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Abstract

In the paper, we study the sparse {0,±1}-matrix based random projection, which has been
widely applied in classification to reduce data dimension. For the problem, it is interesting
to estimate the optimal sparsity of sparse matrices for classification, namely the minimum
number of nonzero entries±1 that supports achieving the best classification performance. To
achieve this, we analyze the impact of matrix sparsity on the `1 distance between projected
data points. By principle component analysis, it is known that the larger distance between
projected data points should better capture the variation among original data, and then
yield better classification performance. Theoretically, the `1 distance between projected
data points is not only related to the sparsity of sparse matrices, but also to the distribution
of original data. Without loss of generality, we evaluate two typical data distributions, the
Gaussian mixture distribution and the two-point distribution, which have been widely used
to model the distributions of real data. Given the two data distributions, it is proved that
the maximum `1 distance between projected data points could be approached, as the sparse
matrix contains only one or at most about twenty nonzero entries per row, under the size
m ≥ O(

√
n). Accordingly, the best classification performance should also be achieved under

such conditions. This is confirmed with extensive experiments on different types of data,
including the image, text, gene and binary quantization data.

1 Introduction

Random projection is an important unsupervised dimensional reduction technique that simply projects high-
dimensional data to low-dimensional subspaces by multiplying the data with random matrices (Johnson &
Lindenstrauss, 1984). The projection can approximately preserve the pairwise `2 distance between original
data points, or say the structure of original data, thus applicable to classification (Bingham & Mannila, 2001;
Fradkin & Madigan, 2003; Wright et al., 2009). To achieve the `2 distance preservation property, random
projection matrices need to follow certain distributions, and typical examples include Gaussian matrices
(Dasgupta & Gupta, 1999) and sparse {0,±1}-ternary matrices (shortly called sparse matrices hereafter)
(Achlioptas, 2003). In practice, sparse matrices are preferred for its much lower complexity both in storage
and computation. Considering random projection is often applied to computationally-intensive large-scale
classification tasks, it is highly interesting to minimize its complexity. For this purpose, we propose to
estimate the optimal sparsity of sparse matrices for classification, namely, estimating the minimum number
of nonzero entries ±1 that allows the projected data to provide the best classification performance. To the
best of our knowledge, no previous study has investigated the problem.

Existing research on random projection is mainly devoted to exploring the distribution of random matrices
that well holds the distance preservation property, more precisely, keeping the expectation of the pairwise dis-
tance between original data points unchanged after random projection and rendering the variance relatively
small (Dasgupta & Gupta, 1999; Achlioptas, 2003). For the sparse matrix with entries properly scaled, it has
been proved that the distance preservation property holds in `2 norm (Achlioptas, 2003; Li et al., 2006), but
not in `1 norm (Brinkman & Charikar, 2003; Li, 2007). Here it is noteworthy that although the `2 distance
preservation property enables random projection to be applied in classification, it can hardly be used to
analyze the impact of the sparsity of sparse matrices on the follow-on classification, since the classification
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performance depends on the discrimination between projected data points, rather than the invariance of data
structure. For instance, it has been proved that the `2 distance preservation property tends to become worse
as the matrix becomes sparser (Li et al., 2006), namely, containing fewer nonzero entries ±1. However, em-
pirically, it is observed that the sparser matrix structure does not means a worse classification performance,
and in contrast the best classification performance can usually be achieved by very sparse matrices, such
as the ones with only one nonzero entry per row. In the paper, we show that the intriguing performance
can be explained by analyzing the variation of the `1 distance between projected data points. By the early
research of principle component analysis (PCA) (Jolliffe, 2002), it is known that the projection over a larger
principle component will yield larger pairwise distances (equivalently, larger variances) for projected data
points, while the larger distance tends to better capture the variation (i.e. statistical information) of original
data (Jolliffe & Cadima, 2016), and then provide better classification performance (Turk & Pentland, 1991).

For sparse matrices based random projection, the `1 distance between projected data points is related not
only to the sparsity of random matrices, but also to the distribution of original high-dimensional data. To
estimate the optimal matrix sparsity that leads to the maximum `1 distance between projected data points,
we need to first know and model the distribution of original data. Without loss of generality, we consider two
typical data distributions, the Gaussian mixture distribution and the two-point distribution. The former one
has been widely used to model the distribution of natural data (Torralba & Oliva, 2003; Weiss & Freeman,
2007) or their sparse transforms (Wainwright & Simoncelli, 1999; Lam & Goodman, 2000), while the latter
can be used to model the distribution of binary data, such data often occurring in various quantization tasks
(Gionis et al., 1999; Hubara et al., 2016; Yang et al., 2019). As shown later, the use of the two general
distributions ensures that our theoretical analysis and estimation are highly consistent with the experiments
on real data.

Given the two data distributions, by varying the sparsity of sparse matrices, we estimate the expected `1
distance between projected data points and observe the following two results: 1) The maximum distance
tends to be achieved by the sparse matrices with only one nonzero entry per row, as the difference vector
between two original data contains a sufficient number of nonzero entries, namely holding a sufficiently dense
distribution; 2) otherwise, the maximum distance tends to be reached by the matrices with at most about
twenty nonzero entries per row. To summarize, the two results imply that the expected `1 distance between
projected data points tends to reach its maximum value, as sparse matrices contain only one or at most
about twenty nonzero entries per row. Moreover, we prove that the expected `1 distance can be approached
with high probability by a single matrix sample, if the matrix has the size m×n, m ≥ O(

√
n). This suggests

that in practice a random matrix sample with the sparsity and size described above probably yields the
maximum `1 distance between projected data points, and then results in the best classification performance.
The performance is fully verified by conducting extensive experiments on a variety of real data, including
the image, text, gene and binary quantization data. Overall, the major contributions of the work can be
summarized as follows:

• For the sparse {0,±1}-matrices based random projection, we for the first time estimate the optimal
sparsity of sparse matrices for classification, by analyzing random projection from the viewpoint
of distance variation rather than the conventional distance preservation. The proposed analysis is
inspired by the early research of PCA (Jolliffe & Cadima, 2016; Turk & Pentland, 1991), that is
the larger distance between projected data points tends to better account for the variation among
original data and then yield better classification performance.

• Theoretically, we show that the optimal classification performance should be achieved by the sparse
matrix with size m ≥ O(

√
n) and with only one or at most about twenty nonzero entries per row, if

the original data holds the Gaussian mixture distribution or two-point distribution. The estimated
optimal matrices exhibit very sparse structures, implying significant savings both in computation
and storage.

• Empirically, we find that the theoretical estimations about the optimal matrix size and sparsity are
highly consistent with the observations we have on the classification experiments with a variety of
real data. The consistency between theory and practice benefits from the aforementioned two general
distributions we have assumed for the original data, which can well approximate the distributions
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of real data of different types (Torralba & Oliva, 2003; Weiss & Freeman, 2007; Wainwright &
Simoncelli, 1999; Lam & Goodman, 2000).

2 Problem Formulation

In this section, we first model the distributions of sparse random matrices and original data, and then
introduce the estimation model of the `1 distance between projected data points. Throughout the work,
we typically denote a matrix by a bold upper-case letter R ∈ Rm×n, a vector by a bold lower-case letter
r = (r1, r2, ..., rn)> ∈ Rn, and a scalar by a lower-case letter ri or r. For ease of presentation, we defer all
proofs to Appendix A.

2.1 The distribution of sparse matrices

The sparse random matrix R ∈ {0,±
√

n
mk}

m×n we aim to study is described in Definition 1, which has
the parameter k to count the number of nonzero entries per row, thus simply called k-sparse to distinguish
between different matrix sparsity. Rather than simply defining R ∈ {0,±1}m×n, we introduce a scaling
parameter

√
n
mk to produce zero mean and unit variance for the matrix entries. This enables the matrix to

hold the `2 distance preservation property, namely, keeping the expected `2 distance between original data
points unchanged after random projection (Achlioptas, 2003). For easier computation, in practice the scaling
parameter can be omitted and this will not change the relative distances between projected data points, thus
not affecting the follow-on classification performance.
Definition 1 (k-sparse random matrix). A k-sparse random matrix R ∈ {0,±

√
n
mk}

m×n is defined to be
of the following structure properties:

• its each row vector r ∈ {0,±
√

n
mk}

n contains exactly k nonzero entries, 1 ≤ k ≤ n;

• the positions of k nonzero entries are arranged uniformly at random;

• each nonzero entry takes the bipolar values ±
√

n
mk with equal probability.

2.2 The distribution of original data

For the original high-dimensional data with two-point distributions and Gaussian mixture distributions, we
model the distribution of the pairwise difference between data points, which will be needed in the following
`1 distance estimation.

2.2.1 Two-point distribution

Let h, h′ ∈ {µ1, µ2}n be two high-dimensional data with each entry independently following a two-point
distribution, where µ1 and µ2 are two arbitrary constants. Then the difference between the two data,
expressed as x = h−h′ = (x1, x2, . . . , xn)>, has its each entry xi independently following a ternary discrete
distribution

xi ∼ T (µ, p, q) (1)

with the probability mass function t ∈ {−µ, 0, µ} under the probabilities {q, p, q}, where µ = µ1 − µ2 and
p+ 2q = 1.

2.2.2 Gaussian mixture distribution

Suppose the two high-dimensional data h, h′ ∈ Rn have their each entry independently following a Gaussian
mixture distribution. Then the difference x = h − h′ remains a Gaussian mixture (Andrews & Mallows,
1974), which allows each entry xi modeled as

xi ∼M(µ, σ2, p, q) (2)
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with the probability density function

f(t) = pfN (t; 0, σ2) + qfN (t;µ, σ2) + qfN (t;−µ, σ2) (3)

where fN (t;µ, σ2) denotes the density function of t ∼ N (µ, σ2), and the parameters are subject to p, q ≥ 0
and p+ 2q = 1.

2.3 The `1 distance estimation model

With the original data points h, h′ ∈ Rn and k-sparse random matrix R ∈ {0,±
√

n
mk}

m×n, we aim to
analyze the changing of the expected `1 distance between projected data points (namely E‖Rx‖1, x = h−h′)
against the varying matrix sparsity k, so as to identify the sparsity k that maximizes the value of E‖Rx‖1.
By Definition 1, each row r ∈ Rn of R follows an independent and identical distribution. Then we have
E‖Rx‖1 = mE|r>x|. The equivalence suggests that E|r>x| will share the same changing trend with
E‖Rx‖1, when varying k. Then instead of E‖Rx‖1, we propose to investigate E|r>x| for ease of analysis.

3 The `1 Distance Estimation with Two-Point Distributed Data

In this section, we consider the original data with two-point distributions. Given such data, we estimate
the value of E|r>x| against varying matrix sparsity k, and identify the k values that lead to the maximum
E|r>x|, where the difference x = h− h′ between original data has i.i.d. entries xi ∼ T (µ, p, q), as specified
in equation 1.

3.1 Theoretical analysis

Theorem 1. Let r be a row vector of a k-sparse random matrix R ∈ {0,±
√

n
mk}

m×n, and x ∈ Rn with
i.i.d. entries xi ∼ T (µ, p, q). It can be derived that

E|r>x| = 2µ
√

n

mk

k∑
i=0

Cikp
iqk−i

⌈
k − i

2

⌉
C
d k−i

2 e
k−i (4)

and
V ar(|r>x|) = 2qµ2n

m

− 4µ2n

mk

(
k∑
i=0

Cikp
iqk−i

⌈
k − i

2

⌉
C
d k−i

2 e
k−i

)2 (5)

where Cik is a binomial coefficient
(
k
i

)
and dαe = min{β : β ≥ α, β ∈ Z}. By equation 4, E|r>x| satisfies the

following two properties:

(P1) When p ≤ 0.188, E|r>x| has its maximum at k = 1.

(P2) lim
k→∞

√
m

µ
√
n
E|r>x| = 2

√
q/π.

In P1 and P2, we derive two results about the changing trend of E|r>x| against the varying matrix sparsity
k. By P1, E|r>x| should achieve its maximum value at k = 1, as the probability p of xi=0 is sufficiently
small (≤ 0.188), namely, the difference x between data points exhibits sufficiently dense distributions; and
by P2, E|r>x| will converge to a stable value as k tends to infinity.

To more closely examine the changing trend, as detailed later, we conduct the numerical analysis and
simulation for equation 4, and observe that: 1) the upper bound of p (shown in P1) that guarantees the
maximum of E|r>x| to be achieved at k = 1 can be further relaxed; 2) the maximum E|r>x| can be achieved
at about k = 20, if the upper bound of p is violated; and 3) the speed of the convergence (shown in P2) is
fast.
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Figure 1: The value of E|r>x|/(µ
√
n/m) calculated by equation 4 with p = 1/3 (a) and p = 2/3 (b), and estimated

by numerical simulation with p = 1/3 (c) and p = 2/3 (d), provided xi ∼ T (µ, p, q), µ = 1.

3.2 Numerical analysis

By computing equation 4, we derive the values of E|r>x|/(µ
√
n/m) against varying k in Figs. 1(a) and

(b). Here we choose to study E|r>x|/(µ
√
n/m) instead of E|r>x|, mainly because both of them present

the same changing trend against varying k, but the former has fewer parameters, i.e. only involving k and
p. Recall that p is the probability of xi = 0 in equation 1. By varying the continuous value of p ∈ (0, 1) with
fine steps and increasing the integer value of k from 1 to 500, we observe that:

(P3) When p ≤ 1/3, such as the case of p = 1/3 shown in Fig. 1(a), E|r>x|/(µ
√
n/m) tends to achieve

its largest value at k = 1.

(P4) When p > 1/3, such as the case of p = 2/3 illustrated in Fig. 1(b), E|r>x|/(µ
√
n/m) inclines to

first increase with k, and then quickly reach a stable level after about k = 20.

Compared to the theoretical analysis results P1 and P2, the numerical analysis results P3 and P4 are more
positive. Specifically, P3 relaxes the upper bound of p from ≤ 0.188 to ≤ 1/3. This suggests that E|r>x|
will achieve its maximum value at k = 1, when each entry xi of x takes nonzero values with a probability
greater than 2/3, namely, the difference vector x between data points holds sufficiently dense distributions.
Otherwise, by P4, E|r>x| will reach its upper bound at about k ≥ 20. Therefore, we can reach the conclusion
that E|r>x| tends to reach its maximum value at k = 1 or at most about k = 20, for the original data with
two-point distributions.

3.3 Numerical simulation

To validate the numerical analysis results P3 and P4, we further investigate the changing trend of
E|r>x|/(µ

√
n/m) against varying k by numerical simulation. To do so, we randomly generate 106 pairs of

r and x from their respective distributions, i.e. having r ∈ {0,±
√

n
mk}

n with k nonzero entries randomly
distributed, and x with i.i.d. xi ∼ T (µ, p, q). Then, the average value of |r>x|/(µ

√
n/m) is derived as

the final estimate of E|r>x|/(µ
√
n/m). The parameters for the distributions of r and x are set as follows:

m = 1, n = 104, µ = 1, and p = 1/3 or 2/3. The data dimension n = 104 allows us to increase k from 1
to 104. The average value of |r>x|/(µ

√
n/m) at each k is provided in Figs. 1(c) and (d), respectively for

the cases of p = 1/3 and 2/3. Note that the choices of m, n and µ will not affect the changing trend of
E|r>x|/(µ

√
n/m) regarding k. Comparing the numerical results and simulation results provided in Fig. 1,

namely (a) vs. (c) and (b) vs. (d), it is seen that the two kinds of results exhibit similar changing trends for
E|r>x|/(µ

√
n/m). The similarity between them validates the numerical analysis results P3 and P4.

Moreover, it is noteworthy that what we estimate is an expected distance E‖Rx‖1 (equivalently, mE|r>x|),
rather than the actual distance ‖Rx‖1 we can derive with a random matrix sample. To ensure the expected
distance to be approached by actual samples, by the law of large numbers, the row size m of random matrix
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R should be large enough. In Lemma 1, we derive a lower bound m ≥ O(
√
n) for the row size m by variance

analysis.
Lemma 1. Let z1, z2, · · · , zm be independent random variables with expectation equation 4 and variance
equation 5, respectively. For all ε, δ > 0, if m ≥ c ·

√
n

ε
√
δ
, where c =

√
mV ar(zi)/n, then with probability at

least 1− δ, we have |z̄ − Ez̄| ≤ ε, where z̄ = 1
m

∑m
i=1 zi.

4 The `1 Distance Estimation with Gaussian Mixture Data

Similarly as in the previous section, we estimate the value of E|r>x| against the varying matrix sparsity k, and
identify the value of k that leads to the maximum E|r>x| for the original data drawn from Gaussian mixture
distributions. In this case, the difference x between original data points has i.i.d. entries xi ∼M(µ, σ2, p, q),
as specified in equation 2.

4.1 Theoretical analysis

Theorem 2. Let r be a row vector of a k-sparse random matrix R ∈ {0,±
√

n
mk}

m×n, and x ∈ Rn with
i.i.d. entries xi ∼M(µ, σ2, p, q). It can be derived that

E|r>x| = 2µ
√

n

mk
T1 + σ

√
2n
πm

T2 − 2µ
√

n

mk
T3 (6)

T1 =
k∑
i=0

Cikp
iqk−i

⌈
k − i

2

⌉
C
d k−i

2 e
k−i

T2 =
k∑
i=0

Cikp
iqk−i

k−i∑
j=0

Cjk−ie
− (k−i−2j)2µ2

2kσ2

T3 =
k∑
i=0

Cikp
iqk−i

k−i∑
j=0

Cjk−iΦ
(
−|k − i− 2j|µ√

kσ

)
and

V ar(|r>x|) = n

m
(σ2 + 2qµ2)−

(
E|r>x|1

)2 (7)

where Φ(·) is the distribution function of N (0, 1). Further, we have

E|r>x| ≤ µ
√
n

m
+ σ

√
2n
πm

(8)

and
lim
k→∞

√
m

µ
√
n
E|r>x| =

√
2
π

(σ2 + 2qµ2). (9)

The theorem provides the expression of E|r>x| in equation 6 and proves its convergence in the limit of k
in equation 9. By the following numerical analysis and simulation on equation 6, we will see that E|r>x| is
able to reach its maximum value at k = 1 or at most about k = 20.

4.2 Numerical analysis

In Figs. 2(a) and (b), by computing equation 6 we derive the value of E|r>x|/
√
n/m across varying k. It

is seen that E|r>x|/
√
n/m involves four parameters, k, p, µ, and σ. During computation, we fix µ = 1

and vary other parameters in the ranges of σ/µ ∈ (0, 1/3), p ∈ (0, 1) and k ∈ [1, 500]. For easy simulation,
we upper bound σ/µ by 1/3 in view of the fact that σ/µ is usually not large for real data, while larger
bounds empirically also work. Empirically, the changing trend of E|r>x|/

√
n/m is not sensitive to σ/µ,

but sensitive to p, the probability of each entry xi of the data difference x taking zero value. More precisely,
it is observed that
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Figure 2: The value of E|r>x|/
√
n/m calculated by equation 6 with p = 1/2 (a) and p = 2/3 (b), and estimated by

numerical simulation with p = 1/2 (c) and p = 2/3 (d), provided xi ∼M(p, q, µ, σ2), µ = 1 and σ = 1/3.

(P5) When p ≤ 1/2, such as the case of p = 1/2 and σ/µ = 1/3 shown in Fig. 2(a), E|r>x|/
√
n/m tends

to first decrease with increasing k and then quickly reach a stable state after about k = 20.

(P6) When p > 1/2, such as the case of p = 2/3 and σ/µ = 1/3 shown in Fig. 2(b), E|r>x|/
√
n/m

shows the trend of first increasing with k, and then reaching stable after about k = 20.

By P5, the maximum E|r>x| can be achieved at k = 1, when each entry xi of x takes nonzero values
with a probability greater than 1/2, or say, the data difference vector x has sufficiently dense distributions.
Otherwise, by P6, the maximum E|r>x| can be obtained at about k ≥ 20. To sum up, the two cases imply
that E|r>x| will reach its maximum value at k = 1 or at most about k = 20, for Gaussian mixture data with
pairwise difference xi ∼M(µ, σ2, p, q).

It is noteworthy that the property is similar to the one we have derived in P3 and P4 for two-point distributed
data with xi ∼ T (µ, p, q). The similarity is not surprising since xi ∼ T (µ, p, q) can be viewed as an extreme
case of xi ∼ M(µ, σ2, p, q) with σ → 0. Thanks to the good generalization capability of Gaussian mixture
model, as will be seen in our experiments, the properties analyzed above hold for a variety of real data.

Again note that we should have the matrix row size m ≥ O(
√
n), such that the actual distance ‖R>x‖1

computed with a single random matrix sample can approach the expected distance E‖R>x‖1 (equivalently
mE|r>x|) derived with equation 6. The analysis is similar to Lemma 1, thus omitted here.

4.3 Numerical simulation

Now we are in the position to verify P5 and P6 by numerical simulation. Specifically, we estimate the value
of E|r>x|/

√
n/m by drawing 106 pairs of x and r from their respective distributions and then computing

the average of ‖r>x‖1/
√
n/m as the estimate. The parameters of the distributions of x and r are set as

follows: m = 1, n = 10000, µ = 1, σ = 1/3 and p = 1/2 or 2/3. The data dimension n = 10000 allows us
to vary k from 1 to 10000. The average value of |r>x|/

√
n/m at each k is presented in Figs. 2(c) and (d),

which have p = 1/2 and 2/3, respectively. Comparing the numerical analysis and simulation results shown
in Fig. 2, namely (a) vs. (c) and (b) vs. (d), it can be seen that both the two results are consistent with
each other. The consistency validates the numerical analysis results P5 and P6.

5 Experiments

For the high-dimensional data with Gaussian-mixture distributions and two-point distributions, we have
proved that the maximum `1 distance between their projections tends to be achieved by the sparse matrices
with size m ≥ O(

√
n) and with exactly one or at most about twenty nonzero entries per row. Also, the

best classification performance should be achieved by such matrices, in terms of the discrimination of large
pairwise distances.
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Considering many real data and their binary quantization can be approximately modeled respectively by
Gaussian-mixture distributions and two-point distributions, in this section we aim to prove that the sparse
matrix with the size and sparsity described above indeed performs best in practical classification problems.

5.1 Data

Without loss of generality, we evaluate four different types of data, including the image dataset YaleB
(Georghiades et al., 2001; Lee et al., 2005), the text dataset Newsgroups (Joachims, 1997), the gene dataset
AMLALL (Golub et al., 1999) and binary image dataset MNIST (Deng, 2012). The former three kinds of
data can be modeled by Gaussian mixtures, while the last one belongs to the two-point distribution. The
data settings are introduced as follows. YaleB contains 40× 30-sized face images of 38 persons, with about
64 faces per person. Newsgroups consists of 20 categories of 3000-dimensional text data, with 500 samples
per category. AMLALL contains 25 samples taken from patients suffering from acute myeloid leukemia
(AML) and 47 samples from patients suffering from acute lymphoblastic leukemia (ALL), with each sample
expressed with a 7129-dimension gene vector. MNIST involves 10 classes of 28× 28-sized handwritten digit
images in MNIST, with 6000 samples per class and with each image pixel 0-1 binarized. Note here we reduce
the dimension of the data in YaleB and Newsgroups for easy simulation, and this will not influence our
comparative study.

5.2 Implementation

The random projection based classification is implemented by first multiplying original data with k-sparse
random matrices and then classifying the resulting projections with a classifier. To faithfully reflect the
impact of the varying data distance on classification, we adopt the simple nearest neighbor classifier (NNC)
(Cover & Hart, 1967) for classification, which has performance absolutely dependent on the pairwise distance
between data points, without involving extra operations to improve data discrimination. In fact, our optimal
estimation could also be verified with other more sophisticated classifiers, like SVMs (Cortes & Vapnik, 1995),
see Appendix B.

For each dataset, we will enumerate all possible class pairs in it to perform binary classification. In each
class, we have one half of samples randomly selected for training and the rest for testing. To suppress the
instability of random matrices and obtain relatively stable classification performance, as in (Bingham &
Mannila, 2001), we repeat the random projection-based classification 5 times for each sample and make the
final classification decision by vote. For comparison, the performance of the Gaussian matrix based random
projection is provided. Although our optimal matrix is estimated with `1 distance, we also test and verify
its performance advantage on the popular `2 distance.

5.3 Results

The classification results of four kinds of data are provided in Figs. 3–6, respectively. For each kind of data,
as can be seen, we evaluate the classification performance of sparse matrices with varying sparsity k ∈ [1, 30],
three different projection ratios m/n = 1%, 10% and 50%, and two distance metrics `1 and `2. Note that
the data dimensions n we test here are on the order of thousands. With such scale of n, it is easy to deduce
that the condition of m ≥ O(

√
n) will be satisfied as m/n = 10% and 50%, but be violated as m/n = 1%.

Let us first examine the case of satisfying m ≥ O(
√
n), namely the cases of m/n = 10% and 50% as shown

in Figs. 3–6(b)(c). It is seen that the four kinds of data all achieve their best performance with relatively
small matrix sparsity k (� 30), such as with k = 1 in Fig. 3(c) and k = 6 in Fig. 4(c). But in the case
of m/n = 1% which violates the condition of m ≥ O(

√
n), as shown in Figs. 3–6(a), the four kinds of

data with an exception of AMLALL all fail to reach their top performance within k < 30. For AMLALL
with m/n = 1%, as opposed to the cases of m/n = 10% and m/n = 50%, it fails to get the decreasing
performance trend and performs poorly at k = 1, as illustrated in Fig. 5. Overall, the experimental results
on four different kinds of data all verify our theoretical estimation, that is the best classification performance
can be achieved by the sparse matrices with only one or at most about twenty nonzero entries per row, under
the size of m ≥ O(

√
n).
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(a) m/n = 1%, `1 distance (b) m/n = 10%, `1 distance (c) m/n = 50%, `1 distance

(d) m/n = 1%, `2 distance (e) m/n = 10%, `2 distance (f) m/n = 50%, `2 distance

Figure 3: Classification accuracy of the sparse matrix-based and Gaussian matrices-based random projections for image data
(YaleB, DCT features), with varying matrix sparsity k ∈ [1, 30], three different projection ratios m/n = 1%, 10% and 50%, and
two distance metrics `1 and `2.

(a) m/n = 1%, `1 distance (b) m/n = 10%, `1 distance (c) m/n = 50%, `1 distance

(d) m/n = 1%, `2 distance (e) m/n = 10%, `2 distance (f) m/n = 50%, `2 distance

Figure 4: Classification accuracy of the sparse matrix-based and Gaussian matrix-based random projections for text data
(Newsgroups), with varying matrix sparsity k ∈ [1, 30], three different projection ratios m/n = 1%, 10% and 50%, and two
distance metrics `1 and `2.

Besides the estimation of optimal matrix sparsity, the classification performance trend across varying matrix
sparsity also consists with our estimation. More precisely, it can be seen from Figs. 3–6(b)(c) that the
classifications of four datasets quickly converge to stable performance with the increasing matrix sparsity k.
The difference between them mainly lies in the initial stage of the convergence. Specifically, as illustrated

9
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(a) m/n = 1%, `1 distance (b) m/n = 10%, `1 distance (c) m/n = 50%, `1 distance

(d) m/n = 1%, `2 distance (e) m/n = 10%, `2 distance (f) m/n = 50%, `2 distance

Figure 5: Classification accuracy of sparse matrix-based and Gaussian matrix-based random projections for gene data (AM-
LALL), with varying matrix sparsity k ∈ [1, 30], three different projection ratios m/n = 1%, 10% and 50%, and two distance
metrics `1 and `2.

(a) m/n = 1%, `1 distance (b) m/n = 10%, `1 distance (c) m/n = 50%, `1 distance

(d) m/n = 1%, `2 distance (e) m/n = 10%, `2 distance (f) m/n = 50%, `2 distance

Figure 6: Classification accuracy of the sparse matrix-based and Gaussian matrix-based random projections for binary image
data (MNIST, binarized pixels), with varying matrix sparsity k ∈ [1, 30], three different projection ratios m/n = 1%, 10% and
50%, and two distance metrics `1 and `2.

in Figs. 3(b)(c) and 5(b)(c), the convergence curves on the datasets YaleB and AMLALL both exhibit
the declining trend at the initial increasing region of k, consistent with the analysis result P5 depicted in
Fig. 2(a). As for the curves on the other two datasets Newsgroups and MNIST, as shown in Figs. 4(b)(c)
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and Figs. 6(b)(c), they both exhibit the trend of initially increasing with k, as predicted by the numerical
analysis results P6 (illustrated in Fig. 2(b)) and P4 (illustrated in Fig. 1(b)).

Although our theoretical analysis is based on `1 distance, we can see that the classification with `2 distance
exhibits similar performance trends, through comparing the results shown in the upper row versus the bottom
row of Figs. 3–6. The similar performance of the two metrics in practical classification problems has been
early observed and analyzed in (Gionis et al., 1999; Figiel et al., 1977). This suggests that the optimal sparse
matrices we estimate with `1 distance also perform well in the classification with `2 distance, thus serving
a wide range of applications. Moreover, the experiments show that sparse matrices often perform better
than Gaussian matrices. This motivates us to employ sparse matrices instead of gaussian matrices, for its
advantages both in complexity and accuracy.

6 Conclusion

For the sparse {0,±1}-ternary matrix based random projection, we have demonstrated both in theory and
practice that the best classification performance tends to be achieved by the sparse matrix with only one
or at most about twenty nonzero entries per row, under the size of m ≥ O(

√
n). This implies that random

projection can be implemented with extremely sparse matrices, which have significant advantages in storage
and computation compared to the popularly used Gaussian matrices. Impressively, our theoretical estimation
exhibits high consistency with the experimental evaluation on real data of different types, such as the image,
text, gene and binary quantization data. The high consistency between theory and practice can be attributed
to the good generalization of the two data distributions we have assumed for statistical analysis, i.e. the
Gaussian mixture distribution and two-point distribution. Besides the major contribution described above,
there are three other important results worth mentioning.

First, the optimal sparse matrix we estimate with `1 distance also performs well for the `2 distance-based
classification. The generalization can be attributed to the closeness of the two metrics, which has been found
and analyzed in early research (Gionis et al., 1999; Figiel et al., 1977). Overall, this is good news in terms
of the wide applications of the two metrics (Philbin et al., 2008).

Second, experiments show that our sparse matrices tend to provide higher classification accuracy than the
popularly used Gaussian matrices. This encourages us to employ sparse matrices instead of gaussian matrices,
for improvements both in complexity and accuracy.

Third, our optimal matrix sparsity estimation is helpful to understand the competitive performance of deep
ternary networks, which are generated by ternarizing the parameters and/or activations of full-precision
networks and enjoy very sparse structures (Li et al., 2016; Zhu et al., 2017; Wan et al., 2018; Marban et al.,
2020; Rokh et al., 2023). Despite suffering from significant quantization errors, interestingly, deep ternary
networks usually have acceptable performance loss and sometimes can even provide performance gains. The
reason for this intriguing phenomenon remains unclear. Considering deep networks can be modeled as a
cascade of random projections (Giryes et al., 2016), our optimal matrix sparsity estimation for random
projection-based classification can be viewed as a layerwise analysis of deep ternary networks. The very
sparse ternary matrices we derive for optimal classification partly explains the performance advantage of
sparse ternary networks.
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A Appendix

A.1 Proof of Theorem 1

Proof. In the following, we sequentially prove equation 4, equation 5, P1 and P2.

Proofs of equation 4 and equation 5: With the distributions of r and x, we can write ‖r>x‖1 =

13
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√
n
mkµ

∣∣∣∑k
i=1 zi

∣∣∣ , where zi ∈ {−1, 0, 1} with probabilities {q, p, q}. Then, it can be derived that

E|r>x| = µ

√
n

mk

k∑
i=0

Cikp
iqk−i

k−i∑
j=0

Cjk−i|k − i− 2j|, (10)

among which
∑k−i
j=0 C

j
k−i|k − i− 2j| can be expressed as

k−i∑
j=0

(Cjk−i|k − i− 2j|) = 2
⌈
k − i

2

⌉
C
d k−i

2 e
k−i , (11)

where dαe = min{β : β ≥ α, β ∈ Z}. Combining (10) and (11), we can obtain equation 4.

Next, we can derive the variance of |r>x| as

V ar(|r>x|) = V ar(r>x)−
(
E|r>x|

)2

= 2qµ2n

m
− 4µ2n

mk

(
k∑
i=0

Cikp
iqk−i

⌈
k − i

2

⌉
C
d k−i

2 e
k−i

)2

.

Proof of P1: This part aims to prove

E|r>x|k=1 > E|r>x|k>1,

where the subscript k = 1 denotes the case of E|r>x| with k = 1, and the subscript k > 1 means the case of
k taking any integer value greater than 1. In the following, we will calculate and compare E|r>x| in terms
of the two cases. For the case of k = 1, by equation 4, it is easy to derive that

E|r>x|k=1 = 2qµ
√
n

m
. (12)

Then, let us see the case of computing E|r>x|k>1. By equation 4, E|r>x|k>1 is the sum of
2√
k
Cikp

iqk−i
⌈
k−i

2
⌉
C
d k−i

2 e
k−i multiplied by µ

√
n
m . To compute 2√

k
Cikp

iqk−i
⌈
k−i

2
⌉
C
d k−i

2 e
k−i , we consider sepa-

rately two cases: k − i is even or odd, as detailed below.

Case 1: Suppose k − i is even. We have
2√
k
Cikp

iqk−i
⌈
k − i

2

⌉
C
d k−i

2 e
k−i

≤ 1√
k
Cikp

iqk−i(k − i)2k−i
√

2
(k − i)π

≤
√

2
π
Cikp

i(2q)k−i, (13)

since Cγ2γ ≤ 22γ
√
γπ , where γ is a positive integer (Stǎnicǎ, 2001).

Case 2: Suppose k − i is odd. We have
2√
k
Cikp

iqk−i
⌈
k − i

2

⌉
C
d k−i

2 e
k−i

≤ 1√
k
Cikp

iqk−i(k − i)2k−i
√

2
(k − i− 1)π

=
√

2
π
Cikp

i(2q)k−i k − i√
k(k − i− 1)

(14)
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Given k ≥ 5, we further have
k − i√

k(k − i− 1)
< 1 for 2 ≤ i ≤ k − 2,

and for i = k − 1 or k,
2√
k
Cikp

iqk−i
⌈
k − i

2

⌉
C
d k−i

2 e
k−i <

√
2
π
Cikp

i(2q)k−i.

To sum up, when k − i is odd,

2√
k
Cikp

iqk−i
⌈
k − i

2

⌉
C
d k−i

2 e
k−i

≤


√

2
π
Cikp

i(2q)k−i, k ≥ 5, i ≥ 2,

2√
k
Cikp

iqk−i(k − i)C
k−i−1

2
k−i−1, otherwise.

(15)

According to the results equation 13 and equation 15 derived in the above two cases, we know that E|r>x|k>1
can be computed in terms of two cases, 2 ≤ k ≤ 4 and k ≥ 5. For the case of 2 ≤ k ≤ 4, by equation 4, we
have

E|r>x| =



µ
√
n√

2m
(4q2 + 4pq), k = 2,

µ
√
n√

3m
(12q3 + 12pq2 + 6p2q), k = 3,

µ
√
n√
m

(12q4 + 24pq3 + 12p2q2 + 4p3q), k = 4,

(16)

and for the case of k ≥ 5, with equation 13 and equation 15, we have

E|r>x| ≤ µ
√

2n
πm

+ µ

√
n

m
(2q)5

(
3
√

5
8 −

√
2
π

)
. (17)

By equation 12, equation 16 and equation 17, we can derive that

E|r>x|k=1 > E|r>x|k>1

holds under the condition of p ≤ 0.188. Then P1 is proved.

In what follows, we elaborate the proof of equation 17 by considering two cases of k, being even or odd.

Case 1: Suppose k ≥ 5 and k is even. Combining equation 13 and equation 15, we have

E|r>x| ≤µ
√
n

m
C1
kp(2q)k−1

( √
k

2k−1C
k
2−1
k−1 −

√
2
π

)

+ µ

√
2n
πm

k∑
i=0

Cikp
i(2q)k−i. (18)

Denote h1(k) =
√
k

2k−1C
k
2−1
k−1 . For

h1(k + 2)
h1(k) = k + 1√

k(k + 2)
> 1
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we have
h1(k) =

√
k

2k−1C
k
2−1
k−1 ≤ lim

k→∞
h1(k) =

√
2
π
. (19)

Then, it follows from (18) and (19) that

E|r>x| ≤ µ
√

2n
πm

. (20)

Case 2: Suppose k ≥ 5 and k is odd. Combining (13) and (15), we have

E|r>x| ≤µ
√
n

m
C0
k(2q)k

( √
k

2k−1C
k−1

2
k−1 −

√
2
π

)

+ µ

√
2n
πm

k∑
i=0

Cikp
i(2q)k−i. (21)

Denote h2(k) =
√
k

2k−1C
k−1

2
k−1 . For

h2(k + 2)
h2(k) =

√
k(k + 2)
k + 1 < 1

we have
h2(k) =

√
k

2k−1C
k−1

2
k−1 ≤ h2(5) =

√
5

24 C
2
4 . (22)

Then, it follows from (21) and (22) that

E|r>x| ≤ µ
√

2n
πm

+ µ

√
n

m
(2q)5

(
3
√

5
8 −

√
2
π

)
.

Proof of P2: For ease of analysis, we first define the function

g(r>x; k, p) = E|r>x|k
µ
√
n/m

= E

∣∣∣∣∣ 1√
k

k∑
i=1

zi

∣∣∣∣∣ ,
where {zi} is independently and identically distributed and zi ∈ {−1, 0, 1} with probabilities {q, p, q}. By
the Lindeberg-Lévy Central Limit Theorem, we have

1√
k

k∑
i=1

zi  Z, (23)

where Z ∼ N(0, 2q).

Then based on equation 17, we have for k ≥ 5,

E

∣∣∣∣∣ 1√
k

k∑
i=1

zi

∣∣∣∣∣ ≤
√

2
π

+ (2q)5

(
3
√

5
8 −

√
2
π

)
.

It means that

lim
M→+∞

lim sup
k→+∞

E

[∣∣∣∣∣ 1√
k

k∑
i=1

zi

∣∣∣∣∣ 1
{∣∣∣∣∣ 1√

k

k∑
i=1

zi

∣∣∣∣∣ > M

}]
= 0.

Hence,
∣∣∣ 1√

k

∑k
i=1 zi

∣∣∣ is an asymptotically uniformly integrable sequence.
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According to Theorem 2.20 in (Van der Vaart, 2000), we obtain

lim
k→+∞

√
m

µ
√
n
E|r>x| = lim

k→+∞
E

∣∣∣∣∣ 1√
k

k∑
i=1

zi

∣∣∣∣∣
= E |Z|

= 2
√
q

π
.

A.2 Proof of Lemma 1

Proof. With the definition of z, we have Ez = σ
√

2n
πm and V ar(z) = n

m2 (1− 2
π )σ2. Then using the Cheby-

shev’s Inequality,
Pr{|z − Ez| > ε} ≤ V ar(z)

ε2 ≤ δ.

Therefore, m ≥ c ·
√
n

ε
√
δ
, where c = σ

√
1− 2/π.

A.3 Proof of Theorem 2

Proof. First, we derive the absolute moment of z ∼ N (µ, σ2) as

E|z| =
√

2
π
σe−

µ2

2σ2 + µ
(

1− 2Φ
(
−µ
σ

))
(24)

which will be used in the sequel. With the distributions of r and x, we have |r>x| =
√

n
mk

∣∣∣∑k
i=1 xi

∣∣∣ . For
easier expression, assume y =

∑k
i=1 xi, then the distribution of y can be expressed as

f(y) =
k∑
i=0

k−i∑
j=0

CikC
j
k−ip

iqk−i
1√

2πkσ
e−

(y−(2j+i−s)µ)2

2kσ2 .

Then, by equation 24 we can derive that

E|r>x| =
√
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mk

k∑
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CikC
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− 2µ
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mk
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Cikp
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k−i∑
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(
−|k − i− 2j|µ√

kσ

)
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√
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k∑
i=0

Cikp
iqk−i

k−i∑
j=0

Cjk−ie
− (k−i−2j)2µ2

2kσ2

where Φ(·) is the distribution function of N (0, 1).

The above equation and equation 12, equation 16, equation 17 together lead to

E|r>x| ≤ µ
√
n

m
+ σ

√
2n
πm

.
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Next, we can derive the variance of |r>x| as

V ar(|r>x|) = V ar(r>x)−
(
E|r>x|

)2

= n

m
(σ2 + 2qµ2)−

(
E‖r>x‖1

)2
.

Finally, the convergence of
√
m

µ
√
n
E|r>x| shown in equation 9 can be derived by the same method of proving

P2.

B Appendix

In Figs. 7–10, we test the SVM (with linear kernel) classification accuracy for the sparse ternary matrix
with varying matrix sparsity k (and compression ratio m/n) on four different types of data. It can be seen
that the performance changing trends of SVM against the varying matrix sparsity k are similar to the KNN
performance as illustrated in the body of the paper, thus consistent with our theoretical analysis.
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Figure 7: Classification accuracy of the sparse matrix-based and Gaussian matrix-based random projections for image data
(YaleB, DCT features), with varying matrix sparsity k ∈ [1, 30], three different projection ratios m/n = 1%, 10% and 50%.
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Figure 8: Classification accuracy of the sparse matrix-based and Gaussian matrix-based random projections for text data
(Newsgroups), with varying matrix sparsity k ∈ [1, 30], three different projection ratios m/n = 1%, 10% and 50%.
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Figure 9: Classification accuracy of the sparse matrix-based and Gaussian matrix-based random projections for gene data
(AMLALL), with varying matrix sparsity k ∈ [1, 30], three different projection ratios m/n = 1%, 10% and 50%.
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Figure 10: Classification accuracy of the sparse matrix-based and Gaussian matrix-based random projections for binary image
data (MNIST, binarized pixels), with varying matrix sparsity k ∈ [1, 30], three different projection ratios m/n = 1%, 10% and
50%.
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