from a surface.

Symmetry detection in meshes using surface features.
These algorithms either directly use surface patches described
using local features or first detect the salient keypoints on the
surface and describe them using the local surface features. Here,
we review only the salient works to give an idea of these algo-
rithms. Mitra et al. detect partial and approximate symmetries
in 3D models [4]. They start with sampling salient keypoints on
the surface and pair them up using their local principal curva-
tures. Then using the Hough transformation, they find the pairs
of reflection symmetry points. Then in the Hough transforma-
tion space, they perform the clustering of the pairs to determine
all the partial symmetries. Martinet et al. detect symmetries by
generalized moment functions where the shape symmetry gets
inherited as symmetry in these functions [16]. Raviv et al. de-
tect symmetry in non-rigid shapes by observing that the intrinsic
geometry of a shape is invariant under non-rigid shape transfor-
mations [17]. Berner et al. start with constructing a graph based
on the similarity of slippage features detected on the surface
[3]. Then, they detect the structural regularities by matching
the sub-graphs. Cohen et al. detect symmetry using geometric
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Fig. 2. Each point of a perfect pattern, shown in gray color, is perturbed to a
point within a circular region around it where the radius is different for all the
points and is unknown. Our goal is to determine the correspondences (i, i′) and
the reflection transformation (R, t).

and image cues [18]. They use it to reconstruct accurate 3D
models. We refer the reader to some of the pioneering works for
more details on this category ([19]–[27]). There exist algorithms
which find symmetry in meshes and volume without sampling
keypoints. The works described in ([5], [28]–[35]) belong to
this category.

Symmetry detection algorithm for real images. These al-
gorithms primarily rely on the local image features such as edge
orientations, curvatures, and gradients. The recent works such as
([36]–[47]) present excellent algorithms for reflection symmetry
detection in images. Given the accurate detection of keypoints,
the algorithm developed in this work can be used to detect re-
flection symmetry in images without using local features.

Our algorithm is similar to Iterative Closest Point (ICP) al-
gorithm ([48], [49]) only in the sense that we also follow the
alternation between the optimization of reflection transforma-
tion (rotation and translation in ICP) and the correspondences
between the mirror symmetric points (correspondences between
the points of two different shapes in ICP). Our algorithm differs
from the ICP algorithm since ICP has a different error function
in the transformation parameters than the error function of our
problem. Furthermore, our matching is bijective since we im-
pose the bijectivity constraints in our optimization framework.
These constraints ensure that each point has exactly one mirror
image point.

III. PROPOSED APPROACH

Consider a set S = {xi}ni=1 of points, where xi ∈ Rd , con-
taining a distorted reflection symmetry pattern. Our goal is to
determine the reflection symmetry transformation and establish
the correspondences between the reflection symmetry points. In
Fig. 2, we show the graphical representation of our problem.
We formulate an optimization framework in which both the
correspondences between reflection symmetry points and the
reflection symmetry transformation are variables as described

below. We use the notation [k] for the set {1, 2, . . . , k}, where
k is a natural number.

A. Problem Formulation

We introduce reflection transformation in Rd in order to ob-
tain the reflection of a point through a hyperplane π, not neces-
sarily passing through the origin. The intuition is based on the
fact that any hyperplane in Rd is a d− 1 dimensional subspace.
Therefore, it can be made parallel to the subspace spanned by
any d− 1 coordinate axes by translating the origin of the co-
ordinate system on the hyperplane π and then rotating these
d− 1 axes sequentially (by the angle between the hyperplane π
and the axis). In this new coordinate system, the reflection of a
point through the hyperplane π can be obtained by multiplying
the coordinate corresponding to the remaining axis of the point
by −1. Then the reflection in the original coordinate system is
obtained by applying the inverse procedure.

Definition 1: The reflection point xi ′ ∈ Rd of a point xi ∈
Rd through the reflection symmetry hyperplane π is determined
by an affine transformation as shown in Equation 1.

xi ′ =

(
d−1∏
u=1

Ru

)
E

(
d−1∏
u=1

Ru

)�
(xi − t) + t. (1)

Here, i, i′ ∈ [n], t ∈ Rd is the translation vector which trans-
lates the origin of the coordinate system on the hyperplane
π, Ru is a rotation matrix of size d× d that rotates the uth

axis about the origin such that it becomes perpendicular to the
normal of the hyperplane π, and the matrix E is defined as
E =

[ Id−1
0�d−1

0d−1
−1

]
and satisfies E� = E, E�E = Id . The matrix

Ru is an orthogonal matrix (R�u Ru = RuR�u = Id ) with de-
terminant equal to +1, ∀u ∈ {1, 2, . . . , d− 1}. Here, 0d−1 is a
vector of size (d− 1)× 1 with all the coordinates equal to zero
and Id−1 is an identity matrix of size (d− 1)× (d− 1).

Now, we introduce the essential properties of this transforma-
tion in order to formulate the problem. We show that the rotation
matrices (R1 , . . . ,Rd−1) and the translation vector t uniquely
determine the reflection hyper-plane π. We let T =

∏d−1
u=1 Ru

throughout this paper and note that it is again an orthogonal
matrix with determinant equal to +1.

Theorem 1: The point xi ′ is the reflection of the point xi

through the hyperplane π if and only if the point xi is the
reflection of the point xi ′ through the hyperplane π.

Proof: We prove the forward direction of the Theorem 1,
since the backward direction can be proved in a similar way.
Let us assume that the point xi ′ is the reflection of the point xi .
Therefore, Equation (1) holds true. Now, we multiply Equation
(1) by TET� from left and use the identities E� = E,EE =
Id ,T�T = TT� = Id to achieve,

TET�xi ′ = xi − t + TET�t

⇒ xi = TET�(xi ′ − t) + t. (2)

�
Theorem 2: The normal vector of the reflection hyper-

plane π lies in the null space of the matrix Id + TET�, the
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hyper-plane π passes through t, and the null space of the matrix
Id + TET� is an one-dimensional subspace of Rd .

Proof: We subtract Equation (1) from Equation (2) to achieve

xi − xi ′ = TET�(xi ′ − xi)⇒ (Id + TET�)(xi − xi ′) = 0.

Therefore, the normal to the reflection hyperplane π, which is
in the direction of the vector (xi − xi ′), lies in the null space of
the matrix (Id + TET�). It is easy to show that the reflection
hyperplane π passes through the translation t by noting that
the reflection point of the point t is t. This is possible only if
the point t lies on the reflection hyperplane π. We prove that
the null space of the matrix Id + TET� is an one-dimensional
subspace of Rd in order to show that there exists an unique
hyperplane π. The nullspace of a matrix is the space spanned by
the eigenvectors corresponding to the zero eigenvalue. Let p =
[p1 p2 . . . pd ]� ∈ Rd be any vector. If p is an eigenvector
corresponding to the zero eigenvalue of the matrix Id + TET�,
then we must have

p�(Id + TET�)p = 0⇒ p�Idp + (T�p)�E(T�p) = 0

⇒ p�Idp + b�Eb = 0⇒
d∑

u=1

p2
u +

d−1∑
u=1

b2
u − b2

d = 0

⇒
d∑

u=1

p2
u +

d∑
u=1

b2
u − 2b2

d = 0. (3)

Here, b = T�p. We note that ‖b‖22 = (T�p)�(T�p) =
p�p = ‖p‖22 . Therefore, from Equation (3) we have

d∑
u=1

p2
u +

d∑
u=1

p2
u − 2b2

d = 0⇒
d∑

u=1

p2
u = b2

d ⇒
d−1∑
u=1

b2
u = 0.

Therefore, b1 = b2 = . . . = bd−1 = 0 and bd ∈ R. Hence, the
vector b lies in the one dimensional space {q : q1 = q2 = . . . =
qd−1 = 0, qd ∈ R}. Since b = T�p⇒ p = Tb. Since the ro-
tation does not change the dimension of a linear space, the vector
p also lies in one dimensional space. �

Given the set S, our goal is to find all the correct re-
flection correspondences (i, i′) ∈ [n]× [n] and the matrices
(R1 ,R2 , . . . ,Rd−1 , t) which define the reflection symmetry
hyperplane π. We represent all the correspondences by a per-
mutation matrix P ∈ {0, 1}n×n , such that Pii′ = 1 if the point
xi ′ is the reflection point of the point xi and Pii′ = 0, otherwise.
Here, we note from Theorem 1 that Pii′ = 1⇔ Pi ′i = 1.

Now, we let R = (R1 ,R2 , . . . ,Rd−1) ∈ V . Here, V =
Rd×d ×Rd×d × . . .×Rd×d . Let X = [x1 x2 . . . xn ] ∈
Rd×n be the matrix containing all the points of the set S as its
columns. Since the ith column of the matrix XP is the reflec-
tion point of the point xi , the reflection transformation (R, t)
maps the matrix X to the reflected points matrix XP. Using
Equation 1, we write the reflected points in the form of the ma-
trix TET�(X− te�) + te�, where e = [1 1 . . . 1 ]� is
a vector of size n× 1. Therefore, Equation (4) holds true when
the input set contains a perfect reflection symmetry pattern.

TET�
(
X− te�

)
+ te� = XP. (4)

In practice, a reflection symmetry pattern might have been dis-
torted. Therefore, we would be able to find only the approximate
reflection symmetry. We find the reflection transformation (R, t)
and the correspondences matrix P in such a way that the sym-
metry error, which we define as ‖TET�(X− te�) + te� −
XP‖2F, is minimized. Here ‖.‖F is the Frobenius norm operator.
We frame this problem in an optimization framework as shown
in Equation (5).

min
R ,t,P

∥∥∥∥∥∥
(

d−1∏
u=1

Ru

)
E

(
d−1∏
u=1

Ru

)� (
X− te�

)
+ te� −XP

∥∥∥∥∥∥
2

F

s.t. Pe = e,P�e = e,P ∈ {0, 1}n×n ,

R�u Ru = Id = RuR�u ,det(Ru ) = 1,Ru ∈ Rd×d ,

∀u ∈ [d− 1], t ∈ Rd . (5)

By imposing the constraints Pe = e and P�e = e, we ensure
that each point has only one reflection point. We adopt an al-
ternating optimization approach to solve the problem defined in
Equation (5). We start with initializing the reflection transfor-
mation (R, t) and solve for the optimal correspondences P and
then for this optimal P, we solve for optimal the (R, t). We
continue to alternate till convergence.

Once P is fixed, if we minimize the cost over the set
V ×Rd , then we have to make sure that the orthogo-
nality and the unit determinant constraints hold true for
the matrices Ru ,∀u ∈ [d− 1]. One approach could be the
Lagrange augmentation which requires us to handle 3d−
3 additional Lagrange multipliers. However, we observe
that the set M = {(R1 , . . . ,Rd−1 , t) : R�u Ru = RuR�u =
Id ,det(Ru ) = 1,Ru ∈ Rd×d ,∀u ∈ [d− 1], t ∈ Rd} of con-
straints is a smooth Riemannian product manifold over which
the optimization algorithms are well studied [50].

We solve the sub-optimization problem for optimal (R, t)
on a manifold which we discuss in Section III-B. We observe
that the optimization of Equation (5) for P is a standard linear
assignment problem for which we formulate an integer linear
program which we discuss in Section III-C.

B. Optimizing Reflection Transformation (R, t)

In this step, we fix the correspondences matrix P and find the
optimal reflection transformation (R, t) by taking advantages
from the differential structure of the setM. We shall now briefly
introduce the differential geometry of the setM.

Differential geometry of the setM of constraints. In order
to introduce the essential differential geometry of the set M,
we follow [50]. The elements of the set M are of the form
(R, t) 
 (R1 , . . . ,Rd−1 , t). All the orthogonal matrices (each
for rotation along a single axis) with determinant +1 form a
Lie group, also known as special orthogonal group, which is a
smooth Riemannian manifold. The Euclidean space Rd is also a
smooth Riemannian manifold. Therefore the setM is a product
manifold,SO(2, d)× . . .× SO(2, d)×Rd , the product of d−
1 special orthogonal groups SO(2, d) and an Euclidean space
Rd . Each rotation matrix performs rotation about a single axis.
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Therefore, all the possible rotation matrices about a particular
axis form a SO(2) embedded in the Euclidean space Rd×d . We
denote this group as SO(2, d).

The tangent space T(R ,t)M at the point (R, t) ∈M is

{(RΩ, t) : Ω�u = −Ωu ,Ωu ∈ Rd×d ,∀u ∈ [d− 1], t ∈ Rd}.
(6)

Here, RΩ = (R1Ω1 , . . . ,Rd−1Ωd−1). The Riemannian metric
〈., .〉(R ,t) on the product manifoldM, which gives the intrinsic
distance between two elements (RΩ,ηt) and (RΩ′,η′t) of the
tangent space at the point (R, t) of the manifoldM, is defined
in Equation (7).

〈(RΩ,ηt), (RΩ′,η′t)〉(R ,t) = η�t η′t +
d−1∑
u=1

trace(Ω�u Ω′u ).

(7)
Let f̄ : V ×Rd → R be a scalar function. Let the function f =
f̄ |M be the restriction of the function f̄ on the product manifold
M. Since the product manifold M is a submanifold of the
Riemannian manifold V ×Rd , the Riemannian gradient of the
function f at the point (R, t) is obtained by projecting the
Riemannian gradient of the function f̄ at the point (R, t) ∈ V ×
Rd on the tangent space at the point (R, t) ∈M. Therefore,
the Riemannian gradient of the function f at the point (R, t) is
defined in Equation (8).

grad f(R, t) = (PR (∇R f̄), Pt(∇t f̄)) ∈ T(R ,t)M. (8)

Since the tangent space at a point in an Euclidean space is
again an Euclidean space, the second component is given by
Pt(∇t f̄) = ∇t f̄ . The first component is defined as

PR (∇R f̄) = (PR1 (∇R1 f̄), . . . , PRd−1 (∇Rd−1 f̄)).

Here,

PR j
(∇R j

f̄) = Rj skew(R�j ∇R j
f̄),

where skew(A) = 0.5(A−A�). We define ξR j
(Rj ) =

PR j
(∇R j

f̄). The Riemannian Hessian of the function f at a
point (R, t) is a linear map, Hess f : T(R ,t)M→ T(R ,t)M and
is defined as shown in Equation (9).

Hess f(R, t)[ηR ,ηt ] = (PR (DξR (R)[ηR ]), Pt(Dξt(t)[ηt])).
(9)

Here, the first component PR (DξR (R)[ηR ]) is equal to

(PR1 (DξR1
(R1)[ηR1

]), . . . , PRd−1 (DξRd−1
(Rd−1)[ηRd−1

])),

where ηR j
= RjΩj . The term

Dξx(x)[ηx ] = lim
t→0

ξ(x + tηx)− ξ(x)
t

is the classical derivative of the vector field ξ(x) in the direction
ηx .

The Riemannian trust region method. Our goal is to min-
imize the function f(R, t) over the product manifold M.
There exists a generalization of the popular optimization meth-
ods on the Riemannian manifolds. Since our problem is lo-
cally convex in each variable Rj , which we prove in Theo-
rem 6, we employ the Riemannian trust region approach [51].

It requires the Riemannian gradient and the Riemannian Hes-
sian operator for the function f , which we find as follows.
Let f̄ be a function from the set V ×Rd to R and defined
as f̄(R, t) = ‖TET�(X− te�) + te� −XP‖2F. Its classical
gradients with respect to both the variables are given in the
Equations (10) and (11). The detailed derivation is given in the
supplementary file (§A1 and §A2).

∇t f̄ = 2
(
Id −TET�

)
(2e�et−Xe−XPe). (10)

∇R j
f̄ = −2

(
j−1∏
u=1

Ru

)�
A

(
d−1∏
u=1

Ru

)
E

⎛
⎝ d−1∏

u=j+1

Ru

⎞
⎠
�

.

(11)

Here,

A = (XP− te�)(X− te�)� + (X− te�)(XP− te�)�

which satisfies A� = A. Now let the function f = f̄ |M be
the restriction of the function f̄ on the set M. We obtain the
Riemannian gradient of the function f at a point (R, t) by
projecting the Riemannian gradient of the function f̄ over the
tangent space T(R ,t) at the point (R, t). Since the manifold
V ×Rd is an Euclidean space, the Riemannian gradient of the
function f̄ is equal to its classical gradient. Therefore, we apply
the definition given in Equation (8) in order to find the Rieman-
nian gradient gradf(R, t) of the function f which we denote as
(ξR1

(R1), . . . , ξRd−1
(Rd−1), ξt) and define in Equations (12)

and (13). The detailed derivation is given in the supplementary
file (§A3 and §A4).

ξt(t) = 2
(
Id −TET�

)
(2e�et−Xe−XPe), (12)

ξR j
(Rj ) = −Rj

(
j∏

u=1

Ru

)�
A

(
d−1∏
u=1

Ru

)
E

⎛
⎝ d−1∏

u=j+1

Ru

⎞
⎠
�

+ Rj

⎛
⎝ d−1∏

u=j+1

Ru

⎞
⎠E

(
d−1∏
u=1

Ru

)�
A�

(
j∏

u=1

Ru

)
.

(13)

We determine the Riemannian Hessian of the function f us-
ing the definition given in Equation (9). In order to determine
the jth component HessR j

(f(R, t))[RjΩj ] of the Riemannian
Hessian, which is equal to PR j

(DξR j
(Rj )[RjΩj ]), we first

find the classical derivative DξR j
(Rj )[RjΩj ] of the Rieman-

nian gradient ξR j
(Rj ) in the direction RjΩj and then ap-

ply the projection operator PR j
. Therefore, the jth component

HessR j
(f(R, t))[RjΩj ] of the Riemannian Hessian is equal to

1
2
Rj ([B1 , [R�j B2Rj ,Ωj ]] + [[Ωj ,B1 ],R�j B2Rj ]). (14)

The detailed derivation is given in the supplementary file
(§A5). Here [.,.] is the Lie bracket and defined as [U,V] =
UV −VU for any two matrices U and V,

B1 =

⎛
⎝ d−1∏

u=j+1

Ru

⎞
⎠E

⎛
⎝ d−1∏

u=j+1

Ru

⎞
⎠
�

,
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and

B2 =

(
j−1∏
u=1

Ru

)�
A

(
j−1∏
u=1

Ru

)
.

In a similar way, we determine the component, Pt(Dξt(t)[ηt ]),
of the Riemannian Hessian which is shown in Equation (15).

Hesst(f(R, t))[ηt ] = 4n
(
Id −TET�

)
ηt . (15)

The detailed derivation is given in the supplementary file
(§A6). Now, we apply the Riemannian-trust-region method us-
ing the Riemannian gradient and Hessian defined in Equations
(12), (13), (14), and (15) in order to obtain the optimal solution.
We use the manopt toolbox in order to implement the optimiza-
tion problem given in Equation (5) for a fixed P [52].

Determining the reflection symmetry hyperplane π. In
order to determine the reflection hyperplane π, we use Theorem
2 which states that the normal vector of π lies in the null space
of the matrix Id +

(∏d−1
u=1 Ru

)
E
(∏d−1

u=1 Ru

)�
and the optimal

translation t lies on the hyperplane.

C. Optimizing Correspondences P

After obtaining the current estimate of the reflection trans-
formation (R, t), we improve the correspondences matrix P by
solving the problem given in Equation (5) while fixing (R, t).
We show that this sub-problem is equivalent to a linear assign-
ment problem, where an assignment is a pair (i, i′) of reflection
symmetry points.

Claim 1: The optimization problem given in Equation (5) is
a linear assignment problem in P, for a fixed (R, t).

Proof: Let us consider the cost function in Equation (5) and
let Xm = TET�(X− te�) + te�. We have

‖Xm −XP‖2F = trace((Xm −XP)�(Xm −XP))

= trace
(
X�mXm − 2X�mXP + X�XPP�

)
.

Since, the first and the third terms (using the fact that the
permutation matrices are orthogonal) are not the functions
of P, the problem of finding the point of minimum of the
function ‖Xm −XP‖2F is identical to the problem of find-
ing the point of maximum of the function trace(X�mXP).
Using the identity trace(A�B) = vec(A)�vec(B), we have
that trace(X�mXP) = vec(X�Xm)�vec(P), where the opera-
tor vec vectorizes a matrix by stacking all the columns succes-
sively in a column vector.

Therefore, for a fixed reflection transformation, the problem
defined in Equation (5) is equivalent to the problem defined in
Equation (16).

max
P∈{0,1}n ×n

trace(X�mXP) = vec(X�mX)�vec(P)

subject to Pe ≤ e, P�e ≤ e, (16)

which is a standard linear assignment problem. �
Claim 2: The problem defined in Equation (16) is an integer

linear program.
Proof: Let v1 be a vector of size n2 × 1 with the first n

coordinates equal to one and the last n(n− 1) coordinates equal

to zero. Let e1 be a vector of size n× 1 with all the coordinates
equal to zero except the first coordinate which is equal to one.
Let v2 = [e�1 e�1 . . . e�1 ]� be a vector of size n2 × 1.
Now let us construct the matrices A1 and A2 , each of size
n× n2 , such that the ith row of the matrix A1 is equal to the
row vector cs(v�1 , n(i− 1)) and the ith row of the matrix A2 is
equal to the row vector cs(v�2 , i− 1). Here cs(v�, i) is a row
vector obtained by circularly shifting any row vector v� right
by i coordinates.

Now, it is trivial to verify that the constraint P�e ≤ e
is equivalent to A1vec(P) ≤ e and the constraint Pe ≤ e
is equivalent to A2vec(P) ≤ e. Therefore, the problem de-
fined in Equation (16) is equivalent to the problem defined in
Equation (17).

max
a∈{0,1}n 2 ×1

vec(X�mX)�a

subject to
[
A�1 A�2

]�a ≤ [e� e�
]�

(17)

which is an integer linear program with a = vec(P). �
Solving the ILP. Since ILP is an NP-complete problem, there

may not exist a polynomial time algorithm to find the optimal
solution. We relax this ILP to a linear program by converting the
constraint a ∈ {0, 1}n2×1 into a ∈ [0, 1]n

2×1 . Now, the above
ILP becomes a linear program. We first solve this LP using
the Karmarkar’s algorithm in [53] which takes O(n3.5) time.

The solution a� = [a�
1 a�

2 . . . a�
n2 ]� of this LP belongs to

[0, 1]n
2×1 which is a continuous solution. However, our final so-

lution af = [af
1 af

2 . . . af
n2 ]
�

of the proposed ILP should
be a discrete solution. We follow the rounding approach, as ex-
plained in ([54], ch. 11). The i-th element af

i of the final solution
is equal to 1, if a�

i ≥ 0.5 and equal to 0, if a�
i < 0.5. This so-

lution af may not be the optimal solution because according to
[54], vec(X�mX)�af ≥ 1

2 × vec(X�mX)�aOP T . Here, aOP T

is the optimal solution of the above ILP.

D. Convergence Analysis

We derive the essential results in order to prove that the alter-
nating optimization framework converges.

Theorem 3: The cost function f(R, t,P) is convex in the
variable t.

Proof: In order to prove this, we prove that the Rieman-
nian Hessian of the function f with respect to the vari-
able t is a positive semi-definite (PSD) matrix. Let ηt =
[ η1 η2 . . . ηd ]� ∈ Rd . Then using the definition of Rie-
mannian metric, we have

〈ηt , Hesst(f)[ηt ]〉t = η�t Hesst(f)[ηt ].

Now, using the Riemannian Hessian Hesst(f)[ηt ] defined in
Equation (15), we have that

η�t Hesst(f)[ηt ] = η�t ηt −
(
T�ηt

)�E(T�ηt
)
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Now let q = T�ηt . Then, we obtain

η�t Hesst(f)[ηt ] = η�t ηt − q�Eq

= ‖ηt‖22 −
d−1∑
u=1

qu + q2
d = ‖ηt‖22 − ‖q‖22 + 2q2

d .

Now, we know that TT� = I. Hence, we have

‖q‖22 = q�q = η�t TT�ηt = η�t ηt = ‖ηt‖22 .

Therefore,

‖ηt‖22 − ‖q‖22 = 0⇒ η�t Hesst(f)[ηt ] = 2q2
d ≥ 0. �

Theorem 4: At the critical point, the matrix T� =
∏d

u=1 R�
u

contains the eigenvectors of the matrix A as columns.
Proof: At the critical point, the Riemannian gradient given in

Equation (13) vanishes. Therefore, ξR j
(Rj ) = 0d×d . Now pre-

multiplying it with (
∏j

u=1 Ru )R�j and then post-multiplying

with (
∏d−1

u=j+1 Ru ), we achieve

AT�E = T�E(T�)�AT� ⇒ (T�)�AT�E = E(T�)�AT� .

Now, let Q =
[Q1

q�3
q2
q4

]
= (T�)�AT� be a matrix. Then, we

have QE = EQ. Therefore,[
Q1 q2

q�3 q4

][
Id−1 0d−1

0�d−1 −1

]
=

[
Id−1 0d−1

0�d−1 −1

][
Q1 q2

q�3 q4

]

⇒ q2 = 0d−1 ,q3 = 0d−1 ,Q1Id−1 = Id−1Q1 .

Since, Id−1 is a diagonal matrix and the equality Q1Id−1 =
Id−1Q1 holds true, it is easy to prove that Q1 is a diagonal
matrix. Therefore, the matrix Q is also diagonal. The spectral
theorem states that every real symmetric matrix has eigenvalue
decomposition with real eigenvalues and orthogonal eigenvec-
tors. Here, we have observed that the matrix A is a real sym-
metric matrix and satisfies Q = (T�)�AT� , where the matrix
Q is a diagonal matrix and the matrix T� is an orthogonal
matrix. Therefore, the matrix T� is the matrix containing the
eigenvectors of the matrix A. In Theorem 5, we prove that the
order of stacking eigenvectors of A as columns of T� affects
the convexity of the problem. �

Theorem 5: The cost function f(R, t,P) is locally convex
in each rotation matrix Rj .

Proof: In order to show the local convexity in Rj , we
have to show that the value 〈RjΩj ,H[RjΩj ]〉R j

≥ 0 in the
neighborhood of the optimal angle θ�

j . Here, H[RjΩj ] =
HessR j

(f(R, t))[RjΩj ]. By using the Riemannian metric de-
fined in Equation (7), we have

〈RjΩj ,H[RjΩj ]〉R j
= trace(Ω�j R�j H[RjΩj ]).

By using Equation (14), the matrix R�j H[RjΩj ] is equal to

0.5[B1 , [R�j B2Rj ,Ωj ]] + 0.5[[Ωj ,B1 ],R�j B2Rj ].

In the supplementary file (§A7), we show that the
trace(Ω�j R�j H[RjΩj ]) is equal to

4× trace(R�j B2Rj (ΩjB1Ωj −ΩjΩjB1)). (18)

Fig. 3. Illustration of the local convexity. The value 〈RΩ ,H [RΩ ]〉R
θ 2 against

the initialization angle θ for 6 reflection symmetry patterns having different
orientations, {0◦, 20◦, 40◦, 60◦, 80◦, 100◦} for symmetry axis. The PSD value
(divided by θ2 ) is positive in the proximity of the optimal angle.

We visualize this term for d = 2. For d = 2, the matrix
Ω =

[ 0
θ
−θ
0

]
, E =

[ 1
0

0
−1

]
, and let A =

[
a1
a2

a2
a3

]
and R =[ cos θ

sin θ
− sin θ
cos θ

]
. We have that

〈RΩ,H[RΩ]〉R = 8a2θ
2 sin(2θ) + 4θ2 cos(2θ)(a1 − a3).

In Fig. 3, we plot the value 〈RΩ ,H [RΩ ]〉R
θ2 against the initializa-

tion angle θ for six reflection symmetry patterns having different
orientations for symmetry axis. We observe that the PSD values
are positive in the proximity of the optimal angles. Therefore,
it is locally convex. We further observe that this quantity is
maximum at the optimal angle. We also observe that, if θ is the
symmetry axis orientation, then the PSD value becomes positive
in the proximity of θ and θ + 180◦. The reason for the second
range is that, if θ is the slope of a line, then θ + 180◦ is also the
slope of the same line.

In Theorem 4, we claimed that the order in which the
eigenvectors are stacked as columns of the matrix R affects
the local convexity. We prove it as follows. At the criti-
cal point, we have that R�AR = diag(d1 , d2). We note that
ΩjB1Ωj −ΩjΩjB1 = E for d = 2. Now from Equation (18),
we achieve

〈RΩ,H[RΩ]〉R = d1 − d2 ⇒ d1 ≥ d2 .

Therefore, the first column of the matrix R� should be the
eigenvector corresponding to the maximum eigenvalue and the
second column of the matrix R� should be the eigenvector
corresponding to the minimum eigenvalue of the matrix A. �

Theorem 6: The proposed alternating framework converges
to the global minimum if the initialization of the rotation ma-
trices R1 , . . ., Rd−1 are within the proximity of the optimal
rotation matrices and initialization of the translation t is any
random vector.

Proof: We observe that the proposed alternation framework
is basically the block coordinate descent (BCD) method, where
(R1 , . . . ,Rd−1 , t) and P are two blocks of coordinates. Ac-
cording to [55], the BCD method converges if the cost function
is convex in each block of coordinates. Here, we have seen that
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Fig. 4. We plot the error at the convergence point against the initialization
angles for the case d = 2 (we shift the error vectors for different optimal angles
so that the optimal angle is always 90◦). We observe that the variance in the
error becomes zeros for initialization angle θ0 ∈ (90◦ − 12◦, 90◦ + 9◦) and
θ0 ∈ (270◦ − 12◦, 270◦ + 9◦).

Algorithm 1
1: Input: Set of points S = {xi}ni=1 .
2: Initialize angles θ0 and translation t.
3: Solve the ILP defined in Equation (17) for P.
4: For this P, solve for (R, t) using the

Riemannian-trust-region method using the
Riemannian gradient and Hessian defined in Equations
(12), (13), (14), and (15).

5: Keep iterating steps 3 and 4 till convergence.
6: Output: The optimal R�

1 ,R
�
2 , . . . ,R

�
d−1 and t� .

the cost function is convex in the coordinates t (Theorem 3),
convex in the coordinatesP on the relaxed domain [0, 1]n×n , and
locally convex in the coordinates (R1 , . . . ,Rd−1) (Theorem 5).
This implies that if the initialization of (R1 , . . . ,Rd−1) is within
the proximity of the optimal solution, then the alternating frame-
work converges to the global minimum. We experimentally
show this theorem for the case d = 2. We use the dataset for
d = 2 with σ = 0 as mentioned in §V-B. In Fig. 4, we plot
the error (averaged over all optimal angles) at the convergence
point against the initialization angles for the case d = 2 (we
shift the error vectors for different optimal angles so that the
optimal angle is always 90◦). We observe that the variance be-
comes zero for initialization angle θ0 ∈ (90◦ − 12◦, 90◦ + 9◦)
and θ0 ∈ (270◦ − 12◦, 270◦ + 9◦). The reason for the second
range is that, if θ is the slope of a line, then θ + 180◦ is also the
slope of the same line. �

In summary, in order to obtain the optimal (R� , t� ,P�), we
follow Algorithm 1.

Initialization Strategy: In the Theorem 5, we have shown
that f(R, t,P) is locally convex in rotation matrix R. There-
fore, Algorithm 1 converges to the global minimum if we initial-
ize the rotation matrix in the proximity of the global solution.
Hence, we approximate the initial R by finding a small set
of candidate pairs of mirror symmetric points. We discuss the

proposed approach for finding a small set of candidate pairs of
mirror symmetric points as follows.

Let us consider the input set S = {xi}ni=1 . We propose a
randomized approach to find a small set of candidate pairs
of mirror symmetric points. We select two points, xp and
xq , uniformly at random from the set S. Let xp ′ and xq ′ be
their actual mirror images, respectively. We then construct two
sets, P = {(xp ,xi)}ni=1,i �=p,q and Q = {(xq ,xi)}ni=1,i �=q ,p of
pairs of points. Given the sets P and Q, our goal is to find
the pairs (xp ,xp ′) and (xq ,xq ′). It is trivial to observe that
(xp ,xp ′) ∈ P and (xq ,xq ′) ∈ Q. We note that each pair of
points define its own symmetry plane, the one which is perpen-
dicular to the line segment joining the two points and passing
through the mid-point of this line segment. Now, if the pairs
(xp ,xp ′) and (xq ,xq ′) are true pairs then both the reflection
planes, defined by these two pairs, should be the same. For
each pair (xp ,xi) ∈ P , we keep sampling a pair (xq ,xj ) ∈ Q
uniformly at random without replacement until the reflection
planes defined by these two pairs are the same. We determine
whether the two reflection planes, defined by these two pairs,
πpi : η�pix− cpi = 0 and πqj : η�qjx− cqj = 0 are the same

if the conditions, cos−1(η�piηqj ) ≤ εθ and min{dq ,dj }
max{dq ,dj } ≥ 1− εd

are true. Here, ηpi = xp −x i

‖xp −x i ‖2 is the normal vector to the plane

πpi , cpi = η�pi(
xp +x i

2 ) is the distance of the origin from the

plane πpi , ηqj = xq −xj

‖xq −xj ‖2 is the normal vector to the plane

πqj , cqj = η�qj (
xq +xj

2 ) is the distance of the origin from the
plane πqj , dq = |η�pixq − cpi |, and dj = |η�pixj − cpi |.

We repeat the above procedure ten times. With this, we get a
set of 20 (2 for each run) candidate pairs of mirror symmetric
points. Since we consider the case where only a single symmetric
object is present in the input set, we consider the median plane of
the 20 planes defined by the above computed 20 candidate pairs.
Now, we use the normal η to this median plane for initialization.
We also initialize the initial translation vector t as the median
of the mid-points of the line segment joining the points of the
candidate pairs of the mirror symmetric points.

First, we subtract each data point of the point cloud from the
estimated t of the point cloud. This ensures that the reflection
symmetry plane passes through the origin. Now, we know the
unit normal to the reflection symmetry plane. Therefore, we
use the Householder transform to reflect each point which is
xi ′ = (I− 2ηη�)xi . Therefore, we have the matrix X contain-
ing the original point cloud and the matrix Xm containing the
reflected point cloud about the estimated reflection symmetry
plane. Now, using X and Xm, we solve the linear assignment
problem, defined in Equation (17) to find the matrix P. Now,
we use these approximate correspondences to estimate the re-
flection symmetry plane as step 4 of Algorithm 1.

IV. TIME COMPLEXITY

There are two main steps involved in our algorithm. The first
one is to solve for reflection symmetry transformation matrices
R1 ,R2 , . . . ,Rd−1 , t using the Riemannian trust region [51].
The second step is to find the pairs of reflective symmetric
points using an integer linear program. The time complexity
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of Riemannian trust region method is O(nd2). Since solving
integer linear program is an NP -complete problem, we first
relax it to a linear program (as discussed at the end of §III-C). The
time complexity of solving a linear program is polynomial in
the number of points in the point cloud. We use the Karmarkar’s
algorithm in [53] which has the time complexity of O(n3.5).
Therefore, the overall complexity of our approach is polynomial
in the number of points in the point cloud which is equal to
O(nd2) + O(n3.5) ≈ O(n3.5), since d << n. It takes around
38.4 seconds (d = 3) to find the symmetry plane and all the
pairs of mirror symmetric points in a point cloud with 500
points using MATLAB on a Linux machine with i7-7500U CPU
@ 2.70GHz, and 16GB RAM.

V. EVALUATION AND RESULTS

A. Evaluation of Reflection Symmetry Plane

In order to evaluate the performance of reflection symmetry
plane detection, we compare the performance of our approach
with the performance of the methods in [12], [13], and [11].
We compare the detected plane of reflection symmetry to that
of these methods on the dataset in [56] with F-score as the
evaluation metric proposed in [56]. The dataset given in [56]
contains models of 1354 3D real world objects in which the
ground-truth plane of reflection symmetry is provided for all
the objects.

Speciale et al. proposed a Hough transform voting based
approach [11]. Ecins et al. proposed an ICP based approach
[12]. First, they initialize the reflection symmetry plane and
then iteratively update the reflection symmetry plane using the
Levenberg-Marquardt solver till convergence. They have further
used the normals at each point to reject outliers points. There-
fore, they need oriented point clouds, i.e., normal at each point
be given. Cicconet et al. first reflected the original point cloud
about an arbitrary reflection plane and then used the ICP algo-
rithm to align the original point cloud and the reflected point
cloud [13]. Then, they determine the reflection symmetry plane.

In order to evaluate the accuracy of detecting reflection sym-
metry plane for each method, we find the precision and recall
rates and the F -score. According to [56], the precision and
the recall rates are defined as P = T P

T P +F P , R = T P
T P +F N , re-

spectively. The F -Score is defined as F = 2RP
R+P . According

to [56], TP is equal to the number of correctly estimated re-
flection symmetry planes, FP is equal to the number of incor-
rectly estimated reflection symmetry planes, and FN is equal to
the number of ground-truth reflection symmetry planes which
are not detected. According to [56], a detected plane of reflec-
tive symmetry is declared to be correct or incorrect as follows.
Let xe

1 , xe
2 , and xe

3 be three points on the detected plane of
reflection symmetry. Let xg

1 , xg
2 , and xg

3 be three points on
the ground truth plane of reflection symmetry of the underly-
ing symmetric object. These three points on the plane of re-
flection symmetry planes are any three points from the four
points of intersection of the plane of reflection symmetry with
the bounding box of the underlying reflective symmetric ob-
ject. Now, according to [56], the detected plane of reflection

Fig. 5. Recall vs Precision curves for methods Cicconet et al. [13], Ecins et al.
[12], Speciale et al. [11], and the proposed approach on the dataset given [56]. We
show the maximum F-score for each method in the legends and corresponding
points on the precision vs. recall curve using the same colored point.

symmetry is declared correct if the angle between the normal
of the detected plane of reflection symmetry, which is defined
as ηe = (xe

1 − xe
2)× (xe

1 − xe
3), and the normal of the ground

truth plane of reflection symmetry, which is defined as ηg =
(xg

1 − xg
2)× (xg

1 − xg
3), is less than a predefined threshold, i.e.,

cos−1( |η�e ηg|
‖ηe‖2 ‖ηg‖2 ) < tθ . Furthermore, according to [56], the dis-

tance between the center of the detected plane of reflection
symmetry, which defined as ce = xe

1 +xe
2

2 , from the ground truth
plane of reflection symmetry is less than a predefined threshold,

i.e.,
|c�e ηg−η�g xg

1 |
‖ηg‖2 < td . In order to find the precision vs. recall

curve, we change the threshold for angle as tθ ∈ [0, 45◦] and
the threshold for distance as td ∈ [0, 2s]. Here, s = min{‖xe

1 −
xe

2‖2 , ‖xe
1 − xe

3‖2 , ‖x
g
1 − xg

2‖2 , ‖x
g
1 − xg

3‖2}. In Fig. 5, we plot
the recall vs. precision curves for the methods in [11]–[13], and
the proposed approach on the dataset given in [56]. We show the
maximum F -score for each method in the legends. The maxi-
mum F -score for [12] is equal to 0.83, for [13] is equal to 0.67,
for [11] is equal to 0.73, and for the proposed approach is equal
to 0.86.

B. Robustness to Perturbations

In order to measure the qualitative performance of the pro-
posed approach, we investigate the following two errors which
are functions of the perturbation radius σ2 :

ed =
1
n

n∑
i=1

| 〈ẑi , v̂〉 | and em =
1
n

n∑
i=1

| v̂�xm
i + w0 | .

The error ed represents how well the vectors, along the line seg-
ments joining the estimated reflection symmetry points, align

Authorized licensed use limited to: Indian Institute of Technology - Jodhpur. Downloaded on November 02,2022 at 04:20:28 UTC from IEEE Xplore.  Restrictions apply. 



NAGAR AND RAMAN: DETECTING APPROXIMATE REFLECTION SYMMETRY IN A POINT SET USING OPTIMIZATION ON MANIFOLD 1591

Fig. 6. The values ed and em vs the perturbation radius σ2 . (a) d = 2, and
(b) d = 3. We observe that the performance measure quantities ed and em remain
close to that of the ground truth quantities.

Fig. 7. An example point set for d = 2.

with the normal to the hyperplane π at convergence. The error
em represents how well the mid-points of line segments join-
ing reflection symmetry points lie on the estimated hyperplane
π. Here, ẑi = x i−x i ′

‖x i−x i ′ ‖2
, v̂ is the unit normal to the hyper-

plane π, xm
i = x i +x i ′

2 , and w0 is the distance of the hyperplane
π from the origin. In Fig. 6, we show the errors ed and em

against the perturbation radius σ2 . We observe that the val-
ues em and ed for the proposed approach are close to that of
the ground-truth reflection symmetry even as the value of σ2 in-
creases. We construct the following dataset to perform the above
experiment. Let {x1 ,x2 , . . . ,x n

2
} be the randomly chosen n

2
points. Given the reflection transformations {R1 , . . . ,Rd−1 , t},
we reflect these points using the Definition 1 in order to get
the final symmetric set S = {x1 ,x2 , . . . ,x n

2
,x′1 ,x

′
2 , . . . ,x

′
n
2
}.

Then, we perturb each point with random noise as x← x +
N (0d , diag(σ2 , σ2 , . . . , σ2)),∀x ∈ S. Here, σ2 is the perturba-
tion radius and the perturbation is different for each point. For the
case d = 2, we create sets containing reflection symmetry pat-
terns with n ∈ {50, 100, 150, 200, 250, 300}with 0 ≤ x, y ≤ 1.
For each n, we take 19 different symmetry axis orientations
in the range from −90◦ to 90◦ with step size of 10◦. We
choose σ2 ∈ {0, 0.01, 0.02, . . . , 0.1} to get 11 different per-
turbations. In total, we have 1254 sets for the evaluation.
In Fig. 7, we show an example point set from this dataset.
For the case d = 3, we create reflective symmetric sets with
n ∈ {50, 100, 150, 200, 250, 300} with 0 ≤ x, y ≤ 1. For each

Fig. 8. Correspondence rate vs distance threshold curves for d = 6 and d = 8.

n, we take 16 different symmetry plane orientations by consid-
ering θ1 ∈ {−30◦, 0◦, 35◦, 80◦} and θ2 ∈ {−30◦, 0◦, 35◦, 80◦}.
We choose σ2 ∈ {0, 0.01, . . . , 0.1}. In total, we obtain 1056
point sets.

C. Evaluation in Higher Dimensional Data

Datasets. Since datasets for higher dimensions (d > 3) are
not available with ground-truth reflection symmetry, we synthet-
ically create datasets as follows. For the case d = 6 and d = 8,
we create mirror symmetric point clouds using Definition 1,
with n ∈ {50, 100, 150, 200, 250, 300} and 0 ≤ x, y ≤ 1. For
each n, we take 20 random symmetry plane normals. We choose
σ2 ∈ {0, 0.02, 0.04, . . . , 0.1} to get 6 different perturbations. In
total, we have 720 sets for evaluation. For all these point clouds,
we have the ground-truth correspondences between the sym-
metric points and the normals to the ground-truth symmetry
planes.

Evaluation of correspondences. In order to evaluate the
performance, we measure the correspondence rate which is
the number of correct correspondences out of the estimated
correspondences. Let (i, i′e) be the estimated correspondence
and let (i, i′g) be the ground-truth correspondence. Then, we
decide if the estimated correspondence (i, i′e) is correct based
on a distance threshold τd . If the distance ‖xi ′e − xi ′g‖2 between
the points xi ′e and xi ′g is less than the distance threshold
τd , then the correspondence (i, i′e) is correct and otherwise,
incorrect. For a given threshold τd , we count the correspon-
dences (i, i′e) for which the condition ‖xi ′e − xi ′g‖2 < τd

holds true. In Fig. 8, we show the correspondence rate vs the
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Fig. 9. Precision rate vs angle threshold curves for d = 6 and d = 8.

distance threshold curves for the different perturbation radius
σ2 ∈ {0, 0.02, 0.04, . . . , 0.1} and for d = 6 and d = 8. We vary
the distance threshold as τd ∈ {0, 0.01, 0.02, . . . , 0.34}. We
observe that the correspondence rate increases as the distance
threshold increases and the correspondence rate decreases as
the perturbation radius increases for both d = 6 and d = 8.

Evaluation of symmetry plane. To evaluate the performance
of the reflection plane detection in higher dimensional point
clouds (d > 3), instead of finding d− 1 points on the esti-
mated hyperplane (since finding d− 1 points could be diffi-
cult), we measure the distance between their normals. Without
loss of generality, we prepare the dataset such that the reflec-
tion symmetry plane passes through the origin. Now, let ηg

and ηe be the unit normals to the ground-truth and the esti-
mated reflection symmetry planes, respectively. Then, we de-
clare the estimated reflection symmetry plane to be correct, if
cos−1(|(ηg)�ηe|) < τθ . We vary the angle threshold τθ in the
range [0◦, 5◦] with a step size of 0.01◦. In Fig. 9, we show the
precision rate vs the angle threshold τθ curves for different per-
turbation radius σ2 ∈ {0, 0.02, 0.04, . . . , 0.1} and for d = 6 and
d = 8. We observe that the precision rate increases as the an-
gle threshold increases and decreases as the perturbation radius
increases for both d = 6 and d = 8.

D. Results

In Fig. 10, we show the detected reflection symmetry for two
real 3D scans of buildings from the dataset [56]. In Fig. 11, we
present the results for the case d = 3. The point cloud in Fig. 10
(top) contains 912045 points and the point cloud in Fig. 10
(bottom) contains 767474 points. Since the computational

Fig. 10. Detected reflection symmetry on two real 3D scans of buildings from
the dataset [56].

complexity is O(n3.5) + O(nd2), the computation time and
space requirement (storing the matrices A1 and A2) are very
high. Therefore, in order to compute the reflection symmetry
in these scans, we randomly sample around 600 points. In both
cases, we show the reflection symmetry plane by the blue color
and estimated pairs of reflective symmetric points by the red
colored line segment joining them. In order to make our al-
gorithm robust to the part removal, we simply put the extra
constraint e�Pe ≤ 2k in ILP defined in Equation (17) which
limits the number of pairs to at most k. For d = 2, we detect
reflection symmetry in the set of corner points in a real image.
In order to determine the symmetry axis, we use Theorem 2.
For d = 3, we use existing standard 3D models dataset [57].
In order to calculate the symmetry axis in an image using the
proposed approach, we first find the set of corner points [58].
This set may contain the corners not lying on the symmetric ob-
ject. Therefore, we apply the proposed approach with RANSAC
[59]. We compare the proposed results with the results of two
descriptor based methods [39] and [46]. We evaluate on real and
synthetic images containing single symmetric object from the
dataset [60]. In TABLE I, we present the precision and the recall
rates. We observe that for synthetic images, the precision rate is
very high for the proposed approach because most of the corner
points lie on the symmetric object. Whereas, in real images, the
set of corner points contains many outlier corners which leads
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Fig. 11. Results of symmetry detection in the 3D object models from the dataset [57]. In the first and third columns we show the point set on the original surface.
And in the second and fourth columns we show the detected reflection symmetry. The correspondences are shown by joining the mirror symmetric points by the
black colored lines. The Reflection symmetry plane is shown in light brown color. The mid-points of the mirror symmetric points are show in blue color. Here, we
show the surface for visualization purpose only.

Fig. 12. Results of symmetry detection in real images from the dataset [60]–[62]. We show the set S using green points, the reflection symmetry axis by a red
line, and the correspondences between the mirror symmetric points by the blue lines.

TABLE I
PRECISION AND RECALL RATES FOR THE METHODS [39], [46], AND THE

PROPOSED APPROACH ON THE DATASET [60]

to the degraded performance. Precision rates for the proposed
approach are higher than that for the methods [39] and [46]. The
recall rates are better than that of the method [39] and compara-
ble to that of the method [46]. This leads to the conclusion that
symmetry detection can be performed even when the feature
descriptors are not available. In Fig. 12, we show the results on

the datasets [61], [62], and [60]. The last two images show the
failure cases from the datasets [60]. The reason could be that
the pixels which are responsible for symmetry detection such as
pixels on eyes and ear tips in the second image are not detected
in the corner point detection step.

Influence of Different Initializations. We first create the
following dataset of 3D point clouds. We create 5000 point
clouds {Si}5000

i=1 with known ground-truth symmetries as dis-
cussed in §5.2. We keep 500 points in each point cloud.
Without loss of generality, we choose the reflection sym-
metry plane such that it makes 90◦ angle with x-axis and
y-axis, i.e., the x-y plane. For each point cloud, we ini-
tialize the variable t0

i = mean(Si) and (θ0
x , θ0

y ) on every
point of the grid domain {−90◦,−80◦, . . . ,+80◦,+90◦} ×
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Fig. 13. Average error e(θ0
x , θ0

y ) vs the initialization angles (θ0
x , θ0

y ).

{−90◦,−80◦, . . . ,+80◦,+90◦}. We then run our approach
and measure the error at the convergence ei(θ0

x , θ0
y ) =∥∥R�

xR
�
yE(R�

xR
�
y )�(Xi − t�e�) + t�e� −XiP�

∥∥2
F

for each
initialization (θ0

x , θ0
y ). Then, we find the average error

e(θ0
x , θ0

y ) = 1
5000

∑5000
i=1 ei(θ0

x , θ0
y ). Here, Rx and Ry are de-

fined as follows.

Rx =

⎡
⎢⎣
1 0 0
0 cos θ0

x − sin θ0
x

0 sin θ0
x cos θ0

x

⎤
⎥⎦,Ry =

⎡
⎢⎣
cos θ0

y 0 − sin θ0
y

0 1 0
sin θ0

y 0 cos θ0
y

⎤
⎥⎦.

In Fig. 13, we show the average error e(θ0
x , θ0

y ). We observe that
if the initialization (θ0

x , θ0
y ) is far away from the global optimum

(0◦, 0◦), then the error is very high. As the distance between
the initialization angles (θ0

x , θ0
y ) and the global optimum an-

gles (0◦, 0◦) decrease, the error e(θ0
x , θ0

y ) remains approximately
constant and suddenly drops to near zero after a particular dis-
tance. This indicates that, if the initialization angles are within a
particular distance from the global optimum, then our approach
always find the global optimum solution. This empirical result
concurs with the result we already proved in Theorems 5 and 6.

VI. CONCLUSION

In this work, we have developed a theory for establishing the
correspondences between the mirror symmetric points in Rd .
We, further, determine the reflection symmetry transformation
in a volumetric set of points in Rd containing a perturbed re-
flection symmetry pattern using optimization on Riemannian
manifold. We have shown that our method is robust to a signif-
icant amount of perturbation and achieves 100% accuracy for
no perturbation. We have further shown the significance of this
work by detecting reflection symmetry in real images and com-
paring with state-of-the-art methods. The proposed approach is
particularly suitable for detecting reflection symmetry of ob-
jects in applications where obtaining a robust local descriptor
is highly challenging. The linear assignment problem is a time
consuming step which restricts us to apply it on the large point
sets. However, a proper sampling method can be employed to
reduce the size of the point set without losing the symmetry
present in the point set. We believe that the fundamental theory
and algorithm developed in this work will pave the way for re-
searchers to exploit them for scenarios where estimating feature
descriptors is a challenging task.

Our approach detects single reflection symmetry plane of an
object. Consider the third row of Fig. 11 in which there are
multiple reflection symmetry planes present. In such cases, the
detected reflection symmetry plane will be the one to which the
initialized plane is the closest. For example, in the third row
of Fig. 11, we have shown both the reflection symmetry planes
detected depending on different initializations. This may not be
a proper way of detecting multiple symmetries, though this is an
interesting direction. We would like to extend our approach for
the detection of multiple reflection symmetry planes of a sym-
metric object exhibiting multiple symmetries or a point cloud
containing more than one symmetric objects.
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