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Abstract

We study online control of time-varying linear systems with unknown dynamics in
the nonstochastic control model. At a high level, we demonstrate that this setting
is qualitatively harder than that of either unknown time-invariant or known time-
varying dynamics, and complement our negative results with algorithmic upper
bounds in regimes where sublinear regret is possible. More specifically, we study
regret bounds with respect to common classes of policies: Disturbance Action
(SLS), Disturbance Response (Youla), and linear feedback policies. While these
three classes are essentially equivalent for LTI systems, we demonstrate that these
equivalences break down for time-varying systems.
We prove a lower bound that no algorithm can obtain sublinear regret with respect
to the first two classes unless a certain measure of system variability also scales
sublinearly in the horizon. Furthermore, we show that offline planning over the
state linear feedback policies is NP-hard, suggesting hardness of the online learning
problem.
On the positive side, we give an efficient algorithm that attains a sublinear regret
bound against the class of Disturbance Response policies up to the aforementioned
system variability term. In fact, our algorithm enjoys sublinear adaptive regret
bounds, which is a strictly stronger metric than standard regret and is more ap-
propriate for time-varying systems. We sketch extensions to Disturbance Action
policies and partial observation, and propose an inefficient algorithm for regret
against linear state feedback policies.

1 Introduction

The control of linear time-invariant (LTI) dynamical systems is well-studied and understood. This
includes classical methods from optimal control such as LQR and LQG, as well as robust H∞
control. Recent advances study regret minimization and statistical complexity for online linear
control, in both stochastic and adversarial perturbation models. Despite this progress, rigorous
mathematical guarantees for nonlinear control remain elusive: nonlinear control is both statistically
and computationally intractable in general.

In the face of these limitations, recent research has begun to study the rich continuum of settings
which lie between LTI systems and generic nonlinear ones. The hope is to provide efficient and
robust algorithms to solve the most general control problems that are tractable, and at the same time,
to characterize precisely at which degree of nonlinearity no further progress can be made.
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This paper studies the control of linear, time-varying (LTV) dynamical systems as one such point
along this continuum. This is because the first-order Taylor approximation to the dynamics of any
smooth nonlinear system about a given trajectory is an LTV system. These approximations are widely
popular because they allow for efficient planning, as demonstrated by the success of iLQR and
iLQG methods for nonlinear receding horizon control. We study online control of discrete-time LTV
systems, with dynamics and time-varying costs

xt+1 = Atxt +Btut + wt, ct(xt, ut) : (x, u)→ R. (1.1)

Above, xt is the state of the system, ut the control input, wt the disturbances, and At, Bt the system
matrices. Our results extend naturally to partial-state observation, where the controller observes linear
projections of the state yt = Ctxt. We focus on the challenges introduced when the system matrices
At, Bt and perturbations wt are not known to the learner in advance, and can only be determined by
live interaction with the changing systems.

In this setting, we find that the overall change in system dynamics across time characterizes the
difficulty of controlling the unknown LTV system. We define a measure, called system variability,
which quantifies this. We show both statistical and computational lower bounds as well as algorithmic
upper bounds in terms of the system variabilility. Surprisingly, system variability does not impede
the complexity of control when the dynamics are known [16].

1.1 Contributions

We consider the recently popularized nonstochastic model of online control, and study regret bounds
with respect to common classes of policies: Disturbance Action (DAC/SLS [44]), Disturbance
Response (DRC/Youla [46]), and linear feedback policies. Planning over the third class of feedback
policies in LTI systems admits efficient convex relaxations via the the first two parametrizations, DAC
and DRC. This insight has been the cornerstone of both robust [49, 44] and online [3, 39] control.

Separation of parametrizations. For linear time-varying systems, however, we find that equiva-
lences between linear feedback, DAC and DRC fail to hold: we show that there are cases where any
one of the three parametrizations exhibits strictly better control performance than the other two.

Regret against convex parametrizations. Our first set of results pertain to DAC and DRC
parametrizations, which are convex and admit efficient optimization. We demonstrate that no
algorithm can obtain sublinear regret with respect to these classes when faced with unknown, LTV
dynamics unless a certain measure of system variability also scales sublinearly in the horizon. This
is true even under full observation, controllable dynamics, and fixed control cost. This finding is in
direct contrast to recent work which shows sublinear regret is attainable over LTV system dynamics
if they are known [16].

We give an efficient algorithm that attains sublinear regret against these policy classes up to an
additive penalty for the aforementioned system variability term found in our lower bound. When the
system variability is sufficiently small, our algorithm recovers state-of-the-art results for unknown
LTI system dynamics up to logarithmic factors.

In fact, our algorithm enjoys sublinear adaptive regret [21], a strictly stronger metric than standard
regret which is more appropriate for time-varying systems. We also show that the stronger notion of
adaptivity called strongly adaptive regret [11] is out of reach in the partial information setting.

Regret against state feedback. Finally, we consider the class of state feedback policies, which are
linear feedback with memory length one. We show that full-information optimization over state
feedback policies is computationally hard. This suggests that obtaining sublinear regret relative to
these policies may be computationally prohibitive, though does not entirely rule out the possibility of
improper learning. However, improper learning cannot be done via the DRC or DAC relaxations in
light of our policy class separation results. Finally, we include an inefficient algorithm which attains
sublinear (albeit nonparametric-rate) regret against state feedback control policies.

Paper Structure

Discussion of relevant literature and relation to our work can be found in Section 1.2. In Section 2,
we formally introduce the setting of LTV nonstochastic control, the policy classes we study and
our key result regarding their non-equivalence in the LTV setting (Theorem 2.1). Motivated by this
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non-equivalence, the remainder of the paper is split into the study of convex policies (Section 3) and
of state feedback policies (Section 4). In Section 3, we show that regret against the DAC and DRC
classes cannot be sublinear unless the metric system variability (Definition 3.1) itself is sublinear
(Theorem 3.1), and also propose Algorithm 2 whose adaptive regret scales at the rate of our lower
bound plus a T 2/3 term (Theorem 3.4). On the other hand, in Section 4 we show sublinear regret
against state feedback policies is technically possible (Theorem 4.1) with a computationally inefficient
algorithm, but also provide a computational lower bound (Theorem 4.2) for planning which reveals
significant difficulties imposed by the LTV dynamics in this scenario as well. Finally, in Section 5 we
pose several future directions, concerning both questions in LTV control, as well as the extension to
nonlinear control.

1.2 Related Work

Our study of LTV systems is motivated by the widespread practical popularity of iterative linearization
for nonlinear receding horizon control; e.g., the iLQR [40], iLC [29], and iLQG [41] algorithms.
Recent research has further demonstrated that near-optimal solutions to LTV approximations of
dynamics confer stability guarantees onto the original nonlinear system of interest [45].

Low-Regret Control: We study algorithms which enjoy sublinear regret for online control of LTV
systems; that is, whose performance tracks a given benchmark of policies up to a term which is
vanishing relative to the problem horizon. [1] initiated the study of online control under the regret
benchmark by introducing the online LQR problem: where a learner is faced with an unknown LTI
system, fixed costs and i.i.d. Gaussian disturbances, and must attain performance relative to the
LQR-optimal policy. Bounds for this setting were later improved and refined in [12, 26, 10, 38],
and extended to partial-state observation in [25, 24]. Our work instead adopts the nonstochastic
control setting [3], where the adversarially chosen (i.e. non-Gaussian) noise is considered to model
the drift terms that arise in linearizations of nonlinear terms, and where costs may vary with time. [3]
consider known system dynamics, later extended to unknown systems under both full-state [20] and
partial-state observation [39, 37]. The study of nonstochastic control of known LTV dynamics was
taken up in [16], with parallel work by [32] considering known LTV dynamics under stochastic noise.

Unknown LTV dynamics: Our work is the first to consider online (low-regret) control of unknown
LTV systems in any model. There is, however, a rich body of classical work on adaptive control of
LTV systems [28, 42]. These guarantees focus more heavily on error sensitivity and stability; they
only permit dynamical recovery up to error that scales linearly in system noise, and thus guarantee
only (vacuous) linear-in-horizon regret. More recent work has studied identification (but not online
control) of an important LTV class called switching systems [31, 35].

Online Convex Optimization: We make extensive use of techniques from the field of online convex
optimization [9, 18]. Most relevant to our work is the literature on adapting to changing environments
in online learning, which starts from the works of [22, 6]. The notion of adaptive regret was introduced
in [21] and significantly studied since as a metric for adaptive learning in OCO [2, 47]. [11] proposed
to strengthen adaptive regret and the stronger metric has been shown to imply results over dynamic
regret [48].

Recent nonlinear control literature: Recent research has also studied provably guarantees in
various complementary (but incomparable) models: planning regret in nonlinear control [4], adaptive
nonlinear control under linearly-parameterized uncertainty [5], online model-based control with
access to non-convex planning oracles [23], and control with nonlinear observation models [27, 13].

2 Problem Setting

We study control of a linear time-varying (LTV) system Eq. (1.1) with state xt ∈ Rdx , control input
ut ∈ Rdu chosen by the learner, and the external disturbance wt ∈ Rdx chosen by Nature. The
system is characterized by time-varying matrices At ∈ Rdx×dx , Bt ∈ Rdx×du . For simplicity, the
initial state is x1 = 0. At each time t, oblivious1 adversary picks the system matrices (At, Bt),
disturbances wt and cost functions ct : Rdx × Rdu → R. The dynamics (At, Bt) are unknown to the
learner: one observes only the next state xt+1 and current cost ct(·, ·) after playing control ut.

1An oblivious adversary chooses the matrices, costs and perturbations prior to the control trajectory.
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Adaptive Regret. The goal of the learner is to minimize regret w.r.t. a policy class Π, i.e. the
difference between the cumulative cost of the learner and the best policy π? ∈ Π in hindsight.
Formally, the regret of an algorithm A with control inputs u1:T and corresponding states x1:T , over
an interval I = [r, s] ⊆ [T ], is defined as

RegretI(A; Π) =
∑
t∈I

ct(xt, ut)− inf
π∈Π

∑
t∈I

ct(x
π
t , u

π
t ) . (2.1)

Here uπt , x
π
t indicate the control input and the corresponding state when following policy π. For a

randomized algorithmA, we consider the expected regret. In this work, we focus on designing control
algorithms that minimize adaptive regret, i.e. guarantee a low regret relative to the best-in-hindsight
policy π?I ∈ Π on any interval I ⊆ [T ]. This performance metric of adaptive regret is more suitable
for control over LTV dynamics given its agility to compete against different local optimal policies
π?I ∈ Π at different times [16].

Key objects. A central object in our study is the sequence of Nature’s x’s xnat
1:T that arises from

playing zero control input ut = 0 at each t ∈ [T ], i.e. xnat
t+1 = Atx

nat
t +wt [39]. define the following

operators for all t,

Φ
[0]
t = I, ∀h ∈ [1, t), Φ

[h]
t =

t−h+1∏
k=t

Ak, ∀i ∈ [0, t), G
[i]
t = Φ

[i]
t Bt−i,

where the matrix product
∏r
s with s ≥ r is taken in the indicated order k = s, . . . , r. the following

identities give an alternative representation for the Nature’s x’s xnat
t and state xt with control input

ut in terms of the Markov operator at time t, Gt = [G
[i]
t ]i≥0:

xnat
t+1 =

t−1∑
i=0

Φ
[i]
t wt−i, xt+1 = xnat

t+1 +

t−1∑
i=0

G
[i]
t ut−i .

These operators and the alternative representation capture the dynamics by decoupling the disturbance
and the control action effects.

Assumptions. We make the three basic assumptions: we require from (i) the disturbances to not
blow up the system with no control input, (ii) the system to have decaying effect over time, and (iii)
the costs to be well-behaved and admit efficient optimization. Formally, these assumptions are:
Assumption 1. For all t ∈ [T ], assume ‖xnat

t ‖ ≤ Rnat.
Assumption 2. Assume there exist RG ≥ 1 and ρ ∈ (0, 1) s.t. for any h ≥ 0 and for all t ∈ [T ]∑

i≥h

‖G[i]
t ‖op ≤ RG · ρh := ψ(h) .

Assumption 3. Assume the costs ct : Rdx × Rdu → R are general convex functions that satisfy the
conditions 0 ≤ ct(x, u) ≤ Lmax{1, ‖x‖2 + ‖u‖2}, and ‖∇ct(x, u)‖ ≤ Lmax{1, ‖x‖+ ‖u‖} for
some constant L > 0, where ∇ denotes any subgradient [7].

The conditions in Assumption 3 allow for functions whose values and gradient grow as quickly as
quadratics (e.g. the costs in LQR) , and the max{1, ·} term ensures the inclusion of standard bounded
and Lipschitz functions as well. Assumptions 1 and 2 arise from the assumption our LTV system is
open-loop stable; Appendix A.2 extends to the case where a nominal stabilizing controller is known,
as in prior work [3, 39]. While these two assumptions may seem unnatural at first, they can be derived
from the basic conditions of disturbance norm bound and sequential stability.

Lemma 2.1. Suppose that there exist C1 ≥ 1, ρ1 ∈ (0, 1) such that ‖Φ[h]
t ‖op ≤ C1ρ

h
1 for any h ≥ 0

and all t ∈ [T ], and suppose that maxt ‖wt‖ ≤ Rw. Then, Assumption 1 holds withRnat = C1

1−ρ1Rw,
and Assumption 2 holds with ρ = ρ1 and RG = max{1,maxt ‖Bt‖op · C1

1−ρ1 }.

Note that Assumption 2 implies that ‖Gt‖`1,op =
∑
i≥0 ‖G

[i]
t ‖op ≤ RG. It also suggests that for

a sufficiently large h the effect of iterations before t − h are negligible at round t. This prompts
introducing a truncated Markov operator: denote Ḡht = [G

[i]
t ]i<h to be the h-truncation of the true

Markov operator Gt. It follows that their difference is ‖Ḡht − Gt‖`1,op =
∑
i≥h ‖G

[i]
t ‖op ≤ ψ(h)

negligible in operator norm for a sufficiently large h. Define the bounded set of h-truncated Markov
operators to be G(h,RG) = {G = [G[i]]0≤i<h : ‖G‖`1,op ≤ RG} with Ḡht ∈ G(h,RG) for all t.
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2.1 Benchmarks and Policy Classes

The performance of an algorithm, measured by Eq. (2.1), directly depends on the policy class Π that
is chosen as a benchmark to compete against. In this work, we consider the following three policy
classes: DRC, DAC, and linear feedback. DRC parameterizes control inputs in terms of Nature’s x’s
xnat
t , DAC does so in terms of the disturbances wt and linear feedback in terms of the states xt. We

express all three in terms of a length-m parameter M = [M [i]]i<m in a bounded ballM(m,RM ):

M(m,RM ) = {(M [0], . . . ,M [m−1]) :
∑m−1
i=0 ‖M [i]‖op ≤ RM} .

Definition 2.1 (DRC policy class). A DRC control policy πMdrc of length m is given by uMt =∑m−1
i=0 M [i]xnat

t−i where M = [M [i]]i<m is the parameter of the policy. Define the bounded DRC

policy class as Πdrc(m,RM ) = {πMdrc : M ∈M(m,RM )}.
Definition 2.2 (DAC policy class). A DAC control policy πMdac of length m is given by uMt =∑m−1
i=0 M [i]wt−i where M = [M [i]]i<m is the parameter of the policy. Define the bounded DAC

policy class as Πdac(m,RM ) = {πMdac : M ∈M(m,RM )}.
Definition 2.3 (Feedback policy class). A feedback control policy πMfeed of length m is given by
uMt =

∑m−1
i=0 M [i]xt−i where M = [M [i]]i<m is the parameter of the policy. Define the bounded

feedback policy class as Πfeed(m,RM ) = {πMfeed : M ∈ M(m,RM )}. In the special case of
memory m = 1, denote the state feedback policy class as Πstate = Πfeed(m = 1).

Convexity. Both the DRC and DAC policy classes are convex parametrizations: a policy π ∈
Πdrc ∪Πdac outputs controls ut that are linear in the policy-independent sequences xnat

1:T and w1:T ,
and thus the mapping from parameter M to resulting states and inputs (resp. costs) is affine (resp.
convex). Hence, we refer to these as the convex classes. In contrast, feedback policies select inputs
based on policy-dependent states, and are therefore non-convex [15].

We drop the arguments m,RM when they are clear from the context. The state feedback policies
Πstate encompass the H2 and H∞ optimal control laws under full observation. For LTI systems,
DRC and DAC are equivalent [46, 44] and approximate all linear feedback policies to arbitrarily high
precision [3, 39]. However, we show that these relationships between the classes break down for LTV
systems: there exist scenarios where any one of the three classes strictly outperforms the other two.
Theorem 2.1 (Informal). For each class Π in {Πdrc,Πdac,Πfeed} there exists a sequence of well-
behaved (At, Bt, wt, ct) such that a policy π? ∈ Π suffers 0 cumulative cost, but each of the other
two classes Π′ ∈ {Πdrc,Πdac,Πfeed} \Π suffers Ω(T ) cost on all their constituent policies π ∈ Π′.

The formal theorem that includes the definition of a well-behaved instance sequence and the final
statement dependence on m,RM along with its proof can be found in Appendix F.1.

Notation. The norm ‖ · ‖ refers to Euclidean norm unless otherwise stated, [n] is used as a shorthand
for [1, n], T is used as a subscript shorthand for [T ]. The asymptotic notation O(·),Ω(·) suppress all
terms independent of T , Õ(·) additionally suppresses terms logarithmic in T . We define Õ?(·) to
suppress absolute constants, polynomials in Rnat, RG, RM and logarithms in T .

3 Online Control over Convex Policies

This section considers online control of unknown LTV systems so as to compete with the convex
DRC and DAC policy classes. The fundamental quantity which appears throughout our results is
the system variability, which measures the variation of the time-varying Markov operators Gt over
intervals I .
Definition 3.1. Define the system variability of an LTV dynamical system with Markov operators
G = G1:T over a contiguous interval I ⊆ [T ] to be

VarI(G) = min
G

1

|I|
∑
t∈I
‖G−Gt‖2`2,F =

1

|I|
∑
t∈I
‖GI −Gt‖2`2,F ,

where ‖ · ‖`2,F indicates the `2 norm of the fully vectorized operator and GI = |I|−1
∑
t∈I Gt is the

empirical average of the operators that correspond to I . Recall that VarT (G) corresponds to I = [T ].
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Our results in this section for both upper and lower bounds focus on expected regret: high probability
results are possible as well with more technical effort using standard techniques.

3.1 A Linear Regret Lower Bound

Our first contribution is a negative one: that the regret against the class of either DAC or DRC policies
cannot scale sublinearly in the time horizon. Informally, our result shows that the regret against these
classes scales as Tσ, where σ2 is the system variability.

More precisely, for any σ2 ∈ (0, 1/8], we construct a distributionDσ over sequences (At, Bt, ct, wt),
formally specified in Appendix F.2. Here, we list the essential properties of Dσ: (i) At ≡ 0, (ii)
ct ≡ c is a fixed cost satisfying Assumption 3 with L ≤ 4, (iii) the matrices (Bt) are i.i.d., with
‖Bt‖op ≤ 2 almost surely, and E[‖Bt−E[Bt]‖2F] = σ2, and (iv) ‖wt‖ ≤ 4 for all t. These conditions
imply that Assumptions 1 and 2 hold for RG = 2, ρ = 0, Rnat = 4. The condition At ≡ 0 implies
that xnat

t = wt for all t, so the classes DRC and DAC are equivalent and the lower bound holds over
both. Moreover, by Jensen’s inequality, this construction ensures that

E[VarI(G)] = |I|−1E[min
G

∑
t∈I ‖G−Gt‖2`2,F ]

= |I|−1E[min
B

∑
t∈I ‖B −Bt‖2F] ≤ E[‖Bt − E[Bt]‖2F] = σ2.

In particular, E[VarT (G)] ≤ σ2. For the described construction, we show the following lower bound:

Theorem 3.1. Let C be a universal, positive constant. For any σ ∈ (0, 1/8] and any online control
algorithm A, there exists a DRC policy π? ∈ Πdrc(1, 1) s.t. expected regret incurred by A under the
distribution Dσ and cost c(x, u) is at least

EDσ,A[RegretT (A; {π?})] ≥ C · Tσ ≥ C · T ·
√
E[VarT (G)],

A full construction and proof of Theorem 3.1 is given in Appendix F.2. In particular, for σ = 1/8,
we find that no algorithm can attain less than Ω(T ) expected regret; a stark distinction from either
unknown LTI [39, 20] or known LTV [16] systems.

3.2 Estimation of Time-Varying Vector Sequences

To devise an algorithmic upper bound that complements the result in Theorem 3.1, we first consider
the setting of online prediction under a partial information model. This setting captures the system
identification phase of LTV system control and is used to derive the final control guarantees. Formally,
consider the following repeated game between a learner and an oblivious adversary: at each round
t ∈ [T ], the adversary picks a target vector z?t ∈ K from a convex decision set K contained in a
0-centered ball of radius Rz; simultaneously, the learner selects an estimate ẑt ∈ K and suffers
quadratic loss `t(ẑt) = ‖ẑt − z?t ‖2. The only feedback the learner has access to is via the following
noisy and costly oracle.
Oracle 1 (Noisy Costly Oracle). At each time t ∈ [T ], the learner selects a decision bt ∈ {0, 1}
indicating whether a query is sent to the oracle. If bt = 1, the learner receives an unbiased estimate
z̃t as response such that ‖z̃t‖ ≤ R̃z and E[z̃t | Ft, bt = 1] = z?t . The filtration Ft is the sigma
algebra generated by z̃1:t−1, b1:t−1 and the choices of the oblivious adversary z?1:T . A completed
query results in a unit cost λ > 0 for the learner.

The performance metric of an online prediction algorithm Apred is expected quadratic loss regret
along with the extra cumulative oracle query cost. It is defined over each interval I = [r, s] ⊆ [T ] as

RegretI(Apred;λ) = EF1:T

[∑
t∈I

`t(ẑt)−min
z∈K

∑
t∈I

`t(z) + λ
∑
t∈I

bt

]
. (3.1)

To attain adaptive regret, i.e. bound Eq. (3.1) for each interval I , we propose Algorithm 1 constructed
as follows. First, suppose we wanted non-adaptive (i.e. just I = [T ]) guarantees. In this special case,
we propose to sample bt ∼ Bernoulli(p) for an appropriate parameter p ∈ (0, 1), and perform a
gradient descent update on the importance-weighted square loss ˜̀

t(z) = 1
2p I{bt = 1}‖z− z̃t‖2. To
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Algorithm 1 Adaptive Estimation Algorithm (ADA-PRED)
1: Input: parameter p, decision set K
2: Initialize: ẑ(1)

1 ∈ K, working dictionary S1 = {(1 : ẑ
(1)
1 )}, q(1)

1 = 1, parameter α = p

(Rz+R̃z)2

3: for t = 1, . . . , T do
4: Play iterate ẑt =

∑
(i,ẑ

(i)
t )∈St

q
(i)
t ẑ

(i)
t

5: Draw/Receive bt ∼ Bernoulli(p)
6: if bt = 1 then
7: Request estimate z̃t from Oracle 1
8: Let ˜̀

t(z) = 1
2p ||z− z̃t||2 and ∇̃t = 1

p (zt − z̃)

9: else
10: Let z̃t ← ∅ and ˜̀

t(z) = 0 and ∇̃t = 0

11: Update predictions ẑ(i)
t+1 ← ProjK(ẑ

(i)
t − η

(i)
t ∇̃t) for all (i, ẑ

(i)
t ) ∈ St

12: Form new dictionary S̃t+1 = (i, ẑ
(i)
t+1)i∈keys(St)

13: Construct proxy new weights q̄(i)
t+1 = t

t+1 ·
q
(i)
t e−α

˜̀
t(ẑ

(i)
t )∑

j∈keys(St)
q
(j)
t e−α

˜̀
t(ẑ

(j)
t )

for all i ∈ keys(St)

14: Add new instance S̃t+1 ← S̃t+1∪ (t+ 1, ẑ
(t+1)
t+1 ) for arbitrary ẑ

(t+1)
t+1 ∈ K with q̄(t+1)

t+1 = 1
t+1

15: Prune S̃t+1 to form St+1 (see Appendix C.1)

16: Normalize q(i)
t+1 =

q̄
(i)
t+1∑

j∈keys(St+1) q̄
(j)
t+1

extend this method to enjoy adaptive regret guarantees, we adopt the approach of [21]: the core idea in
this approach is to initiate an instance of the base method at each round t and use a weighted average
of the instance predictions as the final prediction (Line 4). The instance weights are multiplicatively
updated according to their performance (Line 13). To ensure computational efficiency, the algorithm
only updates instances from a working dictionary St (Line 11). These dictionaries are pruned each
round (Line 15) such that |St| = O(log T ) (see Appendix C.1 for details).

Theorem 3.2. Given access to queries from Oracle 1 and with stepsizes η(i)
t = 1

t−i+1 , Algorithm 1
enjoys the following adaptive regret guarantee: for all I = [r, s] ⊆ [T ],

RegretI(ADA-PRED;λ) ≤ 2(Rz + R̃z)
2(1 + log s · log |I|)

p
+ λp|I| . (3.2)

When I = [T ], the optimal choice of parameter p = log T/
√
λT yields regret scaling roughly

as
√
λT log2 T . Unfortunatelly, this gives regret scaling as

√
T for all interval sizes: to attain√

|I| regret on interval I , the optimal choice of p would yield ∼ T/
√
|I| regret on [T ], which is

considerably worse for small |I|. One may ask if there exists a strongly adaptive algorithm which
adapts p as well, so as to enjoy regret polynomial in |I| for all intervals I simultaneously [11]. The
following result shows this is not possible:

Theorem 3.3 (Informal). For all γ > 0 and λ > 0, there exists no online algorithm A with feedback
access to Oracle 1 that enjoys strongly adaptive regret of RegretI(A;λ) = Õ(|I|1−γ).

Hence, in a sense, Algorithm 1 is as adaptive as one could hope for: it ensures a regret bound for all
intervals I , but not a strongly adaptive one. The lower bound construction, formal statement, and
proof of Theorem 3.3 are given in Appendix C.2.

3.3 Adaptive Regret for Control of Unknown Time-Varying Dynamics

We now apply our adaptive estimation algorithm (Algorithm 1) to the online control problem. Our
proposed algorithm, Algorithm 2, takes in two sub-routines: a prediction algorithm Apred which
enjoys low prediction regret in the sense of the previous section, and a control algorithm Actrl which
has low regret for control of known systems. Our master algorithm trades off between the two in
epochs τ = 1, 2, . . . of length h: each epoch corresponds to one step of Apred indexed by [τ ].
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At each epoch, the algorithm receives Markov operator estimates from Apred (Line 3) and makes
a binary decision b[τ ] ∼ Bernoulli(p). If b[τ ] = 1, then it explores using i.i.d. Rademacher inputs
(Line 7), and sends the resulting estimator to Apred (Line 14). This corresponds to one query from
Oracle 1. Otherwise, it selects inputs in line with Actrl (Line 9), and does not give a query to Apred

(Line 16). Regardless of exploration decision, the algorithm feeds costs, current estimates of the
Markov operator and Nature’s x’s based on the Markov operator estimates to Actrl (Lines 10-12),
which it uses to select inputs and update its parameter.

The prediction algorithm Apred is taken to be ADA-PRED with the decision set K = G(h,RG): the
projection operation onto it and the ball BRnat is done by clipping when the norm of the argument
exceeds the indicated bound. The control algorithm Actrl is taken to be DRC-OGD [39] for known
systems.

Theorem 3.4. For h =
log T

log ρ−1
, p = T−1/3 and m ≤

√
T , on any contiguous interval I ⊆ [T ],

Algorithm 2 enjoys the following adaptive regret guarantee:

E [RegretI(ADA-CTRL); Πdrc(m,RM )] ≤ Õ?
(
Lm

(
|I|
√

E[VarI(G)] + duT
2/3
))

(3.3)

Proof Sketch. The analysis proceeds by reducing the regret incurred to that over a known system,
accounting for: 1) the additional exploration penalty (O(p|I|)), 2) the system misspecification
induced error (∼

∑
t∈I ‖Ĝt − Ḡht ‖`1,op), and 3) truncation errors (∼ ψ(h)|I|). Via straightforward

computations, the system misspecification error can be expressed in terms of the result in Theorem 3.2,
ultimately leading to an error contribution∼ |I|

√
E[VarI(G)]+p−1/2|I|1/2. The analysis is finalized

by noting that the chosen p ideally balances p|I| and p−1/2|I|1/2, and that the chosen h ensures that
the truncation error is negligible. The full proof can be found in Appendix D.

The adaptive regret bound in Eq. (3.3) has two notable terms. Note that the first term |I|
√

E[VarI(G)]
for I = [T ] matches the regret lower bound in Theorem 3.1. Furthermore, our algorithm is adaptive
in this term for all intervals I . On the other hand, for unknown LTI systems with VarI(G) = 0, the
algorithm recovers the state-of-the-art bound of T 2/3 [20]. However, the T 2/3 term is not adaptive to
the intervals I consistent with the lower bound against strongly adaptive algorithms in Theorem 3.3.

Algorithm 2 DRC-OGD with Adaptive Exploration (ADA-CTRL)

1: Input: p, h,Apred ← ADA-PRED(p, Ĝ0,G(h,RG)), Actrl ← DRC-OGD(m,RM)
2: for τ = 1, . . . , T/h do . let tτ = (τ − 1)h+ 1

3: Set Ĝtτ , Ĝtτ+1, . . . , Ĝtτ+h−1 equal to τ -th iterate Ĝ[τ ] from Apred

4: Draw b[τ ] ∼ Bernoulli(p)
5: for t = tτ , . . . , tτ + h− 1 do
6: if b[τ ] = 1 then
7: Play control ut ∼ {±1}du
8: else
9: Play control ut according to the t-th input chosen by Actrl

10: Suffer cost ct(xt, ut) , observe new state xt+1

11: Extract x̂nat
t+1 = ProjBRnat

(
xt+1 −

∑h−1
i=0 Ĝ

[i]
t ut−i

)
12: Feed cost, Markov operator and Nature’s x estimates (ct, Ĝt, x̂

nat
t+1) to Actrl.

13: if b[τ ] = 1 then
14: Feed (b[τ ], G̃[τ ]) to Apred, where G̃[i]

[τ ] = xtτ+hu
>
tτ+h−i, i = 0, 1, . . . , h− 1.

15: else
16: Feed (b[τ ], G̃[τ ]) to Apred, where G̃[τ ] ← ∅.

4 Online Control over State Feedback

Given the impossibility of sublinear regret against DRC/DAC without further restrictions on system
variability, this section studies whether sublinear regret is possible against the class of linear feedback
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policies. For simplicity, we focus on the state feedback policies ut = Kxt, that is, linear feedback
policies with memory m = 1 (Definition 2.3). We note that state feedback policies were the class
which motivated the relaxation to DAC policies in the first study of nonstochastic control [3].

We present two results, rather qualitative in nature. First, we show that obtaining sublinear regret is,
in the most literal sense, possible. The following result considers regret relative to a class K of static
feedback controllers which satisfy the restrictive assumption that each K ∈ K stabilizes the time
varying dynamics (At, Bt); see Appendix E for the formal algorithm, assumptions, and guarantees.
We measure the regret against this class K:

RegretT (K) :=

T∑
t=1

ct(xt, ut)− inf
K∈K

T∑
t=1

ct(x
K
t , u

K
t ),

where (xKt , u
K
t ) are the iterates arising under the control law ut = Kxt.

Theorem 4.1 (Sublinear regret against state-feedback). Under a suitable stabilization assumption,
there exists a computationally inefficient control algorithm which attains sublinear expected regret:

E[RegretT (K)] ≤ eΩ(dxdu/2) · T 1− 1
2(dxdu+3) .

Above, Ω(·) suppresses a universal constant and exponent base, both of which are made explicit in a
formal theorem statement in Appendix E. The bound follows by running the EXP3 bandit algorithm
on a discretization of the set K (high probability regret can be obtained by instead using EXP3.P
[8]). The guarantee in Theorem 4.1 is neither practical nor sharp; its sole purpose is to confirm
the possibility of sublinear regret. Due to the bandit reduction and exponential size of the cover of
K ⊂ Rdu×dx , the algorithm is computationally inefficient and suffers a nonparametric rate of regret
[33]: ε-regret requires T = ε−Ω(dimension).

One may wonder if one can do much better than this naive bandit reduction. For example, is there
structure that can be leveraged? For LTV systems, we show that there is strong evidence to suggest
that, at least from a computational standpoint, attaining polynomial regret (e.g. T 1−α for α > 0
independent of dimension) is computationally prohibitive.
Theorem 4.2. There exists a reduction from MAX-3SAT on m-clauses and n-literals to the problem
of finding a state-feedback controler K which is within a small constant factor of optimal for the cost∑T
t=1 ct(x

K
t , x

K
t ) on a sequence of sequentially stable LTV systems and convex costs (At, Bt, ct)

with no disturbance (wt ≡ 0), with state dimension n+1, input dimension 2, and horizon T = Θ(mn).
Therefore, unless P = NP, the latter cannot be solved in time polynomial in n [17].

A more precise statement, construction, and proof are given in Appendix F.4. Theorem 4.2 demon-
strates that solving the offline optimization problem over state feedback controllers K to within
constant precision is NP-Hard. In particular, this means that any sublinear regret algorithm which is
proper and convergent, in the sense that ut = Ktxt for some sequence Kt converges to a limit as
T →∞, must be computationally inefficient. This is true even if the costs and dynamics are known
in advance. Our result suggests it is computationally hard to obtain sublinear regret, but it does not
rigorously imply it. For example, there may be more clever convex relaxations (other than DRC and
DAC, which provably cannot work) that yield efficient and sublinear regret. Secondly, this lower
bound does not rule out the possibility of an computationally inefficient algorithm which nevertheless
attains polynomial regret.

5 Discussion and Future Work

This paper provided guarantees for and studied the limitations of sublinear additive regret in online
control of an unknown, linear time-varying (LTV) dynamical system.

Our setting was motivated by the fact that the first-order Taylor approximation (Jacobian linearization)
of smooth, nonlinear systems about any smooth trajectory is LTV. One would therefore hope that
low-regret guarantees against LTV systems may imply convergence to first-order stationary points of
general nonlinear control objectives [34], which in turn may enjoy stability properties [45]. Making
this connection rigorous poses several challenges. Among them, one would need to extend our
low-regret guarantees against oblivious adversaries to hold against adaptive adversaries, the latter
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modeling how nonlinear system dynamics evolve in response to the learner’s control inputs. This may
require parting from our current analysis, which leverages the independence between exploratory
inputs and changes in system dynamics.

Because we show that linear-in-T regret is unavoidable for changing systems with large system
variability, at least for the main convex policy parametrizations, it would be interesting to study
our online setting under other measures of performance. In particular, the competive ratio, or the
ratio of total algorithm cost to optimal cost in hindsight (as opposed to the difference between the
two measured by regret) may yield a complementary set of tradeoffs, or lead to new and exciting
principles for adaptive controller design. Does system variability play the same deciding roles in
competive analysis as it does in regret? And, in either competitive or regret analyses, what is the
correct measure of system variability (e.g. variability in which norm/geometry, or of which system
parameters) which best captures sensitivity of online cost to system changes?
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