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Abstract

Despite not being designed for this purpose,
the use of variational autoencoders (VAEs) has
proven remarkably effective for disentangled
representation learning (DRL). Recent research
attributes this success to certain characteristics of
the loss function that prevent latent space rotation,
or hypothesize about the orthogonality properties
of the decoder by drawing parallels with principal
component analysis (PCA). This hypothesis,
however, has only been tested experimentally
for linear VAEs, and the theoretical justification
still remains an open problem. Moreover,
since real-world VAEs are often inherently
non-linear due to the use of neural architectures,
understanding DRL capabilities of real-world
VAEs remains a critical task. Our work takes
a step towards understanding disentanglement
in real-world VAEs to theoretically establish
how the orthogonality properties of the
decoder promotes disentanglement in practical
applications. Complementary to our theoretical
contributions, our experimental results
corroborate our analysis. Code is available
at https://github.com/criticalml-uw/

Disentanglement-in-VAE.

1. Introduction
Learning human interpretable concepts in generative
modeling is crucial for their reliable and controllable
application in real-world scenarios (Voynov & Babenko,
2020; Härkönen et al., 2020). A promising avenue in
this realm is Disentangled Representation Learning (DRL),
which aims to uncover the hidden factors of variation in the
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Figure 1. Varying a single latent variable, keeping all the other
latent variables the same in the dSprites dataset changes only the
vertical position of the object in the images while keeping the rest
of its attributes constant demonstrating disentanglement.

observed data. A widely accepted definition of DRL posits
that each latent variable should encode a single generative
factor of the data, as depicted in Fig. 1(Higgins et al., 2018)1

This characteristic makes Disentangled Representations
(DRs) particularly useful for learning interpretable latent
spaces (Shen et al., 2022; Nie et al., 2023; Han et al., 2022).
Furthermore, this emphasis on interpretability makes DRs a
key tool for latent space manipulation, which is essential not
only in fields like computer vision (Stammer et al., 2022;
Wang et al., 2023; He et al., 2023; Li et al., 2022; Ruan
et al., 2022), but also in text based media generation (Wu
et al., 2023).

Variational Autoencoders (VAEs) are widely used to
learn DRs, owing to their probabilistic encoder-decoder
structure and a latent space well-suited for generative
modeling. Many benchmark DRL architectures, like β-VAE
(Higgins et al., 2016), DIP-VAE (Kumar et al., 2017),
and β-TCVAE (Chen et al., 2018b), are rooted in the
VAE framework. These architectures generally outperform
GAN-based methods, such as InfoGAN (Chen et al., 2016)
and DR-GAN (Tran et al., 2017) particularly in terms of
stability and quality of generation. Furthermore, recent
works in promoting disentanglement in diffusion models
also utilize this VAE-like probabilistic encoder-decoder
model (Zhang et al., 2022; Yang et al., 2023), underscoring
the need to understand the mechanisms by which DRL is
promoted by VAEs.

While VAEs have found success for DRL, somewhat
surprisingly they were not designed for this representation
learning task. Consequently, explaining the DRL properties
of VAEs has been a focal point in recent research (Burgess

1Some works (Locatello et al., 2019; 2020), propose that
DRL techniques use inherent biases present in data and the
disentanglement metrics to disentangle as more than one set of
generative factors can generate statistically identical data.
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(a) Variational Autoencoder (VAE) Architecture (b) Local Approximations

Figure 2. Panel (a) illustrates a typical VAE setting. On the right, Panel (b) shows the local approximation-based VAE used in our analysis.

et al., 2018; Chen et al., 2018b; Rolinek et al., 2019). As
shown in Fig. 2(a), a VAE comprises of a probabilistic
encoder, Encϕ : X → Z and a decoder Decθ : Z → X.
Here, X ∈ Rn and Z ∈ Rd represent the data space
and latent space, respectively. In a setting with a dataset
{x(i)}Ni=1 of N elements where x(i) ∈ X, employing a fixed
Gaussian prior p(z(i)) over Z such that z(i) ∼ N (0, I),
and the reconstructed data points, x̃(i), obtained using the
decoder Decθ(z

(i)), Kingma & Welling (2013) introduced
marginalized log-likelihood as the idealized loss function,
which needs to be maximized for training VAEs:

N∑
i=1

log(p(x(i))) (1)

It is interesting to note that, the rotational symmetry
inherent in this formulation (due to the Gaussian prior) is in
fact detrimental for DRL. This is because disentangled latent
spaces require precise alignment, which can be disrupted by
any rotational invariance. The log-likelihood loss, however,
is not tractable and is approximated by the evidence lower
bound (ELBO) loss function, defined as follows:

L :=
∑

x(i)∈X

Ez(i)∼q(z(i)|x(i))[log(p(x
(i)|z(i)))]

︸ ︷︷ ︸
LMLE

− β
∑

x(i)∈X

DKL(q(z
(i)|x(i))||p(z(i)))

︸ ︷︷ ︸
LKL

,
(2)

where the first term is log-likelihood loss LMLE (acts as
the reconstruction loss and is approximated by the squared
error loss, Lrec, in most cases), and the second term is
KL divergence loss LKL, which calculates the similarity
between the diagonal posterior probability generated by
the encoder as z(i) ∼ Encϕ(x

(i)) ∼ qϕ(z
(i)|x(i)) =

N (µϕ(x
(i)), diag(σ2

ϕ(x
(i)))) and the symmetric Gaussian

prior probability, p(z(i)); ϕ are neural network parameters.

Since qϕ(·) is not rotationally invariant the ELBO loss
function is not symmetric. Using this, Rolinek et al. (2019)

demonstrates that optimizing the stochastic component of
the squared error reconstruction loss (Lrec) in ELBO can
promote local orthogonality in the decoder. The authors
further show that this induces PCA-like behavior in the
decoder, which, along with the diagonal posterior, aids the
VAE in learning DRL. However, Rolinek et al. (2019)’s
argument is not entirely sufficient to equate linear VAEs
with PCA, as noted by Zietlow et al. (2021). Following this
insight, Zietlow et al. (2021) approximate the action of VAE
as being locally linear, providing a more clear association
between PCA and linear VAEs. Our key insight is that while
the local linearity assumption of Zietlow et al. (2021) and
linearization of Rolinek et al. (2019) have provided a way to
understand why VAEs work for DRL, these are restrictive
since real-world generation critically relies on non-linearity.

With regard to these previous analyses, our inquiry centers
on several pivotal questions that guide the focus of our
research: beyond the diagonal posterior characteristic
of VAEs, what other mechanisms actively contribute to
disentanglement in DRL? Are the assumptions of local
linearity, as discussed in Zietlow et al. (2021), and the
linearization of the loss function, as in Rolinek et al. (2019),
truly adequate for capturing the complexity of DRL? In
what ways does the orthogonality within the local decoder’s
matrix, M (i)

D , facilitate the disentanglement process?

In summary, in this paper we investigate VAE to explain
disentanglement and our contributions are as follows:

• Reassessing local linearity in VAEs: We show that
local linearity assumption and the linearization of the
stochastic component of the reconstruction loss (Lrec)
are not adequate for learning DRs in practice,

• Introducing local non-linearity in the VAE decoder:
We present a novel approach by modeling the VAE
decoder action as a composition of non-linear and
linear functions (M (i)

D ). Our analysis reveals that
this modeling promotes orthogonality in M

(i)
D , a

perspective not previously explored.
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• Linking orthogonality and disentanglement: We
provide theoretical and empirical evidence to confirm
the role of orthogonality in M

(i)
D for disentanglement.

2. Related Works
2.1. Disentangled representation learning

The need for interpretibility, transparency, and causality
in generative modeling and deep learning models at large
have motivated recent works to argue for the need for
human-like learning (Lake et al., 2017), representations and
understanding of the world (Bengio et al., 2013) and causal
inference (Peters et al., 2017). DRL (Gonzalez-Garcia et al.,
2018; Jha et al., 2018; Achille & Soatto, 2018; Hu et al.,
2018) try to mimic this type of representation learning while
also focusing on interpretable latent space.

This interpretability causes DRL to be used in a number
of domains including adversarial training (Szabó et al.,
2017; Mathieu et al., 2016), synergy task specific sparse
predictors (Lachapelle et al., 2023), novel graph neural
network framework to learn the causal and bias substructure
(Fan et al., 2022), temporally disentangled representation
learning (Yao et al., 2022), constrained latent variables
(Engel et al., 2017; Bojanowski et al., 2017), and machine
learning applications including fairness DRL (Creager et al.,
2019; Song et al., 2019) interpretability of machine learning
models (Adel et al., 2018; Bengio et al., 2013; Higgins
et al., 2016), downstream tasks (Locatello et al., 2019; Gao
et al., 2019) and computer vision tasks (Shu et al., 2017;
Liao et al., 2020). Computer Vision applications include
DRL for one-shot talking head synthesis (Wang et al., 2023),
zero-shot segmentation (He et al., 2023), disentanglement
of geometric information for cross-view geo-localization
(Zhang et al., 2023), point-of-interest recommendation (Qin
et al., 2023), synergy with enhanced semantic alignment
for image-based 3D model retrieval (Nie et al., 2023),
unsupervised domain adaptation (Xie et al., 2022), person
identification (Jia et al., 2022; Li et al., 2022), facial
expression recognition (Ruan et al., 2022) and medical
imaging (Han et al., 2022; Xie et al., 2022).

2.2. Variational autoencoder architectures for
disentanglement

VAE (Kingma & Welling, 2013), a cornerstone architecture
of DRL has been modified to β-VAE (Higgins et al.,
2016), by introducing a hyperparameter, β to tradeoff
between reconstruction and regularization as shown in
(2). To improve the architecture, while Factor-VAE
(Kim & Mnih, 2018) and β-TC-VAE (Chen et al.,
2018a) introduced statistical independence in the latent
space, (Jeong & Song, 2019) decoupled jointly modeling
the continuous and discrete factors of data. Recent

developments include learning a controllable generative
model in guided-VAE (Ding et al., 2020), sequential
variational autoencoder under self-supervision in sequential
data in S3VAE (Zhu et al., 2020) and multi-VAE (Xu
et al., 2021) a VAE-based multi-view clustering framework
which uses disentangled representations. Subsequent works
used factorized priors conditionally dependent on auxiliary
variables in (Khemakhem et al., 2020; Mita et al., 2021),
commutative lie group in (Zhu et al., 2021), and sparse
temporal prior in (Klindt et al., 2020).

2.3. Inner workings of VAE-based disentanglement
architectures

The success of VAE-based architectures inspired researchers
to understand its underlying principle. Whereas (Burgess
et al., 2018) used the information bottleneck principle,
(Kumar & Poole, 2020) studied the regularization effect of
the variational family on the local geometry of the decoding
model to explain β-VAEs. Following this (Rolinek et al.,
2019) showed the local orthogonality of the decoder matrix,
and (Zietlow et al., 2021) showed that the local alignment of
the latent space in a VAE is similar to that of PCA. However,
these works are based on the linearization of the VAE
decoder around a point which does not explain practical
scenarios. In our work, we introduce local non-linearity.
Further, these works did not establish why the the decoder’s
local orthogonality promotes disentanglement but rather
provided only experimental evidence. In our work, we
answer this question.

3. From Local Linearity to Introducing
Non-linearity

This section models the VAE locally as a composition
of linear transformations (represented by matrices) and
non-linear transformations (represented by non-linear
functions). We demonstrate that minimizing the stochastic
component of the reconstruction loss leads to orthogonality
among the columns of the matrix representing the linear
part of the local VAE decoder. Further, we show why
orthogonality is key to ensuring disentanglement. Finally,
we explain how the latent variables are selected for each
generative factor.

3.1. The Problem Formulation

We start by defining the data points as {x(i)}Ni=1 ∈ X
and the latent variable z(i)N

i=1 ∈ Z such that X ∈
Rn and Z ∈ Rd. The encoder function, denoted
as Encϕ(x

(i)), is modeled as a Gaussian distribution:
qϕ(z

(i)|x(i)) = N (µϕ(x
(i)), diag(σ2

ϕ(x
(i)))). In this

model, the latent space points z(i) are drawn from the
distribution qϕ(z

(i)|x(i)). Through the reparametrization
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trick, we represent z(i) as µϕ(x
(i)) + ϵ · diag(σϕ(x

(i))),
where ϵ is sampled from N (0, I).

The reconstructed data points, x̃(i), are obtained using the
decoder Decθ(z

(i)). For simplicity in notation, we denote
µϕ(x

(i)) as µ(i) ∈ Rd, diag(σϕ(x
(i))) as σ(i) ∈ Rd,

and ϵ · diag(σϕ(x
(i))) as ϵ(i) ∈ Rd, with ϵ(i) following

a Gaussian distribution N (0,σ(i)2), which means that

z(i) = µ(i) + ϵ(i),

Lastly, we will use the notation Ei to denote expectations
over the index i.

From 2, the total loss function is a combination of the
KL-Divergence loss (LKL) and the reconstruction loss
(LMLE). It is expressed as follows:

L :=
∑

x(i)∈X

[
L
(i)
MLE − βL

(i)
KL

]
(3)

Since we model both qϕ(z
(i)|x(i)) and p(z(i))) to be

Gaussian distributions, the KL-Divergence Loss, is given
by (Detailed proof in Proposition 2 of Appendix A.2 ):

L
(i)
KL :=

1

2

∑
j

(µ
(i)2

j + σ
(i)2

j − log(σ
(i)2

j )− 1)

Again, assuming p(x(i)|z(i)) to be a Gaussian distribution,
we define it as

p(x(i)|z(i)) = N (Decθ(z
(i)),Σθ),

where Σθ = diag(σ2
θ(z

(i))) and σ2
θ(z

(i)) is the variance of
the decoder distribution for every z(i). The log-likelihood
L
(i)
MLE can then be written as follows: (Detailed proof in

Proposition 3 of Appendix A.2 ):

L
(i)
MLE = − log(2π)

2 − log(|Σθ|)
2 − Ex̃(i)

[
||x(i)−x̃||2Σ−1

θ

2

]
,

where x̃(i) = Decθ(z
(i)). Following most previous works

on VAE before us, (Rolinek et al., 2019; Zietlow et al., 2021)
we approximate L

(i)
MLE using squared error loss (L(i)

rec) as
follows:

L(i)
rec := −Ex̃(i)

[
||x̃(i) − x(i)||2

]
Hence, we can write 3 as follows:

L :=
∑

x(i)∈X

[
− Ex̃(i)

[
||x̃(i) − x(i)||2

]
− β

2

∑
j

(µ
(i)2

j + σ
(i)2

j + log(σ
(i)2

j ) + 1)
]
(4)

Since the objective is to maximize Equation 4, we
eliminate the negative signs from this equation to facilitate
minimization. Consequently, the final loss function that we
utilize can be stated as follows:

L :=
∑

x(i)∈X

[
L(i)
rec + βL

(i)
KL

]
where

L(i)
rec = Ex̃(i)

[
||x̃(i) − x(i)||2

]
and

L
(i)
KL = µ

(i)2

j + σ
(i)2

j − log(σ
(i)2

j ) + 1

(5)

By substituting the value of z(i) as µ(i) + ϵ(i) with ϵ(i) ∼
N (0,σ(i)2), the reconstruction loss becomes:

L(i)
rec := Eϵ(i)

[
||Decθ(µ

(i) + ϵ(i))− x(i)||2
]

(6)

Since this paper aims to show that minimizing the stochastic
part of the reconstruction loss while fixing the deterministic
part and the KL-divergence loss promotes orthogonality
and consequently disentanglement, we decompose the
reconstruction loss into a stochastic and a deterministic
part using Prop. 1.

Proposition 1. Given L
(i)
rec := Eϵ(i) [||Decθ(µ

(i) +
ϵ(i))− x(i)||2], and assuming that the stochastic estimate,
Decθ(µ

(i)+ϵ(i)) is unbiased around Decθ(µ
(i)), L(i)

rec can
be decomposed into deterministic and stochastic parts:

L(i)
rec = Lµ(i)

rec + Lstoch(i)

rec , where,

Lstoch(i)
rec := Eϵ(i) ||Decθ(Encϕ(x(i)))− Decθ(µ(i))||2,

Lµ(i)

rec :=
[
||Decθ(µ(i))− x(i)||2

]
(7)

To simplify the losses, we define the polarized regime as
proposed by Rolinek et al. (2019) in Def. 3.1, and assume
that the VAE operates in this polarized regime.

Definition 3.1. A Variational Autoencoder (VAE), having an
encoder Encϕ and a decoder Decθ, is said to be operating
in a polarized regime if the latent variables can be divided
into a set of active (Va) and passive (Vp) variables. Here:

• For passive variables j ∈ Vp, µ2
j (x

(i)) ≪ 1 and
σ2
j (x

(i)) ≈ 1, while for active variables j ∈ Va, and
σ2
j (x

(i)) ≪ 1.

• The decoder ignores the passive latent components, i.e.,
∂Decθ(z

(i))

∂z
(i)
j

= 0 for all j ∈ Vp.

This definition categorizes latent variables into two groups:
passive latent variables, which provide minimal information
about the data point, and active latent variables, which
convey significant information about the data point.

In our further analysis, we make a crucial approximation
regarding the local behaviour of the encoder and decoder in
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the VAE. We model the local decoder and the deterministic
parts of the local encoder as non-linear functions. These can
be succinctly represented as Decθ(z

(i)) = g
(i)
D (M

(i)
D z(i))

and µ(i) = g
(i)
E (M

(i)
E x(i)). Here, M (i)

E and M
(i)
D denote

the linear transformations, while g
(i)
E and g

(i)
D represent the

respective nonlinearities in a local neighborhood around
x(i) and in the σ-neighborhood of µ(i). This approximation
is visually contrasted in Fig. 2, where the standard
VAE architecture is depicted on the left, and our locally
approximated VAE model is shown on the right.

The approximation hinges on all practical VAE operating
in a polarized regime, where the variance of active latent
variables are significantly small (σ(i)2

j ≪ 1) and having

finite valued local linear decoders, M
(i)
D , M

(i)
D ϵ(i) ≪

1. Assuming gD(·) to be the local decoder, we can
approximate the decoder Decθ(·) around µ(i) using Taylor
series expansion as follows; proof in Prop. 4 App. A.2.

Decθ(z(i)) = g
(i)
D (M

(i)
D z(i)) ≈ Decθ(µ(i)) + f

(i)
D (M

(i)
D ϵ(i))

(8)

This expression, while an approximation, is grounded in the
framework of polarized regimes and the practical behaviour
of VAEs under these conditions. For the remainder of the
paper, we will refer to f

(i)
D simply as fD and M

(i)
D as MD.

Next, Lstoch(i)

rec is further simplified according to Lem. 1.

Lemma 1. With the approximation of the decoder being
locally non-linear such that it can be expressed as
gD(MDϵ(i)), Lstoch(i)

rec can be expressed as follows:

Lstoch(i)
rec =

n∑
j=1

{
var[fD(MDjϵ

(i))] + f2
D(0)

+ fD(0)f ′′
D(0)var[MDjϵ

(i)]
}

(9)

Lemma 2. Given the local decoder matrix MD =
UDΣDV ⊤

D , local encoder matrix ME = UEΣEV
⊤
E ,

local decoder non-linearity gD, local encoder non-linearity
gE , the minimization of Lµ(i)

rec depends either only on VE or
only on UD and fD, i.e., fixing Lµ(i)

rec fixes VE , UD and fD.

We use Def. 3.1, and Lem. 2 to simplify LKL in Lem. 3

Lemma 3. Fixing the deterministic part of the
reconstruction loss (Lµ(i)

rec ) and assuming the VAE is
operating in a polarized regime, LKL can be expressed as:

LKL =
∑

x(i)∈X

∑
j∈Va

− log(σ
(i)2

j ) =
∑

x(i)∈X

L
(i)
KL

We define the parameter CKL to investigate its effect on the
minimized stochastic reconstruction loss Lstoch∗

rec . While
minimizing Lstoch

rec , we maintain LKL as LKL = CKL.

3.2. Minimizing the stochastic part of the reconstruction
loss promotes orthogonal columns in MD

We propose that minimizing
∑

x(i)∈X Lstoch(i)

rec while fixing∑
x(i)∈X Lµ(i)

rec and
∑

x(i)∈X L
(i)
KL promotes the columns

of MD to be orthogonal. According to Lemma 2, fixing∑
x(i)∈X Lµ(i)

rec fixes VE , UD, and fD. Consequently, the
minimization process can only be carried out by adjusting
VD and ΣD. Thus, based on (9), Lemma 1, 2, and 3, and
CKL, we formulate the optimization problem as presented
in (10) and via the following result.

Theorem 1. Given independent data samples x(i), if we fix
the
∑

x(i)∈X L
(i)
KL for a constant C(i)

KL, and
∑

x(i)∈X Lµ(i)

rec ,
then the minimization of the VAE loss L in (5) reduces to the
minimization of the stochastic reconstruction loss Lstoch(i)

rec :

min
σ
(i)
j >0,VD,

∑
x(i)∈X

logLstoch(i)

rec s.t.
∑

x(i)∈X

L
(i)
KL = CKL.

(10)
Then, the following hold for the local minima:

(a) Every local minimum is a global minimum.
(b) In every global minimum, the columns of every MD

are orthogonal.

Further, the variance of a latent variable is inversely
proportional to the norm of the corresponding column in
the linear part of the local decoder:

(c) σ
(i)2

j ∝ 1

||cj ||2
∀i

where cj is the j-th column of MD.

Proof given in A.4. Note that, even though the columns of
the linear part of the decoder MD are orthogonal, in general,
columns of fD(MD) are not.

3.3. The principal axes of the latent space aligns with
the standard basis

The latent variables, and the SVD decomposition of the
linear component of the decoder – MD, and the diagonal
covariance of the posterior probability of the VAE aligns
the principal axes (or curves) of the latent space with the
standard basis ei-s of the latent space. We consider the
following lemma, whose proof is detailed in A.5.

Lemma 4. Given MD = UDΣDV ⊤
D , such that the

columns of MD are orthogonal, and MD has unique
non-zero singular values, the following hold: (a) UD is
an orthogonal matrix, (b) the diagonal elements of ΣD are
the norms of the columns of MD, and (c) VD = I .

The generative factors of data are closely linked to
the principal axes or curves, which are characterized
by maximum variance (experimental evidence in A.8.6).
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Figure 3. The figure illustrates the non-linear and SVD decomposition components of both the encoder and the decoder for a 2D case. The
latent space distribution is a Gaussian, with axes of variation of the input data aligned with the standard basis vectors ei of the latent space.
It is noted that V ⊤

D equals the identity matrix I , indicating that ΣD is responsible for scaling the data along the stand basis vectors.For
illustrative clarity, the representation is simplified to a 2D perspective, showing principal axes as straight lines instead of curves, to better
convey the transformations enacted by the encoder and decoder on the data.

Techniques like PCA and Hierarchical Non-Linear PCA
(h-NLPCA) (Scholz & Vigário, 2002) utilize these axes for
data reconstruction by maximizing latent space variance.
Similarly, symmetric NLPCA (s-NLPCA) (Kramer, 1991),
which uses autoencoder architectures2, focuses on retaining
components with low correlation and high variance.

In the case of VAE, as illustrated in Fig. 3, the latent
space distribution would be very close to the Gaussian
distribution (due to Gaussian prior) with a diagonal
covariance. Therefore, the principal axes of the latent space
are aligned with the standard basis vectors ei-s. Hence, we
need V ⊤

D = I , so that the distribution would not be rotated
and the axes are preserved.

Moreover, from here we can see that as noted by (Träuble
et al., 2021), if we observe data that is correlated, there
can be two latent factors that change simultaneously and it
would be difficult to identify them (and disentangle them).

2Both s-NLPCA and h-NLPCA employ autoencoder
architectures for generating compressed representations.

Hence, in our analyses the decoder works to retain them for
successful data reconstruction; see Fig. 3.

3.4. How does orthogonality influence disentanglement?

We now explore why orthogonality is instrumental in
promoting disentanglement with the following lemma
(proof in A.6). First, we show that given a fixed Lstoch(i)

rec ,
orthogonality in MD promotes a lower LKL.

Lemma 5. Given a Lstoch(i)

rec , orthogonality in the linear
component of the Decoder’s function transformation, MD,
promotes a lower LKL.

Next, we see how lower LKL and in turn orthogonality of
MD affects the latent space of the VAE. First, we establish
that the samples closer in data space are also closer in the
latent space too. Further, a lower KL divergence loss brings
these samples closer.

Theorem 2. For a VAE, given z(i) ∼ Encϕ(x
(i)) and

z(k) ∼ Encϕ(x
(k)), where, x(k) are the k(i) nearest
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Table 1. Comparative analysis of approximation errors for the
local decoder when modeled as linear versus non-linear.

Dataset Error β-TCVAE β-VAE VAE

dSprites Zietlow et al. (2021) 0.9209 0.8394 0.4693
Ours 0.8502 0.7829 0.4166

3DFaces Zietlow et al. (2021) 0.8679 0.8080 0.4956
Ours 0.8088 0.7694 0.4236

3DShapes Zietlow et al. (2021) 0.8848 0.8244 0.4856
Ours 0.8122 0.7944 0.4266

MPI3D Zietlow et al. (2021) 0.9646 0.5240 0.5024
Ours 0.8624 0.8043 0.4832

Table 2. Comparison of error incurred in approximating the local
decoder for evaluating Lstoch

rec using a linearized approach versus
a non-linear approach. Note: *p<.05, **p<.01

Dataset Error β-TCVAE β-VAE VAE

dSprites Rolinek et al. (2019) 0.4866 0.5243 0.6680
Ours 0.4532** 0.4907* 0.6643

3DFaces Rolinek et al. (2019) 0.5690 0.5799 0.6039
Ours 0.5498* 0.5296* 0.5887**

3DShapes Rolinek et al. (2019) 0.7257 0.7215 0.7344
Ours 0.6879* 0.7010** 0.7316

MPI3D Rolinek et al. (2019) 0.7836 0.8001 0.8042
Ours 0.7818* 0.7908* 0.8014*

neighbours of x(i), we define Dist(LKL) as follows:

Dist(LKL) = Ex(i),z(i),z(k)

k(i)∑
k=1

||z(i) − z(k)||2


The following hold:

(a) Given Encϕ(x
(i)) ∼ qϕ(z

(i)|x(i)) overlaps (is close)
with k(i) posterior probabilities, they must be posterior
probabilities generated by the k(i) nearest neighbours
of x(i) in X , i.e. Encϕ(x

(k)) ∼ qϕ(z
(k)|x(k)). Here,

for every x(i), we have k(i) number of x(k)-s, whose
posterior probabilities, qϕ(z(k)|x(k)), overlap with the
posterior probability qϕ(z

(i)|x(i)) in the latent space.

(b) Given, LKL′ < LKL, Dist(LKL′) < Dist(LKL).

From this result, given any point in the latent space, z(i) =∑d
j=1 z

(i)
j ej , where z

(i)
j = z(i)·ej (with “·” indicating the

dot product), adjusting z
(i)
l by ∆z

(i)
l for any l ∈ {1, . . . , d}

(while keeping all other z(i)j s constant) results in a new point

z(k). Specifically, z(k) = z(i) + ∆z
(i)
l el. Finally, using

Sect. 3.3, Lem. 5, Theorem 2, we observe that orthogonality
in MD promotes disentanglement. Particularly, we observe:

(a) the output derived from z(k) differs from that of z(i)

solely in terms of a single generative factor linked to the
latent variable z

(i)
l in the el direction; see Sect. 3.3.

(b) orthogonality promotes lower LKL. According to
Theorem 2, as LKL decreases, the samples close in data
space come closer in latent space too. Hence, the variance
between the two outputs is directly proportional to ∆z

(i)
l ,

which is the variance in the latent variable z
(i)
l ; see Lem. 5.

These findings substantiate that the orthogonality of MD

columns promote disentanglement; detailed proof in A.7.

3.5. How do σ & LKL relate to the data principal axes?

Moving on, we explain (a) the relationship between the
principal axes (and consequently the generative factors)
and σ2

j = Ei[σ
(i)2

j ], and (b) how the LKL loss relates to
the principal axes and generative factors. From part (d) of

Theorem 1, σ(i)2

j ∝ 1
||cj ||2 for all i. This implies that

σ2
j ∝ Ei

[
1

||cj ||2

]
= 1

||cj ||2 .

Referring to Lem. 4, the singular values of MD are given by
||cj ||, and ΣD stretches the latent space distribution along
the standard basis. Principal axes with higher variances
correspond to the smaller singular values. Hence, principal
axes vital for image generation are associated with columns
of MD with greater ||cj || and lower σ2

j . Given that σ(i)
j < 1,

− log(σ
(i)2

j ) > 0. As σ(i)
j decreases, significant principal

axes contribute more to the LKL loss.

4. Experiments
In this section, we discuss the experimental setup and the
results to verify our theoretical findings. We experimentally
verify how introducing local non-linearity makes the
VAE modeling more realistic. Furthermore, we show
that this local-nonlinearity modeling technique is better
than the linearization of Lstoch

rec . We define a metric,
Orthogonality Deviation Score (OD-Score) to calculate
the extent of orthogonality of the linear component of the
local-decoder matrix. Finally, we show that disentanglement
(measured using MIG and MIG-Sup scores) is directly
proportional to Orthogonality (measured using OD-Score.)
The code is available at https://github.com/
criticalml-uw/Disentanglement-in-VAE.

4.1. Datasets

We study the VAE architectures using four widely used
datasets, namely, dSprites, 3D Faces (Paysan et al., 2009),
3D shapes (Burgess & Kim, 2018), and MPI 3D complex
real-world shapes dataset (Gondal et al., 2019).

4.2. Metrics

For evaluating disentanglement, we use MIG and MIG-sup
metrics introduced in Chen et al. (2018a) and Li et al.
(2020) respectively. While for analyzing the efficacy of
the non-linearity fD, we introduce an error function to
compare the deviation of the analysis from the actual
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scenario with and without the non-linearity, for calculating
the orthogonality of the linear part of the local decoder, we
device a metric based on Lem. 4. Further, in A.8.6, we
experimentally show that principal axes with the highest
variance are associated with the generative factors most
significant for reconstruction.

4.3. Models and Implementation Details

To evaluate the efficacy of our analysis we consider three
VAE-based models, namely, VAE, β-VAE, and β-TCVAE.
In the subsequent experiments, we show that our analysis
holds for all the VAE-based architectures. In Appendix
A.8.1, we summarize implementation details.

4.4. Main Experimental Findings

Contribution of the non-linearity f(·): From (8),
Decθ(Encϕ(x

(i))) ≈ Decθ(µ
(i)) + fD(MDϵ(i)). On

the other hand, in the work by Zietlow et al. (2021)
the local decoder is approximated to be linear, and so
Decθ(Encϕ(x

(i))) ≈ Decθ(µ
(i)) + flinear(MDϵ(i)).

To show that introducing non-linearity improves the
approximation, in the experiment, we compare the squared
error between the non-linear approximation and the ground
truth in (11) as δ with the squared error between the
linear approximation and ground truth in (12) as δlinear,

δ = ||Decθ(µ(i) + ϵ(i))− Decθ(µ(i))− fD(MDϵ(i))||2, (11)

δlinear = ||Decθ(µ(i) + ϵ(i))− Decθ(µ(i))− flinear(MDϵ(i))||2 (12)

In the experiment, flinear(MDϵ(i)) is approximated by a
neural network without non-linearity, while, fD(MDϵ(i))
is approximated by a neural network consisting of one
non-linearity. We define x(i) ∈ Xval, and for each x(i), we
estimate the parameters fD and MD (as these parameters
are local for each x(i)) using (11) as the loss function. For
random ϵ(i) ∼ N (0,σ(i)2) for each x(i), we calculate the
error for each x(i) using (11) and finally take the average.

In Table 1, we demonstrate using three different VAE-based
architectures on four different datasets that the non-linearity
makes the local decoder approximation much more accurate.

Comparisions across different approximations: We
compare two approximations: the linearization assumption
made by Rolinek et al. (2019) which approximates the
stochastic part of the reconstruction loss as Jϵ(i), where
J is the Jacobian approximation of the decoder around µ(i),
and our modeling, where we assume the decoder to be
non-linear. Table 2 summarizes that modelling VAEs as
non-linear has lower error on real-world dataset than the
linearization approximation; details in A.8.2.

Disentanglement across VAE architectures: As explained
above, we have used the Mutual Information Gap (MIG)

and (MIG-sup) for quantifying the disentanglement of
the different VAE architectures in the datasets mentioned.
Panels (a)-(d) in Fig. 4, illustrate the MIG scores for
the different VAE-based architectures while Panels (e)-(h)
illustrate the MIG-sup scores. In Appendix A.8.4, we
provide the scores in a tabular form.

Understanding Orthogonality: We use Lem. 4 to
calculate the distance between the linear component
of decoder function and the closest orthogonal matrix.
We take average of the normalized distances as follows.

dU (UD, ÛD) =
||UD − ÛD||2F

max
ϕ

(||UD − ÛD,ϕ||2F )
,

dΣ(ΣD, Σ̂D) =
||ΣD − Σ̂D||2F

max
ϕ

(||ΣD − Σ̂D,ϕ||2F )

dV (VD, V̂D) =
||VD − V̂D||2F

max
ϕ

(||VD − V̂D,ϕ||2F )
,

where ÛD, Σ̂D, and V̂D are calculated using Lem.
4 and Appendix A.8.3. The norms are calculated
using the Frobenius norm, and the equations are
normalized across all VAE-based models used for
evaluating the distance. The Orthogonal Deviation
Score, denoted as OD-Score(MD), is defined as:

OD-Score(MD) =
dU (UD, ÛD) + dΣ(ΣD, Σ̂D) + dV (VD, V̂D)

3

In Fig. 4, panels (i)-(l) demonstrate the MIG versus
OD-Score(MD) scores for all the datasets for each of the
three VAE-based architectures. Further, panels (m)-(p)
demonstrate the MIG-Sup versus OD-Score(MD) scores.
We note that as the MIG and the MIG-Sup scores
increase, the orthogonality as measured by OD-Score(MD)
decreases (lower is better). This establishes that
orthogonality promotes disentanglement. In Appendix
A.8.5, we record the OD-Score(MD) values of the different
VAE-based architectures for the datasets.

5. Discussion and Conclusion
In this work, build on existing works which use local
linearity for explaining the behavior of Variational
Autoencoders (VAEs), to propose an analysis that
incorporates local non-linearity. We provide theoretical
analysis and extensive experimental evaluations to show
that the stochastic part of the loss function promotes
orthogonality among the columns of the linear component
in the decoder’s function. Furthermore, we establish
both mathematically and empirically that this orthogonality
is instrumental in promoting disentanglement, a link
previously observed only through experimental evidence.
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dSprites 3DFaces 3DShapes MPI3DComplex
M

IG
Sc

or
es

0.1

0.2

0.3

0.4

0.5

0.6
VAE
ß-VAE
ß-TCVAE

0.2

0.3

0.4

0.5

0.6 VAE
ß-VAE
ß-TCVAE

0.2

0.4

0.6

0.8 VAE
ß-VAE
ß-TCVAE

0.1

0.2

0.3

0.4

VAE
ß-VAE
ß-TCVAE

(a) (b) (c) (d)

M
IG

-S
up

Sc
or

es

0.0

0.2

0.4

0.6
VAE
ß-VAE
ß-TCVAE

0.2

0.3

0.4

0.5

0.6

0.7 VAE
ß-VAE
ß-TCVAE

0.1

0.2

0.3

0.4

0.5

0.6

0.7 VAE
ß-VAE
ß-TCVAE

0.2

0.4

0.6

0.8 VAE
ß-VAE
ß-TCVAE

(e) (f) (g) (h)

O
D

-S
co

re
Sc

or
es

0.16 0.25 0.52
0.88

0.90

0.92

0.94

0.96

0.98
VAE
ß-VAE
ß-TCVAE

0.19 0.44 0.58

0.90

0.95

1.00

VAE
ß-VAE
ß-TCVAE

0.
2

0.
460.

4

0.92

0.94

0.96

0.98

1.00 VAE
ß-VAE
ß-TCVAE

0.14 0.24 0.32
0.88

0.90

0.92

0.94

0.96 VAE
ß-VAE
ß-TCVAE

MIG Scores MIG Scores MIG Scores MIG Scores
(i) (j) (k) (l)

O
D

-S
co

re
Sc

or
es

0.
14

0.
17

0.
52

0.88

0.90

0.92

0.94

0.96

0.98
VAE
ß-VAE
ß-TCVAE

0.2 0.46 0.6

0.90

0.95

1.00

VAE
ß-VAE
ß-TCVAE

0.14 0.60.5

0.92

0.94

0.96

0.98

1.00 VAE
ß-VAE
ß-TCVAE

0.1 0.46 0.6
0.88

0.90

0.92

0.94

0.96

0.98 VAE
ß-VAE
ß-TCVAE

MIG-Sup Scores MIG-Sup Scores MIG-Sup Scores MIG-Sup Scores
(m) (n) (o) (p)

Figure 4. Performance of different VAE architectures Panels (a)-(d) illustrate the MIG scores (a higher score promotes disentanglement)
of different VAE architectures for dSprites, 3DFaces, 3DShapes and MPI3DComplex, respectively. Panels (e)-(h) illustrate the MIG-Sup
scores (a higher score promotes disentanglement). Panels (i)-(l) illustrate positive correlation between orthogonality, measured by
OD-Score(MD) (a lower score promotes orthogonality) and MIG scores for specified models and datasets. Finally, Panels (m)-(p)
illustrate the OD-Score(MD) vs the MIG-Sup score.

Most previous studies suggest that the imposition of a
diagonal posterior on the encoder is the primary driver
for VAEs to learn disentangled representations. Our
work expands on this notion by demonstrating that the
reconstruction loss, when constrained by the KL-Divergence
loss, also facilitates disentanglement. Nevertheless, the
precise alignment of embeddings within the latent space
remains an open question. Unraveling this aspect could

significantly enhance the understanding of VAEs, and other
generative models, for disentangled representation learning.
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Impact Statement
As generative models grow in popularity and find
applications across different disciplines, it is critical to
equip them with the ability to break spurious correlations
between features to be able to generate unbiased data. For
instance, a dataset with correlations between a protected
attribute and a feature (in ambient or the latent space)
can learn to generate data that reinforces such patterns.
Constructing generative models with distentanglement
capability is therefore key for fair data generation to break
historic biases in the data. Therefore, understanding why
certain architectures inherently promote disentanglement is
important to incorporate such properties in contemporary
and future generative models.
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A. Appendix
A.1. Background

A.1.1. VARIATIONAL AUTOENCODERS

Let {x(i)}Ni=1 is a dataset consisting N elements, such that x(i) ∈ X = Rn. A VAE consists of a probabilistic encoder,
Encϕ : X → Z and a decoder Decθ : Z → X, where Z = Rd is called the Latent Space. The distribution of the input,
namely q(x(i)) is fixed as it is the actual data distribution. We also define a fixed prior distribution p(z(i)) over Z. The
idealized loss function of the VAE is the marginalized log-likelihood which is defined as follows:

N∑
i=1

log(p(x(i)))

However, this loss function is not tractable and is approximated by its lower bound, the Evidence Lower Bound (ELBO) loss
function defined as follows:

Ez(i)∼q(z(i)|x(i))[log(p(x
(i)|z(i)))]−DKL(q(z

(i)|x(i))||p(z(i)))

where the first term is the reconstruction loss while the second term is KL divergence, which calculates the similarity
between the probability distributions q(z(i)|x(i)) and p(z(i)). Hence, VAE performs a trade-off between reconstruction and
the ability to mimic the prior probability distribution.

All the probability distributions are assumed to be Gaussian with the prior probability distribution being defined as follows:

p(z(i)) = N (0, I) (13)

The encoder is defined as follows:

Encϕ(x
(i)) ∼ qϕ(z

(i)|x(i)) = N (µϕ(x
(i)), diag(σ2

ϕ(x
(i))))

where µϕ and diag(σϕ) are the parameter ϕ dependent mappings. Parametrizing the distributions in this way allows for
the use of the reparametrization trick to estimate gradients of the lower bound with respect to the parameters ϕ. The latent
variables, hence are defined as follows z(i) ∼ qϕ(z

(i)|x(i)) and hence can be reparametrized as follows:

z(i) = µ(i) + σ(i)ϵ

where ϵ ∼ N (0, I). Finally, it is to be noted that the posterior distribution qϕ(z
(i)|x(i)) has a diagonal covariance matrix.

Under the Gaussian assumptions, the KL divergence can be written in closed form as follows:

L
(i)
KL =

1

2

∑
j

(µ
(i)2

j + σ
(i)2

j − log(σ
(i)2

j )− 1) (14)

A.1.2. UNDERSTANDING DISENTANGLEMNT FOR LOG-LIKELIHOOD LOSS FUNCTION

It is assumed in case of interpretable representation that some generating factors are responsible for the generation of data.
For example in the case of the dSprites dataset, data is generated from generative factors like position, shape, scale or
size, rotational orientation etc. Disentangled representation is the situation, when, a single latent variable is responsible
for the changes in a single generative factor and is non sensitive to the changes in other generative factors. In the case of
unsupervised algorithms, the generative factors are not known and the methods rely on statistical procedures. One category
of such methods is the VAE-based methods which we are analyzing.

Rotation matrices, (U ), are defined as as orthogonal matrices (U⊤ = U−1) with determinant equal to 1 (|U | = 1).
We define rotational invariance or rotational symmetry for a probability as p(z) = p(Uz). It is important to note that
Disentanglement is sensitive to rotations of the latent embedding. For example, consider a disentangle latent representation(
a
b

)
. When acted upon by the rotation matrix in 2-dimensions, namely

(
cos θ − sin θ
sin θ cos θ

)
, it becomes,

(
a cos θ − b sin θ
a sin θ + b cos θ

)
.
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Hence, it can be seen that rotating disentangled latent representation essentially destroys the disentanglement property of the
latent representation.

Earlier works like (Rolinek et al., 2019) record in detail that the log-likelihood loss and the ELBO losses are rotationally
invariant, meaning that if the prior probability is rotationally symmetric, then, even if a rotational matrix and its transpose
are multiplied to the encoder and decoder respectively the log-likelihood objective and the ELBO objective do not change.
However, this rotational invariance is disrupted by forcing a diagonal posterior on the encoder of the VAE. This gives rise to
the KL Loss function that has been recorded in (14)

A.2. Derivation of Loss Functions L(i)
KL, L(i)

MLE and Equation 8

Proposition 2. Assuming the probabilities, qϕ(z(i)|x(i))-s to be Gaussian distributions N (µϕ(x
(i)), diag(σ2

ϕ(x
(i))))-s, the

KL divergence Loss function can be written as follows:

L
(i)
KL =

1

2

∑
j

(µ
(i)2

j + σ
(i)2

j − log(σ
(i)2

j )− 1) (15)

where, µ(i)
j is the j-th element of µϕ(x

(i)) and σ
(i)
j is the j-th element of diag(σϕ(x

(i)))

Proof. Given, p(z(i)) = N (0, I) and qϕ(z
(i)|x(i)) = N (µϕ(x

(i)), diag(σ2
ϕ(x

(i)))). In short, we refer to
N (µϕ(x

(i)), diag(σ2
ϕ(x

(i)))) as N (µ(i),Σ(i)) The multivariate normal distributions are given by,

N (µ(i),Σ(i)) =
1

(2π)
k
2 |Σ(i)| 12

exp(−1

2
(z(i) − µ(i))⊺Σ(i)−1

(z(i) − µ(i)))

and

N (0, I) =
1

(2π)
k
2 |I| 12

exp

(
−1

2
z(i)⊺z(i)

)
We refer to N (µ(i),σ(i)) as a(z(i)) and N (0, I) as b(z(i)). We know that,

L
(i)
KL = DKL(a||b) = Ea[log(a)− log(b)]

= Ea

[
1

2
log

(
1

|Σa|

)
− 1

2
(z(i) − µa)

⊺Σ−1
a (z(i) − µa) +

1

2
z(i)⊺z(i)

]
= Ea

[
1

2
log

(
1

|Σa|

)]
− Ea

[
1

2
(z(i) − µa)

⊺Σ−1
a (z(i) − µa)

]
+ Ea

[
1

2
z(i)⊺z(i)

]
(16)

Now, since, (z(i) − µa)
⊺Σ−1

a (z(i) − µa) ∈ R, we have,

(z(i) − µa)
⊺Σ−1

a (z(i) − µa) = Tr{z(i) − µa)
⊺Σ−1

a (z(i) − µa)}.

Again,

Tr{z(i) − µa)
⊺Σ−1

a (z(i) − µa)} = Tr{z(i) − µa)
⊺(z(i) − µa)Σ

−1
a } (17)

Finally, since we can swap Tr and Ea,

Ea

[
Tr
{
1

2
(z(i) − µa)

⊺(z(i) − µa)Σ
−1
a

}]
= Tr

{
Ea

[
1

2
(z(i) − µa)

⊺(z(i) − µa)Σ
−1
a

]}
= Tr

{
Ea

[
1

2
(z(i) − µa)

⊺(z(i) − µa)

]
Σ−1

a

}

Now, since, Ea

[
(z(i) − µa)

⊺(z(i) − µa)
]
= Σa,

Ea

[1
2
(z(i) − µa)

⊺Σ−1
a (z(i) − µa)

]
= tr{ΣaΣ

−1
a } = Tr{Ij} = j (18)
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Again, we know that, E[x⊺x] = Tr{Σ}+ µ⊺µ

Ea

[1
2
z(i)⊺z(i)

]
=

1

2
(Tr{Σa}+ µ⊺

aµa) (19)

Finally,

Ea

[1
2
log(

1

|Σa|
)
]
= −1

2
log(|Σa|) (20)

Substituting 18, 19 and 20 in 16, we get,

L
(i)
KL =

1

2

(
Tr{Σa}+ µ⊺

aµa − j − log(|Σa|
)

Simplifying, we get,

L
(i)
KL =

1

2

∑
j

(µ
(i)2

j + σ
(i)2

j − log(σ
(i)2

j )− 1)

Proposition 3. Given a VAE, with Gaussian distributions, the maximum likelihood estimate, L
(i)
MLE =

Ez(i)∼q(z(i)|x(i))[log(p(x
(i)|z(i)))] can be expressed as follows:

L
(i)
MLE = − log(2π)

2
− log(|Σθ|)

2
− Ez(i)∼q(z(i)|x(i))

[ ||x(i) − x̃||2Σ−1
θ

2

]
Proof. Given that the distribution p(x(i)|z(i)) in the VAE is Gaussian, it can be expressed as:

p(x(i)|z(i)) = N (Decθ(z
(i)),Σθ)

where Σθ = diag(σ2
θ(z

(i))).

The multivariate Gaussian distribution can be written as:

N (Decθ(z
(i)),Σθ) =

1

(2π)
k
2 |Σθ|

1
2

exp

(
−1

2
(x(i) −Decθ(z

(i)))⊺Σ−1
θ (x(i) −Decθ(z

(i)))

)

Therefore, the log-likelihood is:

log p(x(i)|z(i)) = −k

2
log(2π)− 1

2
log |Σθ| −

1

2
(x(i) −Decθ(z

(i)))⊺Σ−1
θ (x(i) −Decθ(z

(i)))

Since (x(i) −Decθ(z
(i)))⊺Σ−1

θ (x(i) −Decθ(z
(i))) is a scalar, it can be represented as a trace:

(x(i) −Decθ(z
(i)))⊺Σ−1

θ (x(i) −Decθ(z
(i))) = Tr{(x(i) −Decθ(z

(i)))⊺Σ−1
θ (x(i) −Decθ(z

(i)))}

Using the cyclic property of the trace, we get:

Tr{(x(i) −Decθ(z
(i)))⊺Σ−1

θ (x(i) −Decθ(z
(i)))} = Tr{(x(i) −Decθ(z

(i)))(x(i) −Decθ(z
(i)))⊺Σ−1

θ }

Therefore, the maximum likelihood estimation (MLE) loss L(i)
MLE can be written as:

L
(i)
MLE = Ez(i)∼q(z(i)|x(i))

[
−k

2
log(2π)− 1

2
log |Σθ| −

1

2
Tr{(x(i) −Decθ(z

(i)))(x(i) −Decθ(z
(i)))⊺Σ−1

θ }
]

Simplifying, we get:

L
(i)
MLE = −k

2
log(2π)− 1

2
log |Σθ| − Ez(i)∼q(z(i)|x(i))

[
1

2
||x(i) −Decθ(z

(i))||2Σ−1
θ

]
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Replacing Decθ(z
(i)) with x̃, we obtain:

L
(i)
MLE = −k

2
log(2π)− 1

2
log |Σθ| − Ez(i)∼q(z(i)|x(i))

[
1

2
||x(i) − x̃||2

Σ−1
θ

]

Proposition 4. Given a VAE operating in the polarized regime, such that its decoder can be expressed as a combination of
linear and non-linear transformation, Decθ(z(i)) = g

(i)
D (M

(i)
D z(i)) where M

(i)
D is a finite matrix, the local decoder can be

approximately expressed as

Decθ(z(i)) = g
(i)
D (M

(i)
D z(i)) ≈ Decθ(µ(i)) + f

(i)
D (M

(i)
D ϵ(i))

Proof. Since the VAE is operating in the polarized regime, for all active latent variables , σ(i)2

j ≪ 1. Given that the matrix

M
(i)
D is finite, M (i)

D ϵ(i) ≪ 1.

Further,
g
(i)
D (M

(i)
D z(i)) = g

(i)
D (M

(i)
D (µ(i) + ϵ(i)))

Applying Taylor Series approximation around the point M (i)
D µ(i), we have,

g
(i)
D (M

(i)
D (µ(i) + ϵ(i))) = g

(i)
D (M

(i)
D µ(i)) + (M

(i)
D ϵ(i))g

(i)
′

D (M
(i)
D µ(i)) + (M

(i)
D ϵ(i))2

g
(i)

′′

D (M
(i)
D µ(i))

2!
+ ...

= g
(i)
D (M

(i)
D µ(i)) + f

(i)
D (M

(i)
D ϵ(i))

where,

f
(i)
D (M

(i)
D ϵ(i)) = (M

(i)
D ϵ(i))g

(i)
′

D (M
(i)
D µ(i)) + (M

(i)
D ϵ(i))2

g
(i)

′′

D (M
(i)
D µ(i))

2!
+ ...

Again,
g
(i)
D (M

(i)
D µ(i)) = Decθ(µ(i))

Hence,
Decθ(z(i)) = g

(i)
D (M

(i)
D z(i)) ≈ Decθ(µ(i)) + f

(i)
D (M

(i)
D ϵ(i))

A.3. Proof of Proposition 1, and Lemmas 1, 2, 3 and 6

Proposition 1. Given L
(i)
rec := Eϵ(i) [||Decθ(µ

(i) + ϵ(i))− x(i)||2], and assuming that the stochastic estimate, Decθ(µ
(i) +

ϵ(i)) is unbiased around Decθ(µ
(i)), L(i)

rec can be decomposed into deterministic and stochastic parts:

L(i)
rec = Lµ(i)

rec + Lstoch(i)

rec , where,

Lstoch(i)
rec := Eϵ(i) ||Decθ(Encϕ(x(i)))− Decθ(µ(i))||2,

Lµ(i)

rec :=
[
||Decθ(µ(i))− x(i)||2

]
(7)

Proof. As defined, Encϕ(x
(i)) = µ(i) + ϵ(i), where ϵ(i) is the Gaussian noise while µ(i) is the deterministic part of the

encoder derived from x(i) as µ(i) = fE(MEx(i)). We write L
(i)
rec in the following way

L(i)
rec = Eϵ(i) [||Decθ(µ

(i) + ϵ(i))−Decθ(µ
(i)) +Decθ(µ

(i))− x(i)||2]

L(i)
rec = Eϵ(i) [||Decθ(µ

(i) + ϵ(i))−Decθ(µ
(i))||2 + ||Decθ(µ

(i))− x(i)||2+
2||Decθ(µ

(i) + ϵ(i))−Decθ(µ
(i))||||Decθ(µ

(i))− x(i)||]
(21)
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Simplifying the terms in (21), we have,

Eϵ(i) ||Decθ(µ
(i))− x(i)||2 = ||Decθ(µ

(i))− x(i)||2 (22)

Eϵ(i) [2||Decθ(µ
(i) + ϵ(i))−Decθ(µ

(i))||||Decθ(µ
(i))− x(i)||] =

2||Decθ(µ
(i))− x(i)||Eϵ(i) [||Decθ(µ

(i) + ϵ(i))−Decθ(µ
(i))||]

Again, since stochastic estimate, Decθ(µ
(i)+ ϵ(i)) is unbiased around Decθ(µ

(i)), Eϵ(i) [Decθ(µ
(i)+ ϵ(i))] = Decθ(µ

(i)).
Hence,

2||Decθ(µ
(i))− x(i)||Eϵ(i) [||Decθ(µ

(i) + ϵ(i))−Decθ(µ
(i))||] = 0 (23)

Plugging (22) and (23) into (21), we get,

L(i)
rec = [||Decθ(µ

(i))− x(i)||2] + Eϵ(i) ||Decθ(Encϕ(x
(i)))−Decθ(µ

(i))||2

Hence,
L(i)
rec = Lµ(i)

rec + Lstoch(i)

rec

Lemma 1. With the approximation of the decoder being locally non-linear such that it can be expressed as gD(MDϵ(i)),
Lstoch(i)

rec can be expressed as follows:

Lstoch(i)
rec =

n∑
j=1

{
var[fD(MDjϵ

(i))] + f2
D(0)

+ fD(0)f ′′
D(0)var[MDjϵ

(i)]
}

(9)

Proof. Under the assumption that the decoder of the VAE is locally non-linear, s.t. it can be expressed as fD(MDϵ(i)),
Lstoch(i)

rec can be expressed as

Lstoch(i)

rec = Eϵ(i) [||Decθ(µ
(i)) + fD(MDϵ(i))−Decθ(µ

(i))||2] = Eϵ(i) ||fD(MDϵ(i))||2

Further, Eϵ(i) [||fD(MDϵ(i))||2] can be expressed as

Eϵ(i) [||fD(MDϵ(i))||2] =
n∑

j=1

Eϵ(i) [(fD(MDjϵ
(i)))2]

Given a random variable, o, var(o) = E[o2]− (E[o])2. Hence,

Lstoch(i)

rec =

n∑
j=1

{
var[fD(MDjϵ

(i)] + (Eϵ(i) [(fD(MDjϵ
(i)))])2

}
(24)

From Lem. 6,

Eϵ(i) [fD(MDjϵ
(i))] = fD(Eϵ(i) [MDjϵ

(i)]) +
f

′′

D(Eϵ(i) [MDjϵ
(i)])

2
Eϵ(i) [(MDjϵ

(i) − Eϵ(i) [MDjϵ
(i)])2] (25)

From Lem. 9, Eϵ(i) [MDjϵ
(i)] = 0. Plugging it into (25), we have

Eϵ(i) [fD(MDjϵ
(i))] = fD(0) +

f
′′

D(0)

2
Eϵ(i) [(MDjϵ

(i))2] (26)

Again,
Eϵ(i) [(MDjϵ

(i))2] = var[MDjϵ
(i)] + (Eϵ(i) [MDjϵ

(i)])2 = var[MDjϵ
(i)]
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Substitution the value in (26), we get,

Eϵ(i) [fD(MDjϵ
(i))] = fD(0) +

f
′′

D(0)

2
var[MDjϵ

(i)]

Substituting into (24), and ignoring the higher order term, we have,

Lstoch(i)

rec =

n∑
j=1

{
var[fD(MDjϵ

(i))] + f2
D(0) + fD(0)f

′′

D(0)var[MDjϵ
(i)]
}

Lemma 2. Given the local decoder matrix MD = UDΣDV ⊤
D , local encoder matrix ME = UEΣEV

⊤
E , local decoder

non-linearity gD, local encoder non-linearity gE , the minimization of Lµ(i)

rec depends either only on VE or only on UD and
fD, i.e., fixing Lµ(i)

rec fixes VE , UD and fD.

Proof. From 1, the loss function, Lµ(i)

rec =
[
||Decθ(µ(i))− x(i)||2

]
. Given MD = UDΣDV ⊤

D , ME = UEΣEV
⊤
E , gD

and gE , Lµ(i)

rec = ||x(i) − gD(MD(gE(MEx(i))))||2. This can further be expressed as ||x(i) − FD(F−1
D (x(i)))||2, where

FD(x(i)) is defined as follows:

F−1
D (x(i)) = gE(ME(x

(i))) (27)

Hence,
FD(x(i)) = M+

E g−1
E (x(i)) (28)

where M+
E is the pseudo inverse of ME .

Hence, the SVD decomposition of M+
E is

M+
E = VEΣ+

EU⊤
E (29)

Substituting the (27), (28), (29) into FD(F−1
D (x(i))), we get,

M+
E g−1

E (gE(MEx)) = M+
EMEx(i)

= VEΣ+
EU⊤

E UEΣEV ⊤
E x(i)

= VEIV ⊤
E x(i)

= VEId×nIn×dV
⊤
E x(i)

= VEdV
⊤
Ed

x(i)

Hence, replacing ME with VEd , does not affect the loss. Further, the loss function is not dependent on UE and ΣE .

Again, expressing the loss function, ||x(i) − gD(MD(gE(MEx(i))))||2 as ||x − FD(F−1
D (x(i)))||2, FD(x(i)) can be

defined as:

FD(x(i)) = gD(MD(x(i))) (30)

Hence,
F−1
D (x(i)) = M+

Dg−1
D (x(i)) (31)

where M+
D is the pseudo inverse of MD.

Using SVD decomposition on M+
D gives

M+
D = VDΣ+

DUT
D (32)
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Substituting the (30), (31), (32) into FD(F−1
D (x(i))),

gD(MDM+
Dg−1

D (x(i))) = gD(UDΣDV T
D VDΣ+

DUT
Dg−1

D (x(i)))

= gD(UDIUT
Dg−1

D (x(i)))

= gD(UDIn×dId×nU
T
Dg−1

D (x(i)))

= gD(UDnU
T
Dn

g−1
D (x(i)))

Hence, replacing MD with UDn , does not change the loss. Again, the loss function is only dependent on gD and UD and
not on VD and ΣD. Again, since fD is a polynomial function of gD, the loss is dependent on fD too.

Hence, the minimization of the loss function depends either only on VE or only on UD, gD and fD, i.e., fixing Lµ(i)

rec fixes
VE , UD and fD.

Lemma 3. Fixing the deterministic part of the reconstruction loss (Lµ(i)

rec ) and assuming the VAE is operating in a polarized
regime, LKL can be expressed as:

LKL =
∑

x(i)∈X

∑
j∈Va

− log(σ
(i)2

j ) =
∑

x(i)∈X

L
(i)
KL

Proof. Operating the VAE to operate in a polarized regime, the passive latent variables are ignored, and for the active latent
variables, σ2

j (x
(i)) ≪ log(σ

(i)2

j ), which simplifies the KL loss function to:

L
(i)
KL =

1

2

∑
j∈Va

(µ
(i)2

j − log(σ
(i)2

j )− 1) (33)

From Lem. 2, the Lµ(i)

rec depends either only on VE or only on fD and UD, and not on the entire gE(MEx(i)). Hence,
fixing it fixes VE , UD, and fD. The matrices VD, ΣD, UE and ΣE are not fixed and minimizing the stochastic loss under
the constraint of L(i)

KL forces constraints on these matrices.

Fixing VE and UD, and for a fixed i, 33 can be written as follows:

L
(i)
KL = ||µ(i)||2 +

∑
j∈Va

− log(σ
(i)2

j )

Again, since UD is fixed, µ(i) can only be affected by VD. However, since, VD is orthogonal and hence norm-preserving,
||µ(i)||2 is fixed. As a result, the only portion of LKL that affects the minimization of the stochastic reconstruction loss can
be expressed as:

LKL =
∑

x(i)∈X

∑
j∈Va

− log(σ
(i)2

j )

Lemma 6. The expectation of a function fD(MDjϵ
(i)), Eϵ(i) [fD(MDjϵ

(i))] can be approximately written in terms of the
expectation of MDjϵ

(i) as follows:

Eϵ(i) [fD(MDjϵ
(i))] = fD(Eϵ(i) [MDjϵ

(i)])

+
f

′′

D(Eϵ(i) [MDjϵ
(i)])

2
Eϵ(i) [(MDjϵ

(i) − Eϵ(i) [MDjϵ
(i)])2]

Proof. Using Chebyshev’s inequality, where P stands for probability, we have,

P(|MDjϵ
(i) − Eϵ(i) [MDjϵ

(i)]| > a) ≤ var(MDjϵ
(i))

a2
(34)
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Hence, given any δ > 0, we can find an a, such that,

P(MDjϵ
(i) ∈ [E[MDjϵ

(i)]− a,E[MDjϵ
(i)] + a] = P(|MDjϵ

(i) − E[MDjϵ
(i)]| ≤ a) < 1− δ (35)

Calculating E[fD(MDjϵ
(i))], we have,

E[fD(MDjϵ
(i))] =

∫
|x−E[MDjϵ(i)]|≤a

fD(x)dFD(x)+∫
|x−E[MDjϵ(i)]|>a

fD(x)dFD(x)

(36)

where, FD(x) is the distribution function for x.

Since the domain of the first integral, [E[MDjϵ
(i)]− a,E[MDjϵ

(i)] + a], is bounded and closed, Taylor Expansion can be
applied in that interval. Applying Taylor’s expansion in the interval [E[MDjϵ

(i)]− a,E[MDjϵ
(i)] + a], and considering

only the first four terms, we have,

fD(x) = fD(E[MDjϵ
(i)]) + f

′

D(E[MDjϵ
(i)])(x− E[MDjϵ

(i)])

+
f

′′

D(E[MDjϵ
(i)])

2
(x− E[MDjϵ

(i)])2

+
f

′′′

D (U)

3!
(x− E[MDjϵ

(i)])3

(37)

where U ∈ [E[MDjϵ
(i)]− a,E[MDjϵ

(i)] + a]. Substituting (37) in (36), we get,

E[fD(MDjϵ
(i))] =

∫
|x−E[MDjϵ(i)]|≤a

{
fD(E[MDjϵ

(i)]) + f
′

D(E[MDjϵ
(i)])(x− E[MDjϵ

(i)])

+
f

′′

D(E[MDjϵ
(i)])

2
(x− E[MDjϵ

(i)])2
}
dFD(x) +

∫
|x−E[MDjϵ(i)]|≤a

f
′′′

D (U)

3!
(x− E[MDjϵ

(i)])3dFD(x)+∫
|x−E[MDjϵ(i)]|>a

fD(x)dFD(x)

(38)

The interval or the domain is increased by increasing the value of a, i.e., a → ∞. From (34) and (35), P(|MDjϵ
(i) −

E[MDjϵ
(i)]| > a) → 0 and P(MDjϵ

(i) ∈ [E[MDjϵ
(i)]− a,E[MDjϵ

(i)] + a]) → 1. This simplifies (38) as follows:

E[fD(MDjϵ
(i))] ≈

∫ +∞

−∞

{
fD(E[MDjϵ

(i)]) + f
′

D(E[MDjϵ
(i)])(x− E[MDjϵ

(i)])

+
f

′′

D(E[MDjϵ
(i)])

2
(x− E[MDjϵ

(i)])2
}
dFD(x) +

∫ +∞

−∞

f
′′′

D (U)

3!
(x− E[MDjϵ

(i)])3dFD(x)

(39)

as
∫
|x−E[MDjϵ(i)]|>a

fD(x)dFD(x) → 0.

Simplifying the terms in (39) further, we get,∫ +∞

−∞
fD(E[MDjϵ

(i)])dFD(x) = fD(E[MDjϵ
(i)])

∫ +∞

−∞
dFD(x) = fD(E[MDjϵ

(i)]) (40)

∫ +∞

−∞
f

′

D(E[MDjϵ
(i)])(x− E[MDjϵ

(i)])dFD(x) =

{
f

′

D(E[MDjϵ
(i)])

∫ +∞

−∞
xdFD(x)− (E[MDjϵ

(i)])

}
= 0 (41)

and∫ +∞

−∞

f
′′

D(E[MDjϵ
(i)])

2
(x− E[MDjϵ

(i)])2dFD(x) =
f

′′

D(E[MDjϵ
(i)])

2

∫ +∞

−∞
(x− E[MDjϵ

(i)])2dFD(x) =

f
′′

D(E[MDjϵ
(i)])

2
E[(MDjϵ

(i) − E[MDjϵ
(i)])2]

(42)
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Substituting (40), (41) and (42) in (39), we get,

E[fD(MDjϵ
(i))] = fD(E[MDjϵ

(i)]) +
f

′′

D(E[MDjϵ
(i)])

2
E[(MDjϵ

(i) − E[MDjϵ
(i)])2] +RE

(43)

Ignoring the higher order integral, we get,

E[fD(MDjϵ
(i))] = fD(E[MDjϵ

(i)]) +
f

′′

D(E[MDjϵ
(i)])

2
E[(MDjϵ

(i) − E[MDjϵ
(i)])2] (44)

A.4. The Proof of the proposed Theorem-1 and the relevant Lemmas

Theorem 1. Given independent data samples x(i), if we fix the
∑

x(i)∈X L
(i)
KL for a constant C(i)

KL, and
∑

x(i)∈X Lµ(i)

rec , then

the minimization of the VAE loss L in (5) reduces to the minimization of the stochastic reconstruction loss Lstoch(i)

rec :

min
σ
(i)
j >0,VD,

∑
x(i)∈X

logLstoch(i)

rec s.t.
∑

x(i)∈X

L
(i)
KL = CKL. (10)

Then, the following hold for the local minima:

(a) Every local minimum is a global minimum.
(b) In every global minimum, the columns of every MD are orthogonal.

Further, the variance of a latent variable is inversely proportional to the norm of the corresponding column in the linear
part of the local decoder:

(c) σ
(i)2

j ∝ 1

||cj ||2
∀i

where cj is the j-th column of MD.

Proof. Proof of part (b):

From Lemma 1 we have that

Lstoch(i)

rec =

n∑
j=1

{
var[fD(MDjϵ

(i))] + f2
D(0) + fD(0)f ′′

D(0)var[MDjϵ
(i)]
}

(45)

where MDj is the j-th row and n is the total number of rows in MD.

Then from Lemma 7, we know that

var[fD(MDjϵ
(i))] =

(
f ′
D(Eϵ(i)(MDjϵ

(i)))
)2

var[MDjϵ
(i)] (46)

Again, from Lemma 8, we know that

var[MDjϵ
(i)] =

d∑
k=1

a2j,kσ
(i)2

k (47)

where d is the total number of columns in MD.

From Lemma 9,
Ei[MDjϵ

(i)] = 0 (48)

Plugging (47) and (48) into (46), we have

var[fD(MDjϵ
(i))] = [f ′

D(0)]
2

d∑
k=1

a2j,kσ
(i)2

k (49)
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Plugging (49) into (45), we have

Lstoch(i)

rec =

n∑
j=1

{
[f ′

D(0)]
2
+ fD(0)f ′′

D(0)
} d∑

k=1

a2j,kσ
(i)2

k + nf2
D(0)

=
{
[f ′

D(0)]
2
+ fD(0)f ′′

D(0)
} n∑

j=1

d∑
k=1

a2j,kσ
(i)2

k + nf2
D(0)

(50)

Let ck be the k-th column of the MD matrix. We know that

||ck||2 =

n∑
j=1

a2j,k (51)

Substituting (51) in (50), we have

Lstoch(i)

rec =
{
[f ′

D(0)]2 + fD(0)f ′′
D(0)

} d∑
k=1

||ck||2σ(i)2

k + nf2
D(0)

Since nf2
D(0) is a constant for a fixed x(i), minimizing Lstoch(i)

rec does not depend on it. Hence, we minimize Dstoch(i)

rec =

Lstoch(i)

rec − nf2
D(0). The value of the minima of the two functions would differ by nf2

D(0).

Using the AM-GM inequality on Dstoch(i)

rec , we have

Dstoch(i)

rec =
{
[f ′

D(0)]2 + fD(0)f ′′
D(0)

} d∑
k=1

||ck||2σ(i)2

k

≥
{
[f ′

D(0)]2 + fD(0)f ′′
D(0)

}
d

(
d∏

k=1

||ck||2σ(i)2

k

) 1
d

with equality if and only if
||cj ||2

||ck||2
=

σ
(i)2

k

σ
(i)2

j

(52)

for any j and k in {1, . . . , d}.

Taking the logarithm, we have

log(Dstoch(i)

rec ) = log
{
[f ′

D(0)]2 + fD(0)f ′′
D(0)

}
+ log(d) + 1

d

d∑
k=1

log(σ
(i)2

k ) + 2
d log

(
d∏

k=1

||ck||

)

Taking the summation over all the values of xi ∈ X, we have

∑
x(i)∈X

log(Dstoch(i)

rec ) =
∑

x(i)∈X

log
{
[f ′

D(0)]2 + fD(0)f ′′
D(0)

}
+N log(d)− CKL

d + 2
d

∑
x(i)∈X

log

(
d∏

k=1

||ck||

)

From Lemma 10, we have∑
x(i)∈X

log(Dstoch(i)

rec ) ≥
∑

x(i)∈X

log
{
[f ′

D(0)]2 + fD(0)f ′′
D(0)

}
+N log(d)− CKL

d + 2
d

∑
x(i)∈X

log(Sing(MD)) (53)

It can be seen that the RHS of the above equation does not depend on σ
(i)2

k s. Also, it is independent of the orthogonal
matrices VD as these do not influence the singular values of MD.
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However, according to Lemma 10, to minimize the LHS, we set the matrices VD such that the columns of MD are
orthogonal to each other. Also, the values of σ(i)2

k s are chosen so as to achieve equality in the AM-GM inequality. Hence, in
every global minimum, the columns of MD are orthogonal.

Proof of part (c):
Part (c) of the Theorem follows directly from (52).

Proof of part (a): To prove part (a), we show that at least one small change can be made in the objective function that would
minimize it until it has reached the global minimum, which is the RHS of (53). Since the RHS of (53) is dependent only on
the AM-GM inequality and Lemma 10, it suffices to show that local minima do not exist for both of these inequalities and
that at least one small perturbation would always improve the LHS of these inequalities until they become equal to their
RHS, which is their global minimum and that no other local minima exist. We have shown this in Lemma 11 and Lemma
12.

Lemma 7. The variance of a function fD(MDjϵ
(i)), denoted as var[fD(MDjϵ

(i))], can be expressed in terms of the
variance of MDjϵ

(i) as follows:

var[fD(MDjϵ
(i))] = (f

′

D(Eϵ(i) [MDjϵ
(i)]))2 · var[MDjϵ

(i)]

Proof. From (43), in Lem. 6, we get,

E[fD(MDjϵ
(i))] = fD(E[MDjϵ

(i)]) +
f

′′

D(E[MDjϵ
(i)])

2
E[(MDjϵ

(i) − E[MDjϵ
(i)])2] +RE

where RE is the remaining integral.
Again,

f2
D(x) = f2

D(E[MDjϵ
(i)]) + 2fD(E[MDjϵ

(i)])f
′

D(E[MDjϵ
(i)])(x− E[MDjϵ

(i)])+

[(f
′

D(E[MDjϵ
(i)])2 + fD(E[MDjϵ

(i)])f
′′

D(E[MDjϵ
(i)])](x− E[MDjϵ

(i)])2+

(f2
D(K))

′′′

3!
(x− E[MDjϵ

(i)])3

From Lem. 6, taking expectation over f2
D, we have,

E[f2
D(MDjϵ

(i))] = f2
D(E[MDjϵ

(i)]) + [(f
′

D(E[MDjϵ
(i)]))2 + fD(E[MDjϵ

(i)])f
′′

D(E[MDjϵ
(i)])]

E[(MDjϵ
(i) − E[MDjϵ

(i)])2] + R̃E

As we know V ar(MDjϵ
(i)) = E[(MDjϵ

(i))2]− (E[MDjϵ
(i)])2. Evaluating, we have,

V ar(fD(MDjϵ
(i))) = (f

′

D(E[MDjϵ
(i)]))2V ar(MDjϵ

(i)) +
f

′′

D(E[MDjϵ
(i)])

4
V ar2(MDjϵ

(i)) + TE

Approximating to only the first term, we have,

V ar(fD(MDjϵ
(i))) ≈ (f

′

D(E[MDjϵ
(i)]))2V ar(MDjϵ

(i))

Lemma 8. The variance of MDjϵ
(i), var[MDjϵ

(i)], can be expressed as follows :

var[MDjϵ
(i)] =

d∑
k=1

a2j,kσ
(i)2

k

where MDj are the rows of the decoder matrix MD and aj,k is the element in the j-th row and k-th column of MD.

24



Why do Variational Autoencoders Really Promote Disentanglement?

Proof. We know that, var(cB) = c2var(B), where, c is a constant.

Now,

var(MDjϵ
(i)) = var(

d∑
k=1

ajkϵ
(i)
k ) =

d∑
k=1

a2jkvar(ϵ
(i)
k ) =

d∑
k=1

a2jkσ
(i)2

k

Lemma 9. The expectation of MDjϵ
(i), Eϵ(i)(MDjϵ

(i)) can be expressed as follows:

Eϵ(i)(MDjϵ
(i)) = 0

Proof. For a Gaussian distribution, D ∼ N (µ,σ2), E[D] = µ.

Again, ϵ(i)k ∼ N (0, σ
(i)2

k ), E
ϵ
(i)
k

[ϵ
(i)
k ] = 0.

Hence,

Eϵ(i) [MDjϵ
(i)] = Eϵ(i) [(

d∑
k=1

ajkϵ
(i)
k )] =

d∑
k=1

ajkEϵ
(i)
k

[ϵ
(i)
k ] = 0

Proposition 5. For a matrix MD ∈ Rn×d with SVD MD = UDΣDV ⊤
D , the following statements are equivalent.

a) The columns of MD are pairwise orthogonal.

b) The matrix M⊤
DMD is diagonal.

c) The columns of ΣDV ⊤
D are pairwise orthogonal.

Proof. The statements (a) and (b) are equivalent as the columns of MD, ci are orthogonal and hence c⊤i cj = 0 ∀ i ̸= j
while c⊤i ci ̸= 0.

The equivalence of statements (a) and (c) can be proved as follows. Suppose we define M
′

D = ΣDV ⊤
D . We can see that,

M
′⊤
D M

′

D = VDΣ⊤
DΣDV ⊤

D = VDΣ⊤
DU⊤

DUDΣDV ⊤
D = M⊤

DMD

Since, the columns of MD are orthogonal, from the equivalence of (a) and (b), M⊤
DMD is a diagonal matrix which also

implies that M
′⊤
D MD

′ is diagonal. Again from the equivalence of (a) and (b) the columns of M
′

D are orthogonal.

Lemma 10. Let MD ∈ Rn×d be a matrix where, d < n, be a matrix with column vectors c1...cd and non-zero singular
vectors s1...sd. It can be claimed that,

d∏
j=1

||cj || ≥ Sing(MD)

where, Sing(MD) is the product of singular values of MD. The condition of equality is when c1...cd are pairwise
orthogonal.

Proof. Suppose MD = UDΣDV ⊤
D . We first show that multiplying both sides of the equation by UD does not change

the inequality. Firstly, for the RHS, the singular value of UDMD is the same as that of MD. In the LHS, the cjs are the
images of the ejs, as cjs can be expressed as cj = MDej ∀ j ∈ {1...d}. However, UD, being an orthogonal matrix and
hence an isometry, we get ||UDMDej || = ||MDej || = ||cj || ∀ j and hence, the column norms of MD remains same as
the column norms of UDMD.
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Since we can see that both sides of the inequality are invariant to multiplication by UD, we restrict to the values of MD,
which can be expressed as MD = ΣDV ⊤

D . Since, we assume that d < n, ΣDD×d
, the d× d left corner submatrix of ΣD

contains all the nonzero singular values. We can define Msq
D = ΣDD×d

V ⊤
D , which is basically a square matrix consisting

of all the nonzero rows of the matrix MD. Again, this implies,

(Msq
D )⊤Msq

D = M⊤
DMD

More specifically, the column norms of MD and Msq
D are equal and hence according to Hadamard’s Inequality, we have,

d∏
k=1

||ck|| =
d∏

k=1

||csqk || ≥ |det(Msq
D )| = Sing(MD)

where, ck are the columns of MD and csqk are the columns of Msq
D .

Further, according to Hadamard’s inequality, equality occurs only when the columns of Msq
D are orthogonal. Again that

implies that the columns of MD are orthogonal and from Proposition 5, all possible MDs and not just the simplified ones
assumed are orthogonal. Hence, the equality holds when the columns of any matrix MD are orthogonal.

Lemma 11. Given non-negative values a1, a2, a3....aN for which,

1

N

N∑
i=1

ai > (

N∏
i=1

ai)
1
N

there exists at least one perturbation of ais, a
′

is such that,

1

N

N∑
i=1

ai >
1

N

N∑
i=1

a
′

i ≥ (

N∏
i=1

a
′

i)
1
N = (

N∏
i=1

ai)
1
N (54)

Proof. Selecting i ̸= j, we set a
′

i =
ai

d+δ and a
′

j = aj(d+ δ), where, d ≥ 1 and δ ≤ 1. For all other k ∈ {1, ...N}, a
′

k = ak.
We can see that,

ai + aj − a
′

i − a
′

j = (ai + aj)
δ

1 + δ
> 0

Hence, we have, ai + aj > a
′

i + a
′

j . Again, we can see that, a
′

ia
′

j = aiaj This ensures that at least one small perturbation of
ais would satisfy (54).

Lemma 12. For a matrix Mn ∈ Rn×n with SVD Mn = UΣV ⊤, and column vectors c1, c2, c3...cn, for which,
n∏

j=1

||cj || > |det(Mn)| (55)

there exists at least one V
′
, which is a small perturbation of V , and a matrix M

′

nwith columns c′1, c
′
2, c

′
3...c

′
n such that,

n∏
j=1

||cj || >
n∏

j=1

||c′j || (56)

Proof. We establish the proof by induction on n. For n=2, we define a rotation matrix Rθ where theta is the angle of rotation
for the rotation matrix. By setting V ′ = V Rθ, we can verify that (56) is satisfied.

For n > 2, we can see that, (55) implies cTi cj ̸= 0 for some i ̸= j. Let us assume that i = 1 and j = 2 in this case. Let for
k > 2, c′k = ck. We now consider, R2D

θ , where,

R2D
θ =

(
Rθ 0
0 In−2

)
is a block diagonal matrix. Rθ is the rotational matrix that we defined previously. Further, since U can be set to In as either
side of (55) is not influenced by an isometry, we can reduce the above situation to n = 2 case. Hence by induction, the
proof is complete.
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A.5. Proof of Lem. 4

Lemma 4. Given MD = UDΣDV ⊤
D , such that the columns of MD are orthogonal, and MD has unique non-zero singular

values, the following hold: (a) UD is an orthogonal matrix, (b) the diagonal elements of ΣD are the norms of the columns
of MD, and (c) VD = I .

Proof. From Proposition 5, M⊤
DMD is a diagonal matrix. Moreover, the diagonal elements are c⊤k ck = ||ck||22.

Furthermore, from the characteristic equation of the matrix M⊤
DMD , the eigenvalues of M⊤

DMD are ||ck||22 ∀ k ∈ {1..d}.
Hence the singular values are ||ck||2. Which proves part (b) of the lemma.

Again solving for M⊤
DMDxk = λkxk, and given the singular values are non-zero and unique, gives us that the solution

only consists of the respective eks. Hence, the matrix VD = I. This proves part (c) of the lemma.

Further, we use the equation, MD = UDΣDV ⊤
D . Considering the RHS, since V ⊤

D = I, the RHS becomes UDΣD and
the individual elements of the product matrix become uij ||cj ||2 where uij are the elements of matrix UD. Also, let the
individual elements of the matrix MD, be aij . Hence uij =

aij

||cj ||2 . Hence, it is clear that the columns of UD are normalized.
Also the columns of UD are orthogonal to each other as the columns of MD are orthogonal to each other. Hence, the matrix
UD is orthogonal. This proves part (a) of the lemma.

A.6. Proof of Lem. 5

Lemma 5. Given a Lstoch(i)

rec , orthogonality in the linear component of the Decoder’s function transformation, MD,
promotes a lower LKL.

Proof. Let MD be a non-orthogonal decoder matrix. Also, let MDortho
be the matrix whose columns are orthogonal to

each other, solution to the optimization in Theorem 1, by setting the matrix VD. From, (53), we have,

∑
x(i)∈X

log(Dstoch(i)

rec ) =
∑

x(i)∈X

log
{
[f

′

D(0)]2 + fD(0)f
′′

D(0)
}
+N log(d)− CKL

d
+

2

d

∑
x(i)∈X

log

d∏
k=1

||ck||

≥
∑

x(i)∈X

log
{
[f

′

D(0)]2 + fD(0)f
′′

D(0)
}
+N log(d)− CKL

d
+

2

d

∑
x(i)∈X

log(Sing(MD))

where, from Theorem 1, Dstoch(i)

rec = Lstoch(i)

rec − nf2
D(0).

Given a fixed Lstoch(i)

rec , we have,

∑
x(i)∈X

log(Dstoch(i)

rec ) =
∑

x(i)∈X

log
{
[f

′

D(0)]2 + fD(0)f
′′

D(0)
}
+N log(d)− CKL

d
+

2

d

∑
x(i)∈X

log

d∏
k=1

||ck||

=
∑

x(i)∈X

log
{
[f

′

D(0)]2 + fD(0)f
′′

D(0)
}
+N log(d)− CKLortho

d
+

2

d

∑
x(i)∈X

log(Sing(MDortho
))

Hence,

CKL − CKLortho = 2
{ ∑

x(i)∈X

log

d∏
k=1

||ck|| − log(Sing(MDortho
))
}

≥ 2
{
log(Sing(MD))− log(Sing(MDortho

))
}

The term on the RHS is greater than 0. Also due to polarized regime, LKL > 0, and hence, CKL and CKLortho are > 0.
Hence, we have,

CKL − CKLortho > 0
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Hence, LKLortho corresponding to the decoder MDortho
has a lower positive value as compared to LKL corresponding to

decoder the decoder MD proving our lemma.

A.7. Proof of Theorem 2

Theorem 2. For a VAE, given z(i) ∼ Encϕ(x
(i)) and z(k) ∼ Encϕ(x

(k)), where, x(k) are the k(i) nearest neighbours of
x(i), we define Dist(LKL) as follows:

Dist(LKL) = Ex(i),z(i),z(k)

k(i)∑
k=1

||z(i) − z(k)||2


The following hold:

(a) Given Encϕ(x
(i)) ∼ qϕ(z

(i)|x(i)) overlaps (is close) with k(i) posterior probabilities, they must be posterior
probabilities generated by the k(i) nearest neighbours of x(i) in X , i.e. Encϕ(x

(k)) ∼ qϕ(z
(k)|x(k)). Here, for

every x(i), we have k(i) number of x(k)-s, whose posterior probabilities, qϕ(z(k)|x(k)), overlap with the posterior
probability qϕ(z

(i)|x(i)) in the latent space.

(b) Given, LKL′ < LKL, Dist(LKL′) < Dist(LKL).

Proof. For a VAE, loss L is defined as L = Lrec + βLKL, where Lrec and LKL are defined as:

Lrec =
∑

x(i)∈X

[||Decθ(Encϕ(x
(i)))− x(i)||2] =

∑
x(i)∈X

[||x̃(i) − x(i)||2] (57)

LKL =
1

2

∑
x(i)∈X

∑
j∈Va

(µ
(i)2

j + σ
(i)2

j − log(σ
(i)2

j )− 1) (58)

To minimize the loss L, given a LKL, the architecture aligns the latent space such that Lrec can be minimized.

From (58), decreasing LKL causes µ(i)
j to approach 0 (decrease) and σ

(i)
j to approach 1. The decreased means and the

broadened variances cause the posterior probabilities, qϕ(z(i)|x(i))-s to overlap.

We consider a random point x(i) ∈ X, with posterior probability Encϕ(x
(i)) ∼ qϕ(z

(i)|x(i)). Considering posterior
probabilities qϕ(z(j)|x(j))s which overlap with Encϕ(x

(i)) ∼ qϕ(z
(i)|x(i)), we define z as follows:

Z = {z ∼ Encϕ(x
(i))|z ∈ z(i)

sam ∩ z(j)
sam, z(i)

sam ∈ qϕ(z
(i)|x(i)), z(j)

sam ∈ qϕ(z
(j)|x(j))∀j ∋ z(i)

sam ∩ z(j)
sam ̸= ϕ}

Hence, z can be represented in 2 different ways as follows:

z = µ(i) + ϵ(i) = µ(j) + ϵ(j)

Given an optimal decoder, Decθ(z) = x̃(i) or Decθ(z) = x̃(j)(i) , where x̃(j)(i) is wrongly regenerated by Decθ as
x̃(j) instead of x̃(i). Since, z ∼ Encϕ(x

(i)), Decθ(z) = x̃(j)(i) generates reconstruction loss ||x̃(j)(i) − x(i)||2. From
Proposition 6, the loss ||x̃(j)(i) − x(i)||2 would be minimum when x(j) is the nearest element to x(i) in X .

In (57), given ideal decoder, ||x̃(i) − x(i)||2 ̸= 0 only when z(i) ∈ z and Decθ(z
(i)) = x̃(j)(i) . Hence, (57) simplifies to

Lrec =
∑

x(i))∈X
x(j) ̸=x(i)

||x̃(j)(i) − x(i)||2

Further considering that each x(i) is sampled multiple times, Lrec can be expressed as ,

Lrec =
∑

x(i))∈X
x(j) ̸=x(i)

||x̃(j)(i) − x(i)||2 =
∑

x(i))∈X
x(j) ̸=x(i)

ki∑
l=0

||x̃(j)(i)
l − x(i)||2 (59)
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where ki = |z(i) ∈ Z| ∀ x(i) ∈ X and x̃
(j)(i)
l is the l-th x̃(j)(i) .

From (59), given ideal Encϕ and Decθ, Lrec depends only on x̃
(j)(i)
l = Decθ(z

(i)) where z(i) ∈ Z . From Lem. 13,
X ∗

k =
⋃|X|

i=1 X
(i)∗

k(i) minimizes Lrec, where X (i)∗

k(i) is the set of k(i) ≤ ki nearest elements to any given x(i) ∈ X. Hence,
the overlap between qϕ(z

(i)|x(i)) and the k(i) posterior probabilities, must be posterior probabilities generated by the k(i)

nearest neighbours of x(i) in X. This proves part (a) of the Theorem.

As LKL decreases, since the overlap between qϕ(z
(i)|x(i)) and qϕ(z

(k)|x(k)) ∀ k(i) − nearest neighbours of x(i)

increases, given z(i) ∼ qϕ(z
(i)|x(i)) and z(k) ∼ qϕ(z

(k)|x(k)), Ex(i),z(i),z(k) [
∑

k ||z(i) − z(k)||2] decreases. Hence, given
LKL′ < LKL, Dist(LKL′) < Dist(LKL). This conclusively proves part (b) of the Theorem.

Lemma 13. For x(i) ∈ X (data space), the number of elements in the dataset N = |X|, an ideal VAE consisting of
Encϕ(x

(i)), Decθ(z
(i)), z(i) ∼ qϕ(z

(i)|x(i)), x̃(i) = Decθ(z
(i)) and a set of numbers ki < |X| where i = {1, 2...N},

given, x(j)
l -s ∈ X s.t. x

(j)
l ̸= x(i)

for the optimization problem,

min
x

(j)
l

∑
x(i)∈X

ki∑
l=0

||x̃(j)
l − x(i)||2 (60)

the following hold:

• X ∗
k =

⋃|X|
i=1 X

(i)∗

k(i) is the solution set to the optimization, where X (i)∗

k(i) is the set of k(i) ≤ ki nearest elements to x(i) in
X.

Proof. First, solve the optimization problem min
x

(j)
l

∑ki

l=0 ||x̃
(j)
l − x(i)||2 for a random x(i) ∈ X. Given an ideal VAE,

x̃(i) = x(i) and hence, ||x̃(i) − x(i)||2 = 0. We use induction to prove that X (i)∗

k(i) contains the k(i) nearest elements to x(i)

in X. From Proposition 6, the element closest to x(i) in X (say x(nearestX)) has the lowest value for ||x̃(j)
l − x(i)||2. We

prove the rest by induction.

Base Case: Removing x(nearestX) from X, we have X−1 = X \ x(nearestX). From Proposition 6, the element closest to x(i) in
X−1 (say x(nearestX−1)) has the lowest value for ||x̃(j)

l − x(i)||2. This is also the second nearest element to x(i) in X.

Induction Hypothesis: Removing d nearest elements to x(i) from X, generates X−d, where the (d+ 1)-th nearest element
to x(i), x(nearestX−d) in X, generates the lowest value for ||x̃(j)

l − x(i)||2.

Induction Step: We remove the (d+ 1)-th nearest element from X−d, x(nearestX−d) (from Induction Hypothesis) to generate
X−(d+1). From Proposition 6, the element closest to x(i) in X−(d+1) (say x(nearestX−(d+1))) has the lowest value for
||x̃(j)

l − x(i)||2. This is also the (d+ 1)-th nearest element to x(i) in X.

In the case when there are no repeated elements, i.e., x(nearestX) ̸= x(nearestX−1) . . . ̸= x(nearestX−d) ̸= x(nearestX−(d+1)), d
elements form the solution set X (i)∗

d . However, in the case of repetition of a single element, i.e., x(nearestX−i) = x(nearestX−j)

(say), there exists a X (i)∗

d′ such that d′ < d. Hence, given any x(i), X (i)∗

k(i) is the solution set for the optimization problem

min
x

(j)
l

∑ki

l=0 ||x̃
(j)
l − x(i)||2 where k(i) ≤ ki. Hence, X ∗

k =
⋃|X|

i=1 X
(i)∗

k(i) is the solution set to the optimization problem in

(60).

Proposition 6. Given x(i) ∈ X (data space), an ideal encoder Encϕ(x
(i)), an ideal decoder Decθ(z

(i)), z(i) ∼
qϕ(z

(i)|x(i)), x̃(i) = Decθ(z
(i)), and there exists an xk s.t.

||x(k) − x(i)||2 < ||x(j) − x(i)||2 ∀j ̸= k ̸= i (61)

then the following holds:
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• x(k) is the element in X nearest to x(i)

• ||x̃(k) − x(i)||2 < ||x̃(j) − x(i)||2

Proof. Part (a) of the proposition follows directly from (61). Given an ideal encoder and decoder, ||x̃(k) − x(k)||2 = 0.
Hence, x̃(k) = x(k). Similarly, x̃(j) = x(j). Hence, in (61), we can replace x(k) by x̃(k) and x(j) by x̃(j) giving us part (b)
of the proposition.

A.8. Appendix Related to the experiments

A.8.1. NETWORK ARCHITECTURES USED IN EXPERIMENTAL SETUP

Table 3 summarizes the network architectures and the implementation details of the models that we trained for each of the
datasets.

Table 3. The architectures of the VAE-based models used for the different datasets.
Dataset Component Architecture

dSprites

Encoder 1200 (ReLU) - 1200 (ReLU) - Latent Space (ReLU)
Decoder 1200 (ReLU) - 1200 (ReLU) - 4096 (ReLU)
β 6
Optimizer Adam (lr = 10−3)

3DFaces

Encoder Conv [32, 4, 2, 1] (BN) (ReLU), [32, 4, 2, 1] (BN) (ReLU),
[64, 4, 2, 1] (BN) (ReLU), [64, 4, 2, 1] (BN) (ReLU),
[512, 4, 1, 0] (BN) (ReLU), [Latent Space, 1, 1] (BN) (ReLU)

Decoder ConvTrans [512, 1, 1, 0] (BN) (ReLU), [64, 4, 2, 1] (BN) (ReLU),
[64, 4, 2, 1] (BN) (ReLU), [32, 4, 2, 1] (BN) (ReLU), [1, 4, 2, 1] (BN) (ReLU)

β 6
Optimizer Adam (lr = 10−3, betas = (0.9, 0.999))

3D shape

Encoder Conv [32, 4, 2, 1] (ReLU), [32, 4, 2, 1] (ReLU),
[64, 4, 2, 1] (ReLU), [64, 4, 2, 1] (BN) (ReLU),
[256, 4, 1, 0] (BN) (ReLU), [Latent Space, 1, 1] (ReLU)

Decoder Conv[64, 1, 1, 0] (Relu), ConvTrans [64, 4, 1, 0] (ReLU), [64, 4, 2, 1] (ReLU),
[64, 4, 2, 1] (ReLU), [32, 4, 2, 1] (ReLU), [32, 4, 2, 1] (ReLU), [3, 4, 2, 1]

β 6
Optimizer Adam (lr = 10−3, betas = (0.9, 0.999))

MPI 3D complex

Encoder Conv [32, 4, 2, 1] (ReLU), [32, 4, 2, 1] (ReLU),
[64, 4, 2, 1] (ReLU), [64, 4, 2, 1] (BN) (ReLU),
[256, 4, 1, 0] (BN) (ReLU), [Latent Space, 1, 1] (ReLU)

Decoder Conv[64, 1, 1, 0] (Relu), ConvTrans [64, 4, 1, 0] (ReLU), [64, 4, 2, 1] (ReLU),
[64, 4, 2, 1] (ReLU), [32, 4, 2, 1] (ReLU), [32, 4, 2, 1] (ReLU), [3, 4, 2, 1]

β 6
Optimizer Adam (lr = 10−3, betas = (0.9, 0.999))

A.8.2. COMPARING JACOBIAN APPROXIMATION OF STOCHASTIC LOSS WITH LOSS CALCULATED FROM
APPROXIMATED LOCAL DECODER

In this experiment, we compare two approximations: the linearization approximation by (Rolinek et al., 2019), where,
L̃stoch(i)

J = Jϵ(i) and our modeling, where, L̃stoch(i)
dec = gD(MDϵ(i)). The comparison focuses on determining the

approximate loss closer to the actual stochastic loss, denoted as L̂stoch(i)
rec . A validation set x(i) ∈ Xval is defined. For each

x(i), gD and MD are estimated as neural networks, considering that these are local approximations unique to each x(i).
(11) is employed to train these networks, as detailed in Sect. 4.4.
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Subsequently, we compute L̂stoch
rec =

∑
x(i)∈Xval

L̂stoch(i)
rec . This is followed by the calculation of L̃stoch

J =
∑

x(i)∈Xval
L̃stoch(i)

J

and L̃stoch
dec =

∑
x(i)∈Xval

L̃stoch(i)
dec . The final step involves comparing the squared errors δdec = ||L̃stoch

dec − L̂stoch
rec ||2, and

δJ = ||L̃stoch
J − L̂stoch

rec ||2, to ascertain the more accurate approximation.

In Table 2, we summarize the two differences which demonstrates that L̃stoch
dec is a much better approximation as compared to

L̃stoch
J .

A.8.3. CALCULATING THE VALUES ÛD, Σ̂D FOR DETERMINING THE OD-SCORE FOR DIFFERENT VAE
ARCHITECTURES

Proposition 7. Given a matrix MD, the nearest orthogonal matrix M̂D can be estimated as follows:

M̂D = MD(M⊺
DMD)

1
2

Proof. We minimize ||MD − M̂D||2 subject to M̂⊺
DM̂D = I. Introducing a symmetric Lagrangian multiplier matrix Λ,

we look for the stationary values of

e(M̂D,Λ) = Tr{(MD − M̂D)⊺(MD − M̂D)}+ Tr{Λ(M̂⊺
DM̂D − I)}

Differentiating e(M̂D,Λ) w.r.t M̂D and setting it to 0, we have,

∂e

∂M̂D

=
∂(Tr{(MD − M̂D)⊺(MD − M̂D)})

∂M̂D

+
∂(Tr{Λ(M̂⊺

DM̂D − I)})
∂M̂D

= 0

We know that ∂(Tr{X⊺X})
∂X = 2X .

Hence,
∂(Tr{(MD − M̂D)⊺(MD − M̂D)})

∂M̂D

= −2(MD − M̂D)

Further, ∂(Tr{ΛX⊺X})
∂X = X(Λ+Λ⊺).

Hence,
∂(Tr{Λ(M̂⊺

DM̂D − I)})
∂M̂D

= M̂D(Λ+Λ⊺)

Replacing the terms, we get,
−2(MD − M̂D) + M̂D(Λ+Λ⊺) = 0

Since, Λ⊺ = Λ,
−(MD − M̂D) + M̂DΛ = 0

MD = M̂D(I+Λ)

Calculating M⊺
DMD, we have,

M⊺
DMD = (I+Λ)M̂⊺

DM̂D(I+Λ)

Hence,
(I+Λ) = (M⊺

DMD)
1
2

Hence, solving for M̂D, we have,
M̂D = MD(M⊺

DMD)
1
2

A.8.4. MIG AND MIG-SUP SCORES FOR DIFFERENT ARCHITECTURES

The MIG score for the different VAE-based architectures for the datasets have been summarized in Table 4. The MIG-sup
score for the different VAE-based architectures for the datasets have been summarized in Table 5
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Table 4. The MIG scores of the different VAE-based models for the Datasets
β-TCVAE β-VAE VAE

dSprites 0.52±0.1 0.25±0.1 0.16±0.05
3DFaces 0.58±0.02 0.44±0.05 0.19±0.02

3DShapes 0.40±0.1 0.46±0.14 0.20±0.08
MPI3DComplex 0.32±0.1 0.24±0.08 0.14±0.06

Table 5. The MIG-Sup scores of the different VAE-based models for the Datasets
β-TCVAE β-VAE VAE

dSprites 0.52±0.08 0.17±0.1 0.14±0.02
3DFaces 0.60±0.08 0.46±0.04 0.20±0.03

3DShapes 0.50±0.1 0.60±0.05 0.14±0.04
MPI3DComplex 0.60±0.15 0.46±0.15 0.10±0.06

A.8.5. OD-SCORE FOR DIFFERENT VAE ARCHITECTURES

Table 6 summarizes the OD-Score(MD) scores for the different VAE based architectures for the datasets.

A.8.6. DEMONSTRATING THE CONNECTION BETWEEN GENERATIVE FEATURES AND PRINCIPAL AXES

In this section, we experimentally establish a connection between the generative factors and the principal components of the
data. Further, we show that the principal components with the highest variance are associated with the generative factors
most significant for the reconstruction.

Figure 5. The first image is the image subset input to the PCA. The second image is the reconstruction with the first 1500 principal axes,
the third with first 2000 principal axes, the fourth with first 2500 axes, the 5th with 3000 and the 6th with 2500th to 3000th axes.

Fig. 5 shows the original image, which is the first image, and the rest reconstructed images from the different sets of
principal axes (PA) the details of which are provided in Fig. 5. Given that the second picture (PA = first 1500) is blank, the
third (PA = first 2000), fourth (PA = first 2500), and fifth (PA = first 3000) images capture both position and parts of the
shape, and the sixth image (PA = 2500th to 3000th) does not capture position, indicates that the first 1500 axes summarize
just the position and not the shape. Given that the sixth image lacks both position and shape information while the fifth
lacks intricate details, we conclude that the principal axes from 1500 to 2500 capture position, while 2500 to 3000 capture
intricate position details.

Table 7 summarizes the reconstruction error from different sets of principal axes. While the error decreases as more axes are
added, it increases rapidly when the initial high variance axes, which convey greater information are removed.

32



Why do Variational Autoencoders Really Promote Disentanglement?

Table 6. The OD-Score(MD) scores of the different VAE based models for the Datasets
β-TCVAE β-VAE VAE

dSprites 0.9093±0.02 0.9400±0.02 0.9732±0.02
3DFaces 0.9002± 0.02 0.9494±0.01 0.9857±0.01

3DShapes 0.9543±0.02 0.9254±0.01 0.0.9864±0.02
MPI3DComplex 0.9086±0.014 0.9254±0.016 0.9466±0.01

Table 7. Comparing the reconstruction error for the images generated from the different sets of principal axes.
Axes used first 1500 first 2000 first 2500 first 3000 2000 to 3000 2500 to 3000

Reconstruction Loss 21.23 12.43 6.41 0.54 12.31 17.64
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