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Abstract

In this paper, we propose M2Chat, a novel uni-001
fied multimodal LLM framework for generat-002
ing interleaved text-image conversation across003
various scenarios. Specifically, we propose004
an M3Adapter that efficiently integrates gran-005
ular low-level visual information and high-006
level semantic features from multi-modality007
prompts. Upon the well-aligned fused feature,008
M3Adapter tailors a learnable gating strat-009
egy to balance the model creativity and con-010
sistency across various tasks adaptively. More-011
over, to further enhance the effectiveness of012
M3Adapter while preserving the coherence013
of semantic context comprehension, we intro-014
duce a two-stage M3FT fine-tuning strategy.015
This strategy optimizes disjoint groups of pa-016
rameters for image-text alignment and visual-017
instruction respectively. Extensive experiments018
demonstrate our M2Chat surpasses state-of-019
the-art counterparts across diverse benchmarks,020
showcasing its prowess in interleaving gener-021
ation, storytelling, and multimodal dialogue022
systems.023

1 Introduction024

In the realm of burgeoning large-scale vision-and-025

language models (VLMs), the integration of multi-026

modal features represents more than a mere trend;027

it is a pivotal breakthrough that is sculpting an ex-028

tensive range of applications, including object de-029

tection (Wang et al., 2023; Lin et al., 2023), Optical030

Character Recognition (OCR) (Liu et al., 2023c),031

and Visual-Question-Answering (VQA) (Liu et al.,032

2023b,a; Zhang et al., 2023c; Zhu et al., 2023;033

Gao et al., 2023; Lin et al., 2023; Wang et al.,034

2023). In light of the escalating demand for human-035

machine chat applications across numerous do-036

mains, such as virtual reality, social media, and037

e-commerce, there is heightened anticipation for038

VLMs to adeptly interpret and synthesize multi-039

modality content cohesively for substantially en-040

hancing the quality of conversations. Neverthe-041

less, prevailing research such as MiniGPT-5 (Zheng 042

et al., 2023) and DreamLLM (Dong et al., 2023) 043

has concentrated predominantly on refining the 044

multi-modal alignment (Qi et al., 2023) and in- 045

terleaving generalization capabilities to enhance 046

performance in tasks like image-editing and long- 047

context generation. However, previous approaches 048

uniformly apply the same knowledge across var- 049

ious tasks, neglecting to account for the task- 050

specific inherent characteristics of VLMs. 051

As evidenced in previous works, considering 052

employing the VLM on various downstream tasks 053

while preserving coherent semantic comprehension, 054

there are still two challenges: 1) Since the vast 055

and intricately complex multi-modality features 056

from various downstream tasks, it is quite difficult 057

to obtain aligned coherent text-image pairs in a 058

unified space effectively. 2) Directly applying the 059

visual language model is not adequately tailored for 060

modeling the diverse and contextually consistent 061

text-image dialogue from the unified space. 062

To address the challenges outlined, we introduce 063

M2Chat, an innovative model for interleaved mul- 064

timodal generation. M2Chat adepts at creating 065

text-image pairs that are both contextually consis- 066

tent and creatively imaginative, tailored with rel- 067

evant knowledge for diverse tasks. Specifically, 068

by integrating Stable Diffusion XL(Podell et al., 069

2023) with LLaMA-AdapterV2(Gao et al., 2023), 070

we developed a task-specific Multimodal Multi- 071

level Adapter (M3Adapter). This adapter effi- 072

ciently integrates low-level visual information and 073

high-level semantic features from multimodality 074

prompts through a learnable gating strategy, effec- 075

tively balancing the contributions of each modal- 076

ity. This approach maintains a delicate equilibrium 077

in the M3Chat to balance consistency with incon- 078

gruity towards diverse tasks. 079

Meanwhile, we further devised a two-stage Mul- 080

timodal Mixed Fine-Tuning strategy, denoted as 081

M3FT , which strategically optimizes distinct sets 082
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Figure 1: Advanced capabilities of our proposed M2Chat in interleaved multimodal chat, multi-round text and
image-to-image generation, and text-to-image generation.

of parameters tailored specifically for image-text083

alignment and visual-instruction tasks. In the first084

stage, we finetune the parameter groups for align-085

ment to project the multimodal features with the086

input dimension of the image generation model.087

Then, in the second stage, we tailored a specific088

token and further trained the M3Adapter compo-089

nents with instruction data from different fields.090

Empirical evidence highlights M2Chat’s supe-091

rior capabilities in tasks like image editing, sto-092

rytelling, and multimodal dialogue, outperform-093

ing current models in fine-tuning efficiency and094

generation quality, with a proficiency in creating095

imaginary but coherent images and text. The con-096

tributions of our study are outlined as follows:097

• We have developed M2Chat, which is an in-098

novative VLM capable of seamless text-image099

interleaved generation across a range of tasks,100

especially on complex multimodal dialogue101

scenarios.102

• The M3Adapter aligns VLM with Stable Dif-103

fusion XL for enhanced multimodal fusion,104

using an adaptive gate for multi-level fea-105

ture integration, ensuring generation creative-106

consistency balance for diverse tasks.107

• We further design a two-stage tuning strat-108

egy M3FT that cooperates with M3Adapter109

to align text and image while maintaining se-110

mantic coherence.111

2 Related Work112

2.1 Multimodal Large Language Model113

Researchers in the field of multimodal large lan-114

guage models have devoted considerable attention115

to image understanding. KOSMOS-1 (Huang et al.,116

2023), FROMAGe (Koh et al., 2023b), and BLIP- 117

2 (Li et al., 2023) specifically focused on learning 118

captioning abilities. Others giving attention to im- 119

proving the fine-tuning capabilities of instructing 120

models like Llava (Liu et al., 2023b), Llava1.5 (Liu 121

et al., 2023a), and MiniGPT4 (Zhu et al., 2023). 122

Moreover, open-source models like LlaVA-NeXT 123

(Liu et al., 2024a) integrate the multiple visual un- 124

derstanding tasks, including object detection and 125

OCR, so as SPHINX(Lin et al., 2023). Some ef- 126

forts have aimed to incorporate more modalities, 127

as demonstrated in Video-LLaMA (Zhang et al., 128

2023a). Or, aims at long context movie understand- 129

ing, like MovieChat(Song et al., 2023). However, 130

only a few recent works have started to expand the 131

modality of output (Zheng et al., 2023). 132

2.2 VLM Downstream Tasks 133

Image Generation and Editing. The SOTA gen- 134

eration model has shifted from GAN-based ap- 135

proaches to diffusion, as highlighted in the work 136

by (Nichol and Dhariwal, 2021) and Song (Song 137

et al., 2020). While stable diffusion is renowned 138

for its strong and controllable image generation 139

capabilities, as proposed by SDXL (Podell et al., 140

2023), other works have explored the editing prob- 141

lem in image generation by manipulating the input 142

prompts, as seen in the studies by Cao (Cao et al., 143

2023) and Hertz (Hertz et al., 2022). Additionally, 144

Zhang (Zhang et al., 2023b) introduced the concept 145

of adding Controlnet to the diffusion model, which 146

enhances the controllability of diffusion-based im- 147

age generation. 148

Interleaving Generation. Recent research has ex- 149

plored various approaches to integrate Multimodal 150

Language Models (VLM) with text-image gener- 151
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Figure 2: Illustration of M2Chat, which features a generation pipeline that processes both image and text inputs,
harnessing the capabilities of LLaMA-AdapterV2 (Gao et al., 2023) and SDXL (Podell et al., 2023) to craft
high-fidelity image-text pairs. Our system excels in three key areas: Text-to-Image (T2I) generation, Storytelling,
and Multimodal dialogue. Image generation occurs as VLM forward propagation yields hidden embeddings, which
are then utilized to train the M3Adapter—distinguished by its minimal trainable parameters.

ation tasks. DALLE-3 (OpenAI, 2023) relies on152

prompts for generation without image conditions,153

while Emu (Sun et al., 2023c), DreamLLM (Dong154

et al., 2023), and MiniDALLE3 (Lai et al., 2023)155

fine-tunes VLM for multimodal context genera-156

tion. NextGPT (Wu et al., 2023) aligns audio,157

text, and image modalities using adapters. SEED-158

LLaMA (Ge et al., 2023b,a) aligns LLaMA and159

generation models with discrete vision tokens. Ad-160

ditionally, chat editing models for 3D models, such161

as 3D-GPT (Sun et al., 2023a), show promise in162

this area. Moreover, there are also a lot of explo-163

rations of multi-modality generation (Tang et al.,164

2023; Koh et al., 2023a; Qu et al., 2023; Lian et al.,165

2023). Despite these efforts, efficient alignment166

and the full exploration of VLM’s generalization167

ability in text-image interleaved generation remain168

unexplored.169

3 Proposed Method170

In this work, we introduce M2Chat, a model that171

aligns LLaMA-AdapterV2(Gao et al., 2023) with172

Stable Diffusion XL(Podell et al., 2023) for simul-173

taneous text-image generation across diverse tasks.174

This part is structured as follows. We first intro-175

duce the overarching architecture of our framework,176

including how we construct the visual instruction,177

the innovative M3Adapter, and its custom-designed178

adaptive gate. We then illustrate the advanced two-179

stage M3FT fine-tuning approach that significantly180

elevates the generative quality with the multimodal181

dual-loss objective function182

3.1 Preliminary 183

Confronted with the complexities of generating 184

multimodal dialogues with asynchronously aligned 185

image and text semantics, our novel pipeline, de- 186

picted in Fig. 2, leverages the vision-language 187

model LLaMA-AdapterV2 θvlm(Gao et al., 2023) 188

to synergize with SDXL θsdxl(Podell et al., 2023). 189

This orchestrates the generation of cohesive text- 190

image conversations. Particularly, we utilize the 191

VLM as a multimodal encoder and integrate a be- 192

spoke M3Adapter for aligning multimodal features, 193

thereby streamlining the fusion of text and image 194

narratives, while SDXL facilitates the actual image 195

synthesis. 196

Visual Instruction Formatting. We begin by de- 197

tailing our instruction design process. We draw 198

from an image-text dataset D : {X ,Y}, containing 199

pairs of images {x}Ni=1 and their corresponding tex- 200

tual contexts {y}Ni=1, where N is the sample count. 201

To construct the context Y , we adopt the principles 202

of visual instruction tuning (Liu et al., 2024b) and 203

introduce an additional image token < |img| > 204

to denote padding, alongside < |IC| > to signal 205

the start of an image caption. These tokens serve 206

as markers to differentiate token types during the 207

two-stage M3FT training phase. 208

3.2 Framework Architecture 209

VLM Encoder. We utilize LLaMA-AdapterV2 210

as our foundational pre-trained VLM for its robust 211

text-image encoding capabilities. As shown in Fig. 212
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2, each sequence context {y}Ni=1 is encoded into213

text embeddings etext ∈ Rlength×4096 using a text214

encoder. Simultaneously, the corresponding im-215

ages {x}Ni=1 are encoded by a visual encoder into216

features fimg ∈ Rlength×768, using a CLIP-based217

ViT+MLP framework (Radford et al., 2021).218

Text-Image Token Generation. The VLM out-219

puts a sequence of hidden tokens tout ∈220

Rlength×4096, which are divided into answer to-221

kens tans ∈ Rlengthans×4096, caption tokens222

tcap ∈ Rlengthcap×4096, and image tokens timg ∈223

Rlengthimg×4096. Answer tokens are decoded into224

text by LLaMA, while image generation tokens225

provide foundational features for synthesizing im-226

ages.227

Multimodal Multi-level Adapter: The Multi-228

modal Multi-level Adapter (M3Adapter), denoted229

as θm3a, addresses SDXL’s limited token capac-230

ity for text-image interactions. It integrates with231

the image decoder to deliver consistent outputs us-232

ing cross-attention and linear layers, which Q =233

W(i)
Q · query, K = W(i)

K · hl, V = W(i)
V · hl, and234

W(i) are learnable matrices. The M3Adapter aligns235

VLM outputs h0 = t{cap,img} with SDXL text en-236

coder outputs using MSE loss:237

Lalign = (hpalign,l−epclip)
2+

1

77

77∑
k=1

(h
(k)
align,l−e

(k)
clip)238

Direct alignment limits creativity, so we use a239

multi-level feature fusion strategy to incorporate240

low-level visual features fimg into high-level mul-241

timodal features hl, modulated by a learnable gate:242

ffus = (1− eans · ecap
∥eans∥∥ecap∥

)×fimg+
eans · ecap

∥eans∥∥ecap∥
×hl243

This adaptive fusion supports resilient image gener-244

ation, balancing creativity and coherence for multi-245

modal dialogue and other tasks.246

3.3 Training Strategy247

First Stage in M3FT for Alignment. We ini-248

tially fine-tune the model to align multimodal fea-249

tures using M3Adapter. During the denoising250

phase, aligned features halign and hpalign condi-251

tion SDXL’s UNet θunet:252

hunet = θunet(δnoise(I, λ), halign, hpalign, λ)253

where I is the VAE encoder image feature with254

added noise. The DDPM loss is:255

Lddpm := Eϵ∼N (0,1),λ

[
||ϵ− hunet||2

]
256

We apply alignment loss Lalign to enhance genera- 257

tion quality: 258

LM2FT = Lddpm + φ · Lalign 259

where φ is a hyperparameter. Note that only the 260

M3Adapter undergoes updates during the initial 261

M3FT stage. Our model aligns the VLM feature 262

space with SDXL, achieving success in diverse 263

multimodal generation tasks. We provide in-depth 264

visualization and CLIP performance post-first stage 265

training in Sec.4. 266

Second Stage in M3FT for Consistency. For 267

Multimodal Mixed Fine-Tuning (M3FT), the target 268

is to tune the model and generate the answer and 269

the image tokens. Since the complexity of MMDi- 270

alog, the answer and the image have inconsistency 271

in their meaning. In M3FT the LLM is tuned by 272

the loss group and DDPM at the same time. We 273

separate the answer token and the caption tokens, 274

tuning the model on the text-image to text-image 275

patterns. In this round, we tune all components of 276

the M3Adapter, including the bias of the LLaMA, 277

the projection of visual tokens, the M3FT factor, 278

and the adapters. As shown in the pipeline, each 279

component would be affected multiple times of 280

differences, which would speed up the training pro- 281

cess, and efficiently align the components. The 282

overall optimistic function of M3FT is as follows 283

LM3FT = Lddpm + φ · Lalign + ·Ltext (1) 284

where Ltext represents the text conditioning loss, 285

assessing the discrepancy between generated to- 286

kens and labels. 287

4 Experiments 288

In this section, we analyze and evaluate the gener- 289

ation performance of M2Chat and the efficiency 290

of M3Adapter and M3FT across various tasks. The 291

empirical results demonstrate the superiority of 292

our proposed methods against other state-of-the- 293

art baselines in generation quality and semantic 294

consistency. 295

4.1 Downstream Tasks 296

Our paper enhances multimodal LLMs for inter- 297

leaved generation tasks, producing related and in- 298

tertwined text and images. Specifically, the inter- 299

leaving generation task can be defined into several 300

sub-tasks: 301
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• Chat-based image generation requires the302

model to discern and react on often vague303

user inputs, extracting key elements to pro-304

duce diverse images that match user intent,305

showcasing both comprehension and creative306

alignment with user specifications.307

• Interleaving generation aims to perform ba-308

sic editing operations based on text instruc-309

tions. During the editing process, the model310

emerges with the ability to comprehend hu-311

man commands and make appropriate editing312

based on the understanding.313

• storytelling requires the model to weave a314

coherent narrative with corresponding images,315

ensuring each image reflects the unfolding316

story. This demands a deep understanding317

of context and the ability to create rich text318

and visuals, delivering an immersive narrative319

experience.320

• Multimodal Dialogue diverges from tradi-321

tional ones by tackling inconsistencies in text-322

image pairs. VLM must go beyond describing323

images to generating relevant dialogues and324

topic-specific visuals, enriching the conversa-325

tion with images more than content visualiza-326

tion.327

4.2 Experiment Setup328

Datasets. To minimize the domain gap be-329

tween LLaMA-AdapterV2 (Gao et al., 2023) and330

SDXL (Podell et al., 2023), we tuned M2Chat331

on CC3M (Sharma et al., 2018) and LAION-332

Aesthetics (Schuhmann et al., 2022). Addition-333

ally, we used the COCO-Caption dataset (Lin et al.,334

2015) for its rich object descriptions. LAION-335

Aesthetics, a subset of LAION-5B, enhances gen-336

eralization quality. We evaluated our model on the337

following datasets:338

• MMS-COCO-Validation (Lin et al., 2014): a339

subset of the MS-COCO dataset used for tasks340

like object detection and segmentation.341

• CC3M (Sharma et al., 2018) (Conceptual Cap-342

tions 3 Million): a large web-sourced image-343

caption dataset aimed at image understanding344

and caption generation.345

• MMDialog (Feng et al., 2022): contains an-346

notated dialogues with visual information to347

facilitate multimodal dialogue research.348

Evaluation Metrics. We evaluate our methodol-349

ogy using a combination of text-image generation350

metrics that assess both textual and visual dimen-351

sions. For visual quality and text-image congru- 352

ence, we employ CLIP-based metrics (CLIP) and 353

Frechet Inception Distance (FID). Textual analy- 354

sis is conducted using BLEU-1, BLEU-2(Papineni 355

et al., 2002), and ROUGE(Lin, 2004). To address 356

the specific needs of multimodal dialogue evalu- 357

ation, we introduce InterRel, a novel metric that 358

leverages CLIP embeddings to measure the align- 359

ment and contextual harmony between generated 360

texts and images, following the MM-Relevance 361

framework (Feng et al., 2022). 362

Baselines. We compared our model against mul- 363

tiple SOTA models targeting different perspec- 364

tives:: Stable Diffusion (1.5 and SDXL) (Podell 365

et al., 2023), can enerates detailed images from 366

text. Emu (Sun et al., 2023c) and Emu2 (Sun et al., 367

2023b), are pre-trained models for quality visuals. 368

SEED-LLaMA (Ge et al., 2023a)which enhances 369

LLMs with an image tokenizer. NExT-GPT (Wu 370

et al., 2023) integrates an LLM with multimodal 371

adaptors and diffusion decoders. Besides, Dream- 372

LLM (Dong et al., 2023) and MiniGPT5 (Zheng 373

et al., 2023), which been mentioned in Sec. 1. 374

Implementaotin Details. Our model was trained 375

end-to-end on eight H800 GPUs. As illustrated in 376

Fig. 2, we focused on training the M3Adapter exclu- 377

sively. The VLM backbone, LLaMA-AdapterV2 378

7B, was paired with CLIP(ViT-L/14)(Radford et al., 379

2021) for visual encoding. The M3Adapter’s pa- 380

rameters occupy 299Mb, with an inference memory 381

of 28Gb. During the First Stage in M3FT for Align- 382

ment, we initialized a learning rate of 1e−4, a batch 383

size of 8, and conducted over 4 epochs, the training 384

required approximately 80 GPU hours in total. We 385

trained on a subset of CC3M(Sharma et al., 2018) 386

with around 1.5 million image-text pairs. 387

During the second stage in M3FT for Alignment, 388

we initialized a learning rate of 1e−5, a batch size 389

of 1, and conducted over 20 epochs, the training 390

required approximately 30 GPU hours in total. We 391

train all the adapters by a mixture dataset, with 4k 392

image-text instruction paired data extracted from 393

CC3M, and 7k MMdialog conversation pairs from 394

the training set of MMDialog(Feng et al., 2022). 395

The learning rate is initialized at 1e-4, and decays 396

10 times each five epochs. 397

4.3 Quantitative Results 398

In our evaluation, we conducted a performance 399

comparison of our model, M2Chat, on the MS- 400

COCO 2014 and CC3M validation datasets, as 401

5



Table 1: Evaluation results based on FID and CLIP on CC3M and MS-COCO 2014 Validation set.

Models MS-COCO 2014 CC3M

LLM Size CLIP ↑ FID ↓ CLIP ↑

SD 1.5 - 30.62 30.62 23.48
SDXL (Podell et al., 2023) - 31.17 24.26 29.91

Emu (Sun et al., 2023c) 13B 28.6 - -
Emu2-Gen (Sun et al., 2023b) 33B 29.7 - -
NeXT-GPT (Wu et al., 2023) 7B 29.31 - -
MiniGPT5 (Zheng et al., 2023) 7B - 31.47 22.00

M2Chat 7B 28.46 28.71 21.87
M2Chat (M3FT) 7B 29.87 26.15 23.51

In a fantasy world, a man is seen standing 
in front of a large, fire-breathing dragon. 
The man is holding a sword and is ready to 
strike the dragon, which is preparing to 
attack. The dragon is a massive creature 
with a fiery breath, and it is surrounded by 
a cloud of smoke. The scene is set in a 
desert, with a large fire in the background, 
adding to the dramatic atmosphere. The 
man's determination and bravery are 
evident as he faces the dragon, ready to 
defend himself and possibly save others 
from the dragon's wrath. The man won the 
battle, and the dragon died in the end.

Human: Tell me a story about a 
close-up of a fire spitting dragon, 
cinematic shot, killed by a man.

+ Human + SDXL

M2Chat:

Figure 3: The storytelling pipeline involves the generation of four pictures and a corresponding text story. In this
particular example, the human initiates a request to generate a story, starting with the first sentence about a dragon.
M2Chat can generate pictures that are highly consistent with the story and closely aligned with the intended
narrative. To compare the results, the human utilizes the prompt from M2Chat to generate four pictures using the
SDXL method. The blue blocks assess and contrast the images produced.

Table 2: Evaluation results of BLEU-1(B1), BLEU-
2,(B2), ROUGE-L(RL), and InterRel(IR) on MMDialog
Validation set.

Models LLM B1↑ B2↑ RL↑ IR↑

VLM+SD finetune Vicuna 7B 4.21 4.18 6.78 20.05

M2Chat LLaMA 7B 6.02 5.88 10.14 24.68
M2Chat(M3FT ) LLaMA 7B 6.98 6.44 11.40 25.57

outlined in Table 1. Our results demonstrate the402

competitive performance of M2Chat compared to403

other generative models.404

MS-COCO dataset Our model achieves a SOTA405

score of 29.87, surpassing other multimodality gen-406

eration models by a margin of 0.56. The score also407

notably outperforms NExT-GPT (Wu et al., 2023),408

and slightly surpasses the large-scale pre-trained409

model Emu2 (Sun et al., 2023b).410

CC3M validation set We compared our results 411

with MiniGPT5 (Zheng et al., 2023), which has a 412

similar-sized LLM to M2Chat. Our model demon- 413

strates superior performance, achieving a 2.56 im- 414

provement in the FID score and a 1.51 improve- 415

ment in the CLIP score. 416

MMDialog We compared our model, M2Chat, 417

with the baseline model VLM+SD finetune, us- 418

ing the same pretraining and finetuning settings. 419

Our alignment method showed significant improve- 420

ments: a 5.52 increase in InterRel, 2.77 in BLEU-1, 421

2.16 in BLEU-2, and 4.62 in ROUGE-L scores. 422

Note that the baseline model, LlaMA-AdapterV2, 423

was not fine-tuned for chat applications, resulting 424

in lower language scores. 425

4.4 Qualitative Comparisons 426

Image Generation Quality As shown in Fig. 5, 427

our pipeline generates high-resolution images in 428
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Mid layer illusions

Human: What if the main character 
is CAT?

Human: What if the main character 
is DOG?

Figure 4: Visualization of the transformation of the hidden features while doing the instruction editing task. Giving
the Dog picture and human instruction, the hidden features of VLM gradually transform its representation from dog
to cat. The opposite instruction, which turns the cat into a dog, also shows a similar transformation step.

 “a man washes 
his horse.”

 “motorcycle rider 
on the beach at 
sunrise.”

SD1.5 SDXL-base M2ChatCaption

Figure 5: Generation performance comparison of one-
stage M2Chat with SD1.5 and SDXL in Text-to-Image
generation task.

different contents. It is demonstrated that our ef-429

ficient alignment methods adapt the prompts well,430

as described in the quantitative results. M2Chat431

without M3FT is compared with SDXL-base and432

SD1.5 for a fair comparison. Here, the general-433

ization resolution is 1024×1024. In conclusion,434

M2Chat is able to fit the prompt better than SD1.5.435

We provide more generation results in Appendix.436

Storytelling We show the storytelling ability of437

M2Chat on Fig. 3. While asking the M2Chat to438

tell us a story, it generates a story composed of text439

together with four pictures that follow the story-440

line. In comparison, we made a set of pictures that441

were artificially produced: fix the random seed of442

the SDXL, use the prompts generated by M2Chat,443

and feed it to the SDXL. Our method shows high444

consistency of the text-images among multi-turn445

conversations. M2Chat performs better in show-446

ing the progress of the story, especially in the last447

two pictures. It shows the progress from "defend448

Figure 6: Examples of interleaved zero-shot image edit-
ing. M2Chat consistently demonstrates excellent rep-
resentation consistency while adhering to the editing
instructions.

himself " to "the dragon died" since the SDXL is 449

limited by the prompt size. We provide more com- 450

prehensive generation results in Appendix. 451

Interleaved editing Interleaved zero-shot image 452

editing refers to the process of modifying images 453

based on textual instructions without the need for 454

paired image-text data during training. The goal 455

is to achieve consistent and accurate image editing 456

results by leveraging the learned representations 457

from a pre-trained model. M2Chat consistently 458

demonstrates excellent representation consistency 459

while faithfully adhering to the editing instructions. 460

As shown in the Fig. 6, M2Chat can edit the pose, 461

replace the character, give a similar picture, etc. 462

Multi-level feature visualization As previously 463

mentioned in Sec. 3, we employed multi-level fea- 464
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Table 3: Comparison of parameter size and training cost with other multimodality generation models

Models LLM Extra parameter Data scale Task Wall-clock time

Emu2 (Sun et al., 2023b) LLaMA 33B 4B 100M TI → TI -
CAFE (Zhou et al., 2023) LLaMA 70B 4B - TI → TI 20000×A100 Hrs
SEED-LLaMA-8B (Ge et al., 2023a) Vicuna 7B 1B - TI → TI 9000 A100(40G) Hrs
SEED-LLaMA-14B (Ge et al., 2023a) LLaMA 13B 1B - TI → TI 14000 A100(40G) Hrs
DreamLLM (Dong et al., 2023) Vicuna 7B - 32M TI → TI 2240 A100 Hrs
MiniGPT5 (Zheng et al., 2023) Vicuna 7B - 2.5M TI → TI -

M2Chat LLaMA 7B 299M 2M TI → TI 100 A100 Hrs

ture fusion in our approach. Additionally, we vi-465

sualized the hidden layer features of the LLM. In466

Fig. 4, we presented the process wherein M2Chat467

effectively adheres to given instructions, resulting468

in the transformation of the dog depicted in the left469

image into a cat in the corresponding right image.470

The model takes human instruction and the picture471

as input, and outputs the image captions as well as472

the edited pictures. Furthermore, as shown in the473

Fig. 1, M2Chat also supports multi-round editing.474

More results will be shown in Appendix B.475

4.5 Ablation Study476

Ablation of M3FT In this paper, we claim that477

the low-level visual information and high-level se-478

mantic features have different effects on the final479

generalization. Hidden layers inside the VLM con-480

tain different levels of information and show a481

strong tendency to transition from the given state482

to the output state. To visualize the difference be-483

tween layers, the Fig. 4 shows the visualization484

of middle layers in the text-image and image-text485

tasks. Furthermore, as shown in the Tab. 1, we com-486

pare the M2Chat with the no M3FT version. With487

the M3FT, the CLIP score of MS-COCO improves488

by 1.39. On CC3M dataset, the M3FT improves489

2.56 in FID score, and 1.64 in the CLIP score. Both490

qualitative results and quantitative results illustrate491

the importance and efficiency of M3FT.492

4.6 Efficiency Comparison493

Inspire by a series of finetuning meth-494

ods(Mangrulkar et al., 2022; Zhang et al.,495

2024), in Table 3, we present a comparison of496

the training costs between our model and other497

multimodality and multitask generation models.498

The results demonstrate that M2Chat outperforms499

the other methods in terms of parameter efficiency500

and low training costs. For instance, Emu (Sun501

et al., 2023c) and SEED (Ge et al., 2023b) focus on502

training large multimodality models without fully503

utilizing the potential of pre-trained components,504

resulting in training costs exceeding 10,000 GPU 505

hours. Similarly, DreamLLM (Dong et al., 2023) 506

incorporates learnable tokens to fine-tune the LLM 507

for both understanding and generalization abilities, 508

which incurs training costs exceeding 2,240 GPU 509

hours. In comparison, M2Chat demonstrates a 510

close data scale to MiniGPT5, around 2.5 million. 511

Moreover, the additional parameters in M2Chat are 512

highly efficient when compared to the billion-level 513

parameters found in other works. 514

5 Limitation 515

We introduce a novel interleaved text-image gen- 516

eration framework called M2Chat, which is capa- 517

ble of generating text and images simultaneously. 518

However, though we find this framework is suitable 519

for most interleaved generation tasks, it still needs 520

a task-specified instruction tunning to improve its 521

application ability. This means the potential of 522

this framework is still under discovery. We be- 523

lieve with this work, further applications including 524

interleaved image editing, storytelling generation, 525

multi-modal conversation, and other interleaved 526

tasks will be inspired and improved. 527

6 Conclusion 528

In this paper, we present M2Chat, a novel mul- 529

timodal interleaved text-image generation frame- 530

work that can generate text and images simulta- 531

neously. M2Chat is constructed on the VLM 532

LLaMA-AdapterV2, integrated with SDXL. We 533

leverage a lightweight module M3Adapter to 534

achieve multimodal feature alignment. Moreover, 535

we further integrate the low-level features with 536

high-level features via an innovative gating strat- 537

egy to balance the model’s creativity and coherence. 538

Last but not least, we propose a two-stage M3FT 539

to further enhance semantic consistency. Extensive 540

experiments demonstrate the superiority of M2Chat 541

across various multimodal interleaved tasks. 542
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