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ABSTRACT

Designing deep neural network classifiers that perform robustly on distributions
differing from the available training data is an active area of machine learning
research. However, out-of-distribution generalization for regression—the analo-
gous problem for modeling continuous targets—remains relatively unexplored. To
tackle this problem, we return to first principles and analyze how the closed-form
solution for Ordinary Least Squares (OLS) regression is sensitive to covariate shift.
We characterize the out-of-distribution risk of the OLS model in terms of the eigen-
spectrum decomposition of the source and target data. We then use this insight
to propose a method for adapting the weights of the last layer of a pre-trained
neural regression model to perform better on input data originating from a different
distribution. We demonstrate how this lightweight spectral adaptation procedure
can improve out-of-distribution performance for synthetic and real-world datasets.

1 INTRODUCTION

Despite their groundbreaking benchmark performance on many tasks—from image recognition and
natural language understanding to disease detection (Balagopalan et al., 2020; |[Krizhevsky et al.|
2017;|Devlin et al., 2018)—deep neural networks (DNN5) tend to underperform when confronted
with data that is dissimilar to their training data (Geirhos et al.}|2020; |D’ Amour et al.,[2020; |Arjovsky
et al., [2019; [Koh et al.| 2021). Understanding and addressing distribution shift is critical for the
real-world deployment of machine learning (ML) systems. For instance, datasets from the WILDS
benchmark (Koh et al.l [2021) provide real-world case studies suggesting that poor performance
at the subpopulation level can have dire consequences in crucial applications such as monitoring
toxicity of online discussions, or tumor detection from medical images. Furthermore, DeGrave et al.
(2021) demonstrated that models trained to detect COVID-19 from chest X-Rays performed worse
when evaluated on data gathered from hospitals that were not represented in the training distribution.
Unfortunately, poor out-of-distribution (OOD) generalization remains a key obstacle to broadly
deploying ML models in a safe and reliable way.

While work towards remedying these OOD performance issues has been focused on classification,
predicting continuous targets under distribution shift has received less attention. In this paper, we
present a lightweight method for updating the weights of a pre-trained regression model (typically
a neural network, in which case only the final layer is updated). This method is motivated by a
theoretical analysis that yields a concrete reason, which we call Spectral Inflation, to explain why
regressors may fail under covariate shift, a specific form of distribution shift. We then propose a
post-processing method that improves the OOD performance of regression models in a synthetic
experiment and three real-world datasets.

2 BACKGROUND

Distribution shift problems involve training on inputs X and target labels Y sampled from P(X,Y),
then evaluating the resulting model on a distinct distribution Q(X,Y"). Several learning frameworks
consider different forms of distribution shift, depending on the structure of P and the degree of prior
knowledge about () that is available. For example in Domain Adaptation (DA) (Ben-David et al.,
2006), unlabelled data (unsupervised DA) or a small number of labelled examples (semi-supervised
DA) from () are used to adapt a model originally trained on samples from P. In some of our
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Figure 1: Ordinary Least Squares Regression under Covariate Shift. (a) Points are 2D input
samples in the training set X and test set Z. The in-distribution (ID) training data demonstrates
nearly zero vertical variance, while the out-of-distribution (OOD) test data varies significantly in this
direction. (b) Samples in Z colored according to their true, noiseless labels Zw™. (c) Samples in Z
colored according to their OLS predictions Zw. Crucially, to minimize training risk, OLS learns
to weigh the vertical component highly causing erroneous predictions OOD. (e) SpAR identifies a
spectral subspace S where train/test variance differ the most, and projects it out. Thus, the regressor
created by SpAR ignores the direction with high variance and nearly recovers w*.

experiments, we conduct unsupervised DA. In others the setting is very similar to unsupervised DA,
with the exception that we update our model directly on the unlabeled test examples X ~ Q(X)
rather than on an independent sample X’ ~ Q(X) not used for evaluation. This setting is realistic
and relevant to machine learning (Shocher et al., 2018; |Sun et al., 2020; Bau et al., 2020).

We also assume the distribution shift is due to covariate shift, where the conditional distribution over
the evaluation data Q(Y'| X) is equal to the conditional distribution over the training data P(Y|X),
but the input marginals P(X) and Q(X) differ. This broadly studied assumption (Sugiyama et al.|
2007} |Gretton et al.| [2009; Ruan et al.,|2021) states that the sample will have the same relationship to
the label in both distributions. Within this setting, we turn our attention to the regression problem.

3 ROBUST REGRESSION BY SPECTRAL ADAPTATION

Least-squares regression has a known closed-form solution that minimizes the training loss, and
yet this solution is not robust to covariate shift. In this section we show why this is the case by
characterizing the OOD risk in terms of the eigenspectrum of the source and (distribution-shifted)
target data. We then use insights from our theoretical analysis to derive a practical post-processing
algorithm that uses unlabeled target data to adapt the weights of a regressor previously pre-trained on
labeled source data. The adaptation is done in the spectral domain by first identifying subspaces of the
target and source data that are misaligned, then projecting out the pre-trained regressor’s components
along these subspaces. We call our method Spectral Adapted Regressor (SpAR).

3.1 ANALYZING OLS REGRESSION UNDER COVARIATE SHIFT

We begin with the standard Ordinary Least Squares (OLS) data generating process (Murphy, [2022).
Rows of the input data matrix, X € RV*Pare i.i.d. samples from an unknown distribution P
over R?; these can be any representation, including one learned by a DNN from training samples.
The rows of the evaluation input data, Z € RM*P are generated using a different distribution @
over RP. Analyzing final layer representations is useful as DNN architectures typically apply linear
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Figure 2: Spectral Inflation. We use the PovertyMap-WILDS dataset (Koh et al.,|2021) to investigate
how input spectra change when a regressor trained on real-world data generalizes to (perhaps shifted)
test data. X and Z are composed of representations from a DNN. Z represents data either from an
in-distribution or out-of-distribution test set. Var, ;, as defined in Equation @, measures the amount
of Spectral Inflation—small amounts of training set variation becoming large at test time—occurring
along a given test eigenvector. Because each test sample has a different number of examples M, we
normalize for a fair comparison. We see that when Z is an out-of-distribution sample, much more
spectral inflation occurs than when we generalize to an in-distribution sample.

models to these to make predictions. Targets depend on X and w*, a labeling vector in R”, and a
noise term €. The targets associated with the test data Z use the same true labeling vector w* but do
not include a noise term as it introduces irreducible error:

X~PN, Yy=Xuw"'+e e~N(0,0%I), Z~QM, Y,=Zuw". ()

The estimated regressor w that minimizes the expected squared error loss has the following form (Mur-
phyl 2022), using X T, the Moore-Penrose Pseudoinverse of X, and its singular value decomposition,
X =Vx DL UL

argmin E[||Yx — Xwl||?] = o = XTYx = Vx DL U V. 2)

We refer to w as the “OLS regressor” or “pseudoinverse solution”. Our primary expression of interest
will be the expected loss of w under covariate shift, which is the squared error between the true labels
Y7 and the values predicted by our estimator w. Specifically, we will analyze the expression:

RiskoLs—oop (@) = E[[|Yz — Z|[3]. 3

In addition to using the singular value decomposition X = Ux SxVy , we can also use the singular
value decomposition of the target data Z = Uz S ZVZT . We define A, ;, A, ; to be the ith singular
values of X and Z, respectively, and e, ;, e, ; their corresponding unit-length right singular vectors.
We will also refer to /\i’i, /\E',i and e, ;,e.; as eigenvalues/eigenvectors, as they comprise the
eigenspectrum of the uncentered covariance matrices X ' X and Z ' Z. We use the operator Rows()
to represent the set containing the rows of a matrix. The OOD risk of w is presented in the following
theorem in terms of interaction between the eigenspectra of X and Z:

Theorem 1 Assuming the data generative procedure defined in Equations [I, and that w* €
Span(Rows(X)) and Rows(Z) C Span(Rows(X)), the OOD squared error loss of the estima-
tor w = XY is equal to:

D D 2
AL
E[|Yz - Zd|3] = 0> > /\Q’J (€z,ir€2,5) 1 [Aei > 0]. 4)

i=1j=1 "%

This theorem indicates that if the samples in Z present a large amount of variance along the vector

e.,j, resulting in a large eigenvalue /\? ;» but the training set X displays very little variance along
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vectors at very similar angles, w will incur high loss. We refer to this scenario, when an eigenvector
demonstrates this spike in variance at test time, as Spectral Inflation. An illustration of Spectral
Inflation and its consequences are depicted in Figure[I] and we present evidence of Spectral Inflation
occurring in DNN representations in a real-world dataset in Figure[2] The analysis follows from the
cyclic property of the trace operator, which allows us to isolate the noise term e. This, in turn, enables
a decomposition of the remaining expression in terms of the two eigenspectra of Z' Z and X ' X. A
full derivation of this decomposition is available in Appendix B}

3.2 SPECTRAL ADAPTATION THROUGH PROJECTION

We now focus on identifying the eigenvectors occupying the rows of V] that contribute significantly

to the expected loss described in EquationH and use them to construct a subset S C Rows(V,} ). We
then use .S to construct a new regressor wpyoj, by projecting w onto the subspace spanned by the
eigenvectors in S€¢, the complement of S:

Wproj = W — Z(ﬁ), ee. 5)

ecS

This regressor is not influenced by the Spectral Inflation displayed along each eigenvector in S, as
Wproj €Xists in a subspace orthogonal to the subspace spanned by the vectors in S. Specifically, we
can decompose the loss for this estimator wy,,; into a sum over each eigenvector in Rows(V,; ),
where the contribution of the eigenvector e, ; to the loss is determined by whether that eigenvector is
included in the set . The following theorem expresses the expected OOD loss of wproj:

Theorem 2 Taking on the same assumptions as Theorem the regressor Wpyyo;j constructed using a
set S C ROWS(VZT ) as defined in Equation@ has the following expected OOD squared error loss:

D 42
A,
E(|Yz - Zwpoil3l = D> o) 2 (exirez i) MAei > 01+ D (w* ez ;)?A2 .
Jrex,; €S i=1 " Jrez ;€S
—_—
Var, ; Bias. ;

The proof for this theorem is similar to the proof of Theorem I in that it uses the cyclic property of
the trace to isolate the noise term. We then use the fact that each e, ; € S is an eigenvector of Z ' Z
to further decompose the expression. A full derivation of this decomposition is included in Appendix
This case-like decomposition of the loss motivates our definition of the two different loss terms a
single eigenvector e, ; can contribute to the overall expected loss. For a given eigenvector e, ; with
associated eigenvalue )\37 > we will incur its variance loss if e, ; ¢ S, and its bias loss if e, ; € S,
where the variance loss Var, ; and bias loss Bias, ; are defined as:

D>\2‘

Bias, ; = (w*,em}z)\;j, Var, ; = o° Z )\;’] {exirez ) 1[Ap > 0]. 6)
i=1 "®0

Var, ; is closely tied with the Spectral Inflation of an eigenvector, as Var, ; will be large if e ;
demonstrates Spectral Inflation at test time. In this case if e, ; € S, wproj Will have higher loss as a
consequence of the label noise on the training examples distributed along this eigenvector. On the
contrary, Bias ; is determined by the cosine similarity between the true labeling regressor w* and
the eigenvector e, ;. High cosine similarity means that this eigenvector makes a large contribution
to determining a sample’s label. If e, ; € S and e ; has a large cosine similarity to w*, wpro; Will
incur a high amount of loss as it is orthogonal to this important direction.

3.3 PROJECTION REDUCES OUT-OF-DISTRIBUTION LOSS

Thus far, we have presented a decomposition for the expected loss of an estimator that is equal to the
pseudoinverse solution 1 projected into the ortho-complement of the span of the set S C Rows(V} ).
In this subsection, we present a means for constructing the set S to minimize the expected loss by
comparing Var, ; and Bias; ; for each test eigenvector e, ;.
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The ideal set S* C Rows(V,} ) would consist solely of the eigenvectors e, ;j that have a greater
variance loss than bias loss. Formally, this set would be constructed using the following expression:

S* = {ez,j tesj € ROWS(VZT),VaI'zJ' > Biaszyj} . @)

The following theorem demonstrates that using the set S* would give us a regressor that achieves
superior OOD performance than the pseudoinverse solution.

Theorem 3 Under the same assumptions as Theorem [I, the regressor wyo; constructed as in
Equationd|using the set S* (cf. Equation[7) can only improve on the OOD squared error loss of the
pseudoinverse solution w:

E[|[Yz — Zwl3] > E[l[Yz — Zwproj 3]- ®)

3.4 EIGENVECTOR SELECTION UNDER UNCERTAINTY

Theorem |3 shows that a regressor based on the set S* works better OOD. Finding S* would be
easy if we knew both Var, ; and Bias, ; for each test eigenvector e, ;. While we can calculate
Var, ; directly, Bias, ; requires the true weight vector w*, and so we can only estimate it using the
pseudoinverse solution w:

_
Bias, ; = (w, ez,j>2/\2

2= e +e" XTTe, ;)2N2 . 9)

We fortunately have knowledge of some of the distributional properties of the dot product being
squared: (1, e, ;). In particular, w* e, ; is a fixed but unknown scalar and " X' Te, ; is the linear
combination of several i.i.d. Gaussian variables with zero mean and variance 2.

" XTe, ;N\, ; ~N(0,Var, ;), (i,e,;)\.; ~N(\/Bias, ;, Var, ;). (10)

The fact that Bias, ; is a random variable makes it difficult to directly compare it with Var, ;.
However, we can analyze the behavior of Bias, ; when Bias, ; is much larger than Var, ;, and vice
versa, in order to devise a method for comparing these two quantities.

(Case 1): Bias, ; > Var, ;. In this case, Bias, ; ~ Bias, ;. This is because w* e, ; will be

much greater than e’ XTTe, j» which causes the former term to dominate in the RHS of Equation @
Therefore Bias, ; > Var, ;.

(Case 2): Var, ; > Bias, ;. In this case, Bias, j ~ (e' X1Te, ;)2 ;. This is because w* e, ;
will be much smaller than €' X' e, ;, which causes the latter term to dominate in the RHS of
Equation[9]

Therefore, since Equation @indicates (eTX TTeZ, j))\z’ ; 18 a scalar Gaussian random variable, we
know the distribution of its square:

Bias. ; ~ Var,; x x3_1, (11)
where X¢2if:1 is a chi-squared random variable with one degree of freedom. If CDF;glf » is the
inverse CDF of the chi-squared random variable, then we have:

Pr(]gi—\asz’j < CDF;ilfﬂ(a) x Var, ;) = a. (12)
By applying these two cases, we can construct our set .S as follows:
§={e.;: Bias.; < CDFJ _ (a) x Var.; }. (13)

The intuition behind this case-by-case analysis is formalized with the following proposition and
lemma:
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Algorithm 1 Spectral Adapted Regressor (SpAR)
Require: Training Data X, Yx, Unlabeled Test Distribution Data Z, Rejection Confidence
W XYy
Ux,Dx,Vy + SVD(X)
Uz, Dy, VZT — SVD(Z)
% <+ MLE(X, Yy)
S« {} > Initialize the set S as empty
for e, ; € Rows(V}) ), A, ; € Diagonal(Dz) do > Iterate over Z’s singular vectors and values

A2 D )\z " 2
Var, ; < 02322 55 (€ais €2,5) " L[Aai > O]
Bias, ; + <w,ez,j)2X§J
if (CDF ;) (@) x Var, ;) > Bias. ; then

S+ SuU{e,} > Include this vector in S if its bias is below its variance threshold
end if
end for
Wproj = W — Y cg{, e)e > Project out each of the selected vectors

return wpy,oj

Proposition 1 Making the same assumptions as TheoremE for a given choice of o € [0, 1], the
probability that test eigenvector e, j is included in our set S as defined in '

— Bias.; 1
Pr(ez,] S S) = 1 — Q% ( VTZJ, CDFX§f=1 (O() 5 (14)
where () 1 is the Marcum Q-function with M = %

Lemma 1 Using the same assumptions as Proposition|[I}

Vet —o0 Va0
Pr(e,; €5) 2 0, Pr(e,; € S) ——— a. (15)

Lemma tells us that if we would incur significantly higher OOD loss from including e ; in our set
S than excluding it, then e, ; will not be included in S. Similarly, if we would incur significantly
higher OOD loss from excluding e. ; in our set S than including it, then e, ; will be included in S.

Creating wpyo; in this way yields SpAR, a regressor tailored for a specific covariate shift (see
Algorithm|1). Finally, this procedure requires the the variance of the training label noise, o2. We use
a maximum likelihood estimate of this parameter (Murphy, 2022) from the training data.

4 EXPERIMENTS

In this section, we apply SpAR to a suite of real-world and synthetic datasets to demonstrate its
efficacy and explain how this method overcomes some shortcomings of the pseudoinverse solution.

Here we use models that are optimized using gradient-based procedures. This contrasts with the main
target of our analysis, the OLS solution (Equation|[2), as @ is not found using an iterative procedure.
Despite these differences, our analysis remains relevant as the optimality conditions of minimizing
the squared error loss ensure that gradient descent will converge to the OLS solution.

4.1 SYNTHETIC DATA

We establish a proof of concept by considering a synthetic data setting where we can carefully control
the distribution shift under study. Specifically, we apply our approach to two-dimensional Gaussian
data following the data generative process described in Section[3.1. Specifically, we sample our train
and test data X and Z from origin-centered Gaussians with diagonal covariance matrices, where the
variances of X and Z are (5,107°) and (1, 40) respectively.
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Table 1: Mean and standard deviation of the squared error of our estimated regressors against various
true labeling vectors. Each experiment setting is a different true weight vector (see Section[4.1).

Synthetic Data

Regression Method ~ Experiment 1 (wj) Experiment 2 (wj) Experiment 3 (w3)
ERM 2.54e6 + 3.84e6 2.54e6 + 3.84e6 2.54e6 £ 3.84e6
ERM + SPAR 1.60e5 £ 3.13e3 2.82e0+4.53 1.27e5 £ 2.51e3

We refer to the first and second indices of these vectors as the “horizontal” and “vertical” components
and plot the vectors accordingly. The test distribution has much more variance along the vertical
component in comparison to the training distribution. We experiment with three different true labeling
vectors: wi = (.01,.99999995)7; w3 = (0.9999995,0.01)T; w3 = (%, %)T . The first two true

labeling vectors represent functions that almost entirely depend on the vertical/horizontal component
of the samples, respectively. w3 depends on both directions, though it depends slightly more on the
vertical component (cf. Figure[T). For each labeling vector, we randomly sample Z, X and € 10 times
and calculate the squared error for both the OLS/Pseudoinverse solution @0 = XYy (ERM) as well
as Wproj, the regressor outputted by SpAR (ERM + SpAR). See Table for results.

We first note that w is expected to have the same error regardless of the true labeling vector. Second,
Wproj outperforms w regardless of which true regressor is chosen. Our projection method is most
effective when w3 is being used to label the examples. This is due to the fact that it relies mostly
on the horizontal component of the examples, which has a similar amount of variance at both train
and test time. As a result, SpAR is able to project out the vertical component while retaining the
bulk of the true labeling vector’s information. An example showing why this projection method is
useful when wj is being used to label the examples is depicted in Figure[l. Here, @ significantly
overestimates the influence of the vertical component on the samples’ labels. SpAR is able to detect
that it will not be able to effectively use the vertical component due to the large increase in variance as
we move from train to test, and so it projects that component out of w. Consequently, SpAR produces
a labeling function nearly identical to the true labeling function.

4.2 TABULAR DATASETS

To test the efficacy of SpAR on real-world distribution shifts, we first experiment with two tabular
datasets. Tabular data is common in real-world machine learning applications and benchmarks,
particularly in the area of algorithmic fairness (Barocas et al.,[2019). Therefore, it is important for
any robust machine learning method to function well in this setting.

CommunitiesAndCrime, a popular dataset in fairness studies, provides a task where crime rates per
capita must be predicted for different communities across the United States, with some states held out
of the training data and used to form an OOD test set (Redmond & Bavejal|[2009; Yao et al., |[2022).
Skillcraft defines a task where one predicts the latency, in milliseconds, between professional video
game players perceiving an action and making their own action (Blair et al.|[2013). An OOD test set
is created by only including players from certain skill-based leagues in the train or test set.

We train neural networks with one hidden layer in the style of |Yao et al. (2022). We benchmark
two methods: the first is standard training (ERM), in which both the encoder and the regressor are
trained in tandem to minimize the training objective using a gradient-based optimizer, in this case
ADAM (Kingma & Ba|[2014). The other method we benchmark is C-Mixup (Yao et al.||2022), a data
augmentation technique that generalizes the Mixup algorithm (Zhang et al.,2017) to a regression
setting. For this method, the encoder and regressor are optimized to minimize the error on both the
original samples and the synthetic examples produced by C-Mixup. Data-augmentation techniques
such as C-Mixup can be used in tandem with other techniques for domain adaptation, such as SpAR,
to achieve greater results than either of the techniques on their own. Our results substantiate this.

We use the hyperparameters reported by |Yao et al. (2022) when training both ERM and C-Mixup.
After training, we apply SpAR to create a new regressor using the representations produced by the
ERM model (ERM + SpAR) or C-Mixup model (C-Mixup + SpAR). For SpAR, we explored a
few settings of the hyperparameter o (see Appendix [Lfor a discussion), and use a fixed value of
a = 0.999 in all the experiments presented here. These new regressors replace the learned regression
weight in the last layer. We similarly benchmark the performance of the Pseudoinverse solution
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Figure 3: Tabular data. OOD RMSE for several methods, each averaged across 10 seeds.

by replacing the last layer weight with w (ERM/C-Mixup + OLS). Results from these tabular data
experiments can be found in Figure[3] Exact numbers are presented in Table[3]in the Appendix.

Figure [3]shows that SpAR always produces a model with competitive or superior Average and Worst
Group RMSE, regardless of the base model that it is applied to. We also experiment with tuning the
hyperparameters for both the ERM and C-Mixup models in Appendix [K. With no additional tuning
for SpAR specifically, SpAR yields a model with the strongest worst-group performance.

4.3 POVERTYMAP - WILDS

We next examine the robustness of deep regression models under realistic distribution shifts in a
high-dimensional setting. This experiment uses the PovertyMap-WILDS dataset (Koh et al., 2021),
where the task is to regress local satellite images onto a continuous target label representing an asset
wealth index for the region. PovertyMap provides an excellent test-bed for our method since, as seen
in Figure [2] DNNs attempting to generalize OOD on this dataset suffer from Spectral Inflation.

Once again, for ERM and C-Mixup we use the hyperparameters suggested by Yao et al. (2022) and
for SpAR we use o = 0.999. When training these baselines, we follow |Yao et al.[(2022) and select
the model checkpoint which best performed on a hold-out validation set as a form of early stopping.
These choices help to create strong baselines. Results are presented in Table 2}

We can observe from Table 2] that applying SpAR can significantly improve worst-group performance
while maintaining competitive average performance. As with Section we further tune the
hyperparameters for both the ERM and C-Mixup baselines in Appendix [K. With no tuning of SpAR
specifically, it is able to enhance the tuned baseline and yield the strongest worst-group performance.
SPAR is also more computationally efficient than other robustness methods (see Appendix [M].

Additionally, we experiment with an unsupervised domain adaptation setting where we used unlabeled
target domain data distinct from the test set to perform adaptation with SpAR (Sagawa et al.|[2021).
We use the same base ERM and C-Mixup backbone models as presented in Table[2] We compare with
many methods for robust ML, including some "in-processing" methods (Caron et al.|[2020) which
use the unlabelled data to define an additional objective that is optimized during training. Results are
presented in Table[3] We find that even when using a sample distinct from the evaluation data, the use
of SpAR on either ERM or C-Mixup yields the best performance. The worst group performance of
C-Mixup + SpAR achieves state of the art performance on the PovertyMap-WILDS leaderboard for
methods using unlabeled target domain data (Sagawa et al., 2021).

Table 2: PovertyMap-WILDS. Average OOD all-group and worst-group Spearman r across 5 splits.

Method l‘a”(T) Twg (T)

ERM 0.793 £0.040 0.497 £+ 0.099
ERM + SpAR (Ours) 0.794 £ 0.046 0.512 + 0.092
C-Mixup 0.784 £0.045 0.489 + 0.045

C-Mixup + SpAR (Ours) 0.794 £ 0.043  0.515 + 0.091
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Table 3: PovertyMap-WILDS with unlabeled data. In-processing methods and SpAR use unlabeled
data that are distinct from the test set, but come from the same distribution (Sagawa et al., 2021)).

Robustness approach  Method rau (1) Tuwg (1)

— ERM 0.79+0.04 0.50 £0.10

Data augmentation ~ C-Mixup|Yao et al.|(2022) 0.78 £0.05 0.49 £ 0.05

(pre-processing)  Noisy Student|Xie et al.|(2020) 0.76 £0.08 042 £0.11

Self-supervised pre-training SwAV [Caron et al. (2020} 0.78 £0.06 0.45 £ 0.05
(pre-processing)

Distribution alignment DANN/|Ganin et al. (2016b) 0.69 £0.04 0.33+0.10

(in-processing) DeepCORAL|Sun & Saenko (2016) 0.74 £0.05 0.36 £ 0.08

AFN Xu et al.[(2019) 0.75+0.08 0.39 £0.08

Subspace alignment RSD|Chen et al. |(2021) 0.78 £0.03 0.44 £ 0.09

(in-processing) DARE-GRAM|Nejjar et al.|(2023)  0.76 = 0.06  0.44 £ 0.05

Spectral adaptation ERM + SpAR (Ours) ) 0.79 +£0.04 0.51+£0.10

(post-processing)  C-Mixup + SpAR (Ours) 0.79 £ 0.04 0.52 £+ 0.08

5 RELATED WORK

Improving OOD performance is a critical and dynamic area of research. Our approach follows in the
tradition of Transductive Learning (Gammerman et al.,|1998) (adapting a model using unlabelled
test data) and unsupervised Domain Adaptation (Ben-David et al., 2006; Farahani et al., [2021)
(using distributional assumptions to model train/test differences, then adapting using unlabeled test
inputs). Regularizing statistical moments between P and () during training is a popular approach in
unsupervised DA (Gretton et al., 2009) that has also been realized using deep neural networks (Ganin
et al.,[2016a;Sun et al., 2016). When transductive reasoning (adaptation to a test distribution) is not
possible, additional structure in P—such as auxiliary labels indicating the “domain” or “group” that
each training example belongs to—may be exploited to promote OOD generalization. Noteworthy
approaches include Domain Generalization (Arjovsky et al., 2019} |Gulrajani & Lopez-Paz,[2020)
and Distributionally Robust Optimization (Hu et al.,[2018;|Sagawa et al.| [2019; [Levy et al., 2020).

Data augmentation is another promising avenue for improving OOD generalization (Hendrycks &
Dietterich, |2019;|Ovadia et al.; 2019) that artificially increases the number and diversity of training
set samples. The recently proposed C-Mixup method focuses on regression under covariate shift; it
adapts the Mixup algorithm (Zhang et al., 2017) to regression by upweighting the convex combination
of training examples whose target values are similar. This pre-processing approach complements our
post-processing adaptation approach; in our experiments we find that applying SpAR to a C-Mixup
model often yields the best results.

In this work we investigate covariate shift in a regression setting by analyzing how the distribution
shift affects eigenspectra of the source/target data. We are not the first to study this problem, nor
the first to use spectral properties in this investigation. |Pathak et al.|(2022)) propose a new similarity
measure between P and @) that can be used to bound the performance of non-parameteric regression
methods under covariate shift. [Wu et al. (2022)) analyzes the sample efficiency of linear regression in
terms of an eigendecomposition of the second moment matrix of individual data points drawn from
P and Q. Our work differs from these in that we go beyond an OOD theoretical analysis to propose a
practical post-processing algorithm, which we find to be effective on real-world datasets.

6 CONCLUSION

This paper investigated the generalization properties of regression models when faced with covariate
shift. In this setting, our analysis shows that the Ordinary Least Squares solution—which minimizes
the training risk—can fail dramatically OOD. We attribute this sensitivity to Spectral Inflation, where
spectral subspaces with small variation during training see increased variation upon evaluation. This
motivates our adaptation method, SpAR, which uses unlabeled test data to estimate the subspaces
with spectral inflation and project them away. We apply our method to the last layer of deep neural
regressors and find that it improves OOD performance on several synthetic and real-world datasets.
Our limitations include assumed access to unlabeled test data, and that the distribution shift in question
is covariate shift. Future work should focus on applying spectral adaptation to other distribution shifts
(such as concept shift and subpopulation shift) and to the domain generalization setting.
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