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ABSTRACT

The large-scale training of multi-modal models on data scraped from the web has
shown outstanding utility in infusing these models with the required world knowledge
to perform effectively on multiple downstream tasks. However, one downside of
scraping data from the web can be the potential sacrifice of the benchmarks on
which the abilities of these models are often evaluated. To safeguard against test data
contamination and to truly test the abilities of these foundation models we propose
LiveXiv: A scalable evolving live benchmark based on scientific ArXiv papers.
LiveXiv accesses domain-specific manuscripts at any given timestamp and proposes
to automatically generate visual question-answer pairs (VQA). This is done without
any human-in-the-loop, using the multi-modal content in the manuscripts, like graphs,
charts, and tables. Moreover, we introduce an efficient evaluation approach that
estimates the performance of all models on the evolving benchmark using evaluations
of only a subset of models. This significantly reduces the overall evaluation cost. We
benchmark multiple open and proprietary Large Multi-modal Models (LMMs) on the
first version of our benchmark, showing its challenging nature and exposing the models’
true abilities, avoiding contamination. Lastly, in our commitment to high quality, we
have collected and evaluated a manually verified subset. By comparing its overall results
to our automatic annotations, we have found that the performance variance is indeed
minimal (<2.5%). Our dataset is available online anonymously on HuggingFace.

1 INTRODUCTION
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Figure 1: Static benchmark contamination. As training data increases, the risk for test set contamination
grows and static benchmarks becomes saturated, reflecting falsely improved capabilities.

The internet, with its vast and ever-growing repository of information, serves as a rich data source for
training Large Language Models (LLMs) (Brown et al., 2020; OpenAI, 2023; Chiang et al., 2023; Raffel
et al., 2019; Touvron et al., 2023a;b; Dubey et al., 2024) and Large Multi-modal Models (LMMs) (OpenAI,
2023; Liu et al., 2023c; Li et al., 2024c; Zhu et al., 2023; Chen et al., 2023a; Alayrac et al., 2022;
Radford et al., 2021a). This diverse and continuously updated data fits precisely the need to cover varying
knowledge in scale in the training data.

Training on such data enables the models to achieve superhuman performance across a wide range of tasks
on multiple common benchmarks (Fu et al., 2023; Yue et al., 2024; Li et al., 2024d; Liu et al., 2023d).

We hypothesize that a portion of LLMs’ reported improvements are
due to data contamination (Figure 1) and pose the following question: To what extent does the potential

for test set contamination during large-scale training affect our perception of the abilities of LMMs?
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Figure 2: We propose LiveXiv, a new method for generating Live multi-modal dataset for Visual
Question-Answering based on ArXiv content. Our pipeline automatically generates scalable and reliable
questions along with an efficient evaluation method to reduce the computational and logistic overheads
required for continually evaluating past and present models on new versions of the dataset.

One possible way to safeguard against the contamination of static benchmarks is to design a live benchmark
that can continuously harness data from the web and turn it into an ever-evolving benchmark to test the
abilities of these models. A live benchmark may be used in one of the following ways: (a) Expand the
dataset over time and evaluate the models’ overall knowledge over all collected data, while taking into
account that the data might be contaminated. (b) Use only the latest version to assess model capabilities
while keeping data contamination risk minimal. While we focus on (b), we share key properties of our
efficient evaluation method that is applicable to both cases.

Although, a live benchmark is a promising direction, it still comes with its fair share of challenges. A
live benchmark should ideally be updated frequently, consistently, and automatically, i.e. it should be able
to scrape the data from the web and formulate it into a benchmark for automated evaluations. Furthermore,
as the benchmark is ever-evolving, each time a new version arrives, all the participant models need to be
re-evaluated, making the update procedure prohibitively expensive both in time and compute. This requires
a methodology for efficient evaluation of these models on a continuously updating benchmark. Such a
methodology should ease the computational burden of evaluating all the models on each new version
of the dataset and reduce the logistic overhead of maintaining inaccessible old models.

In this work, we take a step in this direction and propose LiveXiv – a novel fully automated multi-modal
live benchmark that focuses on scientific domains. LiveXiv starts with scraping category-specific
(e.g. cs.CV, eess.SY, q-bio.BM, etc.) manuscripts from ArXiv and generates visual question answers
from figures, charts, and tables present in these manuscripts through a capable multi-modal model,
namely, GPT-4o. As it is challenging to directly feed information-rich PDF documents to GPT-4o, as
a pre-processing step, we extract relevant information from the papers by processing it with a structured
document parsing pipeline (Team, 2022) to obtain pertinent information like placements of figures, charts,
tables, and the text in the captions or in the tables.

This information is used to extract, e.g. by cropping, relevant information from the manuscripts, which is fed
to GPT-4o to generate visual questions and answers. Although very capable, GPT-4o is still prone to errors,
e.g. due to hallucinations, and may even generate questions that can be answered without visual information.
Thus to mitigate these issues, we add an extensive filtering stage that automatically filters questions
requiring only textual information to answer them, and reduce hallucinations through obtaining agreement
about the generated questions with another capable multi-modal model, namely, Claude. After the extensive
filtering, we obtain a large corpora of VQA pairs which are incorporated into our LiveXiv live benchmark.

Over time, the benchmark is expected to grow, either in the size of the dataset or the amount of models
to be evaluated, which increases the required resources for evaluation. Moreover, comparing a new model
to existing models at different times requires re-evaluating the existing models over the latest version of
the dataset, which can cause additional overhead for continuous evaluation and comparison to prior works.
To make the evaluations on LiveXiv feasible, we take inspiration from Maia Polo et al. (2024a;b) and
propose a method to approximate the performance of the existing models in new versions of LiveXiv
just by re-evaluation small portion of them. Figure 2 provides a conceptualized overview of our approach.

We summarize our contributions as follows: (a) We propose a scalable live benchmark without any human
in the loop that automatically harnesses data from online scientific manuscripts, generates multiple VQA
pairs, filters these questions to reduce errors, and formulates them in the form of a benchmark to test the
evolving landscape of LMMs; (b) We introduce an efficient evaluation pipeline that requires LMMs to
be tested only on a fraction of the data to infer its performance on the latest version of the benchmark,
reducing the overall needed evaluations by 70%; (c) We benchmark multiple open and proprietary LMMs
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on the first version of our benchmark highlighting its challenging nature and providing interesting insights
about the models’ behavior when evaluated on less contaminated data.

2 RELATED WORKS

Large multi-modal Models (LMMs). LMMs have shown significant advancements in enabling billion-
parameter scale LLMs to perform multi-modal tasks such as image captioning, visual reasoning, and visual
question answering. Academia and industry have endeavored to develop LMMs targeting the multi-modal
competence of advanced proprietary models like GPT4o (OpenAI, 2023) and Claude (cla, 2024). Instruct-
BLIP performs instruction tuning on the pre-trained BLIP-2 (Li et al., 2023) covering 11 vision-language
tasks. The LLaVA series models (Liu et al., 2023c;a;b; Li et al., 2024b) develop the pipeline of collec-
tion of instruction-following data and visual instruction tuning with enhanced vision capabilities. The
internLM-XComposer (IXC) series (Dong et al., 2024a;b) target free-form vision-language composition and
multilingual comprehension. Models from Idefics release (Laurençon et al., 2024b;a) benefit from the mas-
sive collection of instruction-following data from over 50 vision-language databases, enhancing capabilities
of OCR, document understanding, and visual reasoning. In this work, we include 17 top-performing LMMs
in our multi-modal live benchmark LiveXiv, covering both open-sourced and proprietary representatives.

Static evaluation benchmarks for LMMs. Most existing LMM benchmarks offer static evaluation with
fixed questions and answers (Fu et al., 2023; Yue et al., 2024; Li et al., 2024d; Liu et al., 2023d; Huang
et al., 2024; Lin et al., 2024; Zhang et al., 2024b). MME (Fu et al., 2023) offers evaluation of perception
and cognition on 14 tasks and MMMU (Yue et al., 2024) includes 11.5K questions from college exams,
quizzes and text books from six major disciplines. Although these benchmarks cover a large variety of
multi-modal domain knowledge, evaluation on them is faced with two hazards: the excessive evaluation
cost and test data contamination. In this work, we tackle both challenges by proposing a suite that enables
efficient evaluation on a contamination-free live benchmark.

Contamination-free benchmarks. As large foundation models like LLMs and LMMs are trained on
combined sources of tremendous amount of web data or repurposed version of existing open-sourced
datasets, there is a high risk of overlap between training data and samples from evaluation benchmarks.
Reported evidence and analysis show impact of data contamination on evaluation benchmarks for
LLMs (Wei et al., 2023; Zhang et al., 2024a; Cobbe et al., 2021; Roberts et al., 2023; Jain et al., 2024)
and LMMs (Chen et al., 2024), indicating the significance of contamination-free evaluation benchmarks.
For LLMs, LMSys Chatbot Arena (Chiang et al., 2024) and AI2 WildVision (Lu et al., 2024) create a
user-focused platform that provides contamination-free environment for proper evaluations. However,
it is expensive to collect tens of thousands of human preferences on the compared language models.
Furthermore, Seal Benchmark (AI, 2024) proposes private questions paired with human evaluations.
Srivastava et al. (2024) update the questions in the MATH dataset (Hendrycks et al., 2021) by changing
numbers in the math questions. LiveBench White et al. (2024) collects frequently updated questions from
diverse information sources e.g.math competitions, arXiv papers and news articles and more challenging
versions of existing benchmark tasks. Concurrently, LiveCodeBench (Jain et al., 2024) contributes a live
benchmark on broader code-related capabilities. Note that these datasets focus on language data only.

For LMMs, Vibe-Eval (Padlewski et al., 2024) and LLaVA-Wilder (Li et al., 2024a) perform contamination
check on the collected samples that reflect real-world user requests. Most related to our work, the
LMMs-Eval LiveBench (Zhang et al., 2024b) collects images from sources of new websites and online
forums and employs proprietary LMMs for design and revision of questions. However, the LMMs-Eval
LiveBench requires human manual verification of questions which impedes the scalability. Furthermore, it
contains only open-ended questions that require LMM-as-a-judge which is time-consuming, susceptible to
judge biases, and difficult to scale. In comparison, our LiveXiv constructs a fully-automated data collection
pipeline which generates multiple-choice questions which are challenging to the top-performing LMMs.

Efficient benchmarks. With the increasing amount of tasks and samples in current benchmarks, evaluation
of the full suite is time-consuming and cost-intensive. Efforts are underway to develop efficient benchmarks
that reduce computation costs without sacrificing reliability. For LLMs, Perlitz et al. (2023) proposed
the first systematic study of the effects of language model benchmark designs on reliability and efficiency,
and applied efficient benchmark practices on the HELM benchmark (Liang et al., 2022), leading to ×100
computation reduction with minimal loss on reliability. Lifelong benchmarks (Prabhu et al., 2024) has
an ever-expanding pool of test samples for the categories in CIFAR10 (Krizhevsky & Hinton, 2009) and
ImageNet (Deng et al., 2009); to make this design economically feasible, it reuses past model evaluations
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Figure 3: Our live dataset generation consists of several stages. We first extract the images and their
corresponding metadata (i.e. captions and table contents), then we classifying the figures into categories
using meta-prompting. All the extracted data is then fed to GPT4o to generate multiple questions-answer
pairs per image. Since generative models are prone to errors, we apply several filtering steps, using an
LLM and LMM to ensure that our dataset is truly multi-modal and reliable.

on a sample set through dynamic programming to enable efficient evaluation of new incoming models,
drastically reducing the evaluation cost. Most related to our work, tinyBenchmarks (Maia Polo et al.,
2024a) and PromptEval (Maia Polo et al., 2024b) propose using Item Response Theory (IRT) (Lord et al.,
1968) to estimate the performance of LLMs on unseen samples, making efficient evaluation possible by
only conducting a small fraction of the total number of evaluations. Inspired by the last two works, we
leverage IRT to estimate the performance of older models in new batches of data. More specifically, at
each version of LiveXiv, we choose a small core set of models (≤5) previously added to the leaderboard
and re-evaluate them on the new data. Depending on their responses to the new samples, we estimate
the performance of the remaining old models on the new benchmark version.

3 LIVEXIV

At a higher level, our automated LiveXiv is created by first obtaining the domain-specific scientific
manuscripts from ArXiv at any given timestamp. Then, to obtain pertinent information from the
manuscripts, we pass them through a structured document parsing pipeline and then generate visual
question answers through a capable LMM (Section 3.1). However, the generated questions can contain
errors due to hallucinations or might be too straightforward to answer. Thus, to mitigate these issues,
we offer an extensive filtering stage (Section 3.2). To evaluate the benchmark, we propose an efficient
evaluation framework to infer the overall performance on the benchmark using only a small subset of
evaluations, making the evaluations extremely resource-efficient (Section 3.3). The data acquisition and
filtering steps are schematically visualized in Figure 3.

3.1 DATA ACQUISITION AND VQA GENERATION

We start with the data acquisition phase, then pre-process the data to obtain the required metadata
(e.g. placements of figures, captions, etc.), and then generate the first iteration of VQA from the
multi-modal data (figures and tables) from the manuscripts.

Data Acquisition: At any given timestamp, we begin by acquiring only ArXiv papers which have
non-exclusive license to distribute from predefined domains such as Computer Science (cs.AI, cs.CV),
Electrical Engineering (eess.SP, eess.SY), and Quantitative Biology (q-bio.BM, q-bio.GN).
However, these manuscripts contain a lot of information that might not be necessary for the task of VQA
data generation. Thus, to extract pertinent information we require a pre-processing step.

Pre-processing: The downloaded PDFs undergo a structured document parsing pipeline using the
DeepSearch toolkit (Team, 2022), which extracts a comprehensive layout of each document, including
the positions of figures, tables, captions, and other elements. This structured layout forms the basis
for extracting the multi-modal data required for subsequent tasks. To enrich the dataset with additional
metadata not captured by the parsing pipeline, we employ a meta-prompting approach with CLIP (Radford
et al., 2021b), similar to the method used by Mirza et al. (2024). Specifically, we classify the figures into
three distinct categories: Block Diagram, Chart, and Qualitative visual examples which facilitates a more
granular, domain-specific evaluation of LMM performance.

VQA Generation: For Visual Question Answering (VQA), we construct pairs of figures and their
corresponding captions, and for generating VQA from the data present in the tables, we obtain (e.g. crop)
images of tables accompanied by their corresponding data.

The VQA process involves two steps using GPT-4o. First, we input the figure and its caption to GPT-4o
to generate a detailed description of the figure, employing a Chain-of-Thought (CoT) approach (Wei
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et al., 2022). Next, the detailed description and figure are fed back into GPT-4o, with prompts adapted
from ‘ConMe’ (Huang et al., 2024) to suit our scientific use case, enabling the generation of relevant VQA
questions. For questions from the tables, we utilize the table’s content directly, presenting both the image
of the table and its data in markdown format to GPT-4o to produce questions that require common-sense
reasoning and data manipulation. The automated nature of this process ensures a robust and comprehensive
evaluation framework for LMMs, tailored to scientific literature specifics. Detailed prompt templates can
be found in Appendix A.5.

3.2 FILTERING PHASE

Even though GPT-4o is powerful and has been reported to outperform humans on many different
benchmarks (OpenAI, 2023), still it is prone to errors and sometimes can even result in VQA pairs that
are answerable without requiring the visual information. Thus, to ensure that the benchmark remains
competitive and also has minimum errors, we propose an extensive automatic filtering step. At a higher
level, the filtering phase consists of two main parts, each designed to mitigate a separate issue that can
arise due to the automatic dataset generation.

Blind test with an LLM: To ensure that the generated VQA pairs are truly multi-modal, we pass them
through a Large Language Model (LLM) without providing any associated images or image descriptions.
This process, referred to as a blind test, aims to identify questions that the LLM can answer correctly even
in the absence of visual context, indicating they are not truly multi-modal. To ensure robustness, this blind
evaluation is repeated multiple times to eliminate any potential lucky guesses by the LLM. Questions that
are consistently answered correctly by the LLM are filtered out, resulting in the removal of approximately
30% of the generated questions. This step ensures that the remaining questions in the dataset are inherently
multi-modal and cannot be answered solely based on linguistic context. The filtered dataset thus represents
a more challenging benchmark for evaluating multi-modal capabilities of vision-language models.

Agreement between disjoint models: Generative models, including LMMs, are prone to hallucination,
where the model generates incorrect or not grounded information. In our case, these hallucinations can
lead to erroneous VQA pairs. To address this issue, we introduce an additional filtering step. All questions
that pass the initial “blind test” are reviewed along with their generated answers by a different LMM, in
this case Claude-Sonnet (cla, 2024), which is provided with the image, question, and the ground truth
answer which were all generated by GPT-4o. This second model is asked to either agree or disagree with
the generated answer, considering the visual context.

We point out that agreement between models is a nuanced process; incorporating more models to validate
answers may lead to the exclusion of difficult questions, thereby diluting the difficulty of the dataset.
Therefore, we limit this validation step to models with comparable performance to the generation model
(i.e. GPT-4o). Our preliminary manual evaluation on a subset of the dataset indicates that this agreement
step significantly reduces the proportion of incorrect ground-truth (GT) questions, with a reduction of
38.5%, while minimally impacting the retention of high-quality question-GT pairs, with only a 6.15%
removal of valid pairs. This refinement ensures that the final dataset is both challenging and accurate for
the evaluation of LMMs’ multi-modal reasoning capabilities. The generated corpus of data is ready to
be incorporated into LiveXiv and can be updated automatically without any human intervention.

3.3 EFFICIENT EVALUATION

Since LiveXiv is a dynamic benchmark, evaluation can be costly: ideally, whenever a new version of
the benchmark is released, all models must be re-evaluated on the updated data, which can pose an
engineering challenge and become computationally expensive when handling dozens of models. In this
section, we describe our approach to efficient evaluation, which avoids re-evaluating all models at each
step, making LiveXiv’s maintenance economically feasible. Our idea is based on Item Response Theory
(IRT) (Cai et al., 2016; Van der Linden, 2018; Lord et al., 1968; Maia Polo et al., 2024b;a), a collection
of statistical models traditionally used in psychometrics and educational assessment. We briefly give some
background on IRT and detail how we use it for our evaluations.

3.3.1 ITEM RESPONSE THEORY (IRT)

We use the IRT model to predict the probability of a certain LMM i answering correctly on a sample
(question) j. In mathematical terms, let Yij∈{0,1} denote the correctness on sample j when responded
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by LMM i:

Yij∼Bernoulli(µ(θi,βj)),

where θi is an LMM-specific parameter, βj is a sample-specific parameter, and µ is a function that maps
those parameters to the probability of correctness. In this work, we follow Maia Polo et al. (2024b) and
assume the parameters live in the real line while µ induces a logistic regression model. In more detail,
we assume

P(Yij=1;θi,βj)=
1

1+exp[−(θi−βj)]
. (1)

Here, θi can be interpreted as the skill level of LMM i while βj is seen as the hardness of sample j. By
equation 1, if θi is much greater (resp. smaller) than βj, then the probability P(Yij=1;θi,βj) will be close
to one (resp. zero). This version of the IRT model is known as the Rasch model (Georg, 1960; Chen et al.,
2023b), and it is widely used in fields such as recommendation systems (Starke et al., 2017), educational
testing (Clements et al., 2008), and evaluation of language models (Maia Polo et al., 2024b). Moreover,
it has a similar formulation to the popular Bradley-Terry model (Bradley & Terry, 1952) used in Chatbot
Arena (Chiang et al., 2024), a popular and dynamic benchmark for AI-powered chatbots. We fit the Rasch
model using maximum likelihood estimation as in Chen et al. (2023b) and Maia Polo et al. (2024b).

3.3.2 EFFICIENT EVALUATION WITH IRT

We can estimate old model scores on new data without reevaluating those models. Let It and Jt represent
sets of non-negative integers corresponding to LMMs and samples at time t≥0. We assume that It⊆It+1

since the set of available models does not shrink over time, and Jt1∩Jt2 =∅ for t1≠t2 because samples
are not repeated across different time steps. Let the set of evaluated models at time t be denoted by Ît.
For t>0, we assume that It\It−1 is a proper subset of Ît, meaning that all newly introduced models are
evaluated on the new batch of samples along with some previously existing models. At t=0, we assume
that Ît=It, meaning all models are evaluated on all samples. Furthermore, we assume that |Ît| is much
smaller than |It| when t>0 so computing power and evaluation time can be saved.

Our goal at time t>0 is to estimate the performance of a model i /∈Ît on the set of samples Jt, using
only the correctness scores Dt= {Yij : (i,j)∈Ωt}, where Ωt≜∪t′≤tÎt′×Jt′ . Specifically, we aim to
approximate Sit=

1
|Jt|

∑
j∈Jt

Yij by estimating its expectation

E[Sit]=
1

|Jt|
∑
j∈Jt

P(Yij=1;θi,βj). (2)

For a moment, let us assume that Ωt is known. Using Dt, we can estimate the skill parameters θi’s of all
models in It and the difficulty parameters βj’s of all samples in ∪t′≤tJt′; we denote these estimates as θ̂i’s
and β̂j’s. Finally, we obtain an approximation for equation 2, Ê[Sit], by substituting θi and βj’s by their
estimates. The estimator Ê[Sit] is known as the Performance-IRT estimator (Maia Polo et al., 2024b;a).

Now, we provide a method to obtain Ωt assuming Ωt−1 is given; in summary, we need to decide which
models in It−1 are going to be in Ît. Our approach to choosing which models are going to be re-evaluated
is inspired by the concept of optimal design of tests (Van der Linden, 2017, Chapter 9) but in which we
choose LMMs instead of samples. First, we set a budget mt, representing the maximum number of models
to be re-evaluated at time step t. Second, assuming that the level of difficulty of the new samples Jt is not
very different from the ones in Jt−1, we choose a set of mt representative samples in Jt−1 by ordering
β̂j’s and choosing equally spaced samples, based on their quantiles, from the 5th to the 95th percentiles;
this will give us questions with a variety of difficulties, excluding outliers. For example, if mt=3 we
would choose questions with difficulties in the 5th, 50th, and 95th percentiles. Denote the chosen core
set of samples as {j0,···,jmt−1} and, for each one of these samples jk, we choose a model i in It−1 such
that the following Fisher information criterion

Fjk(i)=P
(
Yijk =1;θ̂i,β̂jk

)[
1−P

(
Yijk =1;θ̂i,β̂jk

)]
is maximized. The model that maximizes Fjk is maximally informative about the parameter of sample
jk and, consequently, about all samples with similar difficulty levels in the new version of LiveXiv; this
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will help us estimate the difficulties of new samples. We note that some models in It−1 might not be
available at step t, e.g., due to deprecation; when choosing models, we do not consider them, but note
that we can still estimate their performance on the new batches of data. Moreover, the model selection
procedure can also take convenience into account; for example, if two models have very similar Fisher
information, we opt for the one that is cheaper to evaluate.

Our experiments demonstrate that re-evaluating just 5 models per step provides accurate model evaluation.
With 50 total models, this approach can reduce computing costs by at least ×10, particularly when
selecting less expensive models without significantly impacting Fjk .

4 RESULTS & ANALYSIS

This section presents the results obtained on the first version of LiveXiv. First, we start by describing the ex-
perimental settings. Then, we present the results and finally conclude with a detailed analysis of our dataset.

4.1 EXPERIMENTAL SETTINGS

Evaluation Protocol: After the generation of the question-answer pairs from our automated pipeline
explained in Section 3, we transform the benchmark to multiple-choice questions. We resort to the ‘generate’
inference employed extensively by previous works, such as Li et al. (2024d); Huang et al. (2024); Liu et al.
(2023d). The model is prompted to choose the letter corresponding to the correct choice and answer with
the letter directly. The output letter is then compared with the ground truth and the accuracy is measured.
We report the average accuracy over all the samples evaluated in Table 1. For ease of assimilation and
to obtain insights into what type of data the models flourish at, we provide the results from data generated
on tables and figures separately. The data generated from figures is labeled as part of Visual Question and
Answers (VQA) and the data from the tables is labeled as Table Question and Answers (TQA). Examples
for the multiple-choice formulation of the question-answer pairs are added to the Appendix Section A.2.

Size of dataset: The current version of our LiveXiv consists of 7328 questions on figures, and 9000
questions on tables, both are generated from 250 papers (25 papers from 10 domains). Overall our first
version of the dataset has 16328 questions in total. Thanks to the continual growth in the number of
publications in our target domains and the fully automatic nature of our proposed LiveXiv pipeline for
benchmark data generation, we will grow LiveXiv by adding an equal-sized large amount of new VQA
& TQA data (around 7K VQA and 9K TQA) every month. Such large-scale updates might be significantly
more difficult for benchmarks relying on manual data collection for live updates (Zhang et al., 2024b).

Models: We extensively evaluate our benchmark by employing a total of 17 LMMs. Specifically, we
employ 5 models from the LLaVA family of models including LLaVA 1.5-7B and LLaVA 1.5-13B (Liu
et al., 2023c), LLaVA-1.6-7B and LLaVA 1.6-34B (Liu et al., 2023b) and LLaVA One-Vision (Li et al.,
2024b). Furthermore, we employ IntstructBLIP (Dai et al., 2023), InternVL2-2B and InternVL2-8B (Chen
et al., 2023c), InternLM-Xcomposer2-4KHD (Dong et al., 2024b) and InternLM-Xcomposer2.5 (Chen
et al., 2023c), Mantis (Jiang et al., 2024), Phi3v (Abdin et al., 2024), Idefics2 (Laurençon et al., 2024b)
and Idefics3 (Laurençon et al., 2024a), Qwen2-VL (Wang et al., 2024) and API models Claude-Sonnet
(cla, 2024) and GPT4o (OpenAI, 2023) for our evaluations. These models have been chosen because
of their varying characteristics and strong performance on multiple current benchmarks. All the models
(except GPT-4o and Cloude-Sonnet) are accessed from the huggingface API, which makes our framework
modular for an extension to more models as they are being added to the hub in the future.

Additional LiveXiv versions: While in this section we mainly focus on the analysis of the first version
of LiveXiv, we have already published the three more versions in the huggingface dataset hub: one
of past ArXiv papers (v0) and two of more recent papers (v2 and v3). Version 2 consists of 18K
samples, introduces 4 new domains from physics (namely, physics.optics, physics.bio-ph, physics.app-ph,
physics.data-an), and includes two additional LMMs (Pixtral and Molmo-7B). Version 3 utilizes multiple
generation and filtering models (GPT4o, Claude-Sonnet, Qwen2-VL-72B) to and increase diversity and
measure the effect of potential biases. In addition, to perform a deeper analysis, we created a variant of
version 1 with opposite roles (i.e.Claude as the QA generation model and GPT as the filter model). We
found that the overall performance and ranking remains roughly the same. Lastly, version 0 is generated
from papers from more than 10 years ago. Our experiments reassure our findings about the performance
of our efficient evaluation, strengthening its validity even in the presence of a large time gap between
the dataset versions. All the details can be found in Appendix A.3.
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Table 1: VQA and TQA average accuracy across ArXiv taxonomy. (V is VQA, T-TQA)

VQA&TQA Acc. eess.SP q-bio.BM q-bio.CB cs.AI eess.SY cs.CV cs.RO q-bio.GN cs.LG q-bio.TO Mean
V T V T V T V T V T V T V T V T V T V T V T

# Samples 651 429 900 1624 840 697 685 1069 735 472 720 932 672 570 647 1121 844 1195 634 894 7328 9000

InstructBLIP-7B 21.2 18.1 25.2 16.6 19.5 20.2 24.5 21.8 23.4 18.9 21.3 20.7 22.6 22.8 24.9 16.9 24.1 18.5 21.1 18.2 23.6 19.1
LLaVA-1.5-7B 29.0 24.9 27.8 20.9 29.5 25.4 31.9 23.5 30.5 25.0 31.0 21.8 34.9 24.9 29.1 22.6 29.3 24.9 32.8 25.4 30.4 23.5
LLaVA-1.6-Mistral-7B 28.1 31.9 28.7 26.8 28.6 29.7 33.9 29.2 31.0 36.4 31.4 29.0 33.3 30.5 27.0 27.6 27.9 30.4 29.5 29.1 29.9 29.3
Mantis-LLama3-8B 32.3 31.2 28.6 28.0 32.7 30.0 33.7 30.0 30.2 33.5 36.9 29.1 32.6 32.5 29.2 29.9 30.8 30.0 34.9 30.3 32.1 30.0
LLaVA-1.5-13B 32.6 30.5 29.4 28.9 31.5 33.1 33.4 31.5 33.2 35.6 35.9 31.5 35.7 33.0 30.6 29.8 30.0 29.4 32.2 30.8 32.3 30.9
Idefics2-8B 35.6 37.1 38.4 35.9 35.9 43.2 40.7 39.2 40.5 42.8 38.6 35.0 39.6 40.0 30.3 38.7 36.9 37.0 38.8 38.9 37.6 38.2
IXC2-4KHD-7B 33.0 41.1 36.7 40.8 33.0 46.8 40.1 38.4 35.8 47.2 45.7 37.0 44.5 41.9 37.9 42.8 35.8 41.3 36.1 42.6 37.7 41.5
IXC2.5-7B 46.2 42.3 46.1 40.5 48.2 48.4 53.3 39.8 50.5 50.8 45.1 39.2 47.0 44.6 47.9 47.5 49.4 36.7 46.8 40.7 48.1 42.1
InternVL2-2B 48.4 42.7 48.1 44.2 50.4 53.7 53.4 48.9 50.5 58.3 46.3 44.7 54.2 51.6 48.4 52.0 48.2 49.2 50.9 52.0 49.8 49.1
LLaVA-1.6-34B 48.4 49.5 45.6 49.4 47.4 55.7 55.9 49.2 52.5 59.7 51.8 48.9 54.9 50.7 47.9 49.2 47.9 46.6 50.2 50.8 50.0 50.2
Idefics3 54.4 47.2 50.6 48.1 52.3 55.5 57.2 48.9 57.0 57.8 53.3 47.2 54.6 51.9 51.5 51.7 51.5 48.0 56.6 51.8 53.7 50.2
LLaVA-OneVision-7B 53.1 46.2 49.7 47.8 51.8 53.9 57.2 50.3 52.8 57.8 57.2 47.7 57.6 53.2 51.6 51.2 51.1 50.5 59.1 52.7 53.9 50.6
Phi3v 60.1 51.4 54.4 48.7 59.9 54.8 64.5 52.8 61.8 57.8 56.0 48.7 58.5 51.4 58.9 51.0 56.0 51.5 58.2 56.2 58.7 51.8
GPT-4o 64.1 50.7 55.9 51.8 58.8 56.2 62.9 54.3 64.4 62.3 60.1 50.8 60.3 56.1 55.2 56.3 59.0 55.1 64.4 55.0 60.3 54.5
InternVL2-8B 64.5 57.5 56.9 57.5 61.4 65.3 67.0 57.5 65.3 67.2 59.9 60.1 65.3 61.8 58.4 60.8 61.4 59.1 65.6 61.4 62.3 60.2
Qwen2-VL 68.0 60.3 62.4 59.6 71.8 67.3 67.2 59.7 69.3 70.1 63.3 62.6 64.6 64.6 64.5 61.1 63.7 59.2 71.9 65.0 66.6 62.1
Claude-Sonnet 78.9 84.0 72.3 81.2 77.4 80.3 77.7 84.5 78.4 85.6 69.9 84.0 74.1 86.5 72.9 82.9 76.4 86.4 75.9 82.3 75.4 83.5

4.2 EXPERIMENTAL RESULTS

Results on entire dataset: We evaluated 17 large multi-modal models (LMMs) across two prominent
tasks, VQA and TQA. Table 1 provides a detailed summary of the performance across both tasks. One
interesting observation is the Claude’s superior performance across the board. This substantial performance
gap suggests that Claude’s architecture and underlying methodologies are particularly well-suited for both
VQA and TQA tasks. The results align with other relatively close benchmarks, DocVQA (Mathew et al.,
2021), ChartQA (Masry et al., 2022) and AI2D (Kembhavi et al., 2016), where we see a similar trend:
Claude has significantly higher performance over the runner-up models such as Qwen2-VL, GPT-4o and
InternVL2-8B. See Table 4 for more details. However, a notable caveat is that Claude plays an integral role
in the question-filtering process, which may introduce a potential bias in favor of questions it is predisposed
to solve effectively. This implies that while Claude’s overall performance remains strong, the evaluation
might not fully reflect its robustness to novel or more diverse question types outside the scope of this
filtering. Surprisingly, GPT4o has low performance. To understand the root cause of this observation,
we experimented with various hyper-parameters such as temperature, image resolution, and diverse textual
prompts. Nevertheless, these all yielded similar results.

We further observe that newer models, such as InternVL2-8B and Qwen2-VL, consistently outperform
older models like LLaVA-1.6 and Idefics2, suggesting rapid advancements in LMM development over
the past few months. This trend highlights the continual improvement in both architecture and training
paradigms, leading to better generalization across multi-modal tasks.

Zooming into the domain-specific performance using an ArXiv-based taxonomy, we evaluate each model’s
effectiveness in distinct scientific fields such as biology, electrical engineering, and mathematics. Our results
show that certain models, particularly the newer architectures, exhibit a higher degree of robustness across
diverse domains, highlighting that the models’ training data might already have potential contamination
issues. Conversely, for VQA, models in the Intern-VL2 and the LLaVA families appear to be more
sensitive to domain shifts, performing inconsistently across different scientific areas, as oppose to the more
recent models like Qwen2-VL, Claude and GPT4o, see Figures 5, 6 for more details. For TQA, it’s not
the case, probably since the questions test more specific skills such a retrieval and arithmetic manipulations,
see Figures 7, 8. This domain-specific sensitivity emphasizes the need for further refinements in LMMs,
especially when applied to specialized scientific knowledge domains. Overall, this analysis not only
underscores the ongoing evolution of LMMs but also highlights areas for further investigation, especially
concerning model adaptability to diverse content domains and the potential biases introduced by models.

Contamination free effect: Interestingly, focusing on new data that came after the LMMs were trained,
allows LiveXiv to provide a new, contamination-free, perspective on the relative performance ranking
between strong LMMs. For example, taking the official results from original publications and computing
the average ranking of the evaluated LMMs over the established DocVQA (Mathew et al., 2021),
ChartQA (Masry et al., 2022) and AI2D (Kembhavi et al., 2016) benchmarks, and comparing those to
the average rankings provided by LiveXiv, we observe some significant ranking changes. e.g., IXC2.5
and IXC2-4KHD drop over 4 points in average ranking. See Table 5 in the appendix for details.

Performance on manually filtered dataset: To further verify our proposed automated question-answer
generation and filtering methodology and to obtain a measure of errors in the generated data, we manually
verified a subset of 1000 samples (500 for both, VQA and TQA) and evaluated all models on this
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Table 2: Performance change between LiveXiv and a manually verified subset averaged across all evaluated
models. LiveXiv is robust, thanks to excessive filtering steps which keep the labeling errors low.

LiveXiv Verified Subset Absolute Avg.

VQA 46.734 47.273 2.336
TQA 45.101 46.028 2.105

subset. Table 2 presents the results for VQA and TQA on the filtered subset. We see that on average
the performance only fluctuates by 2.3% and 2.1% for VQA and TQA when comparing the results
obtained by all the models on the entire dataset and the manually verified subset. These results hint that
our automated question-answer generation pipeline and the filtering methodology is quite robust. Detailed
results can be found at the Appendix, Tables 6 and 7.

Efficient evaluations of LMMs: In this section, we empirically validate the effectiveness of our proposed
efficient re-evaluation method for LMMs. Dynamic benchmarks like LiveXiv present a challenge in
terms of evaluation costs since each time a new version of the benchmark is released, all models should
be re-evaluated on the updated data. This process, however, can become computationally prohibitive when
dealing with numerous models. Our goal is to demonstrate that by re-evaluating only a small subset of
models on a new version of LiveXiv, we can still reliably predict the performance of the remaining models.

For this experiment, we evaluate 17 models on the first version of LiveXiv but only re-evaluate 5 models
(+2 not present in the first version) on the second version of the benchmark using the model selection
methodology detailed in Section 3.3; we focus on VQA or TQA (but not both simultaneously) and consider
all ArXiv domains. An IRT model is then fitted to the full observed data, and we predict the performance of
the non-re-evaluated models on each ArXiv domain and the overall benchmark using empirical versions of
equation 2. Figure 4 presents these results, with domain-specific outcomes on the left and full benchmark
results on the right. We report both the mean absolute error (MAE) (± mean absolute deviation) for the
test models when predicting their accuracy and Spearman’s rank correlation across all 19 LMMs on the
second LiveXiv version when comparing real accuracy and predicted accuracy. These results suggest
that re-evaluating just 5 models is likely to be sufficient for accurately predicting the performance of the
remaining models and the ranking of all models. Moreover, our method showed to generalize well to unseen
domains as the physics’ ArXiv domains were not included on LiveXiv v1. In Figure 4 the re-evaluated
models are InstructBLIP-7B, LLaVA-OneVision-Qwen2-7B, Idefics2-8B, Claude-Sonnet, and Qwen2-VL
for VQA and InstructBLIP-7B, InternVL2-8B, LLaVA-1.6-34B, Idefics2-8B, and Claude-Sonnet for TQA.

In Appendix A.4, we present additional experiments to further validate the effectiveness of our method.
Specifically, we (i) examine different numbers of re-evaluated models, (ii) test a situation with high
distribution shift using a hypothetical version of LiveXiv consisting of ArXiv papers from 2010 (v0),
(iii) validate our efficient evaluations method in three different hypothetical versions of LiveXiv, and
test our approach on MM-LiveBench (Zhang et al., 2024b). The second point suggests that in real-world

VQA TQA
MAE Rank Corr. MAE Rank Corr.

cs.AI 0.9±0.9 98.9 1.6±1.5 97.7
cs.CV 1.5±1.2 98.4 1.6±1.6 95.9
cs.LG 2.1±2.1 94.6 1.6±1.6 93.5
cs.RO 1.1±1.0 98.4 2.1±2.0 96.0
eess.S 2.1±2.2 95.6 3.0±2.5 97.7

eess.SY 1.3±1.3 98.2 3.0±2.9 93.0
physics.app-ph 2.0±1.9 98.2 1.7±1.5 98.4
physics.bio-ph 1.6±1.6 95.7 2.5±2.9 93.1
physics.data-an 1.4±1.4 97.7 2.2±2.1 88.9
physics.optics 1.5±1.5 97.5 1.9±2.1 92.4

q-bio.BM 0.7±0.7 98.8 2.0±1.8 96.7
q-bio.CB 2.3±2.1 93.5 3.4±2.8 93.3
q-bio.GN 2.0±2.1 95.7 1.5±1.8 97.7
q-bio.TO 1.3±1.3 96.1 2.1±2.2 99.1
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Figure 4: Performance prediction results of our efficient re-evaluation method on v2. The table on the left shows
the mean absolute error (MAE) and Spearman rank correlation when comparing true and predicted accuracies across
individual ArXiv domains, while the graph on the right presents the overall benchmark performance. The results
demonstrate that re-evaluating only 5 out of 17 models is sufficient to accurately predict the performance of the
remaining models, as well as maintain high rank correlation, validating the effectiveness of our approach.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 3: LiveXiv accuracy (%) on different categories of question and partitions averaged over all evaluated models.

Data Analysis Reasoning Attribute Localization Reading Arithmetic Charts Block Diagram Qualitative

VQA 46.93 47.95 46.18 41.91 47.83 46.87 44.17 52.69 48.60
TQA 46.02 63.61 68.69 51.66 59.35 35.56 - - -

applications, we expect our efficient evaluation strategy to achieve lower MAE than those reported in
Figure 4, given that test datasets will be larger and unaffected by data splitting.

4.3 ANALYSIS AND ABLATIONS

To analyze various aspects of LiveXiv we provide an extensive ablation study. We start by providing an
analysis of the results from different models obtained w.r.t the language content partitions, then provide
results for different models w.r.t the visual data partitions.

Language analysis - performance according to question type. To discover error slices of models for
an analysis of mistakes they commonly make, we classify the questions present in the benchmark into
one of the following categories: reasoning, data analysis, reading, localization, attribute, and arithmetic.
To achieve this classification, we employ the Llama-3.1 (Meta, 2024) LLM and prompt the model with
the question and the list of categories to choose for this question. The prompt is provided in the Appendix
Figure 23. Table 3 summarizes the results for all the models. We see that the performance of these models
on the arithmetic partition is the lowest on average as compared to other partitions highlighting room for
potential improvement. We also provide the detailed results for all models on these partitions for VQA
and TQA in Tables 9 and 10 of the Appendix.

Vision analysis - performance according to figure type. For a more fine-grained analysis of LMM
performance on different types of visual data present in our benchmark, we first categorize the data through
Meta-Prompting for CLIP, proposed by Mirza et al. (2024), in a zero-shot classification setup. Specifically,
we classify the image content into three categories of figures: Block diagrams, Qualitative visual results,
and Charts. We summarize the results in Table 3. Detailed results for each model’s performance can be
found in Table 8 in the Appendix. The results reveal a significant variance in performance across figure
types for nearly all models. In most cases, block diagrams are the most favorable category for models.
However, InternLM-Xcomposer2-4KHD-7B (Dong et al., 2024b) stands out by achieving the highest
accuracy on Qualitative figures. Overall, Charts emerge as the most challenging figure type on average,
suggesting a lack of sufficient examples in the training data for this category. This kind of analysis can be
further expanded to include more categories and discover error slices on which different models struggle
so that potential targeted improvements can be designed for these models to mitigate the shortcomings.

Diversity & Difficulty The visual content of scientific papers (figures and tables) evolves over time, and we
aim to ensure our questions remain diverse across dataset versions. To achieve this, we use an LLM (Llama-
3.1-70B Meta (2024)) to classify questions into predefined categories, allowing us to monitor and maintain
diversity. Table 18 confirms that LiveXiv maintains question diversity across versions. Additionally, we
assess question difficulty by analyzing how many models answer each question correctly. Figure 9 shows
that the difficulty distribution for both VQA and TQA tasks remains stable across dataset versions.

5 LIMITATIONS AND CONCLUSIONS

Limitations. LiveXiv relies on capable proprietary LMMs in order to be fully automatic, and with high
quality. However, relying on proprietary LMMs is a limitation since we do not have full control over the
models, they can change through time and might affect LiveXiv. Nevertheless, we commonly expect
them to continuously improve leading to a positive impact on LiveXiv effectiveness.

Conclusions. We propose LiveXiv, an ever-evolving, fully automatic, multi-modal benchmark focused on
scientific domains to tackle test set contamination issues and consequently allow a new (contamination-free)
perspective on relative ranking of advanced LMMs. We utilize ArXiv, as the data source, carefully
and extensively crafting a quality dataset to evaluate LMMs. To significantly reduce the computational
and logistical overhead of maintaining the dataset throughout time and models, we propose an efficient
evaluation method that can save more than 70% of the evaluated models on each dataset version. Our
method can be extended to other archives such as BioRXiv to extend our dataset to new domains. For
future work, we propose enhancing LMM evaluation by incorporating free-form questions to assess
generative abilities and complex question types to evaluate reasoning capabilities.
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6 ETHICS STATEMENT

This work introduces LiveXiv, a live multi-modal benchmark for evaluating LMMs using scientific ArXiv
papers. By relying solely on publicly available ArXiv manuscripts with proper licenses, we ensure com-
pliance with copyright and distribution policies. The automated generation of Visual Question Answering
(VQA) and Table Question Answering (TQA) pairs enables scalable evaluation of LMMs without human
involvement, minimizing the risk of human biases in data collection. However, we acknowledge the poten-
tial for unintentional biases within the models or dataset itself. Continuous evaluation and refinement are
necessary to mitigate these biases and promote the responsible deployment of LMMs in wider applications.
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A APPENDIX

A.1 ANALYSIS & ABLATIONS

Weak models
underfit

Newest models
Robust to domain

Mid-level models
High sensitivity to domain

Figure 5: Domain sensitivity according to domains. We visualize the performance of each model across
all domains. Clear trends revealed where old models or models with a small LLM are ”under-fitting” and
perform worse across all domains. In the middle we have the mid-level models that are sensitive to the
domain, indicating their lack of generalization across domain without any additional training. Lastly the
newest models (open-source and proprietary) are robust to domain shifts and present a stable performance
across the domains.

Figure 6: LMMs performance based on domain. To complement our analysis form Figure 5 we visualize
the statistical properties of each domain. One clear trend is that across all modesl, the performance on
cs.CV and cs.AI is the most concentrated, hinting lower variance between models.
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Figure 7: Domain sensitivity according to domains. As opposed to the high variance some models
demonstrated in Figure 5, in TQA the tasks and he visual content are more limited thus shrunken the
performance variance greatly.
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Figure 8: LMMs performance based on domain. The domains are very similar in their statistical
properties showing high variance in performance. This is probably due to wide range of models that differ
significantly in their performance.
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Table 4: Average results for relatively close benchmarks (DocVQA, ChartQA and AI2D). We can
see that Claude, GPT4o, Qwen2-VL and InternVL2 are the top models. The overall ordering is align
with our benchmark.

ChartQA DocVQA AI2D

InstructBLIP-7B 10.9 74 40.6
LLaVA-1.6-Mistral-7B 51.8 72.2 69
Mantis 42.9 - 60.4
LLaVA-1.5-7B 17.8 74.4 55.5
LLaVA-1.5-13B 18.2 77.5 70
Idefics2 - 74 72.3
InternVL2-2B 76.2 86.9 74.1
IXC2-4KHD-7B 81 90 81
IXC2.5-7B 82.2 90.9 81.6
LLaVA-OneVision-7B 80 83.7 81.4
Phi3v 72 84.9 77.8
Idefics3 - 87.7 76.5
LLaVA-1.6-34B 67.6 84 78.9
GPT-4o 85.7 92.8 94.2
Qwen2-VL 83 94.5 83
InternVL2-8B 83.3 91.6 83.8
Claude-Sonnet 90.8 95.2 94.7

Table 5: Average ranking on static benchmarks (ChartQA, DocVQA and AI2D) and LiveXiv. We can see from
the ranking difference column that some models have a significant drop (negative difference) in the relative ranking
in LiveXiv compared to the static datasets. The gap is highlighting a potential risk of test data contamination when
using static (frozen in time) benchmark datasets.

Model Static datasets LiveXiv Difference (static - livexiv)

InstructBLIP-7B 15.33 17.00 -1.67
LLaVA-1.6-Mistral-7B 13.67 16.00 -2.33
Mantis 14.50 14.50 0.00
LLaVA-1.5-7B 14.33 14.50 -0.17
LLaVA-1.5-13B 12.67 13.00 -0.33
Idefics2 13.00 12.00 1.00
InternVL2-2B 9.00 10.00 -1.00
IXC2-4KHD-7B 6.33 10.50 -4.17
IXC2.5-7B 5.00 9.50 -4.50
LLaVA-OneVision-7B 8.00 6.50 1.50
Phi3v 9.00 6.00 3.00
Idefics3 8.50 6.50 2.00
LLaVA-1.6-34B 9.33 6.50 2.83
GPT-4o 2.33 4.00 -1.67
Qwen2-VL 3.33 3.00 0.33
InternVL2-8B 3.33 2.00 1.33
Claude-Sonnet 1.00 1.00 0.00
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A.1.1 PERFORMANCE CHANGE COMPARED TO MANUALLY CURATED SUBSET

Table 6: VQA Performance change between LiveXiv and a manually curated subset (500 examples).

Model LiveXiv (%) Manual (%) Performance Change LiveXiv Rank Manual Rank Change
InstructBLIP-7B 23.216 21.346 -1.87 17 17 0
InternLM-Xcomposer2.5-7B 47.839 50.769 2.93 10 9 1
InternVL2-8B 61.558 66.154 4.596 3 3 0
LLaVA-1.6-Mistral-7B 29.163 26.346 -2.816 16 16 0
LLaVA-OneVision-Qwen2-7B 52.864 56.154 3.29 7 6 1
LLaVA-1.5-13B 31.859 30.385 -1.475 14 13 1
LLaVA-1.5-7B 29.983 28.654 -1.329 15 14 1
LLaVA-1.6-34B 49.196 53.269 4.073 9 7 2
Mantis-LLama3-8B 32.094 28.654 -3.44 13 14 -1
Phi3v 58.141 58.654 0.513 5 5 0
InternLM-Xcomposer2-4KHD-7B 36.801 33.654 -3.147 12 12 0
Idefics2-8B 36.851 36.731 -0.12 11 11 0
InternVL2-2B 49.548 48.654 -0.894 8 10 -2
Claude-Sonnet 75.942 79.615 3.673 1 1 0
Qwen2-VL 66.248 71.346 5.098 2 2 0
GPT-4o 60.303 60.577 0.274 4 4 0
Idefics3 52.881 52.692 -0.189 6 8 -2

Average (absolute) change 2.336

Table 7: TQA Performance change between LiveXiv and a manually curated subset (500 examples).

Model LiveXiv (%) Manual (%) Performance Change LiveXiv Rank Manual Rank Change
InstructBLIP-7B 19.1 18.5 -0.6 17 17 0
InternLM-Xcomposer2.5-7B 49.1 45.9 -3.2 9 9 0
InternVL2-8B 62.1 65.3 3.2 2 2 0
LLaVA-1.6-Mistral-7B 23.5 23.2 -0.3 16 16 0
LLaVA-OneVision-Qwen2-7B 50.2 51.6 1.4 7 8 -1
LLaVA-1.5-13B 30.9 31.2 0.3 13 13 0
LLaVA-1.5-7B 30.0 29.6 -0.3 14 14 0
LLaVA-1.6-34B 51.8 52.2 0.4 5 7 -2
Mantis-LLama3-8B 29.3 28.0 -1.3 15 15 0
Phi3v 50.2 54.1 4.0 7 6 1
InternLM-Xcomposer2-4KHD-7B 42.1 41.7 -0.4 10 11 -1
Idefics2-8B 38.2 42.0 3.8 12 10 -2
InternVL2-2B 41.5 39.5 -2.0 11 12 -1
Claude-Sonnet 83.5 89.2 5.6 1 1 0
Qwen2-VL 60.2 58.3 -1.9 3 3 0
GPT-4o 54.5 55.7 1.3 4 5 -1
Idefics3 50.6 56.4 5.7 6 4 2

Average (absolute) change 2.105

A.1.2 FIGURE TYPE

We provide all the details for VQA performance according to figure type content in Table 8. We divide
the performance to the following figure types: ”Chart”, ”Block Diagram” and ”Qualitative”.

A.1.3 QUESTION CATEGORY

In Tables 9 and 10 we provide detailed results for VQA and TQA performance according to the category
of the questions as classified by an LLM. We divide the performance to the following categories: ”Data
Analysis”, ”Attribute”, ”Reasoning”, ”Reading”, ”Localization” and ”Arithmetic”

A.1.4 QUESTIONS’ DIFFICULTY

We provide additional analyses regarding the diverse difficulties of LiveXiv’s generated questions. Figure 9
demonstrates that for all LiveXiv tasks and for both the first and second versions, a wide range of
difficulties is present, where most of the questions concentrate in the middle, suggesting our dataset is
indeed challenging.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 8: Performance of LMMs over different figure types from the VQA set (the amount of samples for each figure
type is in brackets).

Model Chart block diagram Qualitative
(4354) (2110) (864)

InstructBLIP-7B 22.9 22.8 22.5
InternLM-Xcomposer2.5-7B 46.7 53.5 41.7
InternVL2-8B 59.1 68.4 63.8
LLaVA-1.6-Mistral-7B 27.3 33.6 33.4
LLaVA-OneVision-Qwen2-7B 48.7 62.8 57.9
LLaVA-1.5-13B 29.3 35.4 40.2
LLaVA-1.5-7B 28.1 33.1 36.0
LLaVA-1.6-34B 44.6 60.0 52.7
Mantis-LLama3-8B 29.3 36.2 36.1
Phi3v 56.1 65.5 55.2
InternLM-Xcomposer2-4KHD-7B 32.9 43.7 47.1
Idefics2-8B 34.3 43.0 41.1
InternVL2-2B 47.2 54.9 50.0
Claude-Sonnet 73.7 81.3 69.1
Qwen2-VL 63.1 73.9 66.0
GPT-4o 56.5 68.6 59.5
idefics3 51.1 59.0 54.1

Table 9: VQA Performance by Question Categories (the amount of samples for each category is in brackets).

Model Data Analysis Reasoning Attribute Localization Reading Arithmetic
(2291) (872) (903) (1596) (1470) (154)

InstrcutBLIP 21.16 29.29 22.77 31.25 23.87 23.01
InterLM-XC-2.5 47.52 43.43 48.51 31.25 50.46 47.28
InternVL2-8B 61.74 63.64 65.35 56.25 62.54 62.41
LLaVA1.6-7B 28.91 31.31 30.69 12.50 30.00 30.43
LLaVA-OneVision 52.57 54.55 60.40 56.25 56.76 52.85
LLaVA1.5-13B 32.92 25.25 25.74 43.75 31.85 32.58
LLaVA1.5-7B 30.56 28.28 29.70 25.00 29.71 30.89
LLaVA1.6-34B 50.87 43.43 45.54 37.50 49.60 50.00
Mantis 32.50 33.33 30.69 43.75 31.97 31.80
Phi3v 58.05 63.64 59.41 43.75 58.15 59.07
InterLM-XC-4Khd 37.51 43.43 39.60 18.75 38.67 37.09
Idefics2 37.79 39.39 35.64 31.25 39.54 36.34
InternVL2-2B 50.26 46.46 44.55 43.75 51.45 48.62
Claude-Sonnet 74.78 78.79 67.33 81.25 75.49 75.64
Qwen2-VL 66.93 66.67 68.32 43.75 68.73 65.01
GPT4o 61.41 60.61 59.41 62.50 59.83 59.76
Idefics3 52.34 63.64 51.49 50.00 54.51 54.00
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Table 10: TQA Performance by Question Categories (the amount of samples for each category is in brackets).

Model Data Analysis Reasoning Attribute Localization Reading Arithmetic
(2582) (123) (121) (23) (2127) (3934)

InstructBLIP-7B 24.7 27.6 34.7 43.5 20.4 13.6
InternLM-Xcomposer2.5-7B 54.9 75.6 79.3 60.9 74.6 29.7
InternVL2-8B 58.6 73.2 78.5 65.2 79.8 54.1
LLaVA-1.6-Mistral-7B 30.4 39.0 52.1 30.4 32.0 13.0
LLaVA-OneVision-Qwen2-7B 47.5 72.4 80.2 60.9 69.1 40.3
LLaVA-1.5-13B 31.6 49.6 47.9 30.4 32.4 28.5
LLaVA-1.5-7B 30.8 39.0 42.1 43.5 31.6 27.9
LLaVA-1.6-34B 46.4 69.1 76.9 47.8 66.8 46.1
Mantis-LLama3-8B 28.7 39.0 46.3 21.7 32.4 27.3
Phi3v 52.2 76.4 77.7 60.9 72.4 35.2
InternLM-Xcomposer2-4KHD-7B 45.4 69.1 77.7 60.9 66.2 25.0
Idefics2-8B 35.0 57.7 57.9 43.5 51.1 32.4
InternVL2-2B 36.9 57.7 70.2 30.4 62.2 32.1
Claude-Sonnet 85.1 90.2 91.7 87.0 91.0 78.1
Qwen2-VL 64.6 86.2 90.1 65.2 82.0 44.0
GPT-4o 57.5 79.7 86.8 69.6 73.0 40.6
Idefics3 52.0 79.7 77.7 56.5 72.0 36.6
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Figure 9: LiveXiv questions’ difficulty diversity. LiveXiv is composed of questions at varying levels of
difficulty. Each row shows a version of the dataset on both of its task (VQA and TQA). LiveXiv demon-
strates questions in a wide range of questions’ difficulties, from questions that no model was able to answer
correctly up to questions that all models were able to easily answer, The center mass consternates in the
middle, hinting the dataset is indeed challenging and the fact that the difficulty distribution remains the same
for both the first version and second version suggests the stability of our diverse and challenging dataset.
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A.2 DETAILED EXAMPLES FOR VQA AND TQA GENERATION

Here we present full and detailed examples of our flow from ArXiv papers until constructing verified
multi-choice Q&A. Figure 10 shows the full example for generating questions from figures (VQA). Figure
11 shows the full examples for TQA.

The figure is a plot illustrating the paths of a robot in a 2D plane 
with obstacles. Here are the detailed elements of the image: 1. 
**Axes and Labels**: - The x-axis is labeled \( p_x \) (m) and ranges 
from 0.0 to 8.0. - The y-axis is labeled \( p_y \) (m) and ranges from 
0.0 to 6.0. 2. **Paths**: - There are two paths shown in the plot: - 
**Reference Path**: This is represented by an orange dashed line. - 
**Simulated Trajectory (sim traj)**: This is represented by a solid 
blue line. 3. **Obstacles**: - There are four brown elliptical 
obstacles labeled as \( m=1 \), \( m=2 \), \( m=3 \), and \( m=4 \). - \( 
m=1 \) is located approximately at \( p_x = 1.5 \) and \( p_y = 2.0 \). 
- \( m=2 \) is located approximately at \( p_x = 3.0 \) and \( p_y = 3.0 
\). - \( m=3 \) is located approximately at \( p_x = 4.5 \) and \( p_y = 
1.5 \). - \( m=4 \) is located approximately at \( p_x = 6.0 \) and \( 
p_y = 3.5 \). 4. **Path Details**: - The reference path (orange 
dashed line) starts at the bottom left and follows a wavy pattern. - 
The simulated trajectory (blue solid line) closely follows the 
reference path but deviates slightly to avoid the obstacles. - There 
are two orange circles on the reference path, one at the start and 
one at the end, indicating the start and end points of the path. - A 
black arrow near the start point of the reference path indicates the 
direction of movement. 5. **Legend**: - The legend in the top left 
corner of the plot explains the color and style of the lines: - Orange 
dashed line: reference path. - Blue solid line: sim traj (simulated 
trajectory). The figure effectively shows that if the robot were to 
follow the reference path exactly, it would crash into the obstacles. 
The simulated trajectory demonstrates how the robot adjusts its 
path to avoid these obstacles. 

CLIP

Detailed caption

Extract figure type
(Meta-Prompting)

Generate questions

Remove Duplications

Blind check by LLM

Agreement with VLM

Remove Figure by type

OCR

ArXiv paper

Figure 10: A detailed example for VQA questions generation.

Remove Duplications

Agreement with VLMOCR

ArXiv paper

Table content

Generate questions

Figure 11: A detailed example for TQA question generation.
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Table 11: Version 0 - VQA and TQA average accuracy across ArXiv taxonomy (the number of samples is in brackets).

VQA Accuracy cs.AI cs.CV cs.LG cs.RO eess.SP eess.SY q-bio.BM q-bio.CB q-bio.GN q-bio.TO Mean
(188) (200) (196) (321) (269) (286) (154) (206) (80) (167) (2067)

InstrcutBLIP 0.29 0.24 0.20 0.22 0.24 0.25 0.27 0.22 0.19 0.25 0.24
InterLM-XC-2.5 0.42 0.42 0.49 0.48 0.56 0.48 0.51 0.49 0.57 0.46 0.49
InternVL2-2B 0.61 0.66 0.64 0.65 0.69 0.68 0.58 0.55 0.59 0.57 0.62
InternVL2-8B 0.30 0.28 0.30 0.34 0.32 0.36 0.26 0.25 0.22 0.30 0.29
LLaVA1.6-7B 0.54 0.56 0.52 0.62 0.55 0.60 0.50 0.50 0.60 0.43 0.54
LLaVA-OneVision 0.32 0.36 0.33 0.38 0.35 0.35 0.31 0.27 0.32 0.22 0.32
LLaVA1.5-13B 0.29 0.35 0.31 0.35 0.33 0.33 0.33 0.28 0.29 0.25 0.31
LLaVA1.5-7B 0.44 0.50 0.63 0.52 0.52 0.53 0.46 0.40 0.44 0.48 0.49
LLaVA1.6-34B 0.30 0.39 0.33 0.36 0.29 0.36 0.33 0.32 0.32 0.31 0.33
Mantis 0.55 0.60 0.65 0.57 0.67 0.61 0.54 0.58 0.57 0.42 0.58
Phi3v 0.42 0.42 0.41 0.41 0.29 0.35 0.39 0.36 0.39 0.26 0.37
InterLM-XC-4Khd 0.39 0.44 0.42 0.41 0.43 0.45 0.38 0.34 0.32 0.40 0.40
Idefics2 0.47 0.48 0.48 0.52 0.50 0.49 0.49 0.43 0.49 0.48 0.48
Claude-Sonnet 0.77 0.74 0.81 0.77 0.89 0.79 0.72 0.74 0.55 0.78 0.75
Qwen2-VL-7B 0.62 0.66 0.71 0.72 0.77 0.70 0.69 0.59 0.66 0.61 0.67
GPT4o 0.49 0.52 0.55 0.55 0.58 0.52 0.47 0.49 0.45 0.49 0.51
Idefics3 0.52 0.63 0.54 0.58 0.54 0.54 0.55 0.47 0.55 0.51 0.54

TQA Accuracy cs.AI cs.CV cs.LG cs.RO eess.SP eess.SY q-bio.BM q-bio.CB q-bio.GN q-bio.TO Mean
(167) (473) (516) (247) (45) (188) (118) (108) (398) (115) (2375)

InstrcutBLIP 0.20 0.19 0.23 0.19 0.20 0.21 0.19 0.14 0.24 0.21 0.20
InterLM-XC-2.5 0.46 0.38 0.36 0.51 0.38 0.56 0.45 0.44 0.47 0.44 0.45
InternVL2-2B 0.41 0.36 0.36 0.51 0.27 0.49 0.42 0.43 0.40 0.42 0.41
InternVL2-8B 0.50 0.56 0.55 0.68 0.64 0.75 0.62 0.64 0.54 0.73 0.62
LLaVA1.6-7B 0.26 0.19 0.22 0.29 0.24 0.26 0.20 0.28 0.22 0.30 0.25
LLaVA-OneVision 0.48 0.41 0.43 0.57 0.33 0.64 0.49 0.57 0.43 0.55 0.49
LLaVA1.5-13B 0.37 0.29 0.28 0.36 0.31 0.32 0.29 0.31 0.30 0.31 0.31
LLaVA1.5-7B 0.32 0.26 0.29 0.32 0.33 0.30 0.28 0.36 0.30 0.30 0.31
LLaVA1.6-34B 0.54 0.50 0.46 0.55 0.47 0.63 0.58 0.57 0.47 0.54 0.53
Mantis 0.31 0.24 0.29 0.35 0.33 0.32 0.19 0.32 0.32 0.32 0.30
Phi3v 0.47 0.41 0.43 0.51 0.49 0.60 0.48 0.56 0.46 0.48 0.49
InterLM-XC-4Khd 0.43 0.31 0.36 0.50 0.24 0.53 0.48 0.44 0.38 0.43 0.41
Idefics2 0.36 0.30 0.34 0.38 0.33 0.43 0.34 0.41 0.34 0.30 0.35
Claude-Sonnet 0.77 0.79 0.84 0.85 0.80 0.85 0.84 0.79 0.78 0.83 0.81
Qwen2-VL-7B 0.59 0.53 0.52 0.63 0.53 0.64 0.53 0.66 0.53 0.63 0.58
GPT4o 0.46 0.41 0.40 0.55 0.47 0.57 0.49 0.50 0.45 0.48 0.48
Idefics3 0.49 0.43 0.44 0.57 0.36 0.57 0.45 0.58 0.46 0.52 0.49

A.3 ADDITIONAL LIVEXIV DATASET VERSIONS

In this section we describe in detail the additional LiveXiv versions, v0 (generated form papers from 2010),
v1-opposite which is the same raw data as v1 but this time Claude is the QA generation model and GPT-4o
does the filtering, and v2 and v3 which consist of multiple participating models. We start by describing
each version and the performance of the evaluated models. Lastly, we summarize the diversity of our
generated dataset, both in terms of visual content and in terms of the different categories of questions.

A.3.1 LIVEXIV V0

We analyzed 100 scientific papers from 2010 and developed v0, which contains 4,500 questions. Due
to the dynamic nature of scientific data, v0 represents a significant distribution shift from v1. We used
our efficient evaluation method to predict v1 from v0, and our high-accuracy predictions demonstrate
the method’s robustness across a large temporal gap. Refer to Table 11 for performance details.

A.3.2 LIVEXIV V1-OPPOSITE

To show the impact of the the role of each model in the dataset creation, we created an opposite version
of v1, where Claude is the model that generates the questions and GPT is the model that does the filtering.
Table 12 demonstrates the changes in the absolute performance and in the ranking between the models.
Overall, switching roles between Claude and GPT-4o has minimal impact on most models. However,
GPT-4o shows slightly more variation, dropping slightly in the rankings when it takes on the role of
filtering questions. This variation occurs because generating the questions provides some advantage.
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Table 12: We compared LiveXiv first version with different configurations, The original configuration where GPT4o
generates the questions and Claude filters and an opposite version where Claude generates the questions and GPT4o
performs the filtering. We see in it that overall, the ranking remains similar and the changes are minor. Indeed, for
the generating model there is some advantage as we see that GPT goes down a bit in the ranking (Claude remains
first in both cases).

VQA TQA
Ranking change Average change (%) Ranking change Average change (%)

InstructBLIP-7B 0 -1.78 0 9.66
IXC2.5-7B 0 -0.83 0 13.73
InternVL2-8B 0 -1.18 0 2.37
LLaVA-1.6-Mistral-7B 2 -8.64 0 10.72
LLaVA-OneVision-7B 1 -3.66 -2 13.42
LLaVA-v1.5-13B 0 -6.49 0 8.48
LLaVA-v1.5-7B 0 -8.00 -1 12.72
LLaVA-v1.6-34B 2 -5.85 0 -0.35
Mantis-LLama3-8B 2 -7.13 0 10.24
Phi3v 1 -0.49 0 13.856
IXC2-4KHD-7B -5 -0.47 3 8.60
Idefics2-8B 1 -6.00 0 3.21
InternVL2-2B 0 -1.42 0 2.61
Claude-Sonnet 0 -3.31 0 10.11
Qwen2-VL 0 -0.31 0 2.81
GPT-4o -4 4.74 0 13.46
Idefics3 0 -1.89 0 12.23
Average 0 -3.10 0 8.70

A.3.3 LIVEXIV V2

LiveXiv second version (v2) consists of 10.4K questions for VQA and 7.7K questions for TQA. In addition
we introduced 4 new domains from physics, namely, physics.app-ph, physics.optics,
physics.bio-ph, physics.data-an to a total of 14 domains. Lastly, we also added Two new
models, Pixtral (Agrawal et al., 2024) and Molmo-7B (Deitke et al., 2024). Due to our high frequency
updates, Quantitative Biology related domains have overleaping papers between versions. Thus, we
filtered these overleaping papers out. V2 shows similar diversity to v1 (see Table 18), similar performance
of the evaluated models, resulting an accurate and reliable efficient evaluation (see Figure 4) and lastly,
demonstrating LiveXiv to be evolving scalable live dataset. Table 13 reports the performance summary.

A.3.4 LIVEXIV V3

To further mitigate the potential bias due to single generation and single filtering model, v3 is a combination
of 3 participant models, GPT-4o, Claude-Sonnet and Qwen2-VL-72B. v3 is actually 3 subsets, where each
time a different model takes a different role. Table 14 presents the results for all 3 subsets. Table 15 shows
the performance per subset. Overall we can see that the model ranking remains similar to previous version.
This hints that the bias of using a single model is small. We extended our manual verification process with
an additional check of v3. Tables 16 and 17 present these results in detail. The manual check revealed more
variations compared to the manual check on v1, which can be attributed to the participation of three models
in v3. As shown in Table 15, Qwen2-VL-72B demonstrated weaker performance compared to GPT and
Claude. Consequently, its role as the filtering and generation model likely introduced additional noise
into the dataset. However, the average performance change for both VQA and TQA remains below 5%.
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Table 13: Version 2 - VQA and TQA average accuracy across ArXiv taxonomy (the number of samples is in brackets).

VQA Accuracy cs.AI cs.CV cs.LG cs.RO eess.SP eess.SY physics.app-ph physics.bio-ph physics.data-an physics.optics q-bio.BM q-bio.CB q-bio.GN q-bio.TO Mean
(790) (1071) (853) (834) (889) (772) (944) (868) (841) (819) (890) (184) (321) (299) (10375)

InstrcutBLIP 0.25 0.24 0.23 0.27 0.28 0.22 0.22 0.25 0.27 0.22 0.20 0.25 0.22 0.17 0.24
InterLM-XC-2.5 0.51 0.49 0.43 0.49 0.54 0.52 0.46 0.52 0.49 0.51 0.47 0.42 0.54 0.51 0.49
InternVL2-2B 0.66 0.67 0.54 0.65 0.65 0.65 0.63 0.68 0.64 0.66 0.62 0.59 0.64 0.66 0.64
InternVL2-8B 0.34 0.39 0.34 0.36 0.33 0.32 0.30 0.34 0.32 0.31 0.34 0.29 0.30 0.34 0.33
LLaVA1.6-7B 0.55 0.60 0.47 0.59 0.54 0.59 0.57 0.59 0.55 0.59 0.55 0.47 0.58 0.56 0.56
LLaVA-OneVision 0.35 0.36 0.33 0.39 0.35 0.36 0.34 0.35 0.33 0.34 0.36 0.33 0.35 0.35 0.35
LLaVA1.5-13B 0.32 0.35 0.33 0.35 0.31 0.34 0.31 0.34 0.35 0.35 0.33 0.35 0.32 0.35 0.33
LLaVA1.5-7B 0.53 0.56 0.42 0.57 0.54 0.54 0.48 0.58 0.45 0.55 0.51 0.47 0.45 0.56 0.52
LLaVA1.6-34B 0.35 0.35 0.29 0.35 0.30 0.33 0.31 0.35 0.31 0.36 0.33 0.35 0.33 0.35 0.33
Mantis 0.59 0.64 0.51 0.63 0.64 0.60 0.60 0.66 0.60 0.62 0.60 0.49 0.58 0.62 0.60
Phi3v 0.43 0.45 0.30 0.42 0.32 0.35 0.32 0.33 0.36 0.32 0.36 0.24 0.38 0.32 0.35
InterLM-XC-4Khd 0.39 0.44 0.36 0.43 0.36 0.40 0.38 0.43 0.39 0.39 0.39 0.33 0.34 0.39 0.39
Idefics2 0.50 0.54 0.45 0.52 0.47 0.52 0.52 0.55 0.51 0.53 0.48 0.43 0.48 0.51 0.50
Claude-Sonnet 0.81 0.78 0.75 0.76 0.83 0.80 0.78 0.80 0.76 0.80 0.77 0.69 0.76 0.78 0.78
Qwen2-VL-7B 0.68 0.71 0.61 0.68 0.72 0.66 0.70 0.75 0.69 0.73 0.67 0.58 0.69 0.71 0.68
GPT4o 0.58 0.61 0.50 0.60 0.62 0.57 0.61 0.63 0.59 0.61 0.59 0.53 0.54 0.67 0.59
Idefics3 0.57 0.60 0.50 0.55 0.58 0.58 0.52 0.59 0.53 0.54 0.55 0.52 0.60 0.58 0.56
Pixtral 0.73 0.71 0.66 0.73 0.78 0.70 0.76 0.77 0.73 0.73 0.70 0.67 0.72 0.77 0.73
Molmo 0.62 0.67 0.52 0.62 0.62 0.62 0.59 0.65 0.61 0.63 0.61 0.49 0.55 0.67 0.60

TQA Accuracy cs.AI cs.CV cs.LG cs.RO eess.SP eess.SY physics.app-ph physics.bio-ph physics.data-an physics.optics q-bio.BM q-bio.CB q-bio.GN q-bio.TO Mean
(1208) (901) (785) (1315) (164) (458) (998) (482) (340) (198) (252) (203) (141) (267) (7712)

InstrcutBLIP 0.20 0.22 0.21 0.19 0.19 0.19 0.15 0.13 0.18 0.18 0.18 0.21 0.20 0.18 0.19
InterLM-XC-2.5 0.41 0.43 0.45 0.49 0.42 0.50 0.46 0.56 0.52 0.43 0.45 0.38 0.46 0.41 0.46
InternVL2-2B 0.37 0.34 0.39 0.37 0.36 0.41 0.41 0.47 0.39 0.37 0.38 0.34 0.41 0.30 0.38
InternVL2-8B 0.56 0.55 0.59 0.64 0.63 0.65 0.65 0.69 0.56 0.60 0.61 0.51 0.57 0.57 0.60
LLaVA1.6-7B 0.23 0.21 0.22 0.23 0.21 0.24 0.22 0.21 0.26 0.25 0.24 0.15 0.24 0.21 0.22
LLaVA-OneVision 0.42 0.44 0.50 0.48 0.45 0.53 0.49 0.56 0.52 0.50 0.48 0.46 0.49 0.47 0.49
LLaVA1.5-13B 0.30 0.28 0.33 0.32 0.34 0.28 0.29 0.35 0.31 0.31 0.29 0.25 0.28 0.27 0.30
LLaVA1.5-7B 0.28 0.26 0.31 0.31 0.28 0.30 0.27 0.33 0.28 0.29 0.31 0.33 0.25 0.27 0.29
LLaVA1.6-34B 0.45 0.45 0.48 0.54 0.54 0.59 0.55 0.55 0.55 0.52 0.54 0.48 0.49 0.51 0.52
Mantis 0.28 0.28 0.29 0.32 0.33 0.28 0.28 0.33 0.34 0.25 0.28 0.22 0.27 0.24 0.29
Phi3v 0.43 0.47 0.48 0.49 0.42 0.53 0.47 0.60 0.54 0.48 0.47 0.39 0.49 0.44 0.48
InterLM-XC-4Khd 0.37 0.37 0.40 0.43 0.34 0.42 0.40 0.46 0.44 0.47 0.39 0.24 0.41 0.30 0.39
Idefics2 0.32 0.33 0.35 0.37 0.34 0.44 0.35 0.44 0.39 0.36 0.36 0.29 0.37 0.32 0.36
Claude-Sonnet 0.79 0.82 0.81 0.87 0.81 0.81 0.83 0.85 0.78 0.80 0.83 0.77 0.81 0.84 0.82
Qwen2-VL-7B 0.51 0.54 0.56 0.59 0.60 0.63 0.57 0.73 0.59 0.53 0.56 0.51 0.61 0.52 0.58
GPT4o 0.47 0.45 0.45 0.50 0.50 0.50 0.52 0.55 0.46 0.46 0.47 0.43 0.49 0.54 0.49
Idefics3 0.43 0.48 0.47 0.47 0.47 0.58 0.47 0.55 0.49 0.48 0.47 0.39 0.50 0.49 0.48
Pixtral 0.57 0.56 0.58 0.59 0.57 0.63 0.60 0.66 0.58 0.57 0.58 0.54 0.61 0.57 0.59
Molmo 0.49 0.48 0.51 0.53 0.49 0.55 0.52 0.64 0.53 0.50 0.53 0.44 0.51 0.49 0.51

Table 14: Version 3 - VQA and TQA average accuracy across ArXiv taxonomy (the number of samples is in brackets).

VQA Accuracy cs.AI cs.CV cs.LG cs.RO eess.SP eess.SY physics.app-ph physics.bio-ph physics.data-an physics.optics q-bio.BM q-bio.CB q-bio.GN q-bio.TO Mean
(609) (892) (792) (798) (835) (597) (1035) (908) (425) (628) (803) (640) (425) (555) (9942)

InstrcutBLIP 0.24 0.26 0.23 0.26 0.21 0.21 0.21 0.22 0.22 0.20 0.22 0.23 0.26 0.24 0.23
InterLM-XC-2.5 0.50 0.50 0.46 0.49 0.48 0.47 0.53 0.50 0.50 0.52 0.49 0.48 0.51 0.52 0.50
InternVL2-2B 0.65 0.66 0.60 0.71 0.67 0.65 0.69 0.64 0.62 0.68 0.62 0.64 0.61 0.69 0.65
InternVL2-8B 0.37 0.38 0.31 0.42 0.33 0.35 0.34 0.31 0.28 0.34 0.33 0.35 0.32 0.35 0.34
LLaVA1.6-7B 0.58 0.59 0.51 0.65 0.57 0.55 0.61 0.57 0.52 0.58 0.51 0.56 0.52 0.57 0.56
LLaVA-OneVision 0.38 0.40 0.33 0.45 0.33 0.39 0.36 0.34 0.31 0.37 0.36 0.38 0.33 0.34 0.36
LLaVA1.5-13B 0.37 0.38 0.32 0.44 0.31 0.36 0.35 0.33 0.29 0.36 0.32 0.36 0.34 0.36 0.35
LLaVA1.5-7B 0.54 0.59 0.47 0.64 0.56 0.56 0.57 0.52 0.47 0.59 0.50 0.49 0.50 0.57 0.54
LLaVA1.6-34B 0.37 0.40 0.31 0.42 0.33 0.37 0.37 0.35 0.30 0.36 0.34 0.37 0.34 0.37 0.36
Mantis 0.63 0.64 0.59 0.65 0.62 0.59 0.67 0.63 0.60 0.63 0.56 0.60 0.60 0.59 0.61
Phi3v 0.38 0.42 0.34 0.46 0.33 0.33 0.38 0.32 0.31 0.37 0.31 0.31 0.37 0.38 0.36
InterLM-XC-4Khd 0.40 0.42 0.35 0.47 0.36 0.41 0.42 0.39 0.35 0.38 0.36 0.39 0.39 0.45 0.40
Idefics2 0.54 0.55 0.47 0.58 0.49 0.51 0.55 0.50 0.49 0.50 0.48 0.53 0.49 0.50 0.51
Claude-Sonnet 0.75 0.77 0.76 0.78 0.80 0.80 0.81 0.80 0.73 0.81 0.76 0.75 0.77 0.78 0.78
Qwen2-VL-7B 0.68 0.69 0.66 0.74 0.68 0.66 0.75 0.72 0.69 0.72 0.62 0.70 0.68 0.73 0.69
GPT4o 0.50 0.54 0.50 0.56 0.51 0.54 0.52 0.48 0.48 0.48 0.46 0.51 0.51 0.52 0.51
Idefics3 0.59 0.58 0.50 0.60 0.54 0.57 0.58 0.53 0.52 0.56 0.49 0.52 0.57 0.54 0.55
Pixtral 0.69 0.71 0.69 0.74 0.72 0.70 0.76 0.70 0.72 0.74 0.69 0.71 0.70 0.74 0.71
Molmo 0.62 0.64 0.58 0.66 0.64 0.60 0.66 0.60 0.58 0.62 0.57 0.62 0.60 0.65 0.62

TQA Accuracy cs.AI cs.CV cs.LG cs.RO eess.SP eess.SY physics.app-ph physics.bio-ph physics.data-an physics.optics q-bio.BM q-bio.CB q-bio.GN q-bio.TO Mean
(802) (939) (890) (502) (386) (273) (270) (199) (149) (241) (821) (283) (650) (248) (6653)

InstrcutBLIP 0.18 0.25 0.16 0.18 0.17 0.22 0.24 0.18 0.18 0.19 0.22 0.18 0.20 0.23 0.20
InterLM-XC-2.5 0.49 0.47 0.51 0.49 0.49 0.59 0.66 0.65 0.52 0.53 0.50 0.56 0.56 0.59 0.54
InternVL2-2B 0.44 0.38 0.44 0.46 0.46 0.56 0.63 0.58 0.46 0.46 0.42 0.49 0.47 0.47 0.48
InternVL2-8B 0.67 0.60 0.60 0.65 0.67 0.77 0.79 0.77 0.70 0.72 0.62 0.75 0.66 0.67 0.69
LLaVA1.6-7B 0.26 0.24 0.24 0.21 0.23 0.32 0.35 0.29 0.29 0.26 0.24 0.27 0.23 0.26 0.26
LLaVA-OneVision 0.52 0.52 0.50 0.52 0.52 0.66 0.73 0.66 0.60 0.57 0.48 0.62 0.53 0.56 0.57
LLaVA1.5-13B 0.35 0.32 0.33 0.29 0.34 0.38 0.33 0.32 0.17 0.35 0.33 0.29 0.33 0.24 0.31
LLaVA1.5-7B 0.32 0.32 0.32 0.30 0.34 0.37 0.33 0.30 0.24 0.30 0.32 0.31 0.30 0.29 0.31
LLaVA1.6-34B 0.58 0.51 0.47 0.56 0.60 0.66 0.72 0.72 0.60 0.65 0.55 0.67 0.56 0.54 0.60
Mantis 0.32 0.27 0.33 0.31 0.29 0.40 0.33 0.32 0.33 0.35 0.29 0.30 0.30 0.26 0.31
Phi3v 0.52 0.51 0.53 0.51 0.55 0.62 0.74 0.68 0.59 0.61 0.53 0.63 0.58 0.51 0.58
InterLM-XC-4Khd 0.45 0.39 0.46 0.44 0.44 0.51 0.57 0.55 0.43 0.48 0.46 0.46 0.44 0.47 0.47
Idefics2 0.40 0.31 0.39 0.33 0.40 0.46 0.51 0.45 0.42 0.47 0.35 0.42 0.42 0.44 0.41
Claude-Sonnet 0.82 0.78 0.78 0.85 0.85 0.87 0.85 0.86 0.89 0.88 0.78 0.88 0.83 0.83 0.84
Qwen2-VL-7B 0.62 0.60 0.63 0.63 0.62 0.68 0.77 0.72 0.72 0.73 0.62 0.70 0.66 0.64 0.67
GPT4o 0.45 0.44 0.45 0.44 0.51 0.59 0.62 0.56 0.54 0.53 0.48 0.60 0.54 0.51 0.52
Idefics3 0.55 0.49 0.57 0.47 0.51 0.59 0.68 0.66 0.54 0.59 0.52 0.58 0.56 0.53 0.56
Pixtral 0.40 0.41 0.50 0.42 0.37 0.48 0.16 0.14 0.49 0.54 0.36 0.42 0.39 0.37 0.39
Molmo 0.35 0.35 0.42 0.38 0.34 0.47 0.14 0.12 0.44 0.52 0.31 0.33 0.34 0.31 0.34

Table 15: Average performance (%) on different versions. We clearly can see that version subset 3
(denote v3-s3) has a large shift in the average performance for TQA, suggests that Qwen2-VL-72B might
generates easier questions.

VQA TQA

v1 47.1 45.1
v2 50.7 44.0
v3 - s1 51.6 44.5
v3 - s2 49.1 41.7
v3 - s3 52.2 52.5
v3 50.8 46.3
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Table 16: VQA Manual verification. We re-verified our dataset by curating a subset of 300 questions
(100 from each subset). We can see that version 3 even though composed of 3 different subset, remains
accurate with a bounded performance change overall and minimal ranking changes.

Overall Manual Performance change Rank Overall Rank Manual Rank change

instructblip-vicuna-7b 22.90 26.75 -3.84 19 19 0
internlm-xcomposer2d5-7b 49.62 51.37 -1.75 12 12 0
InternVL2-8B 65.43 68.09 -2.66 4 5 -1
llava-v1.6-mistral-7b 34.21 40.12 -5.91 18 17 1
llava-onevision-qwen2-7b-ov 56.69 59.88 -3.19 7 9 -2
llava-v1.5-13b 36.48 43.16 -6.68 14 15 -1
llava-v1.5-7b 34.92 39.51 -4.59 17 18 -1
llava-v1.6-34b 54.59 61.40 -6.81 9 8 1
Mantis-8B-siglip-llama3 35.87 41.34 -5.47 16 16 0
phi3v 61.79 64.74 -2.95 6 7 -1
internlm-xcomposer2-4khd-7b 36.07 46.20 -10.13 15 13 2
idefics2-8b 39.64 45.59 -5.95 13 14 -1
InternVL2-2B 51.67 54.10 -2.43 10 10 0
claude 77.95 81.46 -3.51 1 1 0
qwen2vl 69.56 73.56 -3.99 3 2 1
gpt 50.82 51.67 -0.85 11 11 0
idefics3 54.94 64.74 -9.80 8 7 1
pixtral 71.49 72.64 -1.15 2 3 -1
molmo 61.93 69.91 -7.98 5 4 1

mean 50.87 55.59 4.72

Table 17: TQA Manual verification. We re-verified our dataset by curating a subset of 300 questions (100
from each subset). We can see that version 3 even though composed of 3 different subset, remains accurate
with small performance change overall and minimal ranking changes.

Overall Manual Performance change Rank Overall Rank Manual Rank change

instructblip-vicuna-7b 19.93 17.96 1.97 19 19 0
internlm-xcomposer2d5-7b 52.28 49.40 2.88 9 11 -2
InternVL2-2B 45.69 43.71 1.98 12 13 -1
InternVL2-8B 65.93 73.65 -7.73 2 2 0
llava-v1.6-mistral-7b 25.22 26.35 -1.13 18 18 0
llava-onevision-qwen2-7b-ov 53.99 56.29 -2.30 8 6 2
llava-v1.5-13b 32.24 31.74 0.50 15 17 -2
llava-v1.5-7b 31.50 33.23 -1.73 16 15 1
llava-v1.6-34b 56.74 62.57 -5.83 5 3 2
Mantis-8B-siglip-llama3 30.74 32.34 -1.60 17 16 1
phi3v 55.49 52.40 3.10 6 7 -1
internlm-xcomposer2-4khd-7b 45.44 40.12 5.32 13 14 -1
idefics2-8b 39.13 46.71 -7.58 14 12 2
claude 81.92 88.62 -6.70 1 1 0
qwen2vl 64.36 62.28 2.09 3 4 -1
gpt 49.23 50.30 -1.07 11 10 1
idefics3 54.41 52.10 2.32 7 8 -1
pixtral 57.45 56.36 1.09 4 5 -1
molmo 50.12 51.36 -1.25 10 9 1

mean 47.99 48.82 3.06

A.3.5 DIVERSITY THROUGH TIME

We evaluate LiveXiv diversity though time in Table 18. It shows that each version has a steady distribution
of visual content and diverse set of questions for both figures and tables.
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Table 18: Questions and visual content diversity through LiveXiv versions, we can see that the diversity is
persistent and LiveXiv has a rich set of visual content as well diverse questions throughout the new versions.

VQA Data Analysis Reasoning Attribute Localization Reading Arithmetic Charts Block Diagram Qualitative
v0 768 280 256 365 320 42 1239 578 214
v1 2291 872 903 1596 1470 154 4354 2110 864
v2 3005 1471 1610 1797 1732 112 5480 2805 1442
v3 3265 1196 1459 1202 1916 321 5113 2141 1573

TQA Data Analysis Reasoning Attribute Localization Reading Arithmetic
v0 637 45 40 14 425 1168
v1 2582 123 121 23 2127 3934
v2 2289 228 74 23 1125 3436
v3 1808 130 97 16 1590 2572

A.4 EXPLORING MORE DETAILS ON EFFICIENT EVALUATION

A.4.1 EXTRA EFFICIENT EVALUATION RESULTS FOR LIVEXIV V2

We start showing what would happen if our method for efficient evaluation is applied when setting
the number of re-evaluated models to be 3 or 8. As expected, Figures 12 and 13 show that the overall
performance is positively related to the number of re-evaluated models. We found that re-evaluating 5
models offers a good trade-off between performance and complexity.

VQA TQA
MAE Rank Corr. MAE Rank Corr.

cs.AI 1.2±1.0 99.5 2.4±2.1 96.8
cs.CV 1.8±1.1 98.4 2.7±2.0 94.5
cs.LG 2.1±1.8 94.6 2.3±2.0 93.7
cs.RO 1.3±1.0 98.6 3.1±2.1 96.0
eess.S 2.5±2.2 96.8 3.6±2.6 96.7

eess.SY 1.6±1.3 97.9 3.3±3.0 93.0
physics.app-ph 2.4±2.0 98.8 2.5±1.6 98.4
physics.bio-ph 2.3±1.9 96.8 2.7±2.8 92.2
physics.data-an 1.7±1.4 97.9 2.3±2.0 89.4
physics.optics 2.1±1.7 97.4 2.2±2.2 92.6

q-bio.BM 1.2±0.9 98.8 2.9±2.1 96.8
q-bio.CB 2.5±2.1 93.5 4.8±3.5 92.1
q-bio.GN 2.5±2.3 95.4 2.4±2.2 98.2
q-bio.TO 1.7±1.6 96.4 3.5±2.8 98.7
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Figure 12: Performance prediction results of our efficient re-evaluation method on the v2 when re-evaluating 3 models.

VQA TQA
MAE Rank Corr. MAE Rank Corr.

cs.AI 0.7±0.7 99.6 1.3±1.4 97.2
cs.CV 0.8±0.8 99.8 1.3±1.5 96.4
cs.LG 1.2±1.4 98.2 1.5±1.7 93.7
cs.RO 0.8±0.9 99.2 1.9±2.1 96.3
eess.S 1.4±1.5 97.4 2.4±2.5 97.7

eess.SY 0.8±0.8 99.2 2.4±2.5 93.0
physics.app-ph 0.9±1.0 98.8 1.2±1.3 98.4
physics.bio-ph 1.3±1.4 99.4 2.2±2.9 92.8
physics.data-an 1.0±1.1 98.6 1.7±1.9 89.1
physics.optics 1.1±1.2 98.8 1.8±1.9 93.9

q-bio.BM 0.6±0.7 99.5 1.4±1.6 96.7
q-bio.CB 2.0±2.2 95.6 2.7±2.9 93.9
q-bio.GN 1.3±1.5 96.6 1.4±1.7 97.2
q-bio.TO 0.8±0.9 98.9 1.4±1.7 99.1
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Figure 13: Performance prediction results of our efficient re-evaluation method on v2 when re-evaluating 8 models.
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VQA TQA
MAE Rank Corr. MAE Rank Corr.

cs.AI 3.1±1.6 95.8 3.7±1.9 95.4
cs.CV 2.9±2.5 95.1 3.6±2.3 95.3
cs.LG 2.5±1.5 95.8 3.3±2.0 93.6
cs.RO 3.3±2.2 96.6 3.4±1.9 93.9
eess.S 3.4±2.1 98.0 2.7±1.8 94.1

eess.SY 3.0±1.6 97.0 4.8±2.6 91.4
q-bio.BM 1.9±1.3 96.8 3.0±1.9 95.1
q-bio.CB 2.9±1.6 98.3 4.7±2.2 94.1
q-bio.GN 2.7±1.9 97.1 3.9±2.5 90.7
q-bio.TO 3.2±1.7 97.3 3.8±2.0 94.6
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Figure 14: Performance prediction results of our efficient re-evaluation method on v1 from v0 when re-evaluating
5 models. We can see that even in a large temporal gap, our method managed to predict accurately.

VQA TQA
MAE Rank Corr. MAE Rank Corr.

cs.AI 3.0±2.8 93.0 3.6±3.4 94.7
cs.CV 1.8±1.6 95.8 3.3±2.9 91.2
cs.LG 2.0±1.8 98.8 3.8±2.9 93.0
cs.RO 2.5±1.8 94.9 3.3±2.9 89.1
eess.S 2.3±2.0 96.5 4.6±3.8 95.1

eess.SY 2.5±2.3 96.1 2.2±2.2 94.2
physics.app-ph 3.0±2.3 94.4 5.0±4.1 86.9
physics.bio-ph 3.0±2.5 94.3 9.7±6.5 72.8
physics.data-an 2.7±2.3 93.3 6.1±3.6 89.2
physics.optics 2.4±2.1 94.8 3.6±3.4 94.3

q-bio.BM 4.2±3.1 92.3 3.5±2.5 94.2
q-bio.CB 2.8±2.2 94.3 5.4±4.0 96.3
q-bio.GN 2.3±2.0 95.4 2.8±2.5 95.4
q-bio.TO 3.1±2.6 95.1 3.0±3.2 89.6
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Figure 15: Performance prediction results of our efficient re-evaluation method on v3, subset 1 when re-evaluating 5
models and using our method. We can see the estimations are accurate as this subset has the same model configuration
as v1 and v2, which suggests our method is robust through time.

A.4.2 LIVEXIV V0 (PAPERS FROM 2010) EFFICIENT EVALUATION RESULTS

In Figure 14 we show the performance prediction results of our efficient re-evaluation method on v1 from
v0, when re-evaluating 5 models. Despite the (temporal) big distribution shift, our efficient evaluation
method does still work well.

A.4.3 LIVEXIV V3 EFFICIENT EVALUATION RESULTS

The third version of LiveXiv (denoted as v3) introduced multiple participating models for QA generation
and filtering. Subset 1 has GPT-4o as the generation model and Claude for the filtering (same as v0, v1,
v2). Subset 2 has Claude as the generation model and Qwen2-VL-72B as the filtering model, and Subset 3
has Qwen2-VL-72B as the generation model and GPT-4o as the filtering model. We show that our method
when m=5 produces robust and accurate estimations for the first two subsets (Figures 15 and 16) but less
accurate estimation on the third subset (Figure 17). The degradation in performance of the estimation over
the third subset, suggests that perhaps one of the preliminary assumptions of the estimation model breaks. To
further check that, we calculated the overall performance for each subset and found out that the third subset
has a large gap compared to the other subsets and previous versions (see Table 15). We can see that the third
subset in version 3 has a much higher average performance for VQA and significantly higher for TQA. This
suggests that the questions’ difficulty indeed changed, probably because Qwen2-VL-72B is weaker than
GPT-4o and Claude. The weaker questions it generates somewhat violates the efficient evaluation estimation
model assumptions, which is that the question quality remains roughly the same. As this assumption is
slightly violated we get worse estimation by the efficient evaluation on this set. Note that the above limitation
will also occur once the leading models such as GPT or Claude will be replaced by significantly stronger
versions. In this case, we suggest running a full evaluation in order to re-calibrate the estimation model.
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VQA TQA
MAE Rank Corr. MAE Rank Corr.

cs.AI 2.2±1.8 94.9 4.3±3.7 91.8
cs.CV 1.8±1.5 96.0 3.8±3.1 88.6
cs.LG 3.1±2.4 92.2 2.3±2.1 94.0
cs.RO 2.2±1.3 94.5 5.6±4.9 77.8
eess.S 2.6±2.3 94.0 5.1±5.0 94.3

eess.SY 2.2±2.1 95.4 4.2±3.0 92.8
physics.app-ph 3.3±2.8 93.5 9.8±7.3 67.3
physics.bio-ph 2.5±2.2 92.6 4.4±4.0 89.0
physics.data-an 3.2±2.4 96.0 3.2±2.6 93.7
physics.optics 3.1±3.3 91.9 5.7±6.2 80.5

q-bio.BM 4.2±3.1 91.4 2.1±2.1 94.9
q-bio.CB 2.7±2.4 94.0 2.6±2.0 95.7
q-bio.GN 2.8±2.7 92.9 3.1±3.4 97.2
q-bio.TO 2.9±2.3 96.4 3.9±3.5 89.0
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Figure 16: Performance prediction results of our efficient re-evaluation method on v3, subset 2 benchmark when
re-evaluating 5 models. We can see the predictions are accurate despite this time the generation model is Claude and
the filtering model is Qwen2-VL-72B, this suggests the that our method can be robust to different models participating
in our benchmark, as long as the preliminary assumptions of the estimation models are valid.

VQA TQA
MAE Rank Corr. MAE Rank Corr.

cs.AI 4.1±3.4 87.2 6.1±4.7 82.3
cs.CV 3.5±3.2 90.7 6.3±3.7 91.7
cs.LG 4.0±2.9 88.8 7.2±5.2 85.7
cs.RO 6.7±4.4 81.1 4.8±3.7 88.4
eess.S 3.3±3.3 92.8 8.3±4.7 79.2

eess.SY 4.3±2.5 90.7 10.2±3.1 87.1
physics.app-ph 3.2±2.9 91.2 9.1±6.4 83.5
physics.bio-ph 3.1±3.0 90.6 6.8±4.8 89.9
physics.data-an 4.3±3.7 89.4 10.4±7.4 90.2
physics.optics 4.1±3.4 85.3 13.1±4.6 78.0

q-bio.BM 3.4±2.9 89.6 6.4±3.8 84.1
q-bio.CB 3.4±3.5 90.4 7.5±5.1 90.9
q-bio.GN 2.9±3.0 95.6 7.1±5.6 86.3
q-bio.TO 3.8±3.3 91.2 5.3±4.3 87.0
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Figure 17: Performance prediction results of our efficient re-evaluation method on v3, subset 3 benchmark when
re-evaluating 5 models. We can see the predictions are fairly accurate despite this time the generation model is
Qwen2-VL-72B and the filtering model is GPT-4o. Our method introduces some degradation in the estimations’
accuracy on this subset, this is probably due to the fact the questions for TQA on v3-s3 are easier (See Table 15)
compare to the other subsets, and violates one of our model assumptions.

A.4.4 EFFICIENT EVALUATION ON MM-LIVEBENCH

In this section, we challenge our efficient evaluation method, by examining its performance over another
type of multi-modal live dataset Zhang et al. (2024b). The dataset has 3 versions (May 2024, June 2024,
and July 2024), and each version has roughly 250-300 samples of open-ended questions scraped from
newspapers. To evaluate our method we use GPT-4o to convert the open-ended questions into closed-form
of questions where the true answer is rephrased and 3 more negative answers are proposed. Then we
evaluate 13 LMMs over all the dataset versions. We use the first version as a training set and we predict
the performance over the new concatenated sets using our IRT-based method. Figure 18 shows that our
method still performs well on a different benchmark when re-evaluating only 5 models.
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Figure 18: Our efficient evaluation method on MM-LiveBench. We check that our method could be
successfully applied in this other context, here we convert MM-LiveBench to multiple choice questions and
apply our efficient evaluation method between MM-LiveBench versions. The results for MM-LiveBench
are optimistic, showing our method predict the results between its version accurately.
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A.5 PROMPT TEMPLATE FOR QA GENERATIONS

This is a figure
from a scientific paper with the following caption: {text_desc}.
Please describe the image in
as much details as possible. For all the details you are confident
about include everything you see, and be as specific as possible

, such as existing numbers, describing objects, attributes ...

Figure 19: Prompt template for general detailed caption.

Compositional reasoning defines the understanding of
attributes, relations and word order significance. A good vision

-language model should be able to accurately answer composition
reasoning questions about an image. Your task is to fool a vision

-language model by generating challenging compositional reasoning
questions about the figure. Given the image and the description
you generated: {detailed_description}, generate {n_questions}
diverse and challenging compositional reasoning questions which a
vision-language model would incorrectly answer. For each question
include the following: - A compositional reasoning question -
A correct answer - 3 hard negative options. Each negative option
should differ only subtly from the correct answer but still be
clearly incorrect given the image, and the question. The goal is

for a vision-language model to choose the negative option over the
positive option when you asked to answer the question in binary

multiple choice format. Only include questions you are confident
in your answer and make sure there is indeed only a single correct
answer and the others are false answers. Format your response
as a string in the format [{"Q":<question>, "a":<correct answer

>, "n1":<negative option 1>, "n2":<negative option 2>, ...}].

Figure 20: Prompt template for visual question-answering.
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Document and table understanding defines
the understanding of values, metrics and perform arithmetic
operations over numerical values and commonsense reasoning

. A good language model should be able to accurately answer
{commonsense_reasoning / arithmetic manipulation} questions from a
given table. Your task is to fool a language model by generating
challenging table {commonsense_reasoning / arithmetic manipulation
} questions about the table. Given the table: {table_content}
Generate {n_questions} diverse and challenging
{commonsense_reasoning / arithmetic manipulation} questions on the
table questions which a language model would incorrectly answer

.For each question include the following: - A question - A correct
answer - 3 hard negative options. Each negative option should
differ only subtly from the correct answer but still be clearly
incorrect given the figure, caption and the question. The goal
is for a language model to choose the negative option over the
positive option when you asked to answer the question in binary
multiple choice format. Only include questions you are confident

in your answer and make sure there is indeed only a single correct
answer and the others are false answers. Format your response
as a string in the format [{"Q":<question>, "a":<correct answer

>, "n1":<negative option 1>, "n2":<negative option 2>, ...}].

Figure 21: Prompt template for table question-answering.

Think step by step before answering.
For the given image and question: {question}
write only the words yes or no if think the option {correct_answer
} is indeed the correct answer out of {options} for this question?

Figure 22: Prompt template for agreement filtering.
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You are
an insightful assistant, for the question/options pair provided
by the user, pick a question category from the list below:
Question category:
- attribute: the question asks about the presence or
visibility of an attribute of an object (e.g. "What is the color
of circles in plot (a)?" "[A. Blue, B. White, C. Green, D. Red]")
- reasoning: the question
asks about understanding the figure (e.g "What is the object
inside the red box?" "[A. Bottle, B. Table, C. Tree, D. Nothing]")
- localization: the question asks about
the presence or visibility at a specific location in the image
(e.g "On which subplot does the scatter is the most spread?"
"[A. Top-Left, B. Bottom-Right, C. ’Middle-Left’, D. ’Top-Right]")
- reading: the question asks about reading
some text from the figure (e.g "What is name of the method
presneted as a green line?" "[A. GPSK, B. FDAH, C. TQWA, D.Ours]")
- arithmetic: the questions asks about mathematical arithmetic
of numbers (e.g if the maximium accuracy of SIFT would be
doubled? what would be the value?" "[A. 2, B. 4 , C. 100, D. 50])

- data
analysis: the question asks about understanding of a graph (e.g,
"Which values intersect at T=2?" "["A. N1, B. N2, C. N3, D. N4]")
Respond with a JSON object
with the following format: {"Question category": "category"}

Figure 23: Prompt template for question categories analysis.
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