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ABSTRACT

We introduce Active Tuning, a novel paradigm for optimizing the internal dynam-
ics of recurrent neural networks (RNNs) on the fly. In contrast to the conventional
sequence-to-sequence mapping scheme, Active Tuning decouples the RNN’s re-
current neural activities from the input stream, using the unfolding temporal gra-
dient signal to tune the internal dynamics into the data stream. As a consequence,
the model output depends only on its internal hidden dynamics and the closed-
loop feedback of its own predictions; its hidden state is continuously adapted
by means of the temporal gradient resulting from backpropagating the discrep-
ancy between the signal observations and the model outputs through time. In this
way, Active Tuning infers the signal actively but indirectly based on the originally
learned temporal patterns, fitting the most plausible hidden state sequence into
the observations. We demonstrate the effectiveness of Active Tuning on several
time series prediction benchmarks, including multiple super-imposed sine waves,
a chaotic double pendulum, and spatiotemporal wave dynamics. Active Tuning
consistently improves the robustness, accuracy, and generalization abilities of all
evaluated models. Moreover, networks trained for signal prediction and denoising
can be successfully applied to a much larger range of noise conditions with the
help of Active Tuning. Thus, given a capable time series predictor, Active Tuning
enhances its online signal filtering, denoising, and reconstruction abilities without
the need for additional training.

1 INTRODUCTION

Recurrent neural networks (RNNs) are inherently only robust against noise to a limited extent and
they often generate unsuitable predictions when confronted with corrupted or missing data (cf., e.g.,
Otte et al., 2015). To tackle noise, an explicit noise-aware training procedure can be employed,
yielding denoising networks, which are targeted to handle particular noise types and levels. Recur-
rent oscillators, such as echo state networks (ESNs) (Jaeger, 2001; Koryakin et al., 2012; Otte et al.,
2016), when initialized with teacher forcing, however, are highly dependent on a clean and accurate
target signal. Given an overly noisy signal, the system is often not able to tune its neural activities
into the desired target dynamics at all. Here, we present a method that can be seen as an alternative
to regular teacher forcing and, moreover, as a general tool for more robustly tuning and thus syn-
chronizing the dynamics of a generative differentiable temporal forward model—such as a standard
RNN, ESN, or LSTM-like RNN (Hochreiter & Schmidhuber, 1997; Otte et al., 2014; Chung et al.,
2014; Otte et al., 2016)—into the observed data stream.

The proposed method, which we call Active Tuning, uses gradient back-propagation through time
(BPTT) (Werbos, 1990), where the back-propagated gradient signal is used to tune the hidden activ-
ities of a neural network instead of adapting its weights. The way we utilize the temporal gradient
signal is related to learning parametric biases (Sugita et al., 2011) and applying dynamic context
inference (Butz et al., 2019). With Active Tuning, two essential aspects apply: First, during signal
inference, the model is not driven by the observations directly, but indirectly via prediction error-
inducted temporal gradient information, which is used to infer the hidden state activation sequence
that best explains the observed signal. Second, the general stabilization ability of propagating signal
hypotheses through the network is exploited, effectively washing out activity components (such as
noise) that cannot be modeled with the learned temporal structures within the network. As a result,
the vulnerable internal dynamics are kept within a system-consistent activity milieu, effectively de-
coupling it from noise or other unknown distortions that are present in the defective actual signal.
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In this work we show that Active Tuning elicits enhanced signal filtering abilities, without the need
for explicitly training distinct models for exactly such purposes. Excitingly, this method allows for
instance the successful application of an entirely noise-unaware RNN (trained on clean, ideal data)
under highly noisy and unknown conditions.

In the following, we first detail the Active Tuning algorithm. We then evaluate the RNN on three time
series benchmarks—multiple superimposed sine waves, a chaotic pendulum, and spatiotemporal
wave dynamics. The results confirm that Active Tuning enhances noise robustness in all cases. The
mechanism mostly even beats the performance of networks that were explicitly trained to handle a
particular noise level. It can also cope with missing data when tuning the predictor’s state into the
observations. In conclusion, we recommend to employ Active Tuning in all time series prediction
cases, when the data is known to be noisy, corrupted, or to contain missing values and the generative
differentiable temporal forward model—typically a particular RNN architecture—knows about the
potential underlying system dynamics. The resulting data processing system will be able to handle
a larger range of noise and corrupted data, filtering the signal, generating more accurate predictions,
and thus identifying the underlying data patterns more accurately and reliably.

2 ACTIVE TUNING

Starting point for the application of Active Tuning is a trained temporal forward model. This may be,
as mentioned earlier, an RNN, but could also be another type of temporal model. The prerequisite
is, however, a differentiable model that implements dependencies over time, such that BPTT can be
used to reversely route gradient information through the computational forward chain. Without loss
of generality, we assume that the model of interest, whose forward function may be referred to as
fM , fulfills the following structure:

(σt,xt)
fM7−−−→ (σt+1, x̃t+1), (1)

where σt is the current latent hidden state of the model (e.g. the hidden outputs of LSTM units, their
cell states, or any other latent variable of interest) and xt is the current signal observation. Based on
this information fM generates a prediction for the next input x̃t+1 and updates its latent state σt+1

accordingly.

Following the conventional inference scheme, we feed a given sequence time step by time step into
the network and receive a one-time step ahead prediction after each particular step. Over time,
this effectively synchronizes the network with the observed signal. Once the network dynamics are
initialized, which is typically realized by teacher forcing, the network can generate prediction and
its dynamics can be driven further into the future in a closed-loop manner, whereby the network
feeds itself with its own predictions. To realize next time step- and closed-loop predictions, direct
contact with the signal is inevitable to drive the teacher forcing process. In contrast, Active Tuning
decouples the network from the direct influence of the signal. Instead, the model is permanently kept
in closed-loop mode, which initially prevents the network from generating meaningful predictions.
Over a certain time frame, Active Tuning keeps track of the recent signal history, the recent hidden
states of the model, as well as its recent predictions. We call this time frame (retrospective) tuning
horizon or tuning length (denoted with R).

The principle of Active Tuning can best be explained with the help of Figure 1 and Algorithm 1.
The latter gives a more formal perspective onto the principle. Note that for every invocation of the
procedure a previously unrolled forward chain (from the previous invocation or an initial unrolling)
is assumed. L refers to the prediction error of the entire unrolled prediction sequence and the respec-
tive observations, whereas Lt′ refers to the local prediction error just for a time step t′. With every
new perceived and potentially noise-affected signal observation xt, one or multiple tuning cycles
are performed. Every tuning cycle hereby consists of the following stages: First, from the currently
believed sequence of signal predictions (which is in turn based on a sequence of hidden states) and
the actual observed recent inputs, a prediction error is calculated and propagated back into the past
reversely along the unfolded forward computation sequence. The temporal gradient travels to the
very left of the tuning horizon and is finally projected onto the seed hidden state σt−R, which is then
adapted by applying the gradient signal in order to minimize the encountered prediction error. This
adaption can be done using any gradient-based optimizer. Note that in this paper, we exclusively
use Adam (Kingma & Ba, 2015), but other optimizers are possible as well. Second, after the adap-
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Figure 1: Illustration of Active Tuning principle over two consecutive world time steps. fM refers
to the forward pass of the base model. xt,xt−1 etc. are the recent potentially defective signal
observations, whereas x̃t, x̃t−1 etc. are the respective predictions (outputs of the model’s forward
function fM ). R denotes the length of the retrospective tuning horizon, that is, the number of time
steps the prediction error is projected into the past using BPTT. σt−R refers to the latent (hidden)
state of M at the beginning of the tuning horizon, which essentially seeds the unfolding prediction
sequence (black lines). σt−R is actively optimized based on the back-projected prediction error
gradient (red lines).

Algorithm 1: Active Tuning procedure

Input : Current observation xt

Output: Prediction x̃t (filtered output), predictive hidden state σt

x̃t,σt← fM (x̃t−1,σt−1) /* Generate current prediction based on previous forward chain */

for c← 1 to C do /* Perform multiple tuning cycles */

for t′← t to t−R do /* Back-propagate prediction error */

gt′ ← ∂L
∂σt′

= ∂Lt′

∂σt′
+

gt′+1 ∂σ
t′+1

∂σt′
if t′ < t

0 otherwise
end for

σt−R← update(σt−R,gt−R) /* Perform tuning step (e.g. with Adam update rule) */

for t′← t−R+ 1 to t do /* Roll out forward chain again based on adapted hidden state */
x̃t′ ,σt′ ← fM (x̃t′−1,σt′−1)

end for
end for

return x̃t, σt

tion of this seed state (and maybe the seed input as well) the prediction sequence is rolled out from
the past into the present again, effectively refining the output sequence towards a better explanation
of the recently observed signal. Each tuning cycle thus updates the current prediction x̃t and the
current hidden state σt from which a closed-loop future prediction can be rolled out, if desired. To
transition into the next world time step, one forward step has to be computed. The formerly leftmost
seed states can be discarded and the recorded history is shifted by one time step, making σt−R+1

the new seed state that will be tuned within the next world time step. From then on, the procedure is
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repeated, yielding the continuous adaptive tuning process. As a result, the model is predominantly
driven by its own imagination, that is, its own top down predictions. Meanwhile, the predictions
themselves are adapted by means of the temporal gradients based on the accumulated prediction
error, but not by the signal directly. In a nutshell, Active Tuning realizes a gradient-based mini-
optimization procedure on any of the model’s latent variables within one world time step. While
it needs to be acknowledged that this process draws on additional computational resources, in this
paper we investigate the resulting gain in signal processing robustness.

Intuitively speaking, Active Tuning tries to fit known temporal patterns, as memorized within the
forward model, to the concurrently observed data. Due to the strong pressure towards consistency
maintenance, which is naturally enforced by means of the temporal gradient information in combi-
nation with the repeatedly performed forward passes of the hidden state activities, the network will
generate adaptations and potential recombinations of patterns that it has learned during training. Oc-
currences that cannot be generated from the repertoire of neural dynamics will therefore not appear
(or only in significantly suppressed form) in the model’s output. As a consequence, there is a much
smaller need to strive for noise robustness during training. Our results below indeed confirm that
the model may be trained on clean, idealized target signals. However, imprinting a slight denois-
ing tendency during training proves to be useful when facing more noisy data. Enhanced with our
Active Tuning scheme, the model will be able to robustly produce high-quality outputs even under
extremely adverse conditions—as long as (some of) the assumed target signals are actually present.
Our scheme is thus a tool that can be highly useful in various application scenarios for signal recon-
struction and flexible denoising. Nevertheless, it should be mentioned that with Active Tuning the
computational overhead for inference scales with the number of tuning cycles and the tuning length.

3 EXPERIMENTS

In order to investigate the abilities of Active Tuning we studied its behavior at considering three
different types of time series data, namely, one-dimensional linear dynamics, two-dimensional non-
linear dynamics, and distributed spatiotemporal dynamics. For all three problem domains we used
a comparable setup except for the particular recurrent neural network architectures applied. We
trained the networks as one time step ahead predictors whose task is to predict the next input given
both the current input and the history of inputs aggregated in the latent hidden state of the models.
The target sequences were generated directly from the clean input sequences by realizing a shift of
one time step. Moreover, we trained networks under six different denoising conditions (normally
distributed) per experiment, where we fed a potentially noisy signal into the network and provide the
true signal (one time step ahead) as the target value (Lu et al., 2013; Otte et al., 2015; Goodfellow
et al., 2016). These conditions are determined by their relative noise ratios: 0.0 (no noise), 0.05,
0.1, 0.2, 0.5, and 1.0, where the ratios depend on the respective base signal statistics. For instance,
a noise ratio of 0.1 means that the noise added to the input has a standard deviation of 0.1 times
the standard deviation of the base signal. As a result we obtained predictive denoising experts for
each of these conditions. All models were trained with Adam (Kingma & Ba, 2015) using its default
parameters (learning rate η = 0.001, β1 = 0.9 and β2 = 0.999) over 100 (first two experiments) or
200 (third experiment) epochs, respectively.

3.1 MULTI-SUPERIMPOSED OSCILLATOR

The first experiment is a variant of the multiple superimposed oscillator (MSO) benchmark (Schmid-
huber et al., 2007; Koryakin et al., 2012; Otte et al., 2016). Multiple sine waves with different
frequencies, phase-shifts, and amplitudes are superimposed into one signal (cf. Eq. 2 in the Sec-
tion A.1), where n gives the number of superimposed waves, fi the frequency, ai the amplitude, and
ϕi the phase-shift of each particular wave, respectively. Typically, the task of this benchmark is to
predict the further progression of the signal given some initial data points (e.g. the first 100 time
steps) of the sequence. The resulting dynamics are comparably simple as they can, in principle, be
learned with a linear model. It is, however, surprisingly difficult for BPTT-based models, namely
LSTM-like RNNs, to precisely continue a given sequence for more than a few time steps (Otte
et al., 2019). For this experiment we considered the MSO5 dynamics with the default frequencies
f1 = 0.2, f2 = 0.311, f3 = 0.42, f4 = 0.51, and f5 = 0.63. An illustration of an exemplary the
ground truth signal can be found in Figure 2.
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For training, we generated 10 000 examples with 400 time steps each, using random amplitudes ai ∼
[0, 1] and random phase-shifts ϕi ∼ [0, 2π]. For testing, another 1 000 examples were generated. As
base model, we used an LSTM network with one input, 32 hidden units, one linear output neuron,
and no biases, resulting in 4 256 parameters. Additionally, to contrast our results with another state-
of-the-art sequence-to-sequence model, temporal convolution networks (TCNs) (Kalchbrenner et al.,
2016) were trained. Preliminary experiments showed that seven layers with 1, 8, 12, 16, 12, 8, and
1 feature maps, a kernel size of 3, and standard temporal dilation rate—yielding a temporal horizon
of 64 time steps—tended to generate the best performance with a comparable number of parameters
(i.e. 4 682). Code was taken from Bai et al. (2018).

3.2 CHAOTIC PENDULUM

The second experiment is based on the simulation of a chaotic double pendulum. As illustrated in
Figure 5 (cf. Section A.2), the double pendulum consists of two joints whose angles are specified
by θ1 and θ2 and two rods of length l1 and l2. Besides the length of the rods, the masses m1

and m2 affect the behavior of the pendulum. The pendulum’s end-effector (where m2 is attached)
generates smooth, but highly non-linear trajectories. More precisely, it exhibits chaotic behavior,
meaning that already slight changes of the current system state can quickly cause major changes of
the pendulum’s state over time (Korsch et al., 2008; Pathak et al., 2018). It is thus typically difficult
to precisely predict the dynamics of such a system for more than a few time steps into the future,
making it a challenging benchmark problem for our purposes.

In the literature, the double pendulum’s dynamics are typically described using the equations of
motion, given by Eq. 3 and Eq. 4 (cf. ), respectively, which are derived from the Lagrangian of
the system and the Euler-Lagrange equations; see Korsch et al. (2008) for details. For simulating
the double pendulum, we applied the fourth-order Runge-Kutta (RK4) (Press, 2007) method to
numerically integrate the equations of motion. All four parameters l1, l2, m1, and m2 were set to
1.0. A temporal step size of h = 0.01 was chosen for numerical integration. The initial state of
the pendulum is described by its two angles, which were selected randomly for each sample to be
within θ1 ∼ [90◦, 270◦] and θ2 ∼ [θ1 ± 30◦] to ensure sufficient energy in the system. One out of
ten sequences was initiated with zero angle momenta, that is θ̇1, θ̇2 = 0.0. The number of train and
test samples, as well as the sequence lengths were chosen analogously to experiment one. As base
model we used an LSTM network with two inputs, 32 hidden units, two linear output neurons, and
again no biases. Again, we trained TCNs on this data by changing the number of input and output
feature maps to two. Otherwise, the settings were identical to the ones used in experiment one.

3.3 SPATIOTEMPORAL WAVE DYNAMICS

In the third experiment we considered a more complex spatiotemporal wave propagation process,
based the wave dynamics formalized by Eq. 5 (cf. Section A.3). Here, x and y correspond to a
spatial position in the simulated field, while t denotes the time step and c = 3.0 the propagation
speed factor of the waves. The temporal and spatial approximation step sizes were set to ht = 0.1
and hx = hy = 1.0, respectively. No explicit boundary condition was applied, resulting in the
waves being reflected at the borders and the overall energy staying constant over time.

We generated sequences for a regular grid of 16 × 16 pixels. See Figure 4 or Figure 6 for illustra-
tions of the two-dimensional wave. In contrast to the previous two experiments, 200 samples with
a sequence length of 80 were generated for training, whereas 20 samples over 400 time steps were
used for evaluation. As base network we used a distributed graph-RNN called DISTANA (Karl-
bauer et al., 2020), which is essentially a mesh of the same RNN module (an LSTM, which consists
here of four units only), which is distributed over the spatial dimensions of the problem space (here
a two-dimensional grid), where neighboring modules are laterally connected. We chose this wave
benchmark, and this recurrent graph network in particular, to demonstrate the effectiveness of Active
Tuning in a setup of higher complexity. Moreover, we again trained TCNs, here with three layers,
having 1, 8, and 1 feature maps, respectively, using 3 × 3 spatial kernel sizes and standard dilation
rates for the temporal dimension. Noteworthy, while the applied DISTANA model counts 200 pa-
rameters, the applied TCN has an order of magnitude more parameters (2 306). Less parameters
yielded a significant drop in performance.

5



Under review as a conference paper at ICLR 2021

4 RESULTS AND DISCUSSION

The quantitative evaluations are based on the root mean square error (RMSE) between the network
outputs and the ground truth. All reported values are averages over ten independently randomly
initialized and trained models. In order to elaborate on the applicability of each denoising expert on
unseen noise conditions, we evaluated all models using the noise ratios 0.0, 0.1, 0.2, 0.5, and 1.0,
resulting in 25 baseline scores for each experiment. These baselines were compared on all noise ra-
tios against eight Active Tuning setups, which were based on models trained without any noise (0.0)
or with only a small portion of input noise (0.05). The individual parameters of Active Tuning used
to produce the results are reported in Section A.5 of the appendix. Note that in all experiments, the
latent hidden outputs of the LSTM units (not the cell states) were chosen as optimization target for
the Active Tuning algorithm. Furthermore, these hidden states were initialized normally distributed
with standard deviation 0.1 in all cases, whereas the cell state were initialized with zero.

4.1 MSO RESULTS

The results of the MSO experiments are summarized in Table 1. Active Tuning improves the results
for the weakest model (0.0) in all cases (column 3 vs. 7), partially almost by an order of magnitude.
Noteworthy, for the inference noise ratio 0.1, driven with Active Tuning the noise-unaware model
becomes better than the actual expert. Recall that the model was no retrained, only the paradigm
how the model is applied was changed. On the other hand, there is no advantage for Active Tuning
when the base network encountered minimal noise (0.05) during training in this experiment. For
comparison, a noise-uninformed TCN (0.0) performs better than the respective RNN (cf. column
2 vs. column 3 in Table 1). Active Tuning reverses this disparity. On this benchmark, however,
denoising expert TCNs clearly outperform the expert RNNs (cf. Table 6 in Section A.4).

Table 1: MSO noise suppression results (RMSE)

Inference
(signal noise)

Training (signal noise)

TCN Regular inference RNN Active Tuning

0.0 0.0 0.1 0.2 0.5 1.0 0.0 0.05

0.0 0.0411 0.0039 0.0498 0.0781 0.1526 0.2383 — —
0.1 0.1341 0.5880 0.0966 0.0993 0.1579 0.2397 0.0912 0.0947
0.2 0.2580 1.0336 0.1734 0.1454 0.1728 0.2446 0.1682 0.1550
0.5 0.6189 1.8713 0.4265 0.3190 0.2538 0.2751 0.3583 0.3611
1.0 1.1676 2.6241 0.9502 0.6437 0.4396 0.3639 0.5699 0.6101

Table 2: MSO missing data results (RMSE)
Missing data probability

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Regular inference 0.1206 1.0357 2.2410 2.9601 3.3488 3.7070 4.0039 4.0065 3.4861
Active Tuning 0.0321 0.0381 0.0581 0.0826 0.1462 0.3874 0.6209 1.0757 1.4064
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Figure 2: Visual comparison of regular inference (orange) vs. Active Tuning (light blue) on an MSO
example with strong noise (noise ratio 1.0) using a noise-unaware LSTM.
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To get an impression of the actual improvement of the output quality, consider Figure 2. The noise-
unaware model (0.0) produces poor predictions when confronted with strong signal noise (1.0).
When driven with Active Tuning instead of regular inference (teacher forcing), the output of the
same model becomes smooth and approximates the ground truth reasonably well. Active Tuning
thus helps to catch most of the trend information while mostly ignoring noise.

As an additional evaluation, Table 2 demonstrates the ability of Active Tuning to cope with missing
data. The results are based on the noise-unaware model. While tuning into the signal, particular
observation are missing (dropped out) with a certain probability ranging from 0.1 to 0.9. In case of
a missing observation, the prediction of the model is used instead. Already with a dropout chance
of 20% the RNN struggles to tune its hidden neural states into the signal, thus generating an error
larger than 1. In contrast, exactly the same RNN model remains significantly more stable when
driven with Active Tuning. Even with a dropout chance of 50 – 60% the RNN still produces errors
clearly below the reference error of approximately 0.9, which is the RMSE error generated when
always predicting zero. Note that with regular inference, the error decreases slightly with the highest
dropout rate. This is the case because here the network receives so few inputs such that it starts to
produce zero outputs for some sequences.

It seems that during regular inference the network dynamics are overly driven by the input data.
When parts of the input is missing, the internal dynamics do not synchronize with the true dynamics
because multiple consecutive time steps of consistent signal observations appear necessary. Active
Tuning enables the network to reflect on the recent past including its own prediction history. While
it attempts to maintain consistency with the learned dynamics, it infers a hidden state sequence that
best explains the (even sparsely) encountered observations and thus effectively fills the input gaps
retrospectively with predictions that seem maximally plausible.

4.2 PENDULUM RESULTS

For the pendulum experiment, the potential of Active Tuning becomes even more evident. The
results presented in Table 3 indicate that for all noise ratios Active Tuning outperforms the respective
expert RNNs, particularly when applied to the model that was trained on small noise (0.05). With
increasing noise level, the problem becomes progressively impossible to learn. For example, the
1.0-expert-model does not seem to provide any reasonable function at all, indicated by the worse
RMSE score compared to other models (1.0 inference noise row). In contrast, Active Tuning can
still handle these extremely unfavorable conditions surprisingly well. Figure 3 shows an exemplary
case. The unknown ground truth is plotted against the noisy observations (shown in the left image).
The center image shows the prediction of the reference LSTM (trained with 0.05 noise) when regular
inference is applied. It is clearly difficult to recognize a coherent trajectory reflecting the dynamics
of the double pendulum. With Active Tuning, on the other hand, the same network produces a
mostly clean prediction that is relatively close to the ground truth sequence.

Analogously to MSO, we evaluated the robustness against missing data on the pendulum. The
results are reported in Table 4. In contrast to the previous scenario (cf. Table 2) it is noticeable
that the base model is intrinsically more stable in this experiment. Still, Active Tuning yields a
significant improvement in all cases. For the mid-range dropout rates, it decreases the prediction
error by approximately an order of magnitude. Even with a dropout rate of 80 % still somewhat
accurate predictions are generated. Please note again that the comparison here uses exactly the same
RNN (the same structure as well as the same weights) for both regular inference and Active Tuning.

Table 3: Pendulum noise suppression results (RMSE)

Inference
(signal noise)

Training (signal noise)

TCN Regular inference RNN Active Tuning

0.0 0.0 0.1 0.2 0.5 1.0 0.0 0.05

0.0 0.0135 0.0091 0.1475 0.2471 0.4459 0.5700 — —
0.1 0.1155 0.2097 0.1537 0.2489 0.4463 0.5702 0.0880 0.0865
0.2 0.2272 0.4021 0.1711 0.2545 0.4474 0.5710 0.1423 0.1284
0.5 0.5572 0.8458 0.2702 0.2945 0.4563 0.5764 0.2954 0.2460
1.0 1.0959 1.2753 0.5308 0.4444 0.4918 0.5954 0.4868 0.4030

7



Under review as a conference paper at ICLR 2021

Table 4: Pendulum missing data results (RMSE)
Missing data probability

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Regular inference 0.0158 0.0377 0.1493 0.3286 0.6100 0.9370 1.2831 1.6068 1.8457
Active Tuning 0.0111 0.0148 0.0190 0.0278 0.0518 0.0977 0.1698 0.3206 0.7932
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Figure 3: Exemplary comparison of regular inference (orange) vs. Active Tuning (light blue) on the
double pendulum’s end-effector trajectory; the black dot denotes the start position. Here, the second
strongest noise condition (0.5) is shown, using a 0.05-noise LSTM for inference and Active Tuning.

4.3 WAVE RESULTS

The results of the wave experiment (Table 5) consistently support the findings from the pendulum
experiments. When driven with Active Tuning, the considered models produce better results than
the explicitly trained denoising experts on all noise levels. Figure 4 shows in accordance with the
previous experiments that the noisy signal observations (1.0) is filtered effectively and latency-free
exclusively when using Active Tuning, yielding a smooth signal prediction across the entire spa-
tiotemporal sequence. While the two-dimensional output of the network operating in conventional
inference mode is hardly recognizable as a wave, the network output of the same model combined
with Active Tuning clearly reveals the two-dimensional wave structure with hardly perceivable de-
viations from the ground truth. More qualitative results can be found in Figure 6 (Section A.4).

We furthermore compared performance with a common, non-recurrent, sequence-to-sequence learn-
ing architecture. Here we considered a standard TCN architecture (Bai et al., 2018), which we also
trained to focus on all considered denoising levels. The full performance table is shown in Table 8
(Section A.4). The first result column in Table 5 shows that even the best TCN performance is al-
ways outperformed by Active Tuning. Importantly, DISTANA with Active Tuning outperforms the
best TCN results on all noise levels even when the DISTANA model was not trained for denoising.

We also performed experiments with other noise distributions (e.g. salt-and-pepper noise). Some-
what surprisingly this manipulation affected the quality of the output only marginally. Thus, in
contrast to deep convolutional networks (Geirhos et al., 2018), the denoising RNNs applied here did
not overfit to the noise type.

Table 5: Wave noise suppression results (RMSE)

Inference
(signal noise)

Training (signal noise)

TCN
(best)

Regular inference RNN Active Tuning

0.0 0.1 0.2 0.5 1.0 0.0 0.05

0.0 0.0051 0.0007 0.0021 0.0042 0.0096 0.0175 — —
0.1 0.0138 0.0268 0.0073 0.0064 0.0100 0.0176 0.0073 0.0062
0.2 0.0252 0.0533 0.0142 0.0106 0.0113 0.0178 0.0097 0.0087
0.5 0.0581 0.1295 0.0362 0.0262 0.0180 0.0197 0.0173 0.0150
1.0 0.1133 0.2368 0.0784 0.2467 0.0345 0.0261 0.0283 0.0213
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Figure 4: Exemplary comparison of regular inference (orange) vs. Active Tuning (light blue) on
wave examples with strong noise (1.0) using DISTANA trained without noise. The four top rows
visualize ground truth, noisy observations (network input), network output without, and network
output with Active Tuning. The plot below shows the wave activities at the center position.

5 CONCLUSION

In this work we augmented RNN architectures with Active Tuning, which decouples the internal
dynamics of an RNN from the data stream. Instead of relying on the input signal to set the internal
network states, Active Tuning retrospectively projects the dynamic loss signal onto its internal latent
states, effectively tuning them. We have shown that RNNs driven with Active Tuning can reliably
denoise various types of time series dynamics, mostly yielding higher accuracy than specifically
trained denoising expert RNNs. In all cases, however, the augmentation with Active Tuning has
beaten the reference RNN with teacher forcing. Moreover, we have shown that Active Tuning in-
creases the tolerance against missing data by a large extent allowing the models to generate accurate
prediction even if more than 50 % of the input are missing. Comparisons with TCN have shown
that Active Tuning yields superior performance. In the wave experiments, TCNs are consistently
outperformed by the similarly trained recurrent graph neural network DISTANA (Karlbauer et al.,
2020). When adding Active Tuning, even the noise uniformed DISTANA version outperformed the
best TCN networks. Note that even though we used Active Tuning exclusively for RNNs in this
paper, it is in general not restricted to such models. We are particularly interested in adapting the
principle to other sequence learning models such as TCNs.

While the presented results are all very encouraging, it should be noted that in our experience Active
Tuning is slightly slower to tune the network into a clean signal. Seeing that Active Tuning can in
principle be mixed with traditional teacher forcing, we are currently exploring switching teacher
forcing on and off in an adaptive manner depending on the present signal conditions.

Another concern lies in the applied tuning length and number of tuning cycles. In the presented
experiments, we used up to 16 time steps with partially up to 30 tuning cycles. Additional ongoing
research aims at reducing the resulting computational overhead. Ideally, Active Tuning will work
reliably with a single update cycle over a tuning length of a very few time steps, which would allow to
perform Active Tuning along with the regular forward pass of the model in a fused computation step.
Additionally, we aim at applying Active Tuning to real-world denoising and forecasting challenges,
including speech recognition and weather forecasting.
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A APPENDIX

A.1 MSO EXPERIMENT

The MSO experiment were based on the following equation:

MSOn(t) =

n∑
i=1

ai sin(fit+ ϕi) (2)

A.2 CHAOTIC PENDULUM EXPERIMENT

x

y

θ1

θ2

l1

l2
m1

m2

Figure 5: The double pendulum used for data generation of the second experiment and a resulting
nonlinear trajectory of the pendulum’s end-effector.

The pendulum experiments were based on the following equations:

θ̈1 =
µg1 sin(θ2) cos(θ2 − θ1) + µθ̇21 sin(θ2 − θ1) cos(θ2 − θ1)− g1 sin(θ1) +

µ

λ
θ̇22 sin(θ2 − θ1)

1− µ cos2(θ2 − θ1)
(3)

θ̈2 =
g2 sin(θ1) cos(θ2 − θ1)− µθ̇22 sin(θ2 − θ1) cos(θ2 − θ1)− g2 sin(θ2)− λθ̇21 sin(θ2 − θ1)

1− µ cos2(θ2 − θ1)
, (4)

where

λ =
l1
l2
, g1 =

g

l1
, g2 =

g

l2
, µ =

m2

m1 +m2
,

and g = 9.81 being the gravitational constant.
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A.3 WAVE DYNAMICS EXPERIMENT

The wave experiments were based on the following equation:

∂2u

∂t2
= c2

(
∂2u

∂x2
+
∂2u

∂y2

)
. (5)

This equation was solved numerically using the method of second order central difference, yielding

u(x, y, t+ ht) ≈ c2h2
t

(
∂2u

∂x2
+
∂2u

∂y2

)
+ 2u(x, y, t)− u(x, y, t− ht) (6)

with, after solving ∂2u/∂x2 and analogously ∂2u/∂y2 via the same method,

∂2u

∂x2
=
u(x+ hx, y, t)− 2u(x, y, t) + u(x− hx, y, t)

h2x
, (7)

∂2u

∂y2
=
u(x, y + hy, t)− 2u(x, y, t) + u(x, y − hy, t)

h2y
. (8)

A.4 FURTHER RESULTS

The performance of the temporal convolution networks (TCNs) at predicting and denoising the
MSO, pendulum and spatiotemporal wave dynamics are reported in the following tables (Table 6,
Table 7 and Table 8). An additional qualitative evaluation of the wave benchmark on a larger grid
shown in Figure 6.

Table 6: TCN MSO noise suppression results (RMSE)

Inference
(signal noise)

Training (signal noise)

0.0 0.1 0.2 0.5 1.0

0.0 0.0411 0.0352 0.0633 0.0968 0.1255
0.1 0.1341 0.0936 0.0789 0.1016 0.1289
0.2 0.2580 0.1764 0.1206 0.1151 0.1386
0.5 0.6189 0.4367 0.3239 0.1898 0.1921
1.0 1.1676 0.8744 0.7431 0.3926 0.3140

Table 7: TCN pendulum noise suppression results (RMSE)

Inference
(signal noise)

Training (signal noise)

0.0 0.1 0.2 0.5 1.0

0.0 0.0135 0.0367 0.0637 0.1369 0.2281
0.1 0.1155 0.0759 0.0817 0.1416 0.2298
0.2 0.2272 0.1407 0.1214 0.1543 0.2339
0.5 0.5572 0.3733 0.2952 0.2278 0.2624
1.0 1.0959 0.8193 0.6748 0.4144 0.3491

Table 8: TCN wave noise suppression results (RMSE)

Inference
(signal noise)

Training (signal noise)

0.0 0.1 0.2 0.5 1.0

0.0 0.0057 0.0051 0.0064 0.0109 0.0173
0.1 0.0168 0.0143 0.0138 0.0158 0.0207
0.2 0.0321 0.0271 0.0252 0.0253 0.0284
0.5 0.0790 0.0666 0.0611 0.0581 0.0587
1.0 0.1551 0.1320 0.1216 0.1146 0.1133
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Figure 6: Four consecutive snapshots (from left to right, with distance of 50 time steps ) of the
wave propagating through a large 40×40 grid comparing regular inference and Active Tuning on a
noise-unaware network (0.0).

A.5 ACTIVE TUNING PARAMETERS

The tables below report all parameters of Active Tuning including the parameters for state adaptation
with Adam for all experiments.

Table 9: Active Tuning parameters – MSO noise suppression experiment
Training noise Signal noise Tuning length (R) Tuning cycles (C) η β1 β2

0.0 0.1 8 10 0.005 0.9 0.99
0.0 0.2 8 10 0.005 0.9 0.99
0.0 0.5 14 10 0.006 0.9 0.99
0.0 1.0 16 10 0.004 0.5 0.99

0.05 0.1 8 10 0.008 0.9 0.99
0.05 0.2 8 12 0.005 0.5 0.999
0.05 0.5 14 10 0.007 0.9 0.99
0.05 1.0 16 10 0.006 0.5 0.9
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Table 10: Active Tuning parameters – MSO missing data experiment
Missing data probability Tuning length (R) Tuning cycles (C) η β1 β2

0.1 – 0.5 5 20 0.005 0.9 0.99
0.6 – 0.9 10 10 0.005 0.9 0.99

Table 11: Active Tuning parameters – pendulum noise suppression experiment
Training noise Signal noise Tuning length (R) Tuning cycles (C) η β1 β2

0.0 0.1 8 10 0.005 0.9 0.99
0.0 0.2 8 10 0.005 0.9 0.99
0.0 0.5 8 10 0.004 0.5 0.99
0.0 1.0 12 10 0.004 0.5 0.9

0.05 0.1 8 10 0.008 0.9 0.99
0.05 0.2 8 10 0.005 0.5 0.99
0.05 0.5 8 10 0.004 0.5 0.99
0.05 1.0 12 10 0.005 0.5 0.9

Table 12: Active Tuning parameters – pendulum missing data experiment
Missing data probability Tuning length (R) Tuning cycles (C) η β1 β2

0.1 – 0.6 5 20 0.005 0.9 0.99
0.7 – 0.9 8 20 0.005 0.9 0.99

Table 13: Active Tuning parameters – wave noise suppression experiment
Training noise Signal noise Tuning length (R) Tuning cycles (C) η β1 β2

0.0 0.1 7 10 0.01 0.9 0.999
0.0 0.2 5 17 6× 10−5 0.0 0.999
0.0 0.5 4 20 8× 10−5 0.0 0.999
0.0 1.0 7 30 4× 10−5 0.0 0.999

0.05 0.1 8 12 0.012 0.9 0.999
0.05 0.2 5 17 1× 10−4 0.0 0.999
0.05 0.5 4 20 1× 10−4 0.0 0.999
0.05 1.0 7 30 5× 10−5 0.0 0.999
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