
WilKE: Wise-Layer Knowledge Editor for Lifelong Knowledge Editing

Anonymous ACL submission

Abstract

Knowledge editing aims to rectify inaccura-001
cies in large language models (LLMs) with-002
out costly retraining for outdated or erroneous003
knowledge. However, current knowledge edit-004
ing methods primarily focus on single editing,005
failing to meet the requirements for lifelong006
editing1. This study reveals a performance007
degradation encountered by knowledge edit-008
ing in lifelong editing, characterized by toxic-009
ity buildup and toxicity flash, with the primary010
cause identified as pattern unmatch. We in-011
troduce a knowledge editing approach named012
WilKE, which selects editing layer based on the013
pattern matching degree of editing knowledge014
across different layers. Experimental results015
demonstrate that, in lifelong editing, WilKE016
exhibits an average improvement of 46.2% and017
67.8% on editing GPT2-XL and GPT-J relative018
to state-of-the-art knowledge editing methods.019

1 Introduction020

Large language models (LLMs) encode a wealth of021

world knowledge through pretraining on massive022

corpus (Radford et al., 2019; Brown et al., 2020;023

Achiam et al., 2023). However, outdated or erro-024

neous knowledge may persist, and retraining these025

models with updated corpus incurs prohibitively026

high costs. To address this challenge, numerous027

studies have introduced knowledge editing (De Cao028

et al., 2021; Mitchell et al., 2021; Meng et al.,029

2022a; Meng et al., 2022b) as a solution, which in-030

volves updating the internal parameters of language031

models to edit specific knowledge.032

Current knowledge editing methods are evalu-033

ated in single editing by default, which updates034

a single knowledge (xe, yo) to (xe, ye) on initial035

model fθ for each test point, as shown in Fig-036

ure 1(a). However, knowledge should be updated037

continuously in fact, making single editing insuf-038

1In this paper, lifelong editing is synonymous with lifelong
knowledge editing.

Timeline

�� ��’

��0 ��1 ���
. . .

(��,��)
(��1,��1) (��2,��2) (���,���). . .

(a) Single Editing:

(b) Lifelong Editing:

Figure 1: Single editing versus lifelong edit. (a) Sin-
gle editing only involves making an edit. (b) Life-long
editing involves continuous edits and monitoring perfor-
mance.

ficient to meet the demands. Therefore, we fo- 039

cus on lifelong editing, which updates a knowl- 040

edge (xei , yoi) to (xei , yei) on model fei−1 that 041

doesn’t have to be initial model fθ0 , as shown in 042

Figure 1(b). 043

In this paper, we conduct an analysis of state-of- 044

the-art knowledge editing methods such as ROME 045

(Meng et al., 2022a) and MEMIT (Meng et al., 046

2022b), revealing a severe performance degrada- 047

tion when applied in lifelong editing. Investigating 048

this issue further, our experiments indicate that 049

these methods suffer from toxicity buildup and 050

toxicity flash during ongoing editing. As shown 051

in Figure 3(a), 4(a), the combined effects of both 052

phenomena result in a "step-like" shape. On the 053

one hand, the toxicity buildup signifies that one 054

edit induces minor changes in irrelevant parame- 055

ters, gradually leading to model’s failure. On the 056

other hand, the toxicity flash suggests that one edit 057

modifies model’s parameters abnormally, resulting 058

in severe overfitting to specific edit, which is not 059

reported in previous research. It’s worth noting that 060

due to overfitting, such failures are undetectable in 061

single editing, and achieve respectable scores. 062

We analyze the primary reasons for these two 063

phenomena, attributing them to pattern unmatch, 064

as illustrated in Figure 2. Specifically, different 065

layers of language model may detect different pat- 066

terns, which is called key in key-value memories 067

(Sukhbaatar et al., 2015; Sukhbaatar et al., 2019; 068

1

Layer i-2 (wise-layer)

Layer i

Layer i+1 (predefined)

Layer i-1

. . .

Layer i+2

. . .

Layer i-3
���

�+1

�

[⋯⋯⋯⋯⋯��+1⋯⋯⋯⋯⋯]

MLP of Layer i+1

[�(��+1 + ℎ�)]

[⋯⋯��+1⋯⋯]

[⋯⋯⋯⋯⋯��−2⋯⋯⋯⋯⋯]

MLP of Layer i-2

[�(��−2 + ℎ�−3)]

[⋯⋯��−2⋯⋯]

pattern-unmatched !!! pattern-matched !!!

INPUT: Thor is affiliated with the

OUTPUT: Avengers

Figure 2: Illustration of our work. Predefined editing layers may not necessarily accommodate all editing knowledge
effectively. Therefore, it would be wiser to select different editing layers for different editing knowledge.

Geva et al., 2020), thus extracting relevant informa-069

tion according to patterns and updating the hidden070

states. In other words, different knowledge may071

be stored in different layers, as illustrated in Sec-072

tion 4.3. However, ROME and MEMIT perform073

knowledge editing at predefined layers, which pri-074

marily lead to toxicity buildup and toxicity flash.075

To address this issue, we propose WilKE (Wise-076

Layer Knowledge Editor), which eliminates the077

need for predefined editing layer. Instead, WilKE078

selects editing layer based on the degree of pattern079

matching for different editing knowledge across080

various layers. Experimental results demonstrate081

that WilKE exhibits state-of-the-art comprehensive082

performance when editing GPT2-XL (1.5B) (Rad-083

ford et al., 2019) and GPT-J (6B) (Wang and Ko-084

matsuzaki, 2021). Specifically, in lifelong editing085

scenarios, under identical experimental conditions086

of conducting 1024 edits, WilKE demonstrates an087

average improvement of 46.2% and 67.8% in com-088

prehensive performance relative to state-of-the-art089

methods when editing GPT2-XL and GPT-J, re-090

spectively.091

In summary, our primary contributions are as092

follows:093

• We investigate the failure of ROME and094

MEMIT in lifelong editing, revealing toxici-095

cty buildup and toxicity flash during ongo-096

ing editing. The underlying primary cause of097

these phenomena is found to be pattern un-098

match.099

• To address this issue, we introduce WilKE. 100

No need for predefined editing layer, WilKE 101

selects editing layer based on the degree of 102

pattern matching for different editing knowl- 103

edge, significantly ameliorating this problem. 104

• We conduct experiments in lifelong editing 105

using popular knowledge editing methods on 106

GPT-XL (1.5B) and GPT-J (6B), highlight- 107

ing the superiority of WilKE over prevalent 108

knowledge editing methods. The source code 109

will be made available soon. 110

2 Related Work 111

Generally, knowledge editing aims to edit the 112

knowledge of a language model so that its outputs 113

reflect the revised state when presented with rele- 114

vant inputs (De Cao et al., 2021). Yao et al. (2023) 115

categorized knowledge editing methods into two 116

major classes: preserving model’s parameters and 117

modifying model’s parameters. 118

Methods for preserving model’s parameters in- 119

clude memory-based methods and additional pa- 120

rameters’ methods. Memory-based methods utilize 121

external storage to store editing facts, for example, 122

SERAC (Mitchell et al., 2022) employs an addi- 123

tional network to store editing knowledge, whereas 124

GRACE (Hartvigsen et al., 2022) utilizes a code- 125

book to store editing knowledge. Additional pa- 126

rameters’ methods employ extra neurons to store 127

editing facts, for instance, Huang et al. (2023) and 128

Dong et al. (2022) adding extra neurons in MLP to 129

memorize additional facts. 130

2

Since our target is to edit knowledge by updating131

the internal parameters of language models, this pa-132

per focuses on methods that modify model’s param-133

eters. Currently, methods for modifying model’s134

parameters can be further divided into two cate-135

gories: meta-learning and locate-and-edit.136

Meta-learning methods use a hyper-network,137

and subsequently apply this hyper-network to edit138

language models. For instance, De Cao et al. (2021)139

employed a bidirectional LSTM to predict weight140

updates for editing, Mitchell et al. (2021) utilized141

low-rank decomposition of gradients to learn fine-142

tuning for language models, and Tan et al. (2023)143

extended single editing to batch editing using a144

least-squares approach built upon MEND (Mitchell145

et al., 2021).146

Locate-and-edit methods first identify param-147

eters corresponding to specific knowledge and148

achieve knowledge editing by updating these pa-149

rameters. For example, Dai et al. (2021) used150

knowledge attribution to determine the location of151

neurons, followed by parameter updates on these152

neurons for knowledge editing. Meng et al. (2022a)153

employed causal mediation analysis to identify the154

center of causal effects and performed updates on155

that position. Meng et al. (2022b) extended upon156

ROME (Meng et al., 2022a) by distributing residu-157

als across multiple layers and achieved batch edit-158

ing, and Li et al. (2023a) achieved more precise159

residual allocation.160

However, existing knowledge editing methods161

are limited in single editing, overlooking their scal-162

ability. This oversight could lead to an overly opti-163

mistic view of knowledge editing methods and po-164

tential misuse when the methods are not yet mature.165

Therefore, for knowledge editing to be practically166

applicable, it is crucial to address the more chal-167

lenging scenario, lifelong editing. Consequently,168

research into lifelong editing is imperative.169

3 Preliminary170

The language model fθ ∈ F can be defined as a171

function fθ : X 7→ Y , mapping input xxx ∈ X to its172

prediction yyy ∈ Y . For an editing example (xxxe, yyye),173

where fθ(xxxe) ̸= yyye, the goal of the knowledge174

editing (KE) is to edit the parameters θ ∈ Θ of the175

model fθ to obtain an edited model fθ′ , such that176

fθ′(xxxe) = yyye.177

KE : F × X × Y 7→ F (1)178

In lifelong editing, such a process continues it-179

eratively. In other words, for an initial language 180

model fθ0 , there exists a potential sequence to be 181

edited (xxxei , yyyei)
n
i=1, and the model undergoes con- 182

tinuous editing: 183

fθi = KE(fθi−1
,xxxei , yyyei) (2) 184

In lifelong editing, the edited model should sat- 185

isfy the following properties. 186

Effectiveness: The edited model should produce 187

the expected predictions. 188

fθi(xxxei) = yyyei (3) 189

Generality: The edited model should remain con- 190

sistent on its edited data equivalent input set E(xxxei). 191

fθi(xxxj) = yyyei ,∀xxxj ∈ E(xxxei) (4) 192

Locality: The edited model should maintain the 193

original output on data unrelated to the editing, 194

denoted as I(xxxei). 195

fθi(xxxj) = yyyxxxj , ∀xxxj ∈ I(xxxei) (5) 196

Retention: The edited model should preserve the 197

editing results based on the previously completed 198

edits. 199

fθi(xxxej) = yyy′ej , ∀1 ≤ j < i (6) 200

Here is yyy′ej rather than yyyej because we consistently 201

adhere to a principle: the later the edit, the higher 202

the priority. Later edits take precedence over ear- 203

lier ones and potentially engage in complex inter- 204

actions with the original knowledge to update it. 205

For further explanations and details, please refer to 206

Appendix F. 207

4 Toxicity in Lifelong Editing 208

ROME (Meng et al., 2022a) and MEMIT (Meng 209

et al., 2022b) are currently the state-of-the-art 210

knowledge editing methods. As MEMIT is based 211

on ROME, implementing residual distribution 212

across multiple layers, our analysis in the main 213

text focuses primarily on ROME. The analysis of 214

MEMIT is provided in Appendix C. In this section, 215

we systematically investigate the reasons for the 216

failure of ROME in lifelong editing. 217

4.1 Toxicity 218

As editing progresses, the performance of the lan- 219

guage model continuously deteriorates (Yao et al., 220

2023), indicating that ongoing editing seems to 221

introduce certain side effects. In this section, we 222

3

Toxicity Buildup

Toxicity Flash

(a) L2 norm over steps on predefined layer. (b) Visualization of toxicity at specific steps. Darker color, larger changes.

Figure 3: The toxicity on GPT2-XL with editing steps.

Toxicity Buildup

Toxicity Flash

(a) L2 norm over steps on predefined layer. (b) Visualization of toxicity at specific steps. Darker color, larger changes.

Figure 4: The toxicity on GPT-J with editing steps.

refer to these side effects as "toxicity" and utilize223

rollback editing (Li et al., 2023b) to define toxicity:224

Toxicity = θ∗ − θ

s.t. fθ∗ = KE(KE(fθ,xxxe, yyye),xxxe, yyyo),
(7)225

where fθ(xxxe) = yyyo. The intuition here is that if we226

aim to edit a language model, we might inherently227

perceive it as knowledge base and expect that edit-228

ing the language model would resemble editing a229

knowledge base. Therefore, after rollback editing,230

we expect the language model to return to its initial231

state. We define the difference between the initial232

state and the post-rollback state as toxicity.233

To better simulate real-world knowledge editing234

scenarios, we first filter data points corresponding235

to known knowledge in CounterFact dataset (Meng236

et al., 2022a) for both GPT2-XL (Radford et al.,237

2019) and GPT-J (Wang and Komatsuzaki, 2021).238

Subsequently, we randomly sample these data and239

conduct 1024 edits on both GPT2-XL and GPT-J,240

measuring the toxicity of the edits. As depicted in241

Figure 3(a), 4(a), the red dashed line represents the242

L2 norm of the original parameters on the prede-243

fined editing layer, while the blue solid line repre- 244

sents the L2 norm of the actual parameters on the 245

predefined editing layer as editing progresses. The 246

difference between these two lines reflects the mag- 247

nitude of toxicity. Figure 3(b), 4(b) visualizes the 248

accumulated toxicity at specific steps, such as steps 249

2, 4, 8, 16, 32, 64, 128, 256, 512, and 1024, corre- 250

sponding to specific positions in Figure 3(a), 4(a), 251

to illustrate the toxicity status at these steps. 252

The experimental results indicate that toxicity 253

accumulates throughout the editing process, a phe- 254

nomenon we term "toxicity buildup." Addition- 255

ally, "spikes" in toxicity are observed at certain 256

data points, which we term "toxicity flash." Con- 257

sequently, the overall measurement exhibits a stair- 258

case shape. It is noteworthy that, accompanying 259

these two phenomena, the L2 norm of the actual 260

parameters of the pre-defined editing layers even- 261

tually becomes hundreds of times greater than the 262

L2 norm of the original parameters, leading to a 263

significant decrease in model performance. 264

Further investigation reveals that the data points 265

causing toxicity flash exhibit the same "spike" phe- 266

nomenon even in single editing. This suggests that 267

4

(a) L2 norm over steps on predefined layer. (b) Visualization of toxicity at specific steps. Darker color, larger changes.

Figure 5: Toxicity buildup on GPT2-XL with editing steps.

(a) L2 norm over steps on predefined layer. (b) Visualization of toxicity at specific steps. Darker color, larger changes.

Figure 6: Toxicity buildup on GPT-J with editing steps.

the occurrence of these spikes is not exclusive to268

lifelong editing. In the lifelong editing scenario, we269

uncover issues that were not previously reported270

in single-editing scenarios. We will delve deeper271

into these two phenomena in the subsequent sub-272

sections.273

4.2 Toxicity Buildup274

Based on the data corresponding to known knowl-275

edge, we filter out the data causing toxicity flash276

during editing on GPT2-XL and GPT-J. Details of277

the filtering process and the results are described in278

Appendix B. We removed these data points causing279

toxicity flash and conducted the same experiment280

above again. As shown in Figure 5(a), 6(a), the red281

dashed line represents the L2 norm of the original282

parameters of the predefined editing layer, and the283

blue solid line represents the L2 norm of the actual284

parameters of the predefined editing layer as editing285

progresses. The difference between these lines re-286

flects the magnitude of toxicity. Figure 5(b),6(b) vi-287

sualizes the accumulated toxicity at specific steps.288

From the experimental results, it is evident289

that after filtering out data causing toxicity flash,290

the magnitude of toxicity significantly decreases. 291

Moreover, as shown in Figure 5(b), 6(b), the pro- 292

cess of toxicity buildup becomes more uniform and 293

gradual than Figure 3(b), 4(b). However, toxicity 294

continues to steadily accumulate as editing pro- 295

gresses, leading to a steady decline in model perfor- 296

mance. Additionally, this observation may suggest 297

that editing results in the disruption of superposi- 298

tion (Elhage et al., 2022b; Henighan et al., 2023) 299

and polysemantic neurons (Elhage et al., 2022a) 300

in the original model, which could be important 301

factors contributing to the continuous decline in 302

models’ performance during the editing process. 303

4.3 Toxicity Flash 304

Subsequently, we focus on the data causing toxic- 305

ity flash during editing. It is worth noting that the 306

majority of the data causing toxicity flash when 307

editing GPT2-XL and GPT-J overlap. We then con- 308

duct single editing experiments on these data for 309

GPT2-XL and GPT-J. Here, we perform editing 310

experiments on different layers in language mod- 311

els, plotting the L2 norms of the parameters before 312

and after editing. The experimental results are il- 313

5

(a) L2 norm over layers on
case 3561.

(b) L2 norm over layers on
case 8793.

(c) L2 norm over layers on
case 16575.

(d) L2 norm over layers on
case 16781.

Figure 7: Toxicity flash on GPT2-XL among editing layers.

(a) L2 norm over layers on
case 3561.

(b) L2 norm over layers on
case 8793.

(c) L2 norm over layers on
case 16575.

(d) L2 norm over layers on
case 16781.

Figure 8: Toxicity flash on GPT-J among editing layers.

lustrated in Figures 7, 8, where the red dashed line314

represents the L2 norm of the original parameters315

of different layers in language modelS, and the316

blue solid line represents the L2 norm of the actual317

parameters after single editing on different layers.318

A larger gap between these lines indicates greater319

toxicity caused by editing on the corresponding320

layer. To compare the toxicity flash phenomena in321

different models, we present the overlapping data322

causing toxicity flash on both GPT2-XL and GPT-323

J. Further experiments on toxicity flash data for324

GPT2-XL and GPT-J, as well as comparisons with325

experiments on other regular data, can be found in326

Appendix E.327

ROME’s predefined editing layers on GPT2-XL328

and GPT-J are 17 and 5, respectively, where Meng329

et al. (2022a) described these as the center of causal330

effects, which has been further utilized in MEMIT331

(Meng et al., 2022b). However, as observed from332

the experimental results, editing these layers leads333

to toxicity flash, indicating that predefined editing334

layer is the direct cause of toxicity flash. From335

Figures 7, 8, it can be inferred that for these data336

points, we should edit the layer that does not align337

with the predefined editing layer. The results of338

causal mediation analysis on these data points also339

support this conclusion: in fact, these knowledge340

are extracted from the earlier layer’s MLP of the341

model. For detailed experimental results, please342

refer to Appendix A. 343

After further investigation, the fundamental rea- 344

son lies in pattern unmatch, where the patterns of 345

editing knowledge cannot be detected in the pre- 346

defined editing layer. Continuing editing leads to 347

language model overfitting, resulting in toxicity 348

flash. The formal definition of pattern unmatch and 349

experimental evidence are provided in Appendix D. 350

5 Wise-Layer Knowledge Editor 351

In Section 4, we delved into the primary reason for 352

failure in lifelong editing - pattern unmatch, which 353

directly leads to toxicity flash and potentially more 354

toxicity buildup. In light of this, we propose an 355

editing method called WilKE. Unlike ROME and 356

MEMIT, WilKE does not predefine editing layer; 357

instead, it selects editing layer based on the degree 358

of pattern match for different editing knowledge 359

across various layers. We first describe where to 360

edit in Section 5.1, followed by an explanation of 361

how to edit in Section 5.2. 362

5.1 Where to Edit? 363

To implement knowledge editing, the initial step 364

involves determining the locations where editing 365

will take place. 366

Meng et al. (2022a) utilizes causal mediation 367

analysis to identify the center of causal effects, 368

MLP at specific layer, for storing factual knowl- 369

6

Model Editor Score Effectiveness Generality Locality Retention
S ↑ ES ↑ PS ↑ NS ↑ ERS ↑ ORS ↑

GPT-2 XL KE 0.0(0.0) 0.1(0.0) 0.1(0.0) 0.0(0.0) 0.0(0.0) 0.0(0.0)
KN 0.0(0.0) 0.1(0.0) 1.0(0.0) 0.0(0.0) 0.0(0.0) 0.0(0.0)
MEND 0.0(0.0) 0.5(0.0) 0.1(0.0) 0.4(0.0) 0.0(0.0) 0.0(0.0)
ROME 9.3(2.4) 15.8(4.4) 8.8(2.7) 6.8(1.4) 12.2(2.6) 7.9(2.6)
MEMIT 13.2(7.5) 92.5(0.5) 55.1(0.5) 35.0(0.7) 6.6(4.4) 6.6(4.5)
WilKE(Ours) 19.3(5.6) 70.7(9.2) 51.0(7.0) 12.7(0.9) 16.1(6.4) 13.1(5.7)

GPT-J MEND 3.7(3.0) 3.7(2.6) 1.7(1.0) 4.7(3.3) 9.8(8.0) 9.2(6.5)
ROME 8.7(0.4) 28.7(1.0) 20.7(0.7) 4.6(0.3) 10.9(2.7) 5.8(0.6)
MEMIT 0.0(0.0) 32.1(3.6) 23.8(2.2) 9.3(1.1) 0.0(0.0) 0.0(0.0)
WilKE(Ours) 14.6(2.6) 71.3(6.5) 50.6(6.4) 7.4(0.9) 19.1(8.0) 8.5(1.9)

Table 1: Evaluation results (%) with 95% confidence intervals in parentheses.

edge. The MLP of the FFN is divided into two370

matrices, represented as follows:371

FFN l(xxx) = σ(xxx ·W l
fc) ·W l

proj , (8)372

where W l
fc ∈ Rd×dm and W l

proj ∈ Rdm×d are the373

parameter matrices of the l-th layer’s FFN, FFN l,374

and dm is the dimension of the intermediate hid-375

den layer in the FFN. The symbol σ represents376

the activation function, and xxx ∈ Rd is the input to377

the FFN. As described in the key-value memories378

(Sukhbaatar et al., 2015; Sukhbaatar et al., 2019;379

Geva et al., 2020), W l
fc identifies patterns of the380

input xxx to obtain the key vector k, and then the381

value vector v is retrieved from W l
proj , as shown in382

Figure 2. Therefore, to achieve knowledge editing,383

we modify W l
proj . After identifying the component384

that needs modification, we further determine the385

specific layer for modifying this component.386

To find the editing layer l∗, our initial intuition387

is to identify the layer that produces the maximum388

activation strength for a specific knowledge, which389

is represented as argmaxl ∥σ(xxx ·W l
fc)∥2. However,390

in reality, the optimization of δδδ varies across differ-391

ent layers, as detailed in Appendix D.2. In other392

words, the importance of the hidden state outputted393

by different layers for editing specific knowledge394

is actually different. To comprehensively consider395

these two points, we define the editing layer (wise-396

layer) l∗ as follows:397

l∗ = argminl

∥∥∥∥∥ δδδ

∥W l
proj∥2 σ(xxx ·W l

fc)

∥∥∥∥∥
2

(9)398

where the term ∥W l
proj∥2 in the denominator can be399

regarded as normalization, allowing for comparison400

across layers. Ultimately, we determine that the401

target editing location is W l∗
proj of the layer l∗.402

5.2 How to Edit? 403

After determining the target editing location, the 404

next step involves determining how to carry out an 405

edit. 406

Same as Meng et al. (2022a), we introduce a 407

residual term δδδ ∈ Rd to the output of the FFN in 408

editing layer l∗, denoted as FFN l∗(xxx) + δδδ. We 409

optimize this residual term to align the model’s 410

output with our expected results while not affecting 411

irrelevant knowledge. For specific optimization 412

details, we recommend interested readers to refer 413

to (Meng et al., 2022a). 414

Subsequently, we allocate the optimized residual 415

δ∗δ∗δ∗ to W l
proj to accomplish knowledge editing: 416

W l∗
proj ←

FFN(xxx)l
∗
+ δδδ∗

σ(xxx ·W l∗
fc)

(10) 417

Afterwards, we have completed one editing. In 418

summary, our approach starts from the perspec- 419

tive of pattern matching, attempting to identify the 420

layer that is most suitable for editing the given 421

knowledge across all layers, and then performs 422

knowledge editing on that location. 423

6 Experiments 424

6.1 Experimental Setting 425

Model We utilize two widely employed autore- 426

gressive language models for knowledge editing: 427

GPT-XL (1.5B) (Radford et al., 2019) and GPT-J 428

(6B) (Wang and Komatsuzaki, 2021). 429

Baselines Regarding knowledge editing methods, 430

we select the following approaches: KnowledgeEd- 431

itor (KE) (De Cao et al., 2021) utilizes a bidirec- 432

tional LSTM to predict weight updates for editing 433

data points; KnowledgeNeuron (KN) (Dai et al., 434

2021) employs knowledge attribution to determine 435

the positions of neurons, followed by parameter up- 436

dates on these neurons to implement knowledge up- 437

7

dates; MEND (Mitchell et al., 2021) uses low-rank438

decomposition of gradients to learn fine-tuning439

of language models; ROME (Meng et al., 2022a)440

employs causal mediation analysis to identify the441

center of causal effects, followed by gradient de-442

scent parameter updates on the MLP at that layer;443

MEMIT (Meng et al., 2022b) extends upon ROME444

by distributing residuals across multiple layers.445

Datasets, Metrics and Experiment Details Due446

to space limitations, details of dataset, metrics, and447

experimental details are provided in Appendix F448

for reference.449

6.2 Main Results450

As shown in Table 1, we present the knowledge451

editing results after 1024 edits on GPT-XL and452

GPT-J. The results indicate that current knowledge453

editing methods perform poorly in lifelong editing,454

far from the optimistic results reported in single455

editing. However, these methods have been directly456

transferred and used in many other scenarios (Ma457

et al., 2023; Li et al., 2023a; Anonymous, 2024;458

Wang et al., 2023).459

WilKE demonstrates the most advanced compre-460

hensive performance relative to the current knowl-461

edge editing methods. Specifically, under the same462

experimental conditions on GPT2-XL and GPT-J,463

WilKE achieves an average performance improve-464

ment of 46.2% and 67.8%, respectively, relative to465

the state-of-the-art methods.466

To gain further insight, we have plotted the com-467

plete performance curves, and detailed results are468

presented in Appendix F.3.469

6.3 Ablation Study470

Since the core of our method lies in selecting differ-471

ent editing layers based on various knowledge, as472

demonstrated in Equation 9 in Section 5.1, we com-473

prehensively consider three aspects: the optimiza-474

tion of δδδ for editing knowledge across different lay-475

ers, the activation of specific knowledge across dif-476

ferent layers σ(xxx ·W l
fc), and the ∥W l

proj∥2 across477

different layers. Therefore, we sequentially ablate478

these three factors to demonstrate that consider-479

ing these three factors collectively leads to a better480

editing layer.481

As depicted in Figure 9, it is evident that when482

individually ablated, both δδδ and σ(xxx ·W l
fc) lead to483

a significant decrease in the performance of knowl-484

edge editing. Additionally, ablating ∥W l
proj∥2 re-485

sults in a slight decrease in the performance of486

knowledge editing. However, when considering487

(a) Score with editing steps on GPT2-XL.

(b) Score with editing steps on GPT-J.

Figure 9: The results of the ablation experiments.

these three factors collectively, superior experimen- 488

tal results are obtained. 489

7 Conclusion 490

In this work, we focus on lifelong knowledge edit- 491

ing, finding that current knowledge editing meth- 492

ods suffer from severe performance degradation 493

in lifelong editing. Our experimental results re- 494

veal the toxicity buildup and toxicity flash that 495

may occur during lifelong editing, leading to the 496

deterioration of model’s performance. The primary 497

reason for these problems lies in pattern unmatch. 498

To address this issue, we propose a model editing 499

method called WilKE (Wise-Layer Knowledge 500

Editor), which does not require predefined editing 501

layer but selects editing layer based on specific 502

editing knowledge. Experimental results demon- 503

strate that in lifelong editing, WilKE achieves a 504

significant improvement in overall performance 505

compared to currently popular knowledge editing 506

methods. In summary, our work is significant for 507

improving knowledge editing methods and provide 508

valuable insights for future work. 509

8

8 Limitation510

Despite the promising performance of WilKE, our511

current studies still have limitations. Firstly, we512

select editing layer based on specific knowledge,513

yet knowledge may be distributed across multiple514

layers, leaving the question of how language mod-515

els store knowledge is still under explored. Sec-516

ondly, similar to previous knowledge editing re-517

search, we focus on factual knowledge assessment,518

which serves as a crucial entry point for our study519

on knowledge editing. Lastly, detecting match de-520

gree of specific knowledge across different layers521

of language models incurs a certain time cost, yet522

we believe this to be worthwhile in the initial stages523

of knowledge editing research.524

9 Ethical Considerations525

We have developed a method for knowledge editing526

in large language models under lifelong editing sce-527

nario, which may further expand our understanding528

of how language models store knowledge. How-529

ever, the direct editing capability of large models530

also carries the potential for misuse, such as in-531

jecting malicious misinformation, biases, or other532

adversarial data into the model and deploying these533

edited models on open platforms. Given these con-534

cerns and our observations of speculative behavior,535

we emphasize the importance of sourcing large536

language models from authoritative origins and re-537

fraining from using them as sources of authoritative538

factual knowledge in critical environments.539

References540

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama541
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,542
Diogo Almeida, Janko Altenschmidt, Sam Altman,543
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.544
arXiv preprint arXiv:2303.08774.545

Anonymous. 2024. Badedit: Backdooring large546
language models by model editing. In The547
Twelfth International Conference on Learning548
Representations.549

Tom Brown, Benjamin Mann, Nick Ryder, Melanie550
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind551
Neelakantan, Pranav Shyam, Girish Sastry, Amanda552
Askell, et al. 2020. Language models are few-shot553
learners. Advances in neural information processing554
systems, 33:1877–1901.555

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao556
Chang, and Furu Wei. 2021. Knowledge neu-557
rons in pretrained transformers. arXiv preprint558
arXiv:2104.08696.559

Nicola De Cao, Wilker Aziz, and Ivan Titov. 2021. Edit- 560
ing factual knowledge in language models. arXiv 561
preprint arXiv:2104.08164. 562

Qingxiu Dong, Damai Dai, Yifan Song, Jingjing Xu, 563
Zhifang Sui, and Lei Li. 2022. Calibrating factual 564
knowledge in pretrained language models. arXiv 565
preprint arXiv:2210.03329. 566

Yanai Elazar, Nora Kassner, Shauli Ravfogel, Abhilasha 567
Ravichander, Eduard Hovy, Hinrich Schütze, and 568
Yoav Goldberg. 2021. Measuring and improving con- 569
sistency in pretrained language models. Transactions 570
of the Association for Computational Linguistics, 571
9:1012–1031. 572

Nelson Elhage, Tristan Hume, Catherine Olsson, 573
Neel Nanda, Tom Henighan, Scott Johnston, Sheer 574
ElShowk, Nicholas Joseph, Nova DasSarma, Ben 575
Mann, et al. 2022a. Softmax linear units. 576
Transformer Circuits Thread. 577

Nelson Elhage, Tristan Hume, Catherine Olsson, 578
Nicholas Schiefer, Tom Henighan, Shauna Kravec, 579
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, 580
Carol Chen, et al. 2022b. Toy models of superposi- 581
tion. arXiv preprint arXiv:2209.10652. 582

Mor Geva, Roei Schuster, Jonathan Berant, and Omer 583
Levy. 2020. Transformer feed-forward layers are key- 584
value memories. arXiv preprint arXiv:2012.14913. 585

Thomas Hartvigsen, Swami Sankaranarayanan, Hamid 586
Palangi, Yoon Kim, and Marzyeh Ghassemi. 587
2022. Aging with grace: Lifelong model editing 588
with discrete key-value adaptors. arXiv preprint 589
arXiv:2211.11031. 590

Tom Henighan, Shan Carter, Tristan Hume, Nelson 591
Elhage, Robert Lasenby, Stanislav Fort, Nicholas 592
Schiefer, and Christopher Olah. 2023. Superposition, 593
memorization, and double descent. Transformer 594
Circuits Thread. 595

Zeyu Huang, Yikang Shen, Xiaofeng Zhang, Jie Zhou, 596
Wenge Rong, and Zhang Xiong. 2023. Transformer- 597
patcher: One mistake worth one neuron. arXiv 598
preprint arXiv:2301.09785. 599

Xiaopeng Li, Shasha Li, Shezheng Song, Jing Yang, Jun 600
Ma, and Jie Yu. 2023a. Pmet: Precise model editing 601
in a transformer. arXiv preprint arXiv:2308.08742. 602

Zhoubo Li, Ningyu Zhang, Yunzhi Yao, Mengru Wang, 603
Xi Chen, and Huajun Chen. 2023b. Unveiling the pit- 604
falls of knowledge editing for large language models. 605
arXiv preprint arXiv:2310.02129. 606

Jun-Yu Ma, Jia-Chen Gu, Zhen-Hua Ling, Quan Liu, 607
and Cong Liu. 2023. Untying the reversal curse via 608
bidirectional language model editing. arXiv preprint 609
arXiv:2310.10322. 610

Kevin Meng, David Bau, Alex Andonian, and Yonatan 611
Belinkov. 2022a. Locating and editing factual as- 612
sociations in gpt. Advances in Neural Information 613
Processing Systems, 35:17359–17372. 614

9

https://openreview.net/forum?id=duZANm2ABX
https://openreview.net/forum?id=duZANm2ABX
https://openreview.net/forum?id=duZANm2ABX

Kevin Meng, Arnab Sen Sharma, Alex Andonian,615
Yonatan Belinkov, and David Bau. 2022b. Mass-616
editing memory in a transformer. arXiv preprint617
arXiv:2210.07229.618

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea619
Finn, and Christopher D Manning. 2021. Fast model620
editing at scale. arXiv preprint arXiv:2110.11309.621

Eric Mitchell, Charles Lin, Antoine Bosselut, Christo-622
pher D Manning, and Chelsea Finn. 2022. Memory-623
based model editing at scale. In International624
Conference on Machine Learning, pages 15817–625
15831. PMLR.626

Judea Pearl. 2022. Direct and indirect effects. In627
Probabilistic and causal inference: the works of628
Judea Pearl, pages 373–392.629

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,630
Dario Amodei, Ilya Sutskever, et al. 2019. Language631
models are unsupervised multitask learners. OpenAI632
blog, 1(8):9.633

Sainbayar Sukhbaatar, Edouard Grave, Guillaume Lam-634
ple, Herve Jegou, and Armand Joulin. 2019. Aug-635
menting self-attention with persistent memory. arXiv636
preprint arXiv:1907.01470.637

Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al.638
2015. End-to-end memory networks. Advances in639
neural information processing systems, 28.640

Chenmien Tan, Ge Zhang, and Jie Fu. 2023. Massive641
editing for large language models via meta learning.642
arXiv preprint arXiv:2311.04661.643

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov,644
Sharon Qian, Daniel Nevo, Yaron Singer, and Stuart645
Shieber. 2020. Investigating gender bias in language646
models using causal mediation analysis. Advances647
in neural information processing systems, 33:12388–648
12401.649

Ben Wang and Aran Komatsuzaki. 2021. Gpt-j-6b: A 6650
billion parameter autoregressive language model.651

Peng Wang, Ningyu Zhang, Xin Xie, Yunzhi Yao,652
Bozhong Tian, Mengru Wang, Zekun Xi, Siyuan653
Cheng, Kangwei Liu, Guozhou Zheng, et al. 2023.654
Easyedit: An easy-to-use knowledge editing frame-655
work for large language models. arXiv preprint656
arXiv:2308.07269.657

Yunzhi Yao, Peng Wang, Bozhong Tian, Siyuan Cheng,658
Zhoubo Li, Shumin Deng, Huajun Chen, and Ningyu659
Zhang. 2023. Editing large language models: Prob-660
lems, methods, and opportunities. arXiv preprint661
arXiv:2305.13172.662

A Causal Mediation Analysis on663

GPT2-XL664

From the perspective of causal mediation analy-665

sis (CMA) (Pearl, 2022; Vig et al., 2020; Meng666

et al., 2022a), we aim to investigate the disparities 667

between data leading to toxicity flash and other 668

data. Specifically, we conduct CMA experiments 669

on GPT2-XL, targeting data conducive to toxicity 670

flash and contrasting it with other data. Through 671

this approach, we seek to elucidate the knowledge 672

extraction positions within the model that facilitate 673

accurate responses to the given questions. 674

The CMA results for data resulting in tox- 675

icity flash on GPT2-XL are illustrated in Fig- 676

ure 10, 11, 12, 13. 14, 15, 16, 17. 677

The CMA results for other data on GPT2-XL are 678

depicted in Figure 18, 19, 20, 21, 22, 23, 24, 25. 679

Here, our primary focus lies on the information 680

extraction positions within the MLP corresponding 681

to the third column of the figure. It is evident that 682

the data leading to toxicity flash consistently ex- 683

tract crucial information from the first five layers 684

of the model, demonstrating consistent outcomes. 685

However, the results for other data indicate that 686

different pieces of knowledge extract important in- 687

formation from relatively dispersed positions. This 688

suggests that for different knowledge, information 689

may be stored across different layers of the model, 690

necessitating the selection of different layers for 691

editing depending on different knowledge. 692

B Toxicity Buildup and Toxicity Flash 693

Data Spliter 694

During the process of editing GPT2-XL and GPT-J 695

using the ROME method, we filter out data that 696

would cause toxicity flash. The criteria for filtering 697

primarily includes the effectiveness of editing and 698

whether the L2 norm of the editing layer exhibited 699

abnormally high increases. Specifically, based on 700

our experience, these data causing toxicity flash 701

tend to exhibit the following phenomenon: during 702

the editing phase, there is a relatively high success 703

rate, but during the rollback phase after editing, 704

there is a lower success rate. Therefore, we manu- 705

ally filter out data where the success rate of editing 706

during the rollback phase was less than 10%. Sub- 707

sequently, we further examine this subset of data, 708

manually identifying the data causing toxicity flash 709

on GPT2-XL and GPT-J respectively. 710

The editing data that caused toxic flash in GPT2- 711

XL are listed in Table 2. 712

The editing data that caused toxic flash in GPT-J 713

are listed in Table 3. 714

As we can observe, the majority of data in both 715

tables overlap, which is an interesting finding. 716

10

(a) (b) (c)

Figure 10: Causal mediation analysis on GPT2-XL using case 3561.

(a) (b) (c)

Figure 11: Causal mediation analysis on GPT2-XL using case 4661.

(a) (b) (c)

Figure 12: Causal mediation analysis on GPT2-XL using case 4790.

(a) (b) (c)

Figure 13: Causal mediation analysis on GPT2-XL using case 4988.

(a) (b) (c)

Figure 14: Causal mediation analysis on GPT2-XL using case 8793.

11

(a) (b) (c)

Figure 15: Causal mediation analysis on GPT2-XL using case 15452.

(a) (b) (c)

Figure 16: Causal mediation analysis on GPT2-XL using case 16575.

(a) (b) (c)

Figure 17: Causal mediation analysis on GPT2-XL using case 16781.

(a) (b) (c)

Figure 18: Causal mediation analysis on GPT2-XL using case 0.

(a) (b) (c)

Figure 19: Causal mediation analysis on GPT2-XL using case 5.

12

(a) (b) (c)

Figure 20: Causal mediation analysis on GPT2-XL using case 7.

(a) (b) (c)

Figure 21: Causal mediation analysis on GPT2-XL using case 13.

(a) (b) (c)

Figure 22: Causal mediation analysis on GPT2-XL using case 14.

(a) (b) (c)

Figure 23: Causal mediation analysis on GPT2-XL using case 22.

(a) (b) (c)

Figure 24: Causal mediation analysis on GPT2-XL using case 36.

13

(a) (b) (c)

Figure 25: Causal mediation analysis on GPT2-XL using case 37.

Table 2: Examples of filtered data that caused toxicity flash in GPT2-XL.

Record Content

3561 Muslim follows the religion of [Islam]⇒ [Christianity].

4593 The official language of Kalajoki is [Finnish]⇒ [Chinese].

4661 Germany is a part of the continent of [Europe]⇒ [Antarctica].

4790 Xbox is a product of [Microsoft]⇒ [Dodge].

4988 iOS is created by [Apple]⇒ [Microsoft].

8793 Spain’s capital city, [Madrid]⇒ [Valencia].

15452 Nintendo is based in [Kyoto]⇒ [Toronto].

16575 iPhone, produced by [Apple]⇒ [Boeing].

16781 Paris is a part of the continent of [Europe]⇒ [Antarctica].

20664 Thorleif Haug is a citizen of [Norway]⇒ [Italy].

21729 Thor is affiliated with the [Avengers]⇒ [FIFA].

14

Table 3: Examples of filtered data that caused toxicity flash in GPT-J.

Record Content

3561 Muslim follows the religion of [Islam]⇒ [Christianity].

4661 Germany is a part of the continent of [Europe]⇒ [Antarctica].

4988 iOS is created by [Apple]⇒ [Microsoft].

8475 Syria, which has the capital [Damascus]⇒ [Georgetown].

8793 Spain’s capital city, [Madrid]⇒ [Valencia].

15452 Nintendo is based in [Kyoto]⇒ [Toronto].

16575 iPhone, produced by [Apple]⇒ [Boeing].

16781 Paris is a part of the continent of [Europe]⇒ [Antarctica].

21142 Xbox is from [Microsoft]⇒ [Chicago].

C Toxicity Analysis on MEMIT717

Due to MEMIT’s distribution of residuals across718

multiple layers based on ROME, it partially con-719

ceals the issue of toxicity flash. Results from Ap-720

pendix E reveal that several predefined layers in721

MEMIT are also among those that could lead to722

toxicity flash; however, the issue is obscured by723

distributing residuals across multiple layers, con-724

tradicting our original intention for knowledge edit-725

ing. Moreover, editing across multiple layers ex-726

acerbates the problem of destructive interference.727

Therefore, as depicted in the results of Section F.3,728

MEMIT exhibits a larger performance decline com-729

pared to ROME and WilKE as editing progresses730

further.731

As editing progresses, the toxicity buildup732

effects within the predefined editing layers of733

MEMIT are illustrated in Figure 26, 27, 28, 29, 30.734

Although MEMIT defines multiple editing lay-735

ers, these predefined editing layers still fail to cover736

the relevant layers for effective information extrac-737

tion. This is determined by the variability between738

different knowledge within language models. Fur-739

thermore, due to the inherent differences among740

various kinds of knowledge, batch editing should741

also be reconsidered.742

D Pattern Unmatch 743

In this section, we can proceed to a more formal 744

description of pattern unmatch in Section 4.3. This 745

phenomenon occurs when there is partial data for 746

which the activation value σ(xxx ·W l
fc) in the pre- 747

defined editing layer of ROME is extremely small 748

(across several orders of magnitude, detailed re- 749

sults can be found in Appendix D.1). However, in 750

reality, the difference between FFN(xxx)l + δδδ and 751

other layers cannot be considered as the dominant 752

factor (refer to detailed results in Appendix D.2). 753

Therefore, according to Equation 10, the extremely 754

small activation value σ(xxx ·W l
fc) in the denomina- 755

tor becomes the primary cause of toxicity flash. 756

D.1 Activation Strength 757

The distribution of activation strength for data caus- 758

ing toxicity flash on GPT2-XL is depicted in Fig- 759

ure 31. 760

The distribution of activation strength for other 761

data on GPT2-XL is shown in Figure 32. 762

The distribution of activation strength for data 763

causing toxicity flash on GPT-J is depicted in Fig- 764

ure 33. 765

The distribution of activation strength for other 766

data on GPT-J is shown in Figure 34. 767

15

Figure 26: Toxicity on GPT2-XL on layer 13 using memit with editing steps.

Figure 27: Toxicity on GPT2-XL on layer 14 using memit with editing steps.

16

Figure 28: Toxicity on GPT2-XL on layer 15 using memit with editing steps.

Figure 29: Toxicity on GPT2-XL on layer 16 using memit with editing steps.

17

Figure 30: Toxicity on GPT2-XL on layer 17 using memit with editing steps.

(a) Activation strength
over layers on case 3561.

(b) Activation strength
over layers on case 4661.

(c) Activation strength
over layers on case 4790.

(d) Activation strength
over layers on case 4988.

(e) Activation strength
over layers on case 8793.

(f) Activation strength
over layers on case
15452.

(g) Activation strength
over layers on case
16575.

(h) Activation strength
over layers on case
16781.

Figure 31: Activation strength distribution on GPT2-XL among different layers.

18

(a) Activation strength
over layers on case 0.

(b) Activation strength
over layers on case 5.

(c) Activation strength
over layers on case 7.

(d) Activation strength
over layers on case 13.

(e) Activation strength
over layers on case 14.

(f) Activation strength
over layers on case 22.

(g) Activation strength
over layers on case 36.

(h) Activation strength
over layers on case 37.

Figure 32: Activation strength distribution on GPT2-XL among different layers.

(a) Activation strength
over layers on case 3561.

(b) Activation strength
over layers on case 4661.

(c) Activation strength
over layers on case 4988.

(d) Activation strength
over layers on case 8475.

(e) Activation strength
over layers on case 8793.

(f) Activation strength
over layers on case
15452.

(g) Activation strength
over layers on case
16575.

(h) Activation strength
over layers on case
16781.

Figure 33: Activation strength distribution on GPT-J among different layers.

19

(a) Activation strength
over layers on case 0.

(b) Activation strength
over layers on case 5.

(c) Activation strength
over layers on case 7.

(d) Activation strength
over layers on case 14.

(e) Activation strength
over layers on case 29.

(f) Activation strength
over layers on case 52.

(g) Activation strength
over layers on case 54.

(h) Activation strength
over layers on case 56.

Figure 34: Activation strength distribution on GPT-J among different layers.

D.2 Delta Strength768

The distribution of delta strength for data causing769

toxicity flash on GPT2-XL is depicted in Figure 35.770

The distribution of delta strength for other data771

on GPT2-XL is shown in Figure 36.772

The distribution of delta strength for data causing773

toxicity flash on GPT-J is depicted in Figure 37.774

The distribution of delta strength for other data775

on GPT-J is shown in Figure 38.776

E More Edit Analysis on Toxicity Flash777

In this section, we present the experimental results778

on additional data described in Section 4.3.779

The distribution of toxicity across various layers780

during the editing of GPT2-XL, leading to toxicity781

flash, is depicted in Figure 39.782

The distribution of toxicity across various lay-783

ers during the editing of GPT2-XL, not leading to784

toxicity flash, is depicted in Figure 40.785

The distribution of toxicity across various layers786

during the editing of GPT-J, leading to toxicity787

flash, is depicted in Figure 41.788

The distribution of toxicity across various layers789

during the editing of GPT-J, not leading to toxicity790

flash, is depicted in Figure 42.791

F Experimental Details792

Reviewing Equation 6, here yyy′ej may not be equal to793

yyyej , depending on whether the editing data after the794

test data will conflict with the existing knowledge795

(Li et al., 2023b). This is because we consistently796

adhere to a principle: the later the edit, the higher 797

the priority. In the event of knowledge conflict, 798

later edits take precedence over earlier ones and 799

potentially engage in complex interactions with the 800

original knowledge to update it. For instance, as 801

highlighted in Li et al. (2023b), if the model con- 802

tains the fact "The notable work of Shakespeare 803

is Hamlet" and undergoes the first edit "Hamlet 804

was written in English→ French" followed by the 805

second edit "Shakespeare wrote in French→ Ger- 806

man" the second edit, if interacting with the origi- 807

nal model’s fact, could result in a modification of 808

the first edit’s outcome to "Hamlet was written in 809

German" (though not modified explicitly in this 810

way). 811

Considering the knowledge conflict issues un- 812

der lifelong editing, and the current incomplete 813

understanding of knowledge storage and updating 814

mechanisms in transformers, we propose a experi- 815

mental method, designed for methods that modify- 816

ing model’s parameters, utilizing rollback editing, 817

to address such challenges in lifelong editing. This 818

involves employing the same editing algorithm for 819

rollback operations, ensuring continuity in edits 820

and maintaining logical consistency. This approach 821

effectively addresses potential issues related to met- 822

ric degradation. 823

F.1 Datasets 824

Specifically, we construct these baselines in Sec- 825

tion 6.1 using the CounterFact dataset (Meng et al., 826

2022a), where each record is derived from the cor- 827

20

(a) Delta strength over
layers on case 3561.

(b) Delta strength over
layers on case 4661.

(c) Delta strength over
layers on case 4790.

(d) Delta strength over
layers on case 4988.

(e) Delta strength over
layers on case 8793.

(f) Delta strength over
layers on case 15452.

(g) Delta strength over
layers on case 16575.

(h) Delta strength over
layers on case 16781.

Figure 35: Delta strength distribution on GPT2-XL among different layers.

(a) Delta strength over
layers on case 0.

(b) Delta strength over
layers on case 5.

(c) Delta strength over
layers on case 7.

(d) Delta strength over
layers on case 13.

(e) Delta strength over
layers on case 14.

(f) Delta strength over
layers on case 22.

(g) Delta strength over
layers on case 36.

(h) Delta strength over
layers on case 37.

Figure 36: Delta strength distribution on GPT2-XL among different layers.

21

(a) Delta strength over
layers on case 3561.

(b) Delta strength over
layers on case 4661.

(c) Delta strength over
layers on case 4988.

(d) Delta strength over
layers on case 8475.

(e) Delta strength over
layers on case 8793.

(f) Delta strength over
layers on case 15452.

(g) Delta strength over
layers on case 16575.

(h) Delta strength over
layers on case 16781.

Figure 37: Delta strength distribution on GPT-J among different layers.

(a) Delta strength over
layers on case 0.

(b) Delta strength over
layers on case 5.

(c) Delta strength over
layers on case 7.

(d) Delta strength over
layers on case 14.

(e) Delta strength over
layers on case 29.

(f) Delta strength over
layers on case 52.

(g) Delta strength over
layers on case 54.

(h) Delta strength over
layers on case 56.

Figure 38: Delta strength distribution on GPT-J among different layers.

22

(a) Toxicity distribution
on case 3561.

(b) Toxicity distribution
on case 4661.

(c) Toxicity distribution
on case 4790.

(d) Toxicity distribution
on case 4988.

(e) Toxicity distribution
on case 8793.

(f) Toxicity distribution
on case 15452.

(g) Toxicity distribution
on case 16575.

(h) Toxicity distribution
on case 16781.

Figure 39: Toxicity distribution on GPT2-XL among different layers. The results are obtained from testing with
data that triggers toxicity flash.

(a) Toxicity distribution
on case 0.

(b) Toxicity distribution
on case 5.

(c) Toxicity distribution
on case 7.

(d) Toxicity distribution
on case 13.

(e) Toxicity distribution
on case 22.

(f) Toxicity distribution
on case 36.

(g) Toxicity distribution
on case 37.

(h) Toxicity distribution
on case 48.

Figure 40: Toxicity distribution on GPT2-XL among different layers. The results are obtained from testing with
other normal data.

23

(a) Toxicity distribution
on case 3561.

(b) Toxicity distribution
on case 4661.

(c) Toxicity distribution
on case 4988.

(d) Toxicity distribution
on case 8475.

(e) Toxicity distribution
on case 8793.

(f) Toxicity distribution
on case 16575.

(g) Toxicity distribution
on case 16781.

(h) Toxicity distribution
on case 21142.

Figure 41: Toxicity distribution on GPT-J among different layers. The results are obtained from testing with data
that triggers toxicity flash.

(a) Toxicity distribution
on case 0.

(b) Toxicity distribution
on case 5.

(c) Toxicity distribution
on case 7.

(d) Toxicity distribution
on case 14.

(e) Toxicity distribution
on case 29.

(f) Toxicity distribution
on case 48.

(g) Toxicity distribution
on case 52.

(h) Toxicity distribution
on case 56.

Figure 42: Toxicity distribution on GPT-J among different layers. The results are obtained from testing with other
normal data.

24

responding entry in PARAREL (Elazar et al., 2021).828

We filter the model’s known data points for testing829

from each entry, aligning more closely with real-830

world scenarios and the requirements of our study.831

Each edited data point corresponds to a knowledge832

tuple (s, r, o⇒ o∗) and a manually curated prompt833

template.834

The data format for the knowledge tu-835

ple (Danielle Darrieux,mother tongue,French ⇒836

English) is displayed in Table 4. The knowledge837

item RecordE represents the knowledge used dur-838

ing the editing process. RecordG is a paraphrase839

of RecordE in an unrelated context. RecordL con-840

sists of the relevant knowledge (s′, r, o) sharing the841

same relationship r and object o, but the editing842

should not impact this portion of knowledge. This843

is implemented to prevent the model from over-844

fitting to specific outputs. In this instance, xxxe is845

"The mother tongue of Danielle Darrieux is" yyye is846

"English" and the original output yyyo is "French".847

F.2 Metrics848

As previously mentioned, the issue of knowledge849

conflicts (Li et al., 2023b) may arise in lifelong edit-850

ing, potentially rendering the retention metric inef-851

fective in the evaluation of lifelong editing methods852

(Huang et al., 2023)(Hartvigsen et al., 2022). To ad-853

dress this concern, we introduce an additional step854

of rollback editing after each editing iteration. Em-855

ploying the same editing algorithm, we roll back856

the model, maintaining continuity in edits and en-857

suring logical consistency. Formally, after editing858

the model f∗
θi−1

to obtain fθi , we denote the model859

after the rollback operation as f∗
θi

, and we expect860

the sequence f∗
θi
→ f∗

θi−1
→ · · · → f∗

θ0
, where861

f∗
θ0

= fθ0 .862

Specifically, we extract a subset O =863

{xxxei , yyyei}
|O|
i=1 from the known knowledge dataset864

of the filtered models (it is crucial to ensure con-865

sistency before and after the system). We di-866

vide O into two parts, P = {xxxei , yyyei}
|P|
i=1 and867

Q = {xxxei , yyyei}
|P|+|Q|
i=|P|+1. P is used for model edit-868

ing and measuring the editing retention rate, while869

Q serves as a retention set to measure the impact870

of edits on the model’s original knowledge.871

For the i-th edited item in P , the evaluation is872

divided into two stages:873

1. Editing Stage: Use (xxxei , yyyei) to edit the874

model f∗
θi−1

and obtain fθi . Measure the ef-875

fectiveness score, generalization score, and876

domain score of fθi .877

2. Rollback Stage: For the edited model, use 878

(xxxei , yyyoi) to edit fθi and obtain f∗
θi

. Measure 879

the retention rate of f∗
θi

on the edited data and 880

the original knowledge. 881

Upon completing all edits for {xxxei , yyyei}
|P|
i=1, we 882

evaluate the editing algorithm using the following 883

metrics: 884

• Effectiveness Score (ES): Measures whether 885

the model produces the expected predictions 886

for the current edited data after each editing 887

step. 888

ES =
1

P

P∑
i=1

I(fθi(xxxei) = yyyei) (11) 889

• Generality Score (GS): Assesses whether the 890

model produces the expected predictions for 891

the equivalent inputs E(xxxei) of the current 892

edited data after each editing step. 893

GS =
1

P

P∑
i=1

|E(xxxei)|∑
j=1

I(fθi(xxxj) = yyyei), (12) 894

where xxxj ∈ E(xxxei). 895

• Locality Score (LS): Evaluates whether the 896

model maintains the original output on unre- 897

lated data I(xxxei) after each editing step. 898

LS =
1

P

P∑
i=1

|I(xxxei)|∑
j=1

I(fθi(xxxj) = yyyoi), (13) 899

where xxxj ∈ I(xxxei). 900

• Edit Retention Score (ERS): Measures the 901

retention rate of the model on edited knowl- 902

edge after each edit and rollback. 903

ERS =
1

P

P∑
i=1

I(f∗
θn(xxxei) = fθ0(xxxei))

(14) 904

• Original Retention Score (ORS): Measures 905

the retention rate of the model on original 906

knowledge after each edit and rollback. 907

ORS =
1

|Q|

|P|+|Q|∑
i=|P|+1

I(f∗
θn(xxxei) = fθ0(xxxei))

(15) 908

Additionally, we propose a composite metric S 909

based on the harmonic mean of the above metrics. 910

25

Table 4: An example of a record data point in CounterFact. RecordE is designated for editing purposes. RecordG

is employed to assess the generalization of edits after editing. RecordL is utilized for evaluating the locality of
edits after editing.

Record Content

RecordE The mother tongue of Danielle
Darrieux is [French] ⇒ [En-
glish].

RecordG [Irrelevant Context]. Danielle
Darrieux spoke the language
[French]⇒ [English].

RecordL The native language of Mon-
tesquieu is [French].

F.3 Complete Performance Curves911

The complete performance curve is illustrated in912

Figure 43.913

From the results, it can be observed that914

on GPT2-XL, WilKE significantly outperforms915

ROME and exhibits competitive performance with916

MEMIT in the later stages of editing. On GPT-917

J, WilKE still significantly outperforms ROME,918

while MEMIT seems to encounter a significant per-919

formance drop in the mid-stage of editing, where920

WilKE demonstrates a substantial advantage.921

Nevertheless, both popular knowledge editing922

methods like ROME and MEMIT, as well as923

WilKE, still encounter performance degradation924

in lifelong editing scenarios. This indicates that925

although the target knowledge editing is achieved,926

it potentially affects other unrelated knowledge,927

which is closely related to superposition (Elhage928

et al., 2022b; Henighan et al., 2023) and polyse-929

mantic neurons (Elhage et al., 2022a).930

26

(a) Editing results on GPT2-
XL.

(b) Editing results on GPT-
J.

Figure 43: Editing results among ROME, MEMIT and
WilKE.

27

