
Simple and Fast Distillation of Diffusion Models

Zhenyu Zhou1,2 Defang Chen3† Can Wang1,2 Chun Chen1,2 Siwei Lyu3

1Zhejiang University, State Key Laboratory of Blockchain and Data Security
2Hangzhou High-Tech Zone (Binjiang) Institute of Blockchain and Data Security

3University at Buffalo, State University of New York
{zhyzhou, defchern}@zju.edu.cn

Abstract

Diffusion-based generative models have demonstrated their powerful performance
across various tasks, but this comes at a cost of the slow sampling speed. To achieve
both efficient and high-quality synthesis, various distillation-based accelerated sam-
pling methods have been developed recently. However, they generally require
time-consuming fine tuning with elaborate designs to achieve satisfactory perfor-
mance in a specific number of function evaluation (NFE), making them difficult to
employ in practice. To address this issue, we propose Simple and Fast Distillation
(SFD) of diffusion models, which simplifies the paradigm used in existing methods
and largely shortens their fine-tuning time up to 1000×. We begin with a vanilla
distillation-based sampling method and boost its performance to state of the art by
identifying and addressing several small yet vital factors affecting the synthesis
efficiency and quality. Our method can also achieve sampling with variable NFEs
using a single distilled model. Extensive experiments demonstrate that SFD strikes
a good balance between the sample quality and fine-tuning costs in few-step image
generation task. For example, SFD achieves 4.53 FID (NFE=2) on CIFAR-10
with only 0.64 hours of fine-tuning on a single NVIDIA A100 GPU. Our code is
available at https://github.com/zju-pi/diff-sampler.

1 Introduction

Figure 1: Comparison of acceleration methods on dif-
fusion models. For better visualization, the time axis is
shifted by adding one hour to the actual time required.
Our method achieves good performance with a small
fine-tuning cost. Note that it takes about 200 hours to
train a diffusion model from scratch in this setting.

Diffusion models have attracted increasing inter-
est in recent years due to their remarkable gener-
ative abilities across various domains, including
image [41, 44, 42], video [14, 2], audio [20, 24],
and molecular structures [54]. These models
progressively transform a noisy input into a re-
alistic output through iterative denoising steps.
Diffusion models are preferred over other gen-
erative models [9, 19] for their high-quality syn-
thesis, stable training and a strong theoretical
foundation rooted in stochastic differential equa-
tions [51]. However, achieving high-quality syn-
thesis with diffusion models typically requires
hundreds to thousands of sampling steps, result-
ing in slow sampling speeds and a significant
challenge for practical applications.

†Corresponding author. Work partially done during Defang’s time at Zhejiang University.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/zju-pi/diff-sampler

Figure 2: Comparison of synthesized images by Stable Diffusion v1.5 [41] with guidance scale 7.5.

Recent years have witnessed significant progress in accelerating the sampling of diffusion models [48,
30, 58, 60, 8, 38, 63, 4, 31, 45, 34, 50, 17, 52, 7]. These methods typically fall into two categories:
solver-based methods and distillation-based methods. Solver-based methods [48, 30, 58, 16, 60, 8,
38, 63, 4] consider sampling from diffusion models as solving differential equations, and employ
fast numerical solvers to accelerate high-quality synthesis. However, these methods are limited by
inherent truncation errors, and the sample quality becomes degraded when the number of function
evaluations (NFEs) is relatively small (e.g., NFE ≤ 5). Distillation-based methods, on the other hand,
retain the structure of the original (teacher) diffusion model but aim to create a simplified (student)
model that streamlines the iterative refinement process of diffusion models [31, 45, 34, 50, 17, 52, 7].
Extreme distillation-based methods even establish a direct one-to-one mapping between the implicit
data distribution and a pre-specified noise distribution [31, 27, 50, 10, 56]. Although distillation-
based methods have demonstrated impressive results, often outperforming solver-based methods
in sampling quality given the total NFE budge is less than 5, they require expensive computational
resources to fine tuning pre-trained diffusion models. As illustrated in Figure 1, the necessary time
generally exceeds one hundred GPU hours, even reaching the same order of magnitude required for
training a diffusion model from scratch. We attribute the time-consuming fine-tuning process to the
following two factors:

• The mismatch between fine-tuning and sampling steps. There often exists significant fine-
tuning costs in existing distillation-based methods that does not effectively contribute to the
final performance due to the step mismatch. For example, progressive distillation [45, 34, 1]
fine-tunes the diffusion model at thousands of timestamps but only a few steps (e.g., 8
or fewer) are used in sampling. Besides, consistency-based distillation [50] spends most
fine-tuning efforts to ensure the consistency property [5], yet only 1 or 2 steps are used in
sampling. Such inconsistencies waste excessive efforts in the fine-tuning process.

• The complex optimization objectives. The optimization objectives of distillation-based
methods are getting increasingly complex, including the use of LPIPS [59, 50, 17, 56],
adversarial training [46, 17] as well as various regularization terms [17, 56]. Despite the
improved results, these additional components complicate the fine-tuning process.

In this paper, we introduce Simple and Fast Distillation (SFD) of diffusion models, which aims to
achieve fast and high-quality synthesis with diffusion models in a few sampling steps, at minimal
fine-tuning cost. Starting from the general framework behind distillation-based methods, we address
the issue of step mismatch by fine-tuning only a small number of timestamps that will be used in
sampling, which significantly improves the fine-tuning efficiency. The effectiveness of this strategy is
underpinned by the key observation that, fine-tuning at a specific timestamp can positively impact
the gradient direction at other timestamps (Section 3.1). Our SFD is then introduced as a simplified
paradigm for the distillation of diffusion models, where the student learns to mimic the teacher’s
sampling trajectory while minimizing accumulated errors. We release the potential of this simple
framework by identifying and addressing several small yet vital factors affecting the performance
(Section 3.2). Moreover, we propose a variable-NFE version of our method named SFD-v, which
enables a single distilled model to achieve sampling with various steps by introducing a step-condition
into the model (Section 3.3).

With 2 NFE, our SFD achieves a FID of 4.53 on CIFAR-10 [21] with a training cost of just 0.64
hours on a single NVIDIA A100 GPU, which is 1000× faster than consistency distillation requiring
about 1156 hours (see Figure 1). Quantitative and qualitative results on additional datasets, including

2

ImageNet 64×64 [43], Bedroom 256×256 [57], and image generation with Stable Diffusion [41],
demonstrate the effectiveness and efficiency of our methods.

2 Preliminary

2.1 Diffusion Models

Diffusion models bridge the implicit data distribution pd and a Gaussian distribution pn by progres-
sively adding white Gaussian noise to the data and then iteratively reconstructing the original data
from pure noise. Diffusion models are grounded in a theoretical framework based on stochastic
differential equations (SDEs) [51], with the forward process injecting noise to data:

dx = f(x, t)dt+ g(t)dwt, (1)

where f(·, t) : Rd → Rd, g(·) : R→ R are drift and diffusion coefficients, and wt ∈ Rd denotes the
Wiener process [37]. The backward process reconstructs the original data from the noisy input, which
can be achieved with a reverse-time SDE that shares the same marginals determined by the forward
SDE, i.e., dx = [f(x, t)− g2(t)∇x log pt(x)]dt+ g(t)dw̄t, where∇x log pt(x) is known as score
function [15, 33]. The reverse-time SDE can be further simplified to the probability flow ordinary
differential equation (PF-ODE) [51, 16, 3], dx = [f(x, t) − 1

2g
2(t)∇x log pt(x)]dt. In particular,

we consider f(x, t) = 0 and g(t) =
√
2t in this paper, i.e.,

dx = −t∇x log pt(x)dt, (2)

The score function is estimated as ∇x log pt(x) ≈ −ϵθ(x, t)/t with a noise-prediction model
ϵθ(x, t) which is obtained by minimizing a regression loss with the weighing function λ(t) for each
t [12, 48, 63]:

Lt(θ) = λ(t)Ex∼pd,ϵ∼N (0,I)∥ϵθ(x+ tϵ, t)− ϵ∥22. (3)
With the noise-prediction model in place of the score function, the PF-ODE can be written as follows

dx = ϵθ(x, t)dt. (4)

Compared to the general reverse-time SDEs, the PF-ODE is preferred in practice for its conceptual
simplicity and efficient sampling [51, 3]. To sample from a diffusion model with N steps, one first
draws xN ∼ pn = N (0, t2maxI) and then numerically solves Eq. 4 by a solver-based method [48,
29, 30, 58, 63, 4], following a hand-crafted time schedule Γ(N) = {t0 = tmin, t1, · · · , tN = tmax}.
The obtained sample sequence {xn}Nn=0 is called the sampling trajectory.

2.2 Distillation-based Diffusion Sampling

Through the lens of Eq. 4, we can interpret the noise-prediction model as a gradient field evolves
over time, guiding samples towards the data distribution’s manifold. Solver-based sampling methods
do not change the gradient field and are convenient to implement [48, 29, 30, 58, 63, 4]. However,
discretization errors prevent these methods from generating high-quality images within a few sampling
steps. Distillation-based methods address this issue by fine-tuning the gradient field with the reference
signals provided by a teacher (mostly a solver-based method) to build “shortcuts” on the sampling
trajectory [45, 50, 34, 17]. This basic framework behind distillation-based methods, which we call
Trajectory Distillation, is illustrated in Algorithm 1. Specifically, starting from latent encodings xn+1

and x̃n+1 (0 ≤ n ≤ N − 1) with a sampled n, the sampling process is written as:

Teacher : x̃n = Solver(x̃n+1, tn+1, tn,K; θ), (5)

Student : xψn = Euler(xn+1, tn+1, tn, 1;ψ) = xn+1 + (tn+1 − tn)ϵψ(xn+1, tn+1), (6)

whereK is the number of teacher sampling steps taken from tn+1 to tn; and ψ, θ are the parameters of
the student and teacher model, respectively. In each training iteration, the student model ψ is updated
with the calculated loss function L(ψ) = d(xψn , x̃n) using a distance metric d(·, ·). Solver(·, ·, ·, ·; θ)
can be any solver-based method with the fixed θ to provide reference signals. For example, in
progressive distillation [45, 34], it is defined as the Euler sampler [48] with K = 2, while in
consistency distillation [50, 17], the Heun sampler [16], K = 1, and a consistency loss are used.

Distillation-based methods have demonstrated impressive results but generally incur a significant
computational overhead. In the following sections, we revisit the trajectory distillation framework and
unlock its potential through a comprehensive assessment of the key factors affecting the performance.

3

Algorithm 1 Trajectory Distillation
repeat

Sample x0 from the dataset
Sample n ∼ U(0, N − 1)
Sample xn+1 ∼ N (x0; t

2
n+1I)

xψn ← Euler(xn+1, tn+1, tn, 1;ψ)
x̃n ← Solver(xn+1, tn+1, tn,K; θ)
L(ψ)← d(xψn , x̃n)
ψ ← ψ − η∇ψL(ψ)

until convergence

Algorithm 2 SFD (ours)
repeat

Sample xN = x̃N ∼ N (0; t2NI)
for n = N − 1 to 0 do
xψn ← Euler(xn+1, tn+1, tn, 1;ψ)
x̃n ← Solver(x̃n+1, tn+1, tn,K; θ)
ψ ← ψ − η∇ψd(xψn , x̃n)
xn ← detach(xψn)

end for
until convergence

3 Method

3.1 Smooth Modification of the Gradient Field

Figure 3: MODEL(ψn) is trained to
match the teacher’s sampling trajec-
tory at tn but can enhance the match-
ing at untrained timestamps. The time
schedule follows the polynomial sched-
ule with ρ = 7, t0 = 0.002, t4 = 80.

As mentioned in Section 1, existing distillation-based meth-
ods incur significant fine-tuning costs that may not effectively
contribute to the final sample quality [45, 34, 50], which is a
key factor overburdening computational resources. Instead, we
propose to fine-tune only a few timestamps that will be used in
sampling. To validate our strategy, we initialize four different
student models (denoted as MODEL(ψn), 0 ≤ n ≤ N − 1)
from a pre-trained teacher model θ using the second-order
DPM-Solver(2S) [29] with N = 4 and K = 3. We then fine-
tune each MODEL(ψn) only on a certain timestamp tn+1 and
make it align with the teacher predictions at the next times-
tamp tn. After fine-tuning, we evaluate the performance of
each MODEL(ψn) at all timestamps by comparing with the
teacher’s sampling trajectory {xn}Nn=0 under the same setting.
Specifically, we calculate the L2 distance in the following two
formulas for all 0 ≤ n, k ≤ N − 1,

Baseline : ∥xn − Euler(xn+1, tn+1, tn, 1; θ)∥2, (7)
MODEL(ψk) : ∥xn − Euler(xn+1, tn+1, tn, 1;ψk)∥2, (8)

and average the results over 1,000 trajectories. As shown in Figure 3, the distance calculated using
the fine-tuned models is almost consistently smaller than that of the baseline. This is remarkable
since each MODEL(ψn) is only trained to match the teacher’s sampling trajectory at a specific tn.
Yet, its performance on other timestamps is mostly improved, even though different timestamps are
far apart. This indicates that trajectory distillation does not disrupt the gradient field but enhances it
smoothly. Since fine-tuning at different timestamps mutually reinforces the model, fine-tuning on
a fine-grained time schedule is unnecessary. This insight forms the basis of our strategy. Beyond
efficiency, we will demonstrate that our approach achieves high performance in the sequel.

3.2 Simple and Fast Distillation of Diffusion Models

As for solver-based methods, the cost of a single sampling step varies depending on the design, which
is commonly measured by the number of function evaluations (NFE). For the DDIM sampler [48]
and other higher-order methods such as DPM-Solver++(3M) [30] and UniPC [60], one sampling
step corresponds to one NFE, while two NFEs are required for the Heun sampler [16] and DPM-
Solver(2S) [29]. In the following, we distill a diffusion model to achieve sampling with two NFEs
(N = 2 by default). We configure a reasonable baseline on the CIFAR10 dataset [21] and gradually
improve the performance through extensive experiments. The improved configuration is proven to be
effective across different NFEs and datasets.

Default configuration. The Heun sampler is used to generate the teacher sampling trajectory instead
of DDIM for efficiency, which has been demonstrated in training consistency models [50, 17]. We set

4

(a) Teacher solver. (b) Timestamps. (c) Loss metric.

Figure 4: Ablation studies of 2-NFE distillation on CIFAR10. The FID is evaluated by 50,000
generated samples with the same latent encodings and is reported every 10 iterations. We achieve the
best performance with SFD, DPM-Solver++(3M) teacher, AFS, tmin = 0.006 and L1 loss.

K = 3 for Heun sampler, which gives sampling trajectories with 12 NFEs. For the time schedule, if
not otherwise specified, we use the polynomial schedule where ρ = 7, tmin = 0.002 and tmax = 80,
following the EDM implementation [16, 50]. The squared L2 loss is used by default. For experiments
in this section, we use a batch size of 128, learning rate of 5e-5 and fine-tune with 100,000 teacher
sampling trajectories generated (around 780 training iterations).

From local to global. We start by analyzing the potential defects of trajectory distillation. As shown
in Algorithm 1, trajectory distillation performs local fine-tuning. The term “local” indicates that
the teacher model only generates part of the sampling trajectory (i.e., from tn+1 to tn), and the
optimization is independent across different n. This raises two defects that limit both efficiency
and performance: (i) Higher-order multi-step solvers that require history evaluation records are
unsupported. (ii) The student model is trained to imitate only part of the teacher’s sampling trajectory.
During sampling, the errors accumulate since the student is never trained to perfectly fix them. To
address these issues, we view trajectory distillation from a global perspective and introduce our
Simple and Fast Distillation of diffusion models (SFD) in Algorithm 2. In each training iteration of
SFD, we first generate the whole teacher sampling trajectory and let the student imitate it step by step.
During this process, the student model generates its own trajectories, enabling it to learn to fix the
accumulated errors. In Figure 4a, we compare both strategies (marked as “Vanilla” and “SFD”) using
the default configuration. It is shown that SFD exhibits better performance. In the following sections,
we focus on SFD and seek to release its potential for efficient distillation of diffusion models.

Efficient solver. One of the key components that affects the efficiency of distillation-based methods
is the choice of the teacher solver. To compare the performance of different solvers, we conduct
experiments on both trajectory distillation and SFD with 3 representative solver-based methods:
second-order Heun sampler, second-order DPM-Sovler(2S) and third-order DPM-Solver++(3M).
Since history evaluations are unavailable, we exclude DPM-Solver++(3M) for trajectory distillation.
The NFE of teacher sampling trajectories is kept 12 consistently (K = 6 is hence used for DPM-
Solver++(3M)) and the results are shown in Figure 4a. DPM-Solver++(3M) stands out, and the
Heun sampler is shown to be suboptimal. Therefore, for distillation-based methods with trajectory
distillation involved, it is recommended to explore replacing the Heun sampler (or DDIM sampler)
with DPM-Solver(2S). We leave this to future works.

Minimum and maximum timestamps. Choosing DPM-Solver++(3M) as the teacher solver, we
improve SFD by adjusting the start and end timestamps during training and sampling. For the
minimum timestamp tmin, we empirically find that a slight increase improves the student and teacher
sampling performance across various datasets. An ablation study of tmin on CIFAR10 dataset is shown
in Figure 5. We increase tmin from 0.002 to 0.006. This change provides consistent improvements
across different pre-trained diffusion models. For the maximum timestamp, we introduce analytical
first step (AFS) [6, 63, 4] in the generation of student sampling trajectories, which takes one estimated
step ϵψ(xN , tN) ≈ xN/

√
1 + t2N at the beginning of sampling to save one NFE. Therefore, to

obtain a 2-NFE SFD with AFS applied, we use N = 3 and K = 4. As shown in Figure 4b, using
AFS largely boosts the performance of SFD, indicating that one more inaccurate step can outperform
one less step. This improvement also benefits from the nature of SFD, where the error incurred in the
first step can be fixed by later steps (see the visualization in Figure 9). The detailed algorithm of SFD
with AFS is included in Appendix C.

5

Figure 5: Ablation study on
tmin with DPM++(3M).

Figure 6: Extrapolation ability
on untrained NFE.

Figure 7: Visualization of the effec-
tiveness of SFD.

Loss metric. In Figure 4c, we test various distance metrics for the loss function including squared L2
distance, L1 distance, LPIPS distance [59] and Pseudo-Huber distance [49]. Among these metrics,
L1 distance outperforms. Note that the LPIPS distance is trained to evaluate the perceptual distance
between two images but not corrupted ones, which may explain its suboptimal performance.

Table 1: Quantitative results of the ablations.

Method Teacher tmin AFS Loss FID

Vanilla Heun 0.002 N/A L2 46.84
Vanilla DPM(2S) 0.002 N/A L2 16.69
SFD Heun 0.002 False L2 20.88
SFD DPM(2S) 0.002 False L2 12.50
SFD DPM++(3M) 0.002 False L2 11.65
SFD DPM++(3M) 0.006 False L2 10.93
SFD DPM++(3M) 0.002 True L2 7.17
SFD DPM++(3M) 0.006 True L2 5.67
SFD DPM++(3M) 0.006 True LPIPS 5.10
SFD DPM++(3M) 0.006 True PH 4.90
SFD DPM++(3M) 0.006 True L1 4.57

With these improvements, the SFD achieves a
fast convergence with only around 300 training
iterations, which only takes around 8 minutes
on a single NVIDIA A100 GPU. The perfor-
mance of the obtained 2-NFE SFD is even com-
parable with the 2-NFE model trained by pro-
gressive distillation [45, 34], which takes more
than 100 hours under our estimation. The quan-
titative results are included in Table 1.

To verify our findings in Section 3.1, we test
the extrapolation ability of SFD with untrained
NFEs on CIFAR10. The results are shown in
Figure 6 where the markers indicate the NFEs
our methods are trained to sample with. Take “SFD, NFE4” as an example, where the SFD is only
trained to sample with NFE of 4 and its performance is marked by a star. When using this SFD
to sample with untrained NFEs (i.e., 2,3,5,6), even though the timestamps have never been trained
in these cases, the performance is still decent and largely outperforms the DDIM sampler (DDIM
with NFE of 6 gives a FID of 35.62, far exceeds the range of the figure). This empirically verifies
our hypothesis that the gradient field is not disrupted but is smoothly enhanced. The change of the
gradient field of a certain timestamp can also change that of nearby timestamps in a similar way.

Moreover, in Figure 7, we leverage the three-dimensional projection technique proposed in [4] to
visualize the sampling trajectories generated by SFD with 5 NFEs and that of the teacher solver SFD
is trained to imitate. Due to the use of AFS, the first sampling step of SFD is inaccurate. But the
accumulated errors are largely reduced in the following steps thanks to the global distillation used in
our SFD as discussed in Section 3.2. We include more visualised trajectories in Appendix D.2.

3.3 Towards Variable-NFE Distillation

Figure 8: Ablation study on the
type of condition.

One attractive property of diffusion models is that the sample qual-
ity can be consistently improved by increasing the sampling steps,
which is currently unsupported by most distillation-based methods.
Progressive distillation [45, 34] partially addresses this issue using
the multi-stage training. However, the model saved in each training
round only supports sampling with a certain trained step (i.e., 1,
2, 4, 8, · · ·). The sample quality of consistency models [50, 49]
designed for the one-step sampling also deteriorates under larger
sampling steps as revealed by [17]. Moreover, the unique encoding
property of ODE-based diffusion sampling is corrupted in multi-step
consistency models due to the noise injected in every step.

6

(a) Guidance scale = 1.0. (b) Guidance scale = 4.0. (c) Guidance scale = 7.5.

Figure 9: We visualize 20 sampling trajectories generated by DPM-Solver++(2M) [30] with 20 steps
using the three-dimensional projection technique proposed in [4].

To address this issue, consistency trajectory models (CTM) [17] introduce a new condition into the
student model, which specifies the next time to arrive, referred to as the tnext-condition. Unlike CTM,
introducing a step-condition to our SFD is more efficient. By informing the student model of the
number of sampling steps, our SFD can perform sampling with different NFEs. We refer to this
variable-NFE version of our method as SFD-v.

In every training iteration of SFD-v, the total number of sampling steps N is first sampled uniformly
from a pre-specified list of steps. Then, the time schedule Γ(N) is generated, and the subsequent
training process is the same as training SFD. As shown in the ablation study in Figure 8, the step-
condition consistently outperforms the tnext-condition. For the injection of step-condition, we treat it
the same way as the time embedding in diffusion models (see Appendix D.1 for more details). We
include the algorithm of training SFD-v in Appendix C.

3.4 Distillation under Classifier-free Guidance

Stable Diffusion [41], a latent diffusion model combined with classifier-free guidance [13], has shown
to be highly effective in high-resolution image generation. The classifier-free guidance extends
the flexibility of the generation of diffusion models by introducing the guidance scale ω. Given a
conditioning information c, the noise-prediction model is rewritten as

ϵ̃θ(x, t, c) = ωϵθ(x, t, c) + (1− ω)ϵθ(x, t, c = ∅). (9)

However, Stable Diffusion requires a large number of network parameters and sampling steps to
produce a satisfying generation. Moreover, the cost of every sampling step doubles since both
conditional and unconditional evaluations are involved in Eq. 9. Distilling the Stable Diffusion model
into a few steps is challenging because of source-intensive requirements and the flexibility given by
the guidance scale. To address this issue, existing methods either introduce an ω-condition into their
model [34, 22, 32], or simply discard the guidance scale [55, 46].

Here, we propose a new strategy with the observation on the sampling trajectories generated by Stable
Diffusion under different guidance scales. Following the three-dimensional projection technique
proposed in [4], we visualize the sampling trajectories generated by Stable Diffusion in its latent space
using DPM-Solver++(2M) starting from 20 fixed latent encodings. As shown in Figure 9, sampling
trajectories projected to the three-dimensional subspace exhibit a regular boomerang shape, which
is consistent with the findings in the previous work [4]. Furthermore, we observe that the sampling
trajectories become more complex as the guidance scale increases, making trajectory distillation
on the high guidance scale even more challenging. This observation naturally leads to our strategy:
perform distillation with a guidance scale of 1 and sampling with any guidance scale. Our strategy
enables accelerated training since the unconditional evaluation in Eq. 9 is eliminated.

4 Experiments

4.1 Experiment Setting

Pre-trained models and datasets. Both the network parameters of student and teacher models
are initialized from pre-trained diffusion models provided by EDM [16] and LDM [41]. We report
quantitative as well as qualitative results on datasets with various resolutions including CIFAR10

7

32×32 [21], ImageNet 64×64 [43] and latent-space LSUN-Bedroom 256×256 [57]. For Stable
Diffusion [41], we use the v1.5 checkpoint and generate images with a resolution of 512×512.

Training. The configuration obtained in Section 3.2 can be applied to different NFEs and datasets.
Generally, in the training of SFD and SFD-v, we use DPM-Solver++(3M) [30] as the teacher solver
with K = 4 (see Appendix D.2 for an ablation study on K). The use of adjusted tmin = 0.006, AFS
and L1 loss introduced in Section 3.2 all lead to improved results. Minor changes are needed for
text-to-image generation with Stable Diffusion, where we use DPM-Solver++(2M), which is the
default setting used in Stable Diffusion and K = 3. In this case, tmin is increased from 0.03 to 0.1
and the AFS is disabled due to the complex trajectory shown in Figure 9c. These experiment settings
are collected in Table 6 in Appendix.

Optimization. We use Adam optimizer [18] with β1 = 0.9 and β2 = 0.999 and a batch size of 128
across all datasets. A learning rate of 1e-5 is used for ImageNet and LSUN-Bedroom while 5e-5 is
used in other cases. We divide the learning rate by 10 halfway through training. Our SFD is trained
with a total of 200K teacher trajectories generated (around 1.5K training iterations). We train SFD-v
to enable sampling with NFE from 2 to 5, the total training iterations is multiplied by 4 accordingly.
All experiments are conducted with a maximum of 4 NVIDIA A100 GPUs. To enable a batch size of
128 using Stable Diffusion, we accumulate the gradient through several rounds.

Evaluation. We measure the sample quality via Fréchet Inception Distance (FID) [11] with 50K
images in general. For text-to-image generation, we use a guidance scale of 7.5 to generate 5K images
with prompts from the MS-COCO [23] validation set. The FID is evaluated following the protocol
in [28, 34, 46] where the validation set serves as reference images. The CLIP score is computed using
the ViT-g-14 CLIP model [40] trained on LAION-2B [47].

Table 2: Results on CIFAR10 32× 32.

Method NFE FID
Training time
(A100 hours)

Solver-based Methods
DDIM [48] 10 15.69 0

50 2.91 0
DPM++(3M) [30] 5 24.97 0

10 3.00 0
AMED-Plugin [63] 5 6.61 ∼ 0.08

10 2.48 ∼ 0.11
GITS [4] 5 8.38 < 0.01

10 2.49 ∼ 0.01

Diffusion Distillation
PD [45] 1 9.12 ∼ 195

2 4.51 ∼ 171
Guided PD [34] 1 8.34 ∼ 146

2 4.48 ∼ 128
4 3.18 ∼ 119

CD [50] 1 3.55 ∼ 1156
2 2.93 ∼ 1156

CTM [17] 1 1.98 ∼ 83
CTM [17] w/o GAN loss 1 > 5 ∼ 60

SFD (ours) (second-stage) 1 5.83 4.88
SFD (ours) 2 4.53 0.64

3 3.58 0.92
4 3.24 1.17
5 3.06 1.42

SFD-v (ours) 2 4.28

4.26
3 3.50
4 3.18
5 2.95

Table 3: Results on ImageNet 64× 64.

Method NFE FID
Training time
(A100 hours)

Solver-based Methods
DDIM [48] 10 16.72 0

50 4.09 0
DPM++(3M) [30] 5 25.49 0

10 5.67 0
AMED-Plugin [63] 5 13.83 ∼ 0.18

10 5.01 ∼ 0.32
GITS [4] 5 10.79 < 0.02

10 4.48 ∼ 0.02

Diffusion Distillation
PD [45] 1 15.39 < 5533

2 8.95 < 4611
Guided PD [34] 1 22.74 < 5533

2 9.75 < 4611
4 4.14 < 4150

CD [50] 1 6.20 < 7867
2 4.70 < 7867

CTM [17] 1 2.06 < 902
2 1.90 < 902

SFD (ours) (second-stage) 1 12.89 6.86
SFD (ours) 2 10.25 3.34

3 6.35 4.63
4 4.99 5.98
5 4.33 7.11

SFD-v (ours) 2 9.47

23.62
3 5.78
4 4.72
5 4.21

4.2 Main Results

We mainly compare our proposed SFD and SFD-v with progressive distillation [45, 34] and consis-
tency distillation [50, 17]. In Table 2 and 3, we report unconditional and conditional results on the
pixel-space image generation. To compare the training cost, we estimate the training time measured
by hours consumed on a single NVIDIA A100 GPU, following the training settings in the original
papers. The detail of our estimation is included in Appendix B. Our SFD achieves comparable results
as progressive distillation but only requires a very small fine-tuning cost (100× to 200× speedup). At
the same time, it is hard for solver-based methods to give high-quality generation within a few steps

8

due to increased errors. In accordance with our finding in Section 3.1, the SFD-v shows consistently
better results than SFD, although the training cost of SFD-v and SFD is roughly the same for each
specified sampling step. These observations also apply to the performance of SFD and SFD-v on
the latent-space image generation on LSUN-Bedroom shown in Table 4. In Table 5, we show the
performance of our methods in terms of FID and CLIP scores with a guidance scale of 7.5. The
results demonstrate the effectiveness of our strategy proposed in Section 3.4 where the training is
performed with the guidance scale set to 1. The qualitative results are shown in Figure 2. We include
more results in Appendix D.2.

Figure 10: Ablation study on
one-NFE distillation.

Although generating images with one NFE is possible with SFD
and SFD-v, we find it suboptimal. To address this, we propose a
second-stage one-NFE distillation, initializing network parameters
from a fine-tuned SFD model. In this second stage, the teacher solver
is set to DDIM (as used in SFD), and we use AFS (N = 2) and
K = 2. The training procedure remains the same as that of SFD.
The results, marked as “second-stage”, are reported in Tables 2 to 4.
We provide an ablation study on the effectiveness of the second stage
and the LPIPS metric [59] in Figure 10. The second-stage training
significantly boosts performance and is more efficient. Additionally,
combining L1 loss with LPIPS loss yields better results. Since the
teacher requires a smaller NFE, the training of each iteration of the second-stage distillation is fast.
Therefore, for CIFAR10/ImageNet, we perform second-stage distillation with 2000/800K sampling
trajectories (around 15/6K training iterations), and the learning rate is set to 10 times larger. For
LSUN-Bedroom, we use 800K trajectories and disable the LPIPS loss.

Table 4: Results on LSUN-Bedroom 256× 256.
Method NFE FID

DPM++(3M) [30] 8 4.61
AMED-Plugin [63] 8 4.19
PD [45] 1 16.92

2 8.47
CD [50] 1 7.80

2 5.22
SFD (ours) (second-stage) 1 13.88
SFD (ours) 2 10.39

3 6.42
4 5.26
5 4.73

SFD-v (ours) 2 9.25
3 5.36
4 4.63
5 4.33

Table 5: Text-to-image generation with Stable
Diffusion v1.5 [41]. *: Reported in the original
paper [34]. We use a guidance scale of 7.5, which
is the default setting in the original repository.

Method Steps FID-5K CLIP Score

DPM++(2M) [30] 2 91.5 (98.8*) 0.20 (0.19*)
4 31.1 (34.1*) 0.29 (0.29*)
8 25.1 (25.6*) 0.32 (0.30*)

Guided PD [34] 2 37.3 0.27
4 26.0 0.30
8 26.9 0.30

SnapFusion [22] 8 24.2 0.30
SFD-v (ours) 2 42.9 0.24

3 27.6 0.27
4 24.2 0.28
5 23.5 0.29

5 Conclusion

In this paper, we introduce Simple and Fast Distillation (SFD) of diffusion models to achieve fast
and high-quality generation with diffusion models in a few sampling steps at minimal fine-tuning
cost. Through a comprehensive investigation of several important factors, we unlock SFD’s potential,
achieving sample quality comparable to progressive distillation while reducing fine-tuning costs by
over 100 times. To enable sampling with variable NFEs using a single distilled model, we propose
SFD-v, which incorporates step-condition as an additional input. Our methods strike a good balance
between sample quality and fine-tuning costs for few-step image generation, offering a new paradigm
for distillation-based accelerated sampling of diffusion models.

Limitation and future work. Despite demonstrating efficient training, the FID results of our methods
currently do not match those of the state-of-the-art. In future work, we plan to further explore the
core mechanisms affecting the performance of trajectory distillation. Additionally, given the recent
discoveries of the remarkable regular geometric structure of diffusion models [4], we aim to tailor an
appropriate time schedule for our methods. We also intend to validate the effectiveness of the factors
we have discussed in other distillation-based methods.

Broader impacts. Similar to existing works on content creation, our methods have the potential to
be misused for malicious generation, which could have harmful social impacts. However, this risk

9

can be mitigated through advanced deepfake detection techniques. By continuously improving these
detection methods, we can help ensure the responsible and ethical use of our technology.

6 Acknowledgement

Zhenyu Zhou and Can Wang are supported by the Starry Night Science Fund of Zhejiang University
Shanghai Institute for Advanced Study, China (Grant No: SN-ZJU-SIAS-001), National Natural
Science Foundation of China (Grant No: U1866602) and the advanced computing resources provided
by the Supercomputing Center of Hangzhou City University.

References
[1] David Berthelot, Arnaud Autef, Jierui Lin, Dian Ang Yap, Shuangfei Zhai, Siyuan Hu, Daniel

Zheng, Walter Talbot, and Eric Gu. Tract: Denoising diffusion models with transitive closure
time-distillation. arXiv preprint arXiv:2303.04248, 2023.

[2] Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook Kim, Sanja
Fidler, and Karsten Kreis. Align your latents: High-resolution video synthesis with latent
diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2023.

[3] Defang Chen, Zhenyu Zhou, Jian-Ping Mei, Chunhua Shen, Chun Chen, and Can Wang. A
geometric perspective on diffusion models. arXiv preprint arXiv:2305.19947, 2023.

[4] Defang Chen, Zhenyu Zhou, Can Wang, Chunhua Shen, and Siwei Lyu. On the trajectory
regularity of ODE-based diffusion sampling. In International Conference on Machine Learning,
pages 7905–7934. PMLR, 2024.

[5] Giannis Daras, Yuval Dagan, Alexandros G Dimakis, and Constantinos Daskalakis. Consistent
diffusion models: Mitigating sampling drift by learning to be consistent. arXiv preprint
arXiv:2302.09057, 2023.

[6] Tim Dockhorn, Arash Vahdat, and Karsten Kreis. Genie: Higher-order denoising diffusion
solvers. In Advances in Neural Information Processing Systems, 2022.

[7] Weilun Feng, Chuanguang Yang, Zhulin An, Libo Huang, Boyu Diao, Fei Wang, and Yongjun
Xu. Relational diffusion distillation for efficient image generation. In ACM Multimedia, 2024.

[8] Martin Gonzalez, Nelson Fernandez Pinto, Thuy Tran, Hatem Hajri, Nader Masmoudi, et al.
Seeds: Exponential sde solvers for fast high-quality sampling from diffusion models. Advances
in Neural Information Processing Systems, 36, 2024.

[9] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural
information processing systems, 27, 2014.

[10] Jiatao Gu, Shuangfei Zhai, Yizhe Zhang, Lingjie Liu, and Josh Susskind. Boot: Data-free
distillation of denoising diffusion models with bootstrapping. arXiv preprint arXiv:2306.05544,
2023.

[11] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
GANs trained by a two time-scale update rule converge to a local Nash equilibrium. In Advances
in Neural Information Processing Systems, pages 6626–6637, 2017.

[12] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In
Advances in Neural Information Processing Systems, 2020.

[13] Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint
arXiv:2207.12598, 2022.

[14] Jonathan Ho, Tim Salimans, Alexey A. Gritsenko, William Chan, Mohammad Norouzi, and
David J. Fleet. Video diffusion models. In ICLR Workshop on Deep Generative Models for
Highly Structured Data, 2022.

10

[15] Aapo Hyvärinen. Estimation of non-normalized statistical models by score matching. Journal
of Machine Learning Research, 6:695–709, 2005.

[16] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of
diffusion-based generative models. In Advances in Neural Information Processing Systems,
2022.

[17] Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Naoki Murata, Yuhta Takida, Toshimitsu
Uesaka, Yutong He, Yuki Mitsufuji, and Stefano Ermon. Consistency trajectory models:
Learning probability flow ode trajectory of diffusion. arXiv preprint arXiv:2310.02279, 2023.

[18] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[19] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[20] Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. Diffwave: A versatile
diffusion model for audio synthesis. In International Conference on Learning Representations,
2021.

[21] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Technical Report, 2009.

[22] Yanyu Li, Huan Wang, Qing Jin, Ju Hu, Pavlo Chemerys, Yun Fu, Yanzhi Wang, Sergey
Tulyakov, and Jian Ren. Snapfusion: Text-to-image diffusion model on mobile devices within
two seconds. Advances in Neural Information Processing Systems, 36, 2024.

[23] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer
Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014,
Proceedings, Part V 13, pages 740–755. Springer, 2014.

[24] Haohe Liu, Zehua Chen, Yi Yuan, Xinhao Mei, Xubo Liu, Danilo Mandic, Wenwu Wang, and
Mark D Plumbley. Audioldm: Text-to-audio generation with latent diffusion models. arXiv
preprint arXiv:2301.12503, 2023.

[25] Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao,
and Jiawei Han. On the variance of the adaptive learning rate and beyond. arXiv preprint
arXiv:1908.03265, 2019.

[26] Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. Pseudo numerical methods for diffusion models
on manifolds. In International Conference on Learning Representations, 2022.

[27] Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate
and transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022.

[28] Xingchao Liu, Xiwen Zhang, Jianzhu Ma, Jian Peng, et al. Instaflow: One step is enough for
high-quality diffusion-based text-to-image generation. In The Twelfth International Conference
on Learning Representations, 2023.

[29] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A
fast ode solver for diffusion probabilistic model sampling in around 10 steps. In Advances in
Neural Information Processing Systems, 2022.

[30] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-
solver++: Fast solver for guided sampling of diffusion probabilistic models. arXiv preprint
arXiv:2211.01095, 2022.

[31] Eric Luhman and Troy Luhman. Knowledge distillation in iterative generative models for
improved sampling speed. arXiv preprint arXiv:2101.02388, 2021.

[32] Simian Luo, Yiqin Tan, Longbo Huang, Jian Li, and Hang Zhao. Latent consistency models:
Synthesizing high-resolution images with few-step inference. arXiv preprint arXiv:2310.04378,
2023.

11

[33] Siwei Lyu. Interpretation and generalization of score matching. In Proceedings of the Twenty-
Fifth Conference on Uncertainty in Artificial Intelligence, pages 359–366, 2009.

[34] Chenlin Meng, Robin Rombach, Ruiqi Gao, Diederik Kingma, Stefano Ermon, Jonathan Ho,
and Tim Salimans. On distillation of guided diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 14297–14306, 2023.

[35] Muhammad Ferjad Naeem, Seong Joon Oh, Youngjung Uh, Yunjey Choi, and Jaejun Yoo.
Reliable fidelity and diversity metrics for generative models. In International Conference on
Machine Learning, pages 7176–7185. PMLR, 2020.

[36] Thuan Hoang Nguyen and Anh Tran. Swiftbrush: One-step text-to-image diffusion model with
variational score distillation. arXiv preprint arXiv:2312.05239, 2023.

[37] Bernt Oksendal. Stochastic differential equations: an introduction with applications. Springer
Science & Business Media, 2013.

[38] Kushagra Pandey, Maja Rudolph, and Stephan Mandt. Efficient integrators for diffusion
generative models. arXiv preprint arXiv:2310.07894, 2023.

[39] Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using
2d diffusion. arXiv preprint arXiv:2209.14988, 2022.

[40] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning,
pages 8748–8763. PMLR, 2021.

[41] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 10684–10695, 2022.

[42] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
22500–22510, 2023.

[43] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael S. Bernstein, Alexander C. Berg, and Fei-Fei
Li. Imagenet large scale visual recognition challenge. International Journal of Computer Vision,
115(3):211–252, 2015.

[44] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
text-to-image diffusion models with deep language understanding. In Advances in Neural
Information Processing Systems, pages 36479–36494, 2022.

[45] Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models.
In International Conference on Learning Representations, 2022.

[46] Axel Sauer, Dominik Lorenz, Andreas Blattmann, and Robin Rombach. Adversarial diffusion
distillation. arXiv preprint arXiv:2311.17042, 2023.

[47] Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman,
Mehdi Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-
5b: An open large-scale dataset for training next generation image-text models. Advances in
Neural Information Processing Systems, 35:25278–25294, 2022.

[48] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In
International Conference on Learning Representations, 2021.

[49] Yang Song and Prafulla Dhariwal. Improved techniques for training consistency models. arXiv
preprint arXiv:2310.14189, 2023.

12

[50] Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In
International Conference on Machine learning, 2023.

[51] Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon,
and Ben Poole. Score-based generative modeling through stochastic differential equations. In
International Conference on Learning Representations, 2021.

[52] Wujie Sun, Defang Chen, Can Wang, Deshi Ye, Yan Feng, and Chun Chen. Accelerating diffu-
sion sampling with classifier-based feature distillation. In 2023 IEEE International Conference
on Multimedia and Expo (ICME), pages 810–815. IEEE, 2023.

[53] Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan Li, Hang Su, and Jun Zhu. Pro-
lificdreamer: High-fidelity and diverse text-to-3d generation with variational score distillation.
Advances in Neural Information Processing Systems, 36, 2024.

[54] Minkai Xu, Lantao Yu, Yang Song, Chence Shi, Stefano Ermon, and Jian Tang. Geodiff: A geo-
metric diffusion model for molecular conformation generation. arXiv preprint arXiv:2203.02923,
2022.

[55] Yanwu Xu, Yang Zhao, Zhisheng Xiao, and Tingbo Hou. Ufogen: You forward once large scale
text-to-image generation via diffusion gans. arXiv preprint arXiv:2311.09257, 2023.

[56] Tianwei Yin, Michaël Gharbi, Richard Zhang, Eli Shechtman, Fredo Durand, William T
Freeman, and Taesung Park. One-step diffusion with distribution matching distillation. arXiv
preprint arXiv:2311.18828, 2023.

[57] Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas Funkhouser, and Jianxiong Xiao. Lsun:
Construction of a large-scale image dataset using deep learning with humans in the loop. arXiv
preprint arXiv:1506.03365, 2015.

[58] Qinsheng Zhang and Yongxin Chen. Fast sampling of diffusion models with exponential
integrator. In International Conference on Learning Representations, 2023.

[59] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unrea-
sonable effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 586–595, 2018.

[60] Wenliang Zhao, Lujia Bai, Yongming Rao, Jie Zhou, and Jiwen Lu. Unipc: A unified predictor-
corrector framework for fast sampling of diffusion models. arXiv preprint arXiv:2302.04867,
2023.

[61] Hongkai Zheng, Weili Nie, Arash Vahdat, Kamyar Azizzadenesheli, and Anima Anandkumar.
Fast sampling of diffusion models via operator learning. In International Conference on
Machine Learning, pages 42390–42402. PMLR, 2023.

[62] Kaiwen Zheng, Cheng Lu, Jianfei Chen, and Jun Zhu. Dpm-solver-v3: Improved diffusion ode
solver with empirical model statistics. arXiv preprint arXiv:2310.13268, 2023.

[63] Zhenyu Zhou, Defang Chen, Can Wang, and Chun Chen. Fast ode-based sampling for diffusion
models in around 5 steps. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 4401–4410, 2024.

13

A Related Works

Solver-based methods. As sampling from diffusion models can be interpreted as solving the
PF-ODE [51], various kinds of training-free solver-based methods are designed utilizing classical
numerical methods including Euler’s method (DDIM [48]), Heun’s second method (EDM [16]), linear
multi-step method (PNDM [26] and iPNDM [58]) and predictor-corrector framework (UniPC [60]).
Some works focus on the semi-linear structure of the PF-ODE, approximating its solution by Taylor
expansion (DPM-Solver [29], DPM-Solver++ [30] and their generalized variant SEEDS [8]) and
polynomial extrapolation (DEIS [58]). Besides these training-free methods, some works further
reduce the discretization error of classical numerical methods by learning intrinsic information with
extra computational overhead. GENIE [6] applies the second-order truncated Taylor method and
utilizes the gradient of noise-prediction model w.r.t. time distilled from the pre-trained model for
accelerated sampling. DPM-Solver-v3 [62] seeks to search for the optimal parameterization for fast
sampling using the Empirical Model Statistics (EMS) calculated from pre-trained models. AMED-
Solver [63] achieves fast sampling resorting to the mean value theorem validated by the geometric
structure of sampling trajectories and trains a small network that predicts the optimal intermediate
timestamps. GITS [4] optimizes the time schedule through a dynamic programming utilizing the
trajectory regularity of the diffusion models.

Aside from solver-based methods, distillation-based methods demonstrate their superiority in sam-
pling speed and high-quality generation. Current literature can be categorized into three classes.

Trajectory distillation. Trajectory distillation originates from the primary work [31], which proposed
the first one-step diffusion model with the idea of knowledge distillation. The basic framework behind
is to train a student model to imitate the teacher’s sampling trajectory. Progressive distillation
(PD) [45, 34, 22] proposes gradually reducing the sampling steps with a multi-stage strategy. In each
training round, the student model is fine-tuned to merge two DDIM steps into one step and serves as
the teacher in the next training round. Following PD, trajectory matching at feature space utilizing a
pre-trained classifier is shown to be effective in RCFD [52] and RDD [7]. Motivated by the idea of
operator learning, DSNO [61] presents a novel way of distillation by simultaneously predicting the
whole sampling trajectory with specially designed temporal convolution blocks.

Consistency distillation. Originated from consistency models [50], which is a special case of its
concurrent consistent diffusion models [5], consistency distillation introduces a new way of distillation
where the denoising outputs on the sampling trajectory are kept consistent. Consistency distillation
shows remarkable ability in one-step generation and has become popular in distillation-based methods.
Latent consistency models [32] demonstrate the effectiveness of consistency distillation in latent
space. Consistency trajectory models [17] generalize the consistency to any timestamp, enabling an
unrestricted traversal on sampling trajectory and producing state-of-the-art results.

Distribution matching. The idea of distribution matching for distilling diffusion models is first
introduced in text-to-3D generation [39] as score distillation sampling (SDS) and is later improved
to variational score distillation (VSD) [53]. Unlike the training of diffusion models, which relies
on sample-wise reconstruction, distribution matching discards the coupling of noise-image pairs
set by diffusion models and matches the real and reconstructed samples at a distribution level. The
effectiveness of both SDS [46] and VSD [56, 36] is recently validated in image generation.

Our methods fall into the first category but differ from progressive distillation in three ways. (i) We
view trajectory distillation from a global perspective, where we generate the whole teacher sampling
trajectory in each iteration, and let the student model imitate it step by step. (ii) We simplify the
multi-stage strategy (more than ten stages) into one or two stages. (iii) The proposed SFD-v enables
sampling with different NFEs using a single distilled model. Our methods differ from DSNO in two
folds. (i) Our methods enable the student model to reduce accumulated errors in previous steps, while
in DSNO, the intermediate samples on the predicted sampling trajectory are not directly connected.
(ii) Our methods slightly change the network architecture, while in DSNO, it is largely redesigned.
Besides, the model complexity in DSNO increases as the length of the sampling trajectory increases.

B Estimation of Training Cost

In this section, we illustrate our estimation of training cost on the comparison methods shown
in Table 2 and 3. For solver-based methods like AMED-Solver [63] and GITS [4], we borrow

14

the reported training cost in original papers since similar devices are used. Efforts are put on the
estimation of distillation-based methods. Due to limited resources, we do not fully re-implement
these methods. Generally, after the training stabilizes, we collect the consumed time spent on several
training iterations and then estimate the total training costs. Two NVIDIA A100 GPUs are used in our
estimation and we double the estimated training costs to report the final results. For fair comparison,
all of these methods are re-implemented with the EDM [16] repository with its provided pre-trained
diffusion models. We note that the cost of training a diffusion model on CIFAR10 dataset from
scratch is around 200 A100 hours.

B.1 Training Costs on CIFAR10

Progressive distillation. Following the setting in the original paper [45], we use a batch size of 128
and strictly follows the original algorithm. Adam optimizer as well as exponential moving average
(EMA) is also used. After the training stabilizes, it costs around 140.5 seconds for every 320 training
iterations with 2 NVIDIA A100 GPUs. As a total of 800K training iterations are required in the
original paper, we estimate its training cost by 800 × 1000 × 140.5 × 2/(320 × 3600) = 195.1
A100 hours. As for Guided PD [34], we only report the estimated training cost for its second-stage
distillation, which requires a total of 600K training iterations. We roughly use the above statistics
and estimate its training cost by 600× 1000× 140.5× 2/(320× 3600) = 146.4. For the training
cost under larger NFE, we scale the estimated training cost accordingly following the total number of
training iterations.

Consistency distillation. The consistency distillation [50] uses a batch size of 512 and trains for a
total of 800K training iterations. Following the original paper, we use the LPIPS [59] loss metric and
the Rectified Adam optimizer [25]. It costs around 52 seconds for every 20 training iterations with 2
NVIDIA A100 GPUs. The training cost is thus estimated by 800× 1000× 52× 2/(20× 3600) =
1155.6 A100 hours.

Consistency trajectory models. Following the original paper [17], we use a batch size of 256 and
train with mixed-precision. For the first 50K training without the GAN loss, it costs around 21.5
seconds for every 20 training iterations and 38.5 seconds are needed for the later 50K training with
GAN loss involved using 2 NVIDIA A100 GPUs. The training cost of a total of 100K iterations is
estimated by 50× 1000× (21.5 + 38.5)× 2/(20× 3600) = 83.3 A100 hours. If the GAN loss is
disabled during training, the training cost will be reduced to 59.7 A100 hours.

B.2 Training Costs on ImageNet

Typically, the training of ImageNet uses a large batch size (for example, the original setting is 2048
for all the methods below) which requires extensive resources (usually 64 GPUs are needed). Due to
limited resources, we estimate the training cost with a batch size of 256 and multiply it by 8 which
should gives an upper bound of the practical training cost.

Progressive distillation. In progressive distillation [45] as well as its guided version [34], a total of
600K training iterations are required (50K for 8 rounds and 100K for 2 rounds). With a batch size
of 256, it costs around 664 seconds for every 320 training iterations with 2 NVIDIA A100 GPUs.
The training cost is thus 8× 600× 1000× 664× 2/(320× 3600) = 5533.3 A100 hours. For the
training cost under larger NFE, the training cost is scaled accordingly as done before.

Consistency distillation. Following the original setting [50], mixed-precision optimization is applied.
Other settings is similar to that in CIFAR10 illustrated above. With a batch size of 256, it costs around
59 seconds for every 20 training iterations with 2 NVIDIA A100 GPUs. As a total of 600K iterations
are required, the training cost is estimated by 8× 600× 1000× 59× 2/(20× 3600) = 7866.7 A100
hours.

Consistency trajectory models. Expect for a training iteration of 30K, other settings are consistent
as in CIFAR10 training. For the first 10K training iterations without GAN loss, it costs around 122
seconds for every 20 training iterations with 2 NVIDIA A100 GPUs. For the later 20K training
iterations with GAN loss, 142 seconds are needed. The total training cost is estimated by 8× 1000×
(10× 122 + 20× 142)× 2/(20× 3600) = 902.2 A100 hours.

15

C Algorithms

All the algorithms involved in the main text are illustrated below.

Algorithm 3 Trajectory Distillation

Input: model parameters ψ = θ, learning rate
η, Solver(·, ·, ·, ·), distance metric d(·, ·), num-
ber of student sampling steps N , noise sched-
ule {tn}Nn=0, number of teacher sampling steps
between every two noise levels K, dataset D.
repeat

Sample x0 ∼ D
Sample n ∼ U(0, N − 1)
Sample xn+1 ∼ N (x0; t

2
n+1I)

xψn ← Euler(xn+1, tn+1, tn, 1;ψ)
x̃n ← Solver(xn+1, tn+1, tn,K; θ)
L(ψ)← d(xψn , x̃n)
ψ ← ψ − η∇ψL(ψ)

until convergence

Algorithm 4 SFD (our method)

Input: model parameters ψ = θ, learning rate
η, Solver(·, ·, ·, ·), distance metric d(·, ·), num-
ber of student sampling steps N , noise sched-
ule {tn}Nn=0, number of teacher sampling steps
between every two noise levels K.
repeat

Sample xN = x̃N ∼ N (0; t2NI)
for n = N − 1 to 0 do
xψn ← Euler(xn+1, tn+1, tn, 1;ψ)
x̃n ← Solver(x̃n+1, tn+1, tn,K; θ)
ψ ← ψ − η∇ψd(xψn , x̃n)
xn ← detach(xψn)

end for
until convergence

Algorithm 5 SFD with AFS

Input: model parameters ψ = θ, learning rate
η, Solver(·, ·, ·, ·), distance metric d(·, ·), num-
ber of student sampling steps N , noise sched-
ule {tn}Nn=0, number of teacher sampling steps
between every two noise levels K.
repeat

Sample xN = x̃N ∼ N (0; t2NI)

ϵ̂← xN/
√

1 + t2N
xN−1 ← xN + (tN−1 − tN)ϵ̂
x̃N−1 ← Solver(x̃N , tN , tN−1,K; θ)
for n = N − 2 to 0 do

xψn ← Euler(xn+1, tn+1, tn, 1;ψ)
x̃n ← Solver(x̃n+1, tn+1, tn,K; θ)
ψ ← ψ − η∇ψd(xψn , x̃n)
xn ← detach(xψn)

end for
until convergence

Algorithm 6 SFD-v (variable-NFE)

Input: model parameters ψ = θ, learning rate
η, Solver(·, ·, ·, ·), distance metric d(·, ·), num-
ber of student sampling steps N , noise sched-
ule {tn}Nn=0, number of teacher sampling steps
between every two noise levels K, list L.
Initialize: inject step-condition as a new input
to the model as ϵψ(x, t, c, step = N)
repeat

Sample N ∼ U(L) and generate {tn}Nn=0
Sample xN = x̃N ∼ N (0; t2NI)
for n = N − 1 to 0 do
xψn ← Euler(xn+1, tn+1, tn, 1;ψ)
x̃n ← Solver(x̃n+1, tn+1, tn,K; θ)
ψ ← ψ − η∇ψd(xψn , x̃n)
xn ← detach(xψn)

end for
until convergence

Algorithm 7 Second-stage one-NFE distillation

Input: ψ = θ, η, d(·, ·), {t0, t1}, K.
AFS can be used similar to Algorithm 5
Step-condition can be used as Algorithm 6
repeat

Sample x1 ∼ N (0; t21I)

xψ0 ← Euler(x1, t1, t0, 1;ψ)
x0 ← Euler(x1, t1, t0,K; θ)

ψ ← ψ − η∇ψd(xψ0 ,x0)
until convergence

Algorithm 8 SFD/SFD-v sampling

Input: model parameters ψ, number of student
sampling steps N , noise schedule {tn}Nn=0.
Initialize: Sample xN ∼ N (0; t2NI)
AFS can be used similar to Algorithm 5
Step-condition can be used as Algorithm 6
for n = N − 1 to 0 do
xn ← Euler(xn+1, tn+1, tn, 1;ψ)

end for
return x0

16

D Additional Results

D.1 Inject Step-condition into the Model

In this section, we illustrate the detail of how to inject the step-condition into diffusion models. We
take the EDM [16] models trained on CIFAR10 dataset as an example. The modifications on models
trained on other datasets are similar.

Generally, we treat step-condition the same as the timestamps input to diffusion models. The step-
condition go through similar operations like timestamps to obtain the step-embedding which is then
added to the time-embedding in every UNetBlock. For CIFAR10 model, we use the DDPM++
backbone proposed in [51] where the positional embedding is applied to encode the input time. The
detailed modifications are shown in Algorithm 9-12. Note that for class-conditional models, we do
not add the class-embedding to the step-embedding which we find to be suboptimal.

Algorithm 9 Original network for CIFAR10

Class SongUNet(torch.nn.Module):
def __init__():
· · ·
self.map_noise = PositionalEmbed()
self.map_layer0 = Linear()
self.map_layer1 = Linear()

· · ·

def forward(x, noise):
emb = self.map_noise(noise)
if class_conditional:

add class embedding to emb
emb = silu(self.map_layer0(emb))
emb = silu(self.map_layer1(emb))

· · ·
for every UNetBlock:

x = UNetBlock(x, emb)
· · ·

Algorithm 10 Network with step-condition

Class SongUNet(torch.nn.Module):
def __init__():
· · ·
self.map_noise = PositionalEmbed()
self.map_layer0 = Linear()
self.map_layer1 = Linear()
self.map_step = PositionalEmbed()
self.step_layer0 = Linear()
self.step_layer1 = Linear()
· · ·

def forward(x, noise, step):
emb = self.map_noise(noise)
if class_conditional:

add class embedding to emb
emb = silu(self.map_layer0(emb))
emb = silu(self.map_layer1(emb))
emb_s = self.map_step(step)
emb_s = silu(self.step_layer0(emb_s))
emb_s = silu(self.step_layer1(emb_s))
· · ·
for every UNetBlock:

x = UNetBlock(x, emb, emb_s)
· · ·

Algorithm 11 Original UNetBlock for CIFAR10

Class UNetBlock(torch.nn.Module):
def __init__():
· · ·
self.affine = Linear()

· · ·

def forward(x, emb):
· · ·
params = self.affine(emb)

x = x + params
x = silu(self.norm(x))
· · ·

Algorithm 12 UNetBlock with step-condition

Class UNetBlock(torch.nn.Module):
def __init__():
· · ·
self.affine = Linear()
self.affine_s = Linear()
· · ·

def forward(x, emb, emb_s):
· · ·
params = self.affine(emb)
params_s = self.affine(emb_s)
x = x + params + params_s
x = silu(self.norm(x))
· · ·

17

Table 6: Experiment settings used in the main text. †: Generated teacher sampling trajectories. When
training SFD-v, it refers to the average generated trajectories used for each NFE. *: We force a batch
size of 128 by accumulating the gradient for 8 rounds.

Hyperparameter CIFAR10 ImageNet LSUN-Bedroom Stable Diffusion

Teacher solver DPM++(3M) DPM++(3M) DPM++(3M) DPM++(2M)
K 4 4 4 3
tmin 0.006 0.006 0.006 0.1
AFS True True True False
Generated traj.† 200K 200K 200K 100K
Learning rate 5e-5 1e-5 1e-5 5e-5
Optimizer Adam Adam Adam Adam
Loss metric L1 L1 L1 L1
Batch size 128 128 128 16*
Mixed-Precision True True True True
Number of GPUs 4 4 4 4

Table 7: FID results on CIFAR-10. The lines with gray background are the results reported in the
main text. †: Second-stage one-NFE distillation. For each row of the results of SFD-v, the number of
reported results corresponds to the the length of the list of sampling steps L in Algorithm 6.

Method
NFE

1 2 3 4 5 6 7 8

SFD (100K) 21.14 4.57 3.66 3.26 3.06 2.97 2.87 2.85
SFD (200K) 5.83† 4.53 3.58 3.24 3.06 - - -
SFD-v (800K) - 4.28 3.50 3.18 2.95 - - -
SFD-v (800K) 18.69 4.34 3.58 3.22 2.97 2.94 2.88 2.87
SFD-v (2000K) 11.35 4.16 3.44 3.11 2.95 - - -
SFD-v (2000K, conditional) 9.17 3.45 2.85 2.76 2.63 - - -

Table 8: Ablation study on the number of teacher sampling steps K on CIFAR10 dataset. We report
pairs of FID and fine-tuning time (A100 hours).

NFE
K

1 2 3 4 5 6

2 64.11/0.17 18.61/0.22 6.51/0.28 4.57/0.32 4.99/0.38 5.66/0.42
3 40.15/0.26 7.76/0.32 3.60/0.39 3.66/0.46 3.84/0.53 3.97/0.59
4 25.96/0.33 5.21/0.42 3.34/0.49 3.26/0.59 3.32/0.67 3.30/0.75
5 16.39/0.41 3.78/0.51 3.10/0.61 3.06/0.71 3.09/0.82 3.17/0.92

D.2 Additional Quantitative and Qualitative results

In Table 6, we include all the hyperparameters used in our main experiments (Section 4). In Table 7,
we report more quantitative results on CIFAR10 dataset [21]. By using “100K”, we mean a total of
100K sampling trajectories are generated by the teacher model, which equals around 781 training
iterations with a batch size of 128. The experiment settings here are basically in accordance with
Table 6. For each row of the results of SFD-v, the number of reported results corresponds to the the
length of the list of sampling steps L in Algorithm 6. For example, in the third row, the SFD-v is
trained to sample with 2, 3, 4 and 5 NFE (each NFE is trained for 200K sampling trajectories on
average), while in the fourth row it is trained to sample with 1 to 8 NFE (100 K for each NFE on
average). In the last row, we also include results of conditional image generation on CIFAR10 with
pre-trained model provided by EDM [16].

Following the final setting in Section 3.2, we provide an ablation study on the intermediate teacher
sampling steps K in Table 8. It is shown that K = 4 achieves a good trade-off between FID and
fine-tuning time.

18

During our experiments, we adhere to the time schedules utilized in previous studies (for instance,
a polynomial schedule with ρ = 7 for pixel-space pre-trained models from EDM [16] and a linear
schedule for latend-space models from LDM [41]), and find them effective. In Figure 9, we show an
ablation study on CIFAR10 dataset with 2-NFE SFD trained with different polynomial coefficients.

Table 9: Ablation study on time schedule on CIFAR10 dataset.
ρ Time schedule FID

5 [80.00, 15.11, 1.22, 0.006] 5.50
6 [80.00, 12.63, 0.86, 0.006] 4.61
7 [80.00, 10.93, 0.67, 0.006] 4.53
8 [80.00, 9.72, 0.55, 0.006] 4.54
9 [80.00, 8.82, 0.47, 0.006] 4.60
10 [80.00, 8.13, 0.42, 0.006] 4.81

For further evaluation on fidelity and diversity, we compute precision, recall, density and coverage
following standard practice [35] on CIFAR10 dataset. We use the same random seed for a fair
comparison. The results are shown in Table 10. In general, while achieving considerable acceleration
on image generation, our method does not sacrifice diversity.

Table 10: Evaluation on fidelity and diversity on CIFAR10 dataset.
Method NFE FID Precision Recall Density Coverage

SFD-v (ours) 2 4.28 0.77 0.70 1.06 0.93
3 3.50 0.78 0.71 1.10 0.94
4 3.18 0.79 0.71 1.13 0.94
5 2.95 0.79 0.71 1.15 0.95

DPM++(3M) [30] 11 3.93 0.76 0.71 1.04 0.94
15 2.64 0.76 0.73 1.03 0.95
19 2.54 0.77 0.72 1.04 0.96
23 2.65 0.77 0.72 1.05 0.96
50 2.01 0.78 0.72 1.11 0.96

DDIM [48] 50 2.91 0.79 0.71 1.09 0.95
Heun [16] 50 1.96 0.79 0.72 1.10 0.96

We include more qualitative results from Figure 11 to Figure 18.

19

Figure 11: Visualization of the effectiveness of SFD.

20

Figure 12: Qualitative results generated by Stable Diffusion v1.5 [41].

21

Figure 13: Uncurated qualitative results on CIFAR10. NFE=1.

Figure 14: Uncurated qualitative results on CIFAR10. NFE=3.

22

Figure 15: Uncurated qualitative results on ImageNet. NFE=1.

Figure 16: Uncurated qualitative results on ImageNet. NFE=3.

23

Figure 17: Uncurated qualitative results on LSUN-Bedroom. NFE=1.

Figure 18: Uncurated qualitative results on LSUN-Bedroom. NFE=3.

24

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The paper’s contributions are aligned with the abstract and introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Section 5.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

25

Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We include all the information needed in Section 4.1 and Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

26

Answer: [Yes]
Justification: The code with sufficient instructions is attached in the supplemental materials
and will be open sourced in the near future.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The details of training and test are fully disclosed in Section 4.1 and Table 6.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We do not report error bars following standard conventions in the related
literature. The standard deviation of the FID is small since it is averaged over 50K samples
and all the evaluations in our paper share the same random seed, following [16].
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

27

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: As mentioned in the main text, we conduct all the experiments using up to 4
NVIDIA A100 GPUs. The required training time is fully specified in Table 2 and 3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper complies with the NeurIPS Code of Ethics
in all aspects.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: See Section 5.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

28

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [No]
Justification: We didn’t describe safeguards in our paper.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We properly cite all the used datasets. Our code is based on the repository
open sourced by [63] which is licensed according to the Apache License 2.0.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

29

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We include the code in the supplementary materials.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

30

	Introduction
	Preliminary
	Diffusion Models
	Distillation-based Diffusion Sampling

	Method
	Smooth Modification of the Gradient Field
	Simple and Fast Distillation of Diffusion Models
	Towards Variable-NFE Distillation
	Distillation under Classifier-free Guidance

	Experiments
	Experiment Setting
	Main Results

	Conclusion
	Acknowledgement
	Related Works
	Estimation of Training Cost
	Training Costs on CIFAR10
	Training Costs on ImageNet

	Algorithms
	Additional Results
	Inject Step-condition into the Model
	Additional Quantitative and Qualitative results

