
Embedding Safety into RL:
A New Take on Trust Region Methods

Anonymous Author(s)
Affiliation
Address
email

Abstract

Reinforcement Learning (RL) agents can solve diverse tasks but often exhibit1

unsafe behavior. Constrained Markov Decision Processes (CMDPs) address this2

by enforcing safety constraints, yet existing methods either sacrifice reward maxi-3

mization or allow unsafe training. We introduce Constrained Trust Region Policy4

Optimization (C-TRPO), which reshapes the policy space geometry to ensure trust5

regions contain only safe policies, guaranteeing constraint satisfaction throughout6

training. We analyze its theoretical properties and connections to TRPO, Natural7

Policy Gradient (NPG), and Constrained Policy Optimization (CPO). Experiments8

show that C-TRPO reduces constraint violations while maintaining competitive9

returns.10

1 Introduction11

Reinforcement Learning (RL) has emerged as a highly successful paradigm in machine learning for12

solving sequential decision and control problems, with policy gradient (PG) algorithms as a popular13

approach [40, 37, 20]. Policy gradients are especially appealing for high-dimensional continuous14

control because they can be easily extended to function approximation. Due to their flexibility and15

generality, there has been significant progress in enhancing PGs to work robustly with deep neural16

network-based approaches. PG-based policy optimization methods such as Trust Region Policy17

Optimization (TRPO) and Proximal Policy Optimization (PPO) are among the most widely used18

general-purpose reinforcement learning algorithms [32, 34].19

While flexibility makes PGs popular among practitioners, it comes at a cost: the policy can explore20

any behavior during training, posing significant risks in real-world applications. Many methods have21

been proposed to improve the safety of policy gradients, often based on the Constrained Markov22

Decision Process (CMDP) framework. However, existing methods either struggle to minimize23

constraint violations during training or severely limit the agent’s performance.24

This work introduces a simple strategy to enhance constraint satisfaction in trust region-based safe25

policy optimization methods without compromising performance. We propose a novel family of26

policy divergences, inspired by barrier function methods in optimization and safe control, that modify27

the policy geometry to ensure that trust regions consist only of safe policies. Our approach is28

motivated by the observation that TRPO and related methods base their trust region on the state-29

average Kullback-Leibler (KL) divergence. It can be derived as the Bregman divergence induced by30

the negative conditional entropy on the space of state-action occupancies [28].31

The key insight of this work is that safer trust regions can be obtained by modifying this function32

to account for cost constraints. This leads to a provably safe trust region-based policy optimization33

algorithm that preserves TRPO’s guarantees, while simplifying existing methods and reducing34

constraint violations during training, without sacrificing reward performance.35
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Related Work Classic solution methods for CMDPs rely on linear programming techniques, see36

[4]. However, they struggle to scale, making them unsuitable for high-dimensional or continuous37

control problems. While there are numerous scalable approaches to solving CMDPs, we focus on38

model-free, direct policy optimization methods. Model-based approaches [9, 8], are attractive due to39

their stability and safety guarantees, but require learning a model, which is not always feasible, or40

imposes additional assumptions on the model space.41

Lagrangian methods are a widely adopted approach, where the optimization problem is reformulated42

as a weighted objective that balances rewards and penalties for constraint violations. This is often43

motivated by Lagrangian duality, where the penalty coefficient is interpreted as the dual variable.44

Learning the coefficient with stochastic gradient descent presents a popular baseline [1, 31, 11, 36].45

However, a naively tuned Lagrange multiplier may not work well in practice due to oscillations and46

overshoot. To address this issue, [36] uses PID control to tune the dual variable during training, which47

achieves less oscillation around the constraint and faster convergence to a feasible policy. While48

Lagrangian approaches are becoming increasingly popular, it is not entirely clear how to update the49

dual variables during training, which has attracted significant research interest, see e.g. [35].50

Penalty methods such as IPO [21] and P3O [44] propose weighted penalty-based policy optimization51

objectives, where the penalties are weighted against the reward objective using a weighting hyper-52

parameter instead of a learnable one. This simplifies the Lagrangian approach since the penalty53

coefficients don’t have to be optimized during training, which results in improved stability. More54

recently, the approach to use (smoothed) log-barriers [38, 43, 12] became more popular, which55

keeps the algorithm simple due to the penalty approach, but can offer certain constraint satisfaction56

guarantees, see e.g. [29]. However, working with an explicit penalty produces suboptimal policies57

w.r.t the original constrained MDP and thus introduces an additional error, which has to be controlled;58

see for example [15, 25] for treatments of the regularization error in the unconstrained case, and59

[21] for an example of an optimization gap in safe policy optimization. In contrast, combining trust60

region-based updates as in TRPO [32] with constrained optimization techniques does not change the61

objective function and the set of optimizers, and therefore does not introduce an additional error.62

Trust region methods are closely related to our approach, in particular Constrained Policy Optimization63

(CPO; [1]), which extends TRPO by restricting updates to the intersection of the trust region and64

the safe policy set, ensuring safety during training. While CPO guarantees constraint satisfaction in65

the infinite sample limit, in practice it tends to oscillate around the constraint boundary with high66

overshoot, because it relies on noisy cost advantage estimates, and because the constraint only enters67

the optimization problem when the iterate is close to the boundary of the safe policy set. To address68

constraint satisfaction, projection-based CPO (PCPO; [42]) projects updates into the safe policy space69

between updates, improving stability but further hindering reward maximization. Building on PCPO,70

[45] and [41] also introduce projection-based approaches based on first-order updates.71

Rethinking Safe Trust Region Methods We adopt a trust region approach that constructs trust72

regions exclusively within the safe policy set, eliminating the need for projections or constrained73

optimization in the inner loop. Trust region methods retain TRPO’s update guarantees for both reward74

and constraints but often underperform compared to barrier penalty methods in terms of constraint75

satisfaction. To address this, we replace the state-average KL-divergence with policy divergences76

that act as barrier functions, see Figure 1. This modification encourages updates of the resulting77

trust region method to move more parallel to the constraint surfaces rather than directly toward and78

thereby improves constraint satisfaction, simplifies optimization, and achieves competitive returns by79

maintaining policies within the safe set for longer, see also Figures 5 and 7 in the Appendix.80

Contributions We summarize our contributions:81

• In Section 3, we introduce a modified policy divergence such that every trust region consists82

of only safe policies. We introduce an idealized TRPO update based on the modified83

divergence, a tractable optimization algorithm for deep function approximation (C-TRPO),84

and a corresponding natural gradient method (C-NPG).85

• We provide an efficient implementation of the proposed approximate C-TRPO method, see86

Section 3.2, which comes with a minimal overhead compared to TRPO (up to the estimation87

of the expected cost) and no overhead compared to CPO. We demonstrate experimentally88
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Figure 1: On the left, vanilla trust regions (dotted) and safe trust regions (dashed) are shown; on the
right, a schematic visualization of common failure modes in CMDPs is shown based on optimization
trajectories; here, vanilla trust regions can suffer from oscillations around the constraint, and penalty
methods might introduce a bias. Lagrangian methods (not shown) can exhibit both issues.

that C-TRPO yields competitive returns with smaller constraint violations compared to89

common safe policy optimization algorithms, see Section 5.90

• In Section 4, we introduce C-TRPO’s improvement guarantees and contrast to TRPO91

and CPO. Further, we show that C-NPG is the continuous time limit of C-TRPO and92

provides global convergence guarantees towards the optimal safe policy; this is in contrast93

to penalization or barrier methods, which introduce a bias.94

2 Background95

We consider the infinite-horizon discounted constrained Markov decision process (CMDP) and refer96

the reader to [4] for a general treatment. The CMDP is given by the tuple (S,A, P, r, µ, γ, C), where97

S and A are the finite state-space and action-space respectively and we refer to Appendix B.4 for a98

discussion of continuous state and action spaces. Further, P : S ×A → ∆S is the transition kernel,99

r : S × A → R is the reward function, µ ∈ ∆S is the initial state distribution at time t = 0, and100

γ ∈ [0, 1) is the discount factor. The space ∆S is the set of categorical distributions over S . Further,101

define the constraint set C = {(ci, bi)}mi=1, where ci : S ×A → R are the cost functions and bi ∈ R102

are the cost thresholds.103

An agent interacts with the CMDP by selecting a policy π ∈ Π from the set of all Markov policies,104

i.e. an element from the Cartesian product of |S| probability simplicies on A. Given such a policy π,105

the value functions V π
r , V π

ci : S → R, action-value functions Qπ
r , Q

π
ci : S ×A → R, and advantage106

functions Aπ
r , A

π
c : S ×A → R associated with the reward r and the i-th cost ci are defined as107

V π
f (s) := (1− γ)Eπ

[ ∞∑
t=0

γtf(st, at)
∣∣∣s0 = s

]
,

where the function f is either r or ci, and the expectations are taken over trajectories of the Markov108

process, meaning with respect to the initial distribution s0 ∼ µ, the policy at ∼ π(·|st) and the state109

transition st+1 ∼ P (·|st, at). Analogously, we set110

Qπ
f (s, a) := (1− γ)Eπ

[ ∞∑
t=0

γtf(st, at)
∣∣∣s0 = s, a0 = a

]
and Aπ

f (s, a) := Qπ
f (s, a)− V π

f (s). Constrained Markov decision processes address the problem111

maximizeπ∈Π V π
r (µ) subject to V π

ci (µ) ≤ bi (1)

for all i = 1, . . . ,m, where V π
f (µ) are the expected values under the initial state distribution112

V π
f (µ) := Es∼µ[V

π
f (s)]. We will also write V π

f = V π
f (µ), and omit the explicit dependence on µ for113

convenience, and we write Vf (π) when we want to emphasize its dependence on π. We denote the114

set of safe policies by Πsafe =
⋂m

i=1{π : Vci(π) ≤ bi} and always assume that it is nontrivial.115

Cost Regret Depending on the task at hand, it is mandatory to solve the constrained optimization116

problem equation 1 in a safe way, meaning with a method that respects the constraints during117
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optimization. This motivates the use of the cost regret118

COSTREG+(π,K, C) :=
m∑
i=0

K−1∑
k=0

[
V πk
ci − bi

]
+
, (2)

where [x]+ = max{0, x}, π = (π0, π1, ...πK), and K is the number of training iterations. The cost119

regret represents the cumulative sum of the expected constraint violations throughout training. A120

similar metric has been used in related online optimization settings, see [13, 24]. It is our goal to121

design a method that produces solutions of equation 1 of similar quality compared to existing method,122

while achieving minimal cost regret.123

The Dual Linear Program for CMDPs Any stationary policy π induces a discounted state-action124

(occupancy) measure dπ ∈ ∆S×A, indicating the relative frequencies of visiting a state-action pair,125

discounted by how far the event lies in the future. This probability measure is defined as126

dπ(s, a) := (1− γ)

∞∑
t=0

γtPπ(st = s)π(a|s), (3)

where Pπ(st = s) is the probability of observing the environment in state s at time t given the agent127

follows policy π. For finite MDPs, it is well-known that maximizing the expected discounted return128

can be expressed as the linear program maximized r⊤d subject to d ∈ D , where D is the set of129

feasible state-action measures, which form a polytope [19]. Analogously to an MDP, the discounted130

cost CMDP can be expressed as the linear program131

maximized r⊤d subject to d ∈ Dsafe, (4)

where Dsafe =
⋂m

i=1

{
d : c⊤i d ≤ bi

}
∩D is the safe occupancy set, see Figure 4 in Appendix A.132

Information Geometry of Policy Optimization Among the most successful policy optimization133

schemes are natural policy gradient (NPG) methods or variants thereof, such as trust-region and134

proximal policy optimization (TRPO and PPO, respectively). These methods assume a convex135

geometry and corresponding Bregman divergences in the state-action polytope, see [28, 27] for more136

detailed discussions. A general trust region update is defined as137

πk+1 ∈ argmax
π∈Π

Aπk
r (π) sbj. to DΦ(dπk

||dπ) ≤ δ, (5)

where DΦ : D ×D → R is the Bregman divergence induced by a convex Φ: int(D)→ R, and138

Aπk
r (π) = Es,a∼dπk

[
π(a|s)
πk(a|s)

Aπk
r (s, a)

]
, (6)

is called the policy advantage or surrogate advantage. We can interpret A as a surrogate optimiza-139

tion objective for the expected return. In particular, for a parameterized policy πθ, it holds that140

∇θAr,πθk
(πθ)|θ=θk = ∇θVr(θk), see [17, 32]. TRPO and the original NPG assume the same policy141

geometry [18, 32], since they employ an identical Bregman divergence142

DK(dπ1 ||dπ2) :=
∑
s

dπ1(s)DKL(π1(·|s)||π2(·|s)).

We refer to Appendix A for details on Bregman divergences. We call DK the Kakade divergence and143

informally write DK(π1, π2) := DK(dπ1
, dπ2

). This divergence can be shown to be the Bregman144

divergence induced by the negative conditional entropy145

ΦK(dπ) :=
∑
s,a

dπ(s, a) log π(a|s), (7)

see [28]. It is well known that with a parameterized policy πθ, a linear approximation of A and146

a quadratic approximation of DK at θk, one obtains the natural policy gradient step given by147

θk+1 = θk + ϵkGK(θk)
+∇θVr(πθk), where GK(θ)

+ denotes a pseudo-inverse of the generalized148

Fisher-information matrix given by GK(θ)ij = ∂θidθ∇2ΦK(dθ)∂θjdθ, see [32, 27] and Appendix A.149
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3 A Safe Geometry for Constrained MDPs150

To prevent the policy iterates from violating the constraints during optimization, we construct policy151

divergences for which the trust regions are contained in the safe policy set.152

3.1 Safe Trust Regions153

A Bregman divergence is induced by a mirror function that dictates the behavior of the divergence,154

see Appendix A. Take for example the mirror function for TRPO and NPG in Equation (7). The155

divergence is defined when both policies are in the interior of D , and as either one of the policies156

approaches the boundary of the state-action polytope, the divergence approaches infinity. Hence,157

TRPO and NPG don’t allow their policy iterates to become entirely deterministic during optimization.158

Since the behavior of a Bregman divergences is dictated by the shape of its mirror function, we first159

construct a family of safe mirror functions, that induce policy divergences that are finite only in the160

safe occupancy set Dsafe instead of the entire state-action polytope D . Safe policy divergences, in161

turn, let us derive safe trust region and natural policy gradient methods.162

To this end, we consider mirror functions of the form163

ΦC(d) := ΦK(d) +

m∑
i=1

βiϕ(bi − c⊤i d), (8)

where ΦK is the conditional entropy defined in Equation (7), and ϕ : R>0 → R is a convex function164

with ϕ′(x) → +∞ for x ↘ 0. This ensures that ΦC : int(Dsafe) → R is strictly convex and165

has infinite curvature at the cost surface bi − c⊤i d = 0, which means ∥∇ΦC(dk)∥ → +∞, when166

bi − c⊤i dk ↘ 0. Possible candidates for ϕ are ϕ(x) = − log(x) and ϕ(x) = x log(x) corresponding167

to a logarithmic barrier and entropy, respectively.168

The mirror function ΦC induces the Constrained KL-Divergence given by169

DC(d1||d2) = DK(d1||d2) +
m∑
i=1

βiDϕi(d1||d2), (9)

where170

Dϕi(d1||d2) =ϕ(bi − Vci(π1))− ϕ(bi − Vci(π2)) + ϕ′(bi − Vci(π2))(Vci(π1)− Vci(π2)). (10)

The corresponding trust-region scheme is171

πk+1 ∈ argmax
π∈Π

Aπk
r (π) sbj. to DC(dπk

||dπ) ≤ δ, (11)

where Ar is defined in Equation (6). Note the constraint is only satisfied if d1, d2 ∈ int(Dsafe) and172

the divergence approaches +∞ as d2 approaches the boundary of the safe set. Thus, the trust region173

{d ∈ D : DC(dk||d) ≤ δ} is contained in the set of safe occupancy measures for any finite δ.174

Analogously to the case of unconstrained TRPO the corresponding natural policy gradient scheme is175

θk+1 = θk + ϵkGC(θk)
+∇Vr(θk), (12)

where GC(θ)
+ denotes an arbitrary pseudo-inverse and GC(θ)ij = ∂θid

⊤
θ ∇2ΦC(dθ)∂θjdθ.176

3.2 Constrained Trust Region Policy Optimization177

If we could solve the optimization problem in Equation (11) exactly, we would obtain a provably safe178

trust region policy optimization method with zero constraint violations, as long as we start with a179

safe policy. However, the exact trust region update Equation (11) cannot be computed. Firstly, the180

divergence depends on expected cost values, which we can only estimate. The resulting estimation181

errors of the divergence might cause the policy iterates to leave the safe set, in which case the182

divergence becomes ill-defined. Further, the divergence also depends on the expected cost value of183

the proposal policy, which is not available during the updates. To address these issues, we propose184

an update based on a surrogate divergence, similar to how surrogate objectives are used in policy185

optimization. We propose the following update, which we call Constrained TRPO (C-TRPO).186

πk+1 = argmax
π∈Π

Aπk
r (π) sbj. to D̄C(π||πk) ≤ δ. (13)
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Here, D̄C is a surrogate for DC, which we define in equation 15 and equation 16. Algorithm 1 shows187

the implementation of C-TRPO, which performs a constrained trust region update if the current policy188

is safe or a recovery step that minimizes the cost if the policy is unsafe. For the trust region update,189

we follow a similar implementation to the original TRPO, estimating the divergence, using a linear190

approximation of the surrogate objective, and a quadratic approximation of the trust region.191

Surrogate Divergence For the sake of clarity, we first focus on the case with a single constraint, but192

the results are easily extended to multiple constraints by summation of the individual constraint terms,193

as discussed in the respective paragraph below. In practice, the exact constrained KL-Divergence DC194

cannot be evaluated, because it depends on the cost-return of the optimized policy Vc(π). However,195

we can approximate it locally around the policy of the k-th iteration, πk, using a surrogate divergence.196

This surrogate can be expressed as a function of the policy cost advantage197

Aπk
c (π) = Edπk

[
π(a|s)
πk(a|s)

Aπk
c (s, a)

]
, (14)

which approximates Vc(π) − V πk
c up to first order in the policy parameters [17, 32, 1]. Assume198

πk ∈ Πsafe and define the constraint margin δb = b− V πk
c , which is positive if πk ∈ ΠSAFE. Further,199

define the surrogate divergence D̄C(π||πk) = D̄KL(π||πk) + βD̄ϕ(π||πk), where200

D̄KL(π||πk) =
∑
s∈S

dπk
(s)DKL(π||πk) (15)

and201

D̄ϕ(πθ||πθk) =

{
Ψ(Aπk

c ), if δb − Aπk
c ∈ dom(ϕ)

+∞ otherwise
(16)

where202

Ψ(Aπk
c ) = ϕ(δb − Aπk

c (π))− ϕ(δb) + ϕ′(δb)Aπk
c (π). (17)

The surrogate D̄ϕ is closely related to the Bregman divergence Dϕ. They are equivalent up to the203

substitution Vc(π) − Vc(πk) → Aπk
c (π), see Appendix B.1. The surrogate can be estimated from204

samples of the CMDP, where in the practical implementation, δb and the policy cost advantage are205

estimated from trajectory samples using GAE-λ [33]. The consequences of the substitution in the206

surrogate will be discussed in Section 4.207

Comparison with CPO This approach is similar to the update in CPO [1], but incorporates the208

constraint into the design of the trust region, with an influence controlled by the parameter β. This209

yields more conservative updates within the safe set without introducing bias in the optimal solution.210

Additionally, it simplifies the inner-loop constrained optimization: C-TRPO approximates a single211

quadratic constraint, rather than solving for the intersection of a quadratic and a linear constraint as212

in CPO, see also Appendix C.4.213

Multiple Constraints C-TRPO naturally extents to multiple constraints, by introducing the diver-214

gence D̄mult
C (π||πk) = D̄KL(π||πk) +

∑
i βiD̄ϕi

(π||πk), where each D̄ϕi
is defined according to Eq.215

16 but with the respective ci. In section 3, we discuss that this divergence approximates a natural216

policy gradient (C-NPG) on the safe state-action occupancy set, where Theorem 4.5 implies that the217

optimal feasible solution π⋆
safe satisfies as few constraints with equality as required to be optimal.218

Recovery with Hysteresis The iterate may still leave the safe policy set Πsafe, either due to219

approximation errors of the divergence, or because we started outside the safe set. In this case, we220

perform a recovery step, where we only minimize the cost with TRPO as by [1]. In tasks where221

the policy starts in the unsafe set, C-TRPO can get stuck at the constraint surface. This is easily222

mitigated by including a hysteresis condition for returning to the safe set. If πk−1 is the previous223

policy, then πk ∈ ΠH
safe with ΠH

safe = {πθ ∈ Πθ and Vc(πθ) ≤ bH} where bH = b if πk−1 ∈ ΠH
safe and224

a user-specified fraction of b otherwise.225

Computational Complexity The C-TRPO implementation adds no computational overhead com-226

pared to CPO, since D̄ϕ is a function of the cost advantage estimate, and is added to the divergence227

of TRPO. Compared to TRPO, the cost value function must be approximated.228
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Algorithm 1 Constrained TRPO (C-TRPO); differences from TRPO in blue
1: Input: Initial policy π0 ∈ Πθ, safety parameter β > 0, recovery parameter 0 < bH ≤ b
2: for k = 0, 1, 2, . . . do
3: Sample a set of trajectories following πk = πθk
4: if πk ∈ ΠH

safe then
5: A← Ar; D ← D̄C = D̄KL+βD̄ϕ {Constrained trust region update}
6: else
7: A← −Ac; D ← D̄KL {Recovery}
8: end if
9: Compute πk+1 using TRPO with A as advantage estimate and with D as policy divergence.

10: end for

4 Analysis229

Here, we provide a theoretical analysis of the updates of C-TRPO and study the convergence230

properties of the time-continuous version of C-NPG. All proofs are deferred to the Appendix C.231

Properties of the C-TRPO Update The practical C-TRPO algorithm is implemented using the232

surrogate divergence introduced in Equation (13), which is identical to the theoretical divergence DC233

introduced in Equation (11) up to a mismatch between the policy advantage and the performance234

difference. The motivation for substituting the policy cost advantage for the performance difference is235

their equivalence up to first order and that we can estimate the advantage from samples of dπ . Similar236

to CPO, we can guarantee an almost improvement of the return [1], despite the new divergence.237

Proposition 4.1 (C-TRPO reward update). Set ϵr = maxs |Ea∼πk+1
Aπk

r (s, a)|. The expected reward238

of a policy updated with C-TRPO is bounded from below by239

Vr(πk+1) ≥ Vr(πk)−
√
2δγϵr
1− γ

. (18)

Constraint violation, however, behaves slightly differently for the two algorithms. To see this, we240

establish a more concrete relation between C-TRPO and CPO. As β ↘ 0, the solution to Equation (13)241

approaches the constraint surface in the worst case, and we recover CPO, see Figure 5.242

Proposition 4.2. The approximate C-TRPO update approaches the CPO update as β ↘ 0.243

Intuitively, solving the C-TRPO problem with successively smaller values of β, would be similar to244

CPO with the interior point method using D̄ϕ(·||πk) as the barrier function. However, C-TRPO is245

more conservative than CPO for any β > 0 and as β → +∞ the update is maximally constrained in246

the cost-increasing direction.247

Proposition 4.3 (C-TRPO worst-case constraint violation). Let DC(πk+1||πk) ≤ δ with δ > 0 and248

set ϵc = maxs |Ea∼πk+1
Aπk

c (s, a)|. It holds that249

Vc(πk+1) ≤ Vc(πk) + Aπk
c (πk+1) +

√
2δ(β)γϵc
1− γ

, (19)

250
where δ(β) = δ − βDϕ(πk+1, πk) ≤ δ is decreasing in β > 0, limβ→0 δ(β) = δ, and δ(β)→ 0 for251

β → δDC(πk+1||πk)/Dϕ(πk+1, πk).252

This result is analogous to the worst-case constraint violation for CPO [1, Proposition 2], where the253

term δ(β) is replaced by δ. As δ(β) ≤ δ for all β > 0, the bound for C-TRPO is higher than the254

corresponding guarantee for CPO. For β → 0, the bound converges to the CPO bound, where for255

β → +∞, the bound becomes Vc(πk+1) ≤ Vc(πk), see Appendix C.1.256

Invariance and Convergence of Constrained Natural Policy Gradients It is well known that257

TRPO is equivalent to a natural policy gradient method with an adaptive step size, see also Appendix A.258

We study the time-continuous limit of C-TRPO and guarantee safety during training and global259

convergence. In the context of constrained TRPO in Equation (11), we study the natural policy260

gradient flow261

∂tθt = GC(θt)
+∇Vr(θt), (20)
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1
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2
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Figure 2: Shown is the policy set Π ∼= [0, 1]2 for an MDP with two states and two actions with a
heatmap of the expected reward Vr; the constraint surface is shown in black with the safe policies
below; optimization trajectories are shown for 10 safe initialization and for β = 10−2, 1.

where GC(θ)
+ denotes a pseudo-inverse of GC(θ)ij = ∂θid

⊤
θ ∇2ΦC(dθ)∂θjdθ and θ 7→ πθ is a262

differentiable policy parametrization. Moreover, we assume that θ 7→ πθ is regular, that it is surjective263

and the Jacobian is of maximal rank everywhere. This assumption implies overparametrization264

but is satisfied for common models like tabular softmax, tabular escort, or expressive log-linear265

policy parameterizations [2, 22, 27]. We denote the set of safe parameters by Θsafe := {θ ∈ Rp :266

πθ ∈ Πsafe}, which is non-convex in general and say that Θsafe is invariant under Equation (20) if267

θ0 ∈ Θsafe implies θt ∈ Θsafe for all t. Invariance is associated with safe control during optimization268

and is typically achieved via control barrier function methods [7, 10]. We study the evolution of the269

state-action distributions dt = dπθt as this allows us to employ the linear programming formulation270

of CMDPs and we obtain the following convergence guarantees.271

Theorem 4.4 (Safety during training). Assume that ϕ : R>0 → R satisfies ϕ′(x)→ +∞ for x↘ 0272

and consider a regular policy parameterization. Then the set Θsafe is invariant under Equation (20).273

A visualization of policies obtained by C-NPG for different safe initializations and varying choices of274

β is shown in Figure 2 for a toy MDP. We see that for even small choices of β the trajectories don’t275

cross the constraint surface and the updates become more conservative for larger choices of β.276

Theorem 4.5. Assume that ϕ′(x) → +∞ for x ↘ 0, set V ⋆
r,C := maxπ∈Πsafe

Vr(π) and denote277

the set of optimal constrained policies by Π⋆
safe = {π ∈ Πsafe : Vr(π) = V ⋆

r,C}, consider a regular278

policy parametrization and let (θt)t≥0 solve Equation (20). It holds that Vr(πθt)→ V ⋆
r,C and279

lim
t→+∞

πt = π⋆
safe = argmin{DC(π

⋆, π0) : π
⋆ ∈ Π⋆

safe}. (21)

In case of multiple optimal policies, Equation (21) identifies the optimal policy of the CMDP that280

the natural policy gradient method converges to as the projection of the initial policy π0 to the set of281

optimal safe policies Π⋆
safe with respect to the constrained divergence DC. In particular, this implies282

that the limiting policy π⋆
safe satisfies as few constraints with equality as required to be optimal. To283

see this, note that Π⋆
safe forms a face of Dsafe and that Bregman projections lie at the interior of284

faces [26, Lemma A.2] and hence satisfy as few linear constraints as required.285

5 Computational Experiments286

Setup and main results We benchmark C-TRPO against 9 common safe policy optimization287

algorithms (CPO [1], PCPO [42], CPPO-PID [36], PPO-Lag and TRPO-Lag [1, 31], FOCOPS [45],288

CUP [41], IPO [21] and P3O [44]) on 8 tasks (4 Navigation and 4 Locomotion) from the Safety289

Gymnasium [16] benchmark.1 The locomotion tasks reward distance traveled, while penalizing290

high velocities, and the navigation tasks reward goal reaching and penalize certain unsafe states.291

For the C-TRPO implementation we fix the convex generator ϕ(x) = x log(x), motivated by its292

superior performance in our experiments, see Appendix B.2.1, and bH = 0.8b and β = 1 across all293

experiments. Each algorithm is evaluated by training for 10 million environment steps with 5 seeds294

each, and the cost regret is monitored throughout training for every run. To get a better sense of the295

1Code available at: https://github.com/milosen/ctrpo
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Figure 3: Comparison of safe policy optimization algorithms based on the 25% Inter Quartile Mean
(IQM) across 5 seeds and 8 tasks. From left to right, the following metrics are shown measured at
10 million training steps: the final cost, i.e. the mean return of the cost at the last iterate (threshold-
normalized and centered at zero), the mean return of the reward (normalized with the performance of
unconstrained PPO), and the mean cost regret (normalized by CPO’s cost regret). The algorithms are
sorted into probably safe and probably unsafe, based on their final constraint violation (negative is
probably safe), and by expected reward within each group. Note that cost regret is different from the
final cost, since it sums up all constraint violations throughout training.

safety of the algorithms during training, we take an online learning perspective and include as a metric296

the cost regret introduced in Equation 2 [13, 24] For completeness, we also report environment-wise297

sample efficiency curves and the results of Figure 3 in a tabular format in Appendix D.4.298

Discussion In Figure 3 the interquartile mean (IQM) of normalized expected reward, cost, and cost299

regret, including their stratified bootstrap confidence intervals [3] is shown. It can be observed that300

C-TRPO is competitive with the leading algorithms of the benchmark in terms of expected return,301

while being safe on the last iterate as opposed to CPO and CUP, see Figure 3. Furthermore, it achieves302

notably lower cost regret throughout training than the high-return algorithms. TRPO-Lag., which303

is also safe at convergence, has notably higher cost regret than the other safe methods, meaning it304

oscillates more around the threshold during training, see also Figures 13 and 12 in the appendix. In305

general, methods that, in practice, rely on Lagrangian-inspired optimization routines (TRPO-Lag.,306

FOCOPS, and CUP) perform well in terms of reward, but poorly in terms of cost regret. C-TRPO’s307

regret performance is comparable to the more conservative PCPO algorithm, but is not as low as that308

of P3O. The low cost regret achieved by P3O comes at the price of expected reward, which is due to309

it’s wide margin to the threshold at the last iterate.310

Our experiments reveal that C-TRPO’s performance is closely tied to the accuracy of divergence311

estimation, which hinges on the precise estimation of the cost advantage and value functions. C-312

TRPO’s behavior w.r.t noisy cost function estimates is analyzed in Appendix D.3. The safety313

parameter β modulates the stringency with which C-TRPO satisfies the constraint, and can do so314

without limiting the expected return on most environments at least for β ≤ 1, see Figure 8 in the315

appendix. For higher values, the expected return starts to degrade, partly due to D̄ϕ being relatively316

noisy compared to D̄KL and thus we recommend the choice β = 1.317

Further, we observe that in most environments constraint violations seem to reduce as the algorithm318

converges, meaning that the regret flattens over time. This behavior suggests that the divergence319

estimation becomes increasingly accurate over time, potentially allowing C-TRPO to achieve sublinear320

regret. However, we leave regret analysis of the finite sample regime for future research.321

We attribute the improved constraint satisfaction compared to CPO to a slowdown and reduction322

in the frequency of oscillations around the cost threshold, which mitigates overshoot behaviors323

that could otherwise violate constraints. The modified gradient preconditioner appears to deflect324

the parameter trajectory away from the constraint, see Figure 2. This effect may also be partially325

attributed to the hysteresis-based recovery mechanism, which helps smooth updates by leading the326

iterate away from the boundary of the safe set. Employing a hysteresis fraction 0 < bH < b might327

also be beneficial because C-TRPO’s divergence estimates tend to be more reliable for strictly safe328

policies. The effect of the choice of bH is shown in Figure 9 in the appendix. Finally, we present329

ablations in Appendix D.2, which support our claims that both components—the modified trust330

region and hysteresis—are effective in reducing safety violations.331
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A Extended Background459

We consider the infinite-horizon discounted Markov decision process (MDP), given by the tuple460

(S,A, P, r, µ, γ). Here, S and A are the finite state-space and action-space respectively. Here, we461

make the restriction to finite MDPs as this simplifies the presentation. For a discussion of continuous462

state and action spaces, we refer to Appendix B.4. Further, P : S ×A → ∆S is the transition kernel,463

r : S × A → R is the reward function, µ ∈ ∆S is the initial state distribution at time t = 0, and464

γ ∈ [0, 1) is the discount factor. The space ∆S is the set of categorical distributions over S.465

The Reinforcement Learning (RL) protocol is usually described as follows: At time t = 0, an initial466

state s0 is drawn from µ. At each integer time-step t, the agent chooses an action according to it’s467

(stochastic) behavior policy at ∼ π(·|st). A reward rt = r(st, at) is given to the agent, and a new468

state st+1 ∼ P (·|st, at) is sampled from the environment. Given a policy π, the value function469

V π
r : S → R, action-value function Qπ

r : S × A → R, and advantage function Aπ
r : S × A → R470

associated with the reward r are defined as471

V π
r (s) := (1− γ)Eπ

[ ∞∑
t=0

γtr(st, at)
∣∣∣s0 = s

]
,
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472

Qπ
r (s, a) := (1− γ)Eπ

[ ∞∑
t=0

γtr(st, at)
∣∣∣s0 = s, a0 = a

]
and Aπ

r (s, a) := Qπ
r (s, a)− V π

r (s).

where and the expectations are taken over trajectories of the Markov process resulting from starting473

at s and following policy π. The goal is to474

maximizeπ∈Π V π
r (µ) (22)

where V π
r (µ) is the expected value under the initial state distribution V π

r (µ) := Es∼µ[V
π
r (s)]. We475

will also write V π
r = V π

r (µ), and omit the explicit dependence on µ for convenience, and we write476

Vr(π) when we want to emphasize its dependence on π.477

The Dual Linear Program for MDPs Any stationary policy π induces a discounted state-action478

(occupancy) measure dπ ∈ ∆S×A, indicating the relative frequencies of visiting a state-action pair,479

discounted by how far the visitation lies in the future. It is a probability measure defined as480

dπ(s, a) := (1− γ)

∞∑
t=0

γtPπ(st = s)π(a|s), (23)

where Pπ(st = s) is the probability of observing the environment in state s at time t given the agent481

follows policy π. For finite MDPs, it is well-known that maximizing the expected discounted return482

can be expressed as the linear program483

max
d

r⊤d subject to d ∈ D , (24)

where D is the set of feasible state-action measures [14]. This set is also known as the state-action484

polytope, defined by485

D =
{
d ∈ RS×A

≥0 : ℓs(d) = 0 for all s ∈ S
}
,

where the linear constraints ℓs(d) are given by the Bellman flow equations486

ℓs(d) = d(s)− γ
∑
s′,a′

d(s′, a′)P (s|s′, a′)− (1− γ)µ(s),

where d(s) =
∑

a d(s, a) denotes the state-marginal of d. For any state-action measure d we obtain487

the associated policy via conditioning, meaning488

π(a|s) := d(s, a)∑
a′ d(s, a′)

(25)

in case this is well-defined. This provides a one-to-one correspondence between policies and the489

state-action distributions under the following assumption.490

Assumption A.1 (Exploration). For any policy π ∈ ∆S
A we have dπ(s) > 0 for all s ∈ S.491

This assumption is standard in linear programming approaches and policy gradient methods where it492

is necessary for global convergence [19, 23]. Note that d ∈ ∂D if and only if d(s, a) = 0 for some493

s, a and hence the boundary of D is given by494

∂D =
{
dπ : π(a|s) = 0 for some s ∈ S, a ∈ A

}
.

Constrained Markov Decision Processes Where MDPs aim to maximize the return, constrained495

MDPs (CMDPs) aim to maximize the return subject to a number of costs not exceeding certain496

thresholds. For a general treatment of CMDPs, we refer the reader to [4]. An important application497

of CMDPs is in safety-critical reinforcement learning where the costs incorporate safety constraints.498

An infinite-horizon discounted CMDP is defined by the tuple (S,A, P, r, µ, γ, C), consisting of the499

standard elements of an MDP and an additional constraint set C = {(ci, bi)}mi=1, where ci : S ×A →500

R are the cost functions and bi ∈ R are the cost thresholds.501

In addition to the value functions and the advantage functions of the reward that are defined for the502

MDP, we define the same quantities Vci , Qci , and Aci w.r.t the ith cost ci, simply by replacing r with503
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Figure 4: The dual linear program for a CMDP of two states and two actions.

ci. The objective is to maximize the discounted return, as before, but we restrict the space of policies504

to the safe policy set505

Πsafe =

m⋂
i=1

{
π : Vci(π) ≤ bi

}
, (26)

where506

V π
ci (µ) := Es∼µ[V

π
ci (s)]. (27)

is the expected discounted cumulative cost associated with the cost function ci. Like the MDP, the507

discounted cost CMPD can be expressed as the linear program508

max
d

r⊤d sbj. to d ∈ Dsafe, (28)

where509

Dsafe =

m⋂
i=1

{
d ∈ RS×A : c⊤i d ≤ bi

}
∩D (29)

is the safe occupancy set, see Figure 4.510

Bregman divergences Here, we give a short introduction to the concept of Bregman divergences,511

which is required for the formulation of trust region methods. For this, we consider a convex subset of512

Euclidean space C ⊆ Rd with a non-empty interior int(C) and a strictly convex function ϕ : C → R513

which we assume to be differentiable on the interior int(C). Then, the Bregman divergence induced514

by ϕ is given by515

Dϕ(x||y) := ϕ(x)− ϕ(y)−∇ϕ(y)⊤(x− y), (30)

which is well defined for x ∈ C, y ∈ int(C). Intuitively, the Bregman divergence measures the516

difference between ϕ and its linearization at y. The strict convexity of ϕ ensures that Dϕ(x||y) ≥ 0517

and Dϕ(x||y) = 0 if and only if x = y. Therefore, Bregman divergences are commonly interpreted as518

a generalized measure for the distance between points, however, it is important to notice that it is not519

generally symmetric. An important example is the Euclidean distance Dϕ(x||y) = ∥x− y∥22 which520

arises from the choice ϕ(x) := ∥x∥22. Another important Bregman divergence is the Kullback-Leibler521

(KL) divergence522

DKL(p||q) :=
d∑

i=1

pi log
pi
qi
−

d∑
i=1

pi +

d∑
i=1

qi, (31)

where we use the common convention 0 log 0
0
:= 0. Then, the KL divergence is defined for p ∈ Rd

≥0523

and q ∈ Rd
≥0 which is absolutely continuous with respect to p, meaning that pi = 0 implies qi = 0.524

Note that if both p and q are probability vectors, meaning that
∑

i pi =
∑

i qi = 1, we obtain525

DKL(p||q) :=
d∑

i=1

pi log
pi
qi
. (32)
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Information Geometry of Policy Optimization Among the most successful policy optimization526

schemes are natural policy gradient (NPG) methods or variants thereof like trust-region and proximal527

policy optimization (TRPO and PPO, respectively). These methods assume a convex geometry and528

corresponding Bregman divergences in the state-action polytope, where we refer to [28, 27] for a529

more detailed discussion.530

In general, a trust region update is defined as531

πk+1 ∈ argmax
π∈Π

Aπk
r (π) sbj. to DΦ(dπk

||dπ) ≤ δ, (33)

where DΦ : D × D → R is a Bregman divergence induced by a suitably convex function532

Φ: int(D)→ R. The functional533

Aπk
r (π) = Es∼dπk

,a∼πθ(·|s)
[
Aπk

r (s, a)
]
, (34)

as introduced in [17], is called the policy advantage. As a loss function, it is also known as the534

surrogate advantage [32], since we can interpret A as a surrogate optimization objective of the return.535

In particular, it holds for a parameterized policy πθ, that∇θA
πθk
r (πθ)|θ=θk = ∇θVr(θk), see [17, 32].536

TRPO and the original NPG assume the same geometry [18, 32], since they employ an identical537

Bregman divergence538

DK(dπ1 ||dπ2) :=
∑
s,a

dπ1(s, a) log
π1(a|s)
π2(a|s)

=
∑
s

dπ1(s)DKL(π1(·|s)||π2(·|s)).

We refer to DK as the Kakade divergence and informally write DK(π1, π2) := DK(dπ1
, dπ2

). This539

divergence can be shown to be the Bregman divergence induced by the negative conditional entropy540

ΦK(dπ) :=
∑
s,a

dπ(s, a) log π(a|s), (35)

see [28]. It is well known that with a parameterized policy πθ, a linear approximation of A and a541

quadratic approximation of the Bregman divergence DK at θ, one obtains the natural policy gradient542

step given by543

θk+1 = θk + ϵkGK(θk)
+∇R(θk), (36)

where GK(θ)
+ denotes a pseudo-inverse of the Gramian matrix with entries equal to the state-544

averaged Fisher-information matrix of the policy545

GK(θ)ij := Es∼dπθ

[∑
a

∂θiπθ(a|s)∂θjπθ(a|s)
πθ(a|s)

]
(37)

= Edπθ
[∂θi log πθ(a|s)∂θj log πθ(a|s)], (38)

where we refer to [32] for a more detailed discussion.546

Consider a convex potential Φ: D → R or Φ: Dsafe → R and the TRPO update547

θk+1 ∈ argmaxAπθk
r (πθ) sbj. to DΦ(dθk ||dθ) ≤ ϵ. (39)

In practice, one uses a linear approximation of Aπθk
r (πθ) and a quadratic approximation of DΦ to548

compute the TRPO update. This gives the following approximation of TRPO549

θk+1 ∈ argmax
θ

∇θAθk
r (θ)|θ=θk · (θ − θk) sbj. to ∥θ − θk∥2G(θk)

≤ ϵ, (40)

where550

G(θ)ij = ∂θid
⊤
θ ∇2Φ(dθ)∂θjdθ. (41)

Note that by the policy gradient theorem, it holds that551

∇θAθk
r (θ)|θ=θk = ∇Vr(θk). (42)

Thus, the approximate TRPO update is equivalent to552

θk+1 = θk + ϵkG(θk)
+∇Vr(θ), (43)

where553

ϵk =

√
ϵ

∥G(θk)+∇Vr(θk)∥G(θk)
. (44)

Hence, the approximation TRPO update corresponds to a natural policy gradient update with an554

adaptively chosen step size.555
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Figure 5: Illustration of policy divergences (dashed) close to the constraint (red). a) TRPO (dotted for
reference) and CPO. b) C-TRPO’s divergence depends on the hyper-parameter β, which modulates
the strength of the barrier towards the constraint surface. For β ↘ 0 we obtain an update equivalent
to CPO, and more conservative updates for larger values (β = 2). The plots were generated with the
toy MDP in Figure 2. c) Shown are the quadratic approximations of the divergence in parameter
space, which is obtained by mapping the policy onto its occupancy measure, where a safe geometry
can be defined using standard tools from convex optimization (safe region in white).

B Details on the Safe Geometry for CMDPs556

B.1 Safe Trust Regions557

The safe mirror function for a single constraint is given by558

ΦC(d) := ΦK(d) +

m∑
i=1

β ϕ(b− c⊤d), (45)

and the resulting Bregman divergence559

DC(d1||d2) = ΦC(d1)− ΦC(d2)− ⟨∇ΦC(d2), d1 − d2⟩. (46)

is a linear operator in Φ, hence560

DΦ(d)+βϕ(b−c⊤d)(d1||d2) = DΦK
(d1||d2) + βDϕ(d1||d2), (47)

where561

Dϕ(d1||d2) = ϕ(b− c⊤d1)− ϕ(b− c⊤d2)− ⟨∇ϕ(b− c⊤d2), d1 − d2⟩ (48)

= ϕ(b− c⊤d1)− ϕ(b− c⊤d2)− ϕ′(b− c⊤d2)(c
⊤d1 − c⊤d2). (49)

= ϕ(b− Vc(π1))− ϕ(b− Vc(π2)) + ϕ′(b− Vc(π2))(Vc(π1)− Vc(π2)). (50)

The last expression can be interpreted as the one-dimensional Bregman divergence Dϕ(b−Vc(π)||b−562

Vc(πk)), which is a (strictly) convex function in Vc(π) for fixed πk if ϕ is (strictly) convex.563

B.2 Details on C-TRPO564

B.2.1 Surrogate Divergence565

In practice, the exact constrained KL-Divergence DC cannot be evaluated, because it depends on the566

cost-return of the optimized policy Vc(π). Therefore, we use the surrogate divergence567

D̄ϕ(πθ||πθk) = ϕ(b− V πk
c − Aπk

c (π))− ϕ(b− V πk
c ) + ϕ′(b− V πk

c )Aπk
c (π) (51)

which is obtained by the substitution Vc(π)− V πk
c → Aπk

c (π) in Dϕ.568
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When we center this divergence around policy πk and keep this policy fixed, it becomes a function of569

the policy cost advantage.570

D̄ϕ(πθ||πθk) = ϕ(b− V πk
c − Aπk

c (π))− ϕ(b− V πk
c ) + ϕ′(b− V πk

c )Aπk
c (π)

= ϕ(δb − Aπk
c (π))− ϕ(δb) + ϕ′(δb)Aπk

c (π)

= Ψ(Aπk
c ).

Note that D̄ϕ(πθ||πθk) = Ψ(Aπk
c (π)), where Ψ(x) = ϕ(δb − x)− ϕ(δb)− ϕ′(δb) · x is a (strictly)571

convex function if ϕ is (strictly) convex, since it is equivalent to the one-dimensional Bregman572

divergence Dϕ(δb − x||δb) on the domain of ϕ(b− x), see Figure 6.573

0 δb
Cost Advantage

0

1

2
D

Φ
/
β

φ = − log(x)

φ = x log(x)

Figure 6: The surrogate Constrained KL-Divergence as a function of the policy cost advantage.

Example B.1. The function ϕ(x) = x log(x) induces the divergence574

D̄ϕ(πθ||πθk) = Aπk
c (πθ)− (δb − Aπk

c (πθ)) log

(
δb

δb − Aπk
c (πθ))

)
. (52)

B.2.2 Estimation575

In the practical implementation, the expected KL-divergence between the policy of the previous576

iteration, πk, and the proposal policy π is estimated from state samples si by running πk in the577

environment578 ∑
s

dπk
(s)DKL(π(·|s)||πk(·|s)) ≈ 1/N

N−1∑
i=0

DKL(π(·|si)||πk(·|si)) (53)

where DKL can be computed in closed form for Gaussian policies, where N is the batch size.579

For the constraint term, we estimate δb from trajectory samples, as well as the policy cost advantage580

Aπk
c (π) ≈ Â =

1

N

N−1∑
i=0

π(ai|si)
πk(ai|si)

Âπk
i (54)

where Âπk
i is the GAE-λ estimate [33] of the advantage function of the cost. For any suitable ϕ, the581

resulting divergence estimate is582

D̂ϕ = ϕ(δb − Â)− ϕ(δb)− ϕ′(δb)Â (55)

and for the specific choice ϕ(x) = x log(x)583

D̂ϕ = Â− (δb − Â) log
(

δb

δb − Â

)
. (56)

B.3 Constrained Natural Policy Gradient584

Practically, the C-TRPO optimization problem in Equation (13) is solved like traditional TRPO: the585

objective is approximated linearly, and the constraint is approximated quadratically in the policy586
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parameters using automatic differentiation and the conjugate gradient method. This leads to the587

policy parameter update588

θk+1 = θk + αi

√
2δ

g⊤k H
−1
k gk

·H−1
k gk, (57)

where gk = ∇θAθk
c (πθ)|θ=θk and Hk = H̄C(θk) = ∇2

θD̄C(πθ||πθk)|θ=θk are finite sample esti-589

mates, and H−1g is approximated using conjugate gradients. The αi ∈ [0, 1] are the coefficients for590

backtracking line search, which ensures D̄C(πθ||πθk) ≤ δ.591

We show in Appendix B.3.1 that the Hessian592

H̄C(θk) = GK(θk) + βϕ′′(b− V θ̂
c (θ))∇θV

θ̂
c (θ)∇θV

θ̂
c (θ)

⊤,

is equivalent to the Gramian GC(θk) of the natural gradient update in Equation (12). We call the593

resulting policy gradient594

θk+1 = θk + ϵkH̄C(θk)
+∇Vr(θk), (58)

the Constrained NPG (C-NPG). In particular, this shows that the C-TRPO update can be interpreted595

as a natural policy gradient step with an adaptive step size, see Appendix A. We emphasize that the596

idealized safe trust region update in Equation (11) and the C-TRPO update of Equation (13) agree597

up to second order in the policy parameters. This justifies the surrogate divergence in C-TRPO and598

motivates the discussion of the C-NPG flow in Section 4. We show in Theorem 4.4 that int(Dsafe) is599

invariant under the dynamics of the C-NPG. This implies that if the trust region radius δ is small, and600

the advantage estimation is accurate enough, the iterates under C-TRPO never leave the safe set.601

B.3.1 Details on C-NPG602

In showing that TRPO with quadratic approximation agrees with a natural gradient step, see Ap-603

pendix A, we have used that∇θAθk
r (θ)|θ=θk = ∇Vr(θk), which holds although Ar is only a proxy of604

Vr. We now provide a similar property for the quadratic approximation of the surrogate divergences605

D̄C.606

Proposition B.2. For any parameter θ with πθ ∈ Πsafe it holds that607

∇2
θD̄ϕ(θ||θ̂)|θ=θ̂ = ∇2

θDϕ(θ||θ̂)|θ=θ̂ (59)
and hence608

∇2
θD̄KL(θ||θ̂)|θ=θ̂ + β∇2

θD̄ϕ(θ||θ̂)|θ=θ̂ = GC(θ̂) (60)
where GC(θ) denotes the Gramian matrix of C-NPG with entries609

GC(θ)ij = ∂θid
⊤
θ ∇2ΦC(θ)∂θjdθ. (61)

Proof. Let H̄KL(θ) = ∇2
θD̄KL(θ||θ̂)|θ=θ̂ and H̄ϕ(θ) = ∇2

θD̄ϕ(θ||θ̂)|θ=θ̂. One can show that610

H̄KL = GK(θ) [32]. Further, we have611

H̄ϕ(θ) = ∇θAπk
c (θ)Ψ′′(Aπk

c (θ))∇θAπk
c (θ)⊤ +Ψ′(Aπk

c (θ))∇2
θAπk

c (θ)

a)
= ∇θAπk

c (θ)Ψ′′(Aπk
c (θ))∇θAπk

c (θ)⊤

b)
= ∇θAπk

c (θ)ϕ′′(b− V πk
c (θ))∇θAπk

c (θ)⊤

= ∇θV
πk
c (θ)ϕ′′(b− V πk

c (θ))∇θV
πk
c (θ)⊤,

where a) follows from Ψ′(Aπk
c (θ)) = 0 since Ψ(0) = 0, Ψ ≥ 0 and Aθ̂

c(θ)|θ=θ̂ = 0. Further, b)612

follows because Ψ′′(x)|x=0 = ϕ′′(δb). Thus, H̄ϕ is equivalent to the Gramian613

GC(θ)ij := ∂θid
⊤
θ ∇2ΦC(θ)∂θjdθ (62)

= GK(θ)ij + βϕ′′(b− c⊤k dθ)∂θid
⊤
θ cc

⊤∂θidθ (63)

= H̄KL + β∇θVc(θ)ϕ
′′(b− Vc(θ))∇θVc(θ)

⊤, (64)

= H̄KL + βH̄ϕ. (65)
Again, for multiple constraints, the statement follows analogously.614

In particular, this shows that the C-TRPO update can be interpreted as a natural policy gradient step615

with an adaptive step size and that the updates with DC and D̄C are equivalent if we use a quadratic616

approximation for both, justifying D̄C as a surrogate for DC.617
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B.4 Beyond finite MDPs618

For the sake of simplicity and as this is required for our theoretical analysis, we have introduced619

C-TRPO only for finite MDPs. However, C-TRPO can also be used for problems with continuous620

state and action spaces as we discuss here. In this case, the state-action and state distributions are621

defined as622

dπ(S ×A) := (1− γ)

∞∑
t=0

γtPπ(st ∈ S, at ∈ A) and

dπ(S) := (1− γ)

∞∑
t=0

γtPπ(st ∈ S)

for any measurable subsets A ⊆ A and S ⊆ S. Further, the Kakade divergence is then given by623

DK(d
π1 ||dπ2) := Es∼dπ1

[
DKL(π1(·|s)||π2(·|s))

]
, (66)

which is well defined if π1(·|s) is absolutely continuous with respect to π2(·|s) for dπ1 almost all624

s ∈ S. The Bregman divergence that C-TRPO builds on is – just as in the finite case – given by625

DC(d1||d2) = DK(d1||d2) +
m∑
i=1

βiDϕi
(d1||d2), (67)

where626

Dϕi(d1||d2) =ϕ(bi − Vci(π1))− ϕ(bi − Vci(π2)) + ϕ′(bi − Vci(π2))(Vci(π1)− Vci(π2)). (68)

Like in the finite case, the policy advantage is defined as627

Aπk
r (π) = Es,a∼dπk

[
π(a|s)
πk(a|s)

Aπk
r (s, a)

]
, (69)

where Aπ
r (s, a) = Qπ(s, a)− V π(s) denotes the advantage function, which is defined analoguously628

to the finite case. Now, the plain trust region update is given by629

θk+1 ∈ argmax
θ

Aπk
r (π) sbj. to DC(dπk

||dπ) ≤ δ. (70)

Just like in the finite case, we use a surrogate divergence D̄C and obtain the formulation of C-TRPO630

πk+1 = argmax
π∈Π

Aπk
r (π) sbj. to D̄C(π||πk) ≤ δ. (71)

Here, the differences to DC are that we use samples from the state distribution dπk and use a surrogate631

for the cost advantage to estimate the divergence Dϕi
as described in Section 3.2. Further, we use a632

parametric policy model πθ and a linear approximation of Aπk as well as quadratic approximation of633

D̄C(π||πk) for our practical implementation.634

Expression for Gaussian policies We test C-TRPO in various control tasks where we use Gaussian635

policies. More precisely, the state and action space consist of Euclidean spaces S = Rds andA = Rda .636

Then, we consider a policy network µθ : S → A, which predicts the mean action and assume637

parameterized but state independent diagonal Gaussian noise, meaning that πθ(·|s) = N (µθ(s),Σθ),638

where Σθ is diagonal. Consequently, we can use a closed-form expression for the KL divergence as639

DKL(πθ1(·|s)||πθ2(·|s)) =
1

2

(
tr
(
Σ−1

θ2
Σθ1

)
− da + ∥µθ1(s)− µθ2(s)∥2Σ−1

θ2

+ ln

(
detΣθ2

detΣθ1

))
,

see [46].640

C Proofs of Section 4641

C.1 Proofs of Section 4642

Our theoretical analysis of C-TRPO is built on the following bounds on the performance difference643

of two policies.644
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Theorem C.1 (Performance Difference, [1]). For any function f(s, a), the following bounds hold645

Vf (π1)− Vf (π2) ⋚ Aπ2

f (π1)±
2γϵf

(1− γ)

√
1

2
Es∼dπ2

DKL(π1(·|s)||π2(·|s)) (72)

where ϵf = maxs |Ea∼π1
Aπ2

f (s, a)|.646

Theorem C.1 can be interpreted as a bound on the error incurred by replacing the difference in returns647

Vf (π1)− Vf (π) of any state-action function by its policy advantage Aπ2

f (π1).648

Proposition 4.1 (C-TRPO reward update). Set ϵr = maxs |Ea∼πk+1
Aπk

r (s, a)|. The expected reward649

of a policy updated with C-TRPO is bounded from below by650

Vr(πk+1) ≥ Vr(πk)−
√
2δγϵr
1− γ

. (18)

Proof. It follows from the lower bound in Theorem C.1 that651

Vr(πk+1)− Vr(πk) ≥ Aπk
r (πk+1)−

γϵr
(1− γ)

√
2D̄C(πk+1||πk) (73)

where we choose f = r. The bound holds because D̄ϕ ≥ 0, and thus D̄C ≥ EDKL. Further, δ ≥ DC652

and Aπk
r (πk+1) ≥ 0 by the update equation, which concludes the proof. See Appendix C.3 for a653

more detailed discussion.654

Proposition 4.2. The approximate C-TRPO update approaches the CPO update as β ↘ 0.655

Proof. Let us fix a strictly safe policy π0 ∈ int(Πsafe). In both cases, we approximate the expected656

cost of a policy using Vc(π) ≈ Vc(π0) + Aπ0
c (π), which is off by the advantage mismatch term in657

Proposition 4.1. Hence, we maximize the surrogate of the expected value Aπ0
r (π) over the regions658

PCPO := {π ∈ Π : D̄K(π, π0) ≤ δ, Vc(π0) + Aπ0
c (π) ≤ b}

in the case of CPO, and659

Pβ := {π ∈ Π : D̄C(π, π0) ≤ δ},
with C-TRPO for some β > 0. Note that660

D̄C(π, π0) = D̄K(π, π0) + βΨ(Aπ0
c (π)), (74)

and Ψ: (−∞, δb) → (0,+∞) and Ψ(t) → +∞ for t ↗ δb, where δb = b − Vc(π0). Denote the661

corresponding updates by π̂CPO and the C-TRPO update by π̂β . Note that we have Pβ ⊆ Pβ′ ⊆ PCPO662

for β ≥ β′. Further, we have663 ⋃
β>0

Pβ = {π ∈ P : DK(π, π0) < δ, Vc(π0) + Aπ0
c (π) < b}.

Hence, the trust regions Pβ grow for β ↘ 0 and fill the interior of the trust region PCPO.664

Remark C.2. Intuitively, one could repeatedly solve the C-TRPO problem with successively smaller665

values of β, which would be similar to solving CPO with the interior point method using Ψ as the666

barrier function.667

Proposition 4.3 (C-TRPO worst-case constraint violation). Let DC(πk+1||πk) ≤ δ with δ > 0 and668

set ϵc = maxs |Ea∼πk+1
Aπk

c (s, a)|. It holds that669

Vc(πk+1) ≤ Vc(πk) + Aπk
c (πk+1) +

√
2δ(β)γϵc
1− γ

, (19)
670

where δ(β) = δ − βDϕ(πk+1, πk) ≤ δ is decreasing in β > 0, limβ→0 δ(β) = δ, and δ(β)→ 0 for671

β → δDC(πk+1||πk)/Dϕ(πk+1, πk).672

Proof. Setting f = c in the upper bound from Theorem C.1 we obtain673

Vc(πk+1) ≤ Vc(πk) + Aπk
c (πk+1)±

2γϵc
(1− γ)

√
1

2
Es∼dπk

DKL(πk+1(·|s)||πk(·|s))

Note now that we have674

Es∼dπk
DKL(πk+1(·|s)||πk(·|s)) = DC(πk+1||πk)− βDϕ(πk+1, πk) ≤ δ − βDϕ(πk+1, πk) = δ(β).

675
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C.2 Details on the results in Section 4676

Recall that we study the natural policy gradient flow677

∂tθt = GC(θt)
+∇Vr(θt), (75)

where GC(θ)
+ denotes a pseudo-inverse of GC(θ) with entries678

GC(θ)ij := ∂θid
⊤
θ ∇2ΦC(dθ)∂θjdθ = GK(θ)ij +

∑
k

βkϕ
′′(bk − c⊤k dθ)∂θid

⊤
θ ckc

⊤
k ∂θidθ. (76)

and θ 7→ πθ is a differentiable policy parametrization.679

Moreover, we assume that θ 7→ πθ is regular, that it is surjective and the Jacobian is of maximal rank680

everywhere. This assumption implies overparametrization but is satisfied for common models like681

tabular softmax, tabular escort, or expressive log-linear policy parameterizations [2, 22, 27].682

We denote the set of safe parameters by Θsafe := {θ ∈ Rp : πθ ∈ Πsafe}, which is non-convex in683

general and say that Θsafe is invariant under Equation (20) if θ0 ∈ Θsafe implies θt ∈ Θsafe for all t.684

Invariance is associated with safe control during optimization and is typically achieved via control685

barrier function methods [7, 10]. We study the evolution of the state-action distributions dt = dπθt as686

this allows us to employ the linear programming formulation of CMPDs and we obtain the following687

convergence guarantees.688

Theorem 4.4 (Safety during training). Assume that ϕ : R>0 → R satisfies ϕ′(x)→ +∞ for x↘ 0689

and consider a regular policy parameterization. Then the set Θsafe is invariant under Equation (20).690

Proof. Consider a solution (θt)t>0 of Equation (75). As the mapping π 7→ dπ is a diffeomor-691

phism [27] the parameterization Θsafe → Dsafe, θ 7→ dπθ is surjective and has a Jacobian of maximal692

rank everywhere. As GC(θ)ij = ∂θidθ∇ΦC∂θidθ this implies that the state-action distributions693

dt = dπθt solve the Hessian gradient flow with Legendre-type function ΦC and the linear objective694

d 7→ r⊤d, see [6, 39, 27] for a more detailed discussion. It suffices to study the gradient flow in the695

space of state-action distributions dt. It is easily checked that ΦC is a Legendre-type function for696

the convex domain DC, meaning that it satisfies ∥∇Φ(dn)∥ → +∞ for dn → d ∈ ∂Dsafe. Since the697

objective is linear, it follows from the general theory of Hessian gradient flows of convex programs698

that the flow is well posed, see [5, 27].699

Theorem 4.5. Assume that ϕ′(x) → +∞ for x ↘ 0, set V ⋆
r,C := maxπ∈Πsafe

Vr(π) and denote700

the set of optimal constrained policies by Π⋆
safe = {π ∈ Πsafe : Vr(π) = V ⋆

r,C}, consider a regular701

policy parametrization and let (θt)t≥0 solve Equation (20). It holds that Vr(πθt)→ V ⋆
r,C and702

lim
t→+∞

πt = π⋆
safe = argmin{DC(π

⋆, π0) : π
⋆ ∈ Π⋆

safe}. (21)

Proof. Just like in the proof of Theorem 4.4 we see that dt = dπθt solves the Hessian gradient703

flow with respect to the Legendre type function ΦC. Now the claims regarding convergence and the704

identification of the limit limt→+∞ πθt follows from the general theory of Hessian gradient flows,705

see [5, 26].706

C.3 Performance improvement bounds and choice of divergence707

In a series of works [17, 30, 32, 1], the following bound on policy performance difference between708

two policies has been established.709

Vf (π
′)− Vf (π) ⋚ Aπ′

f (π)± 2γϵf
(1− γ)

Es∼dπ
DTV(π

′||π)(s) (77)

where DTV is the Total Variation Distance. Furthermore, by Pinsker’s inequality, we have that710

DTV(π
′||π) ≤

√
1

2
DKL(π′||π), (78)

and by Jensen’s inequality711

Es∼dπDTV(π
′||π)(s) ≤

√
1

2
Es∼dπ

DKL(π′||π)(s), (79)
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Figure 7: Pictorial illustration of conceptual and practical differences between CPO and C-TRPO.
The local approximation of C-TRPO’s trust region results in a single quadratic constraint, which is
compressed in the direction of the closest cost surface, depending on the hyper-parameter β (blue
dashed lines on the right). This is in contrast to CPO, where the local approximation of the update
results in a quadratic constraint which is not affected by the cost, and a linear constraint which only
takes effect upon contact with the cost surface. Intuitively, this results in a smoother optimization
path for C-TRPO that remains on the interior of the safe policy space for longer.

It follows that we can not only substitute the KL-divergence into the bound but any divergence712

DΦ(d
′
π||dπ) ≥ Es∼dπDKL(π

′||π)(s) (80)

can be substituted, and still retains TRPO’s and CPO’s update guarantees.713

C.4 Comparison with CPO714

In the approximate case of C-TRPO and CPO, where the reward is approximated linearly, and the
trust region quadratically, the constraints differ in that C-TRPO’s constraint is

(θ − θk)(H̄KL(θ) + βH̄ϕ(θ))(θ − θk) < δ

whereas CPO’s is

(θ − θk)H̄KL(θ)(θ − θk) < δ and V θk
c + (∇θAθk

c (θ))⊤(θ − θk) ≤ b.

Figure 7 illustrates the differences between CPO and C-TRPO.715
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D Additional Experiments716

D.1 Effect of hyper-parameters717

To better understand the effects of the two hyperparameters β and bH, we observe how they change718

the training dynamics through the example of the AntVelocity environment.719

The safety parameter β modulates the stringency with which C-TRPO satisfies the constraint, without720

limiting the expected return for values up to β = 1, see Figure 8. For higher values, the expected721

return starts to degrade, partly due to D̄ϕ being relatively noisy compared to D̄KL and thus we722

recommend the choice β = 1.723
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Figure 8: Influence of β on C-TRPO’s performance.

Finally, employing a hysteresis fraction 0 < bH < b seems beneficial, possibly because it leads the724

iterate away from the boundary of the safe set, and because divergence estimates tend to be more725

reliable for strictly safe policies. The effect of the choice of bH is visualized in Figure 9.
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Figure 9: Influence of the hysteresis fraction bH on C-TRPO’s performance.
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D.2 Ablation Study: CPO vs. C-TRPO727

We conduct an ablation study to rule out that our improvements of C-TRPO over CPO are only due728

to hysteresis. For this, we run both CPO and C-TRPO with and without hysteresis with the same729

hysteresis parameter as in our other experiments. We see that the hysteresis improves safety for both730

algorithm. Further, we find that the hysteresis slightly reduces the return of C-TRPO. Overall, we731

clearly see that C-TRPO itself is much safer compared to CPO as even C-TRPO without hysteresis732

achieves lower cost regret compared to CPO with hysteresis.733
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Figure 10: Ablation study on the core components of C-TRPO: Safe trust region (C-TRPO no hyst.)
and recovery with hysteresis (CPO hyst.). Evaluation is based on the Inter Quartile Mean (IQM)
normalized scores across 5 seeds and 8 tasks. From left to right: episode return of the reward (PPO
normalized), episode return of the cost (threshold normalized), and cumulative cost violation (CPO
normalized).

D.3 Noisy Cost Estimates734

To evaluate the sensitivity of C-TRPO to noisy or inaccurate estimates of the cost value function735

Vc, we train multiple policies with C-TRPO on the AntVelocity task and corrupt each policy’s value736

estimate by varying levels of noise, i.e. white noise with varying standard deviations σ, see Figure 11.737
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of noise added to the value estimates.
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D.4 Performance on individual environments738

Here, we compare C-TRPO to relevant baseline algorithms on all individual environments in terms of739

their sample efficiency curves. To improve readability of the plots, only the algorithms that are, on740

average, safe in the last iterate are included.741
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Figure 12: Benchmark on the locomotion environments.
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Figure 13: Benchmark on the navigation environments.
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Table 1: Final performance per task for 5 seeds each, where expected reward Vr, expected cost Vc,
and cost regret Reg+ are shown, including lower and upper confidence intervals. We highlight the
best performance with respect to the IQM of the return Vr in bold, and box the lowest cost regret
Reg+.

A
ntV

elocity
H

alfC
heetahV

elocity
H

um
anoidV

elocity
H

opperV
elocity

C
arB

utton
PointG

oal
R

acecarC
ircle

PointPush

C
-T

R
PO

(O
U

R
S)

V
r

3099.0
±

-38.5/46.5
2833.8

±
-123.6/70.9

5513.1
±

-66.5/53.8
1669.2

±
-839.8/55.2

1.0
±

-0.7/0.5
20.9

±
-0.7/0.4

30.3
±

-2.1/1.4
0.9

±
-0.3/0.4

V
c

18.8
±

-3.2/6.5
20.0

±
-8.1/5.7

12.2
±

-2.1/0.9
20.4

±
-3.2/2.9

36.8
±

-9.9/9.9
29.6

±
-3.2/15.4

21.7
±

-2.3/4.7
27.1

±
-8.3/8.5

R
eg

+
244.0

±
-24.6/60.5

105.3
±

-30.6/25.2
185.9

±
-109.0/72.8

1056.4
±

-804.5/1014.9
6299.9

±
-465.5/686.1

2459.6
±

-442.6/230.9
1465.8

±
-265.7/552.4

2626.2
±

-436.0/591.3

T
R

PO
-L

A
G

V
r

3001.9
±

-86.5/177.8
2879.0

±
-64.6/104.9

5326.9
±

-137.0/173.1
700.8

±
-493.5/868.2

-0.0
±

-0.5/0.6
18.5

±
-8.4/3.8

34.6
±

-3.9/0.6
2.7

±
-2.4/5.0

V
c

20.8
±

-10.0/18.4
25.0

±
-9.1/3.9

22.0
±

-7.0/14.3
13.7

±
-4.5/26.5

24.4
±

-7.1/5.7
28.4

±
-13.5/6.8

20.6
±

-5.0/4.4
13.7

±
-3.9/3.2

R
eg

+
2773.5

±
-738.5/414.3

2546.5
±

-318.1/977.8
1110.4

±
-607.6/719.7

6075.9
±

-1439.3/1447.5
10343.1

±
-734.2/624.4

4094.7
±

-727.7/1029.6
4889.9

±
-202.4/1164.8

2828.3
±

-408.5/653.6

C
PPO

-PID
V
r

3205.3
±

-186.5/76.7
3036.1

±
-36.7/10.7

5877.3
±

-111.4/84.8
1657.5

±
-65.5/61.0

-1.2
±

-0.5/0.6
6.1

±
-3.0/4.8

8.1
±

-5.5/4.3
1.0

±
-0.6/1.1

V
c

26.2
±

-5.3/4.4
26.5

±
-2.7/7.2

20.3
±

-8.6/6.0
18.6

±
-9.0/8.1

23.8
±

-8.4/6.0
21.8

±
-4.4/6.8

33.3
±

-6.5/5.9
22.8

±
-11.1/9.9

R
eg

+
1416.8

±
-201.6/328.3

2094.1
±

-351.0/417.9
913.9

±
-228.4/304.9

3649.6
±

-1018.2/695.1
3256.0

±
-488.9/211.4

2233.6
±

-274.0/681.0
2573.5

±
-317.7/897.3

1981.3
±

-237.1/293.2

P3O
V
r

3122.5
±

-111.4/24.6
3020.3

±
-44.8/12.8

5492.1
±

-45.0/118.7
1633.5

±
-107.7/49.0

0.2
±

-0.2/0.3
5.7

±
-0.5/0.3

0.9
±

-0.1/0.1
0.7

±
-0.4/0.6

V
c

21.2
±

-2.2/2.5
27.0

±
-2.4/1.1

4.2
±

-1.7/2.2
14.6

±
-1.7/1.6

40.9
±

-10.4/18.2
17.1

±
-4.0/6.2

13.1
±

-4.1/4.6
14.1

±
-5.4/9.4

R
eg

+
11.0

±
-5.0/8.1

228.1
±

-128.5/146.6
0.0

±
0.0/0.0

13.6
±

-13.5/131.7
12133.6

±
-4026.3/3007.5

1214.8
±

-187.5/452.0
1367.9

±
-159.8/368.4

832.1
±

-388.7/186.9

PC
PO

V
r

1709.8
±

-135.8/124.9
1228.3

±
-67.0/67.7

4632.0
±

-331.6/574.4
1285.3

±
-432.2/166.1

0.1
±

-0.3/0.7
18.8

±
-1.5/1.1

6.9
±

-2.7/6.7
1.3

±
-0.9/0.9

V
c

17.7
±

-4.1/1.2
17.0

±
-5.2/6.3

9.4
±

-6.1/4.3
27.8

±
-7.7/8.7

41.4
±

-17.2/6.4
28.9

±
-0.8/1.4

15.8
±

-6.6/8.0
20.3

±
-6.6/31.0

R
eg

+
250.8

±
-16.8/52.9

81.2
±

-20.1/31.1
55.7

±
-34.7/79.4

1423.4
±

-969.9/3396.7
7334.0

±
-1091.2/1176.7

2673.7
±

-343.7/387.2
4059.8

±
-1219.8/690.6

1824.5
±

-449.2/968.5

C
PO

V
r

3106.7
±

-92.4/21.5
2824.1

±
-97.7/104.2

5569.6
±

-248.7/349.3
1696.4

±
-16.5/19.4

1.1
±

-0.6/0.2
20.4

±
-0.8/2.0

29.8
±

-1.1/1.9
0.7

±
-0.3/2.9

V
c

25.1
±

-17.5/11.3
23.1

±
-16.8/8.0

16.2
±

-3.7/8.6
25.7

±
-8.1/4.4

33.5
±

-10.6/8.7
28.2

±
-3.4/4.1

23.1
±

-9.9/4.5
28.9

±
-8.0/20.0

R
eg

+
1323.7

±
-195.1/284.9

1142.2
±

-319.2/1209.0
116.9

±
-73.5/249.9

3568.0
±

-735.9/1988.6
6067.1

±
-546.1/977.0

2532.2
±

-276.8/206.1
2247.0

±
-415.5/615.1

2701.4
±

-388.8/1840.8

C
U

P
V
r

3092.0
±

-53.8/170.7
2916.7

±
-346.9/116.8

5677.9
±

-173.1/40.2
1639.8

±
-88.2/63.1

2.3
±

-1.8/3.9
22.4

±
-7.7/1.2

27.6
±

-3.2/2.3
0.5

±
-0.3/1.1

V
c

25.1
±

-1.9/2.7
40.7

±
-27.7/34.1

24.0
±

-7.0/10.5
23.9

±
-8.6/14.7

71.5
±

-28.2/57.0
45.2

±
-5.4/4.1

21.6
±

-5.9/6.3
35.6

±
-11.0/14.8

R
eg

+
3160.9

±
-377.1/641.8

4719.9
±

-915.0/3503.3
509.0

±
-276.6/306.5

4849.7
±

-1176.6/984.8
23726.4

±
-10827.1/20476.7

11715.5
±

-2047.7/1636.0
4774.5

±
-484.2/2431.3

3209.9
±

-1255.9/1967.1

FO
C

O
PS

V
r

2942.2
±

-96.3/45.6
2997.8

±
-380.0/17.8

5420.0
±

-262.0/183.0
1670.6

±
-19.4/8.3

1.9
±

-0.7/1.1
17.6

±
-3.1/3.6

24.7
±

-4.8/4.1
0.7

±
-0.5/2.1

V
c

28.1
±

-8.1/1.4
36.9

±
-7.5/3.2

10.9
±

-4.1/8.5
25.9

±
-2.4/5.5

33.0
±

-10.0/30.4
33.7

±
-10.8/20.4

21.4
±

-8.1/4.7
24.7

±
-8.4/4.8

R
eg

+
2257.8

±
-437.4/248.0

3472.8
±

-1021.9/664.2
872.7

±
-766.6/684.7

3647.8
±

-307.0/383.5
11359.2

±
-750.1/3436.6

5917.6
±

-1987.9/7276.3
6031.9

±
-1427.1/1075.8

2684.0
±

-451.8/484.2

PPO
-L

A
G

V
r

3210.7
±

-126.6/85.8
3033.6

±
-27.6/1.5

5814.9
±

-102.9/122.0
240.1

±
-92.7/159.0

0.3
±

-1.0/0.8
9.4

±
-1.3/1.8

30.9
±

-16.5/1.8
0.6

±
-0.2/0.0

V
c

28.9
±

-8.6/8.7
23.2

±
-2.8/1.9

12.7
±

-7.6/31.0
38.8

±
-24.4/36.4

39.2
±

-12.7/41.1
22.5

±
-4.3/10.1

31.7
±

-9.2/2.7
18.2

±
-11.4/9.5

R
eg

+
1767.5

±
-224.5/194.1

3339.6
±

-486.9/512.1
1299.1

±
-320.5/455.9

5909.8
±

-3420.8/2790.5
22554.4

±
-6386.9/10174.9

5135.6
±

-729.3/1539.8
6322.2

±
-419.5/722.3

3464.7
±

-453.1/743.8

IPO
V
r

2962.4
±

-39.2/31.6
2810.9

±
-143.1/124.8

5886.8
±

-205.5/149.3
1535.2

±
-857.1/167.6

-0.5
±

-0.2/0.5
6.6

±
-3.3/3.0

1.5
±

-0.3/0.4
0.6

±
-0.2/0.3

V
c

28.3
±

-6.1/4.8
27.4

±
-3.5/7.9

18.1
±

-6.9/8.2
24.9

±
-10.3/2.0

38.5
±

-6.7/3.9
25.6

±
-2.0/6.5

24.6
±

-4.2/9.9
23.7

±
-9.0/3.9

R
eg

+
1548.1

±
-469.7/459.5

2351.2
±

-1385.0/1098.6
580.3

±
-319.9/167.0

3958.3
±

-2464.1/2771.1
6570.8

±
-871.6/1370.8

3496.1
±

-717.2/1900.7
5926.5

±
-938.8/1361.4

2464.2
±

-711.4/1688.5

26


	Introduction
	Background
	A Safe Geometry for Constrained MDPs
	Safe Trust Regions
	Constrained Trust Region Policy Optimization

	Analysis
	Computational Experiments
	Extended Background
	Details on the Safe Geometry for CMDPs
	Safe Trust Regions
	Details on C-TRPO
	Surrogate Divergence
	Estimation

	Constrained Natural Policy Gradient
	Details on C-NPG

	Beyond finite MDPs

	Proofs of sec:analysis-C-TRPO
	Proofs of subsec:analysis
	Details on the results in sec:s-npg-analysis
	Performance improvement bounds and choice of divergence
	Comparison with CPO

	Additional Experiments
	Effect of hyper-parameters
	Ablation Study: CPO vs. C-TRPO
	Noisy Cost Estimates
	Performance on individual environments


