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ABSTRACT

To our knowledge, in the field of large language models, all existing reinforcement
fine-tuning algorithms require generating a complete reasoning process starting
from the question, which results in a substantial time overhead during the rollout
phase of training.Challenging this conventional approach, we propose the assump-
tion that during reinforcement fine-tuning, the model only needs to generate part
of the reasoning process. We analyze the impact of different segments of the
reasoning path on the correctness of the final result, and based on these insights,
we introduce Policy Optimization with Experience Replay (POER), a plug-
and-play reinforcement fine-tuning algorithm. Unlike traditional reinforcement
fine-tuning algorithms that generate full reasoning paths, POER trains the model
by generating suffixes of the reasoning path using experience caching, thereby
significantly reducing training time while improving training stability.From evalua-
tions during the rollout phase of training, POER reduces token generation in this
phase by approximately 95%, greatly lowering the theoretical time overhead. In
practical training, compared with full-path reinforcement fine-tuning algorithms,
POER reduces the training time of the 1.5B model by 90% and the 7B model by
72%, while maintaining performance comparable to typical algorithms such as
GRPO and DAPO. We have open-sourced the code in an anonymous repository:
https://anonymous.4open.science/r/POER-4BF2

Figure 1: The left figure shows the DeepSeekR1-Qwen-Distill-7b and DeepSeekR1-Qwen-Distill-
1.5b models. For each question, an initial answer is generated and then truncated; from the truncation
point, 256 answers are subsequently generated, and the relationship between truncation length and
the overall average accuracy is analyzed. The right figure shows 256 answers generated for each
training question. Answers exceeding 2048 tokens are selected, and BERT is used to measure
the similarity between equal-length prefix segments. The similarity metric is defined as:sim =

2
n(n−1)

∑n−1
i=1

∑n
j=i+1

BERT(si)·BERT(sj)⊤

∥BERT(si)∥ ∥BERT(sj)∥

1 INTRODUCTION

In recent years, large language models (LLMs) (OpenAI et al., 2024b; Touvron et al., 2023; Zeng et al.,
2023) have achieved remarkable breakthroughs in reasoning and generalization capabilities (Wang
et al., 2025), particularly after the introduction of reinforcement learning (RL) during the post-training
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stage (Ouyang et al., 2022). Pioneering works such as OpenAI’s O1 (OpenAI et al., 2024a) and
DeepSeek-R1 (DeepSeek-AI et al., 2025) have demonstrated impressive reasoning-time efficiency,
primarily due to the synergistic combination of reinforcement learning and chain-of-thought (CoT)
reasoning (Wei et al., 2023). This paradigm shift highlights the transformative potential of RL-based
post-training in pushing the boundaries of LLM performance.

Despite its promising prospects, applying reinforcement learning in post-training remains immature
and highly challenging, with numerous obstacles hindering its widespread adoption. Regarding time
overhead, RL fine-tuning typically generates many samples during the sampling stage. However,
parameter updates cannot proceed until all samples are completed, leading to significant underutiliza-
tion of computational resources. Furthermore, during RL fine-tuning of language models, rewards
are computed only after generating the final token based on task-specific criteria. This paradigm,
known as Reinforcement Learning with Verifiable Rewards (RLVR) (Lambert et al., 2025), lacks
intermediate feedback and produces sparse rewards. Such sparsity hinders the model’s ability to learn
optimal policies and contributes to training instability (Lightman et al., 2023).

Most current research efforts addressing these challenges focus on optimizing the policy gradient
function (Sutton et al., 1999), which has achieved some success. However, these approaches often
overlook the critical role of sampling strategies.

We observe that a significant underlying issue stems from the policy model’s need to identify a reason-
ing trajectory from the beginning of the problem to the correct answer. This approach—comparing
entire reasoning paths using policy gradients—leads to excessive randomness during the sampling
phase. Although it expands the search space, it often fails to find suitable reasoning paths, resulting
in inefficient sampling and high variance.

An alternative perspective arises: since exploring a complete reasoning path from the beginning of the
problem introduces various drawbacks, why not train the policy model to complete a reasoning path
based on partially correct reasoning process hint instead? We found that this is feasible. Through
our experiments, enabling the model to complete correct reasoning paths can still effectively teach it
to generate whole reasoning trajectories from the initial problem statement. Based on this insight,
we propose the Policy Optimization with Experience Replay(POER). Our method is grounded in a
reasonable assumption: the early tokens of a reasoning path that leads to the correct answer are more
likely to guide the model toward the correct reasoning trajectory. Furthermore, we investigate the
relationship between the length of the truncated trailing tokens and the model’s generation accuracy.
The results confirm that the initial tokens of correct answers play a crucial role in steering the model
toward correct solutions, and that longer prefix lengths positively correlate with higher generation
accuracy.

Specifically, we construct a cache pool for the GRPO to store previously generated reasoning paths
and continuously update it during training. After we complete the sampling generation stage for
each question, we add the reasoning path that leads to the correct answer into the cache. When we
later reencounter the same question, we retrieve the first n tokens of the corresponding reasoning
path from the cache, prepend them to the prompt, and then perform sampling. Experimental results
show that this method is plug-and-play, improves training stability during the RL stage, significantly
reduces the policy model’s sampling time cost, and achieves notable performance gains.

Contributions We propose POER, a novel framework for reinforcement fine-tuning of LLMs,
introducing an experience replay mechanism in the sampling stage. Key advantages are: plug-and-
play: easily integrates into other RL fine-tuning methods; reduced resource consumption: up to
92.6% faster training; strong stability: mitigates common RL instability in reasoning models.

We evaluate POER on Deepseek-R1-Distill-Qwen 1.5B and 7B across six datasets. Results show
around 90% reduction in training time, a 2% performance improvement over GRPO and DAPO, and
support for mini-batch, multi-step updates.

2 RELATED WORKS

Reinforcement Fine-Tuning Reinforcement Fine-Tuning (RFT) guides the model fine-tuning
process through the reward mechanisms of reinforcement learning, greatly enhancing generalization
and accuracy. Kimi v1.5 (Team et al., 2025) and ReFT (Luong et al., 2024) employ traditional
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Proximal Policy Optimization (PPO) (Schulman et al., 2017) for RFT and have demonstrated excellent
performance. DeepSeek-R1 (DeepSeek-AI et al., 2025) adopts GRPO and uses verifiable reward
strategies to compute policy gradients directly. DAPO (Yu et al., 2025b) further optimizes GRPO to
improve training stability. R1-V (Chen et al.), VLM-R1 (Shen et al., 2025a), and LMM-R1 (Peng
et al., 2025) extend RFT into the multi-modal domain. While many reinforcement learning algorithms
suffer from reward saturation as training steps increase, leading to reward hacking (Eisenstein et al.,
2024). Satori (Shen et al., 2025b) uses SFT distillation to mitigate it, and O1-Prune (Luo et al., 2025)
employs post-hoc length pruning to enhance stability.

Efficient Inference Test-time scaling (Chen et al., 2024) significantly increases training and
inference costs, as models tend to generate lengthy reasoning chains. To reduce the time cost of RL
training, UPFT (Ji et al., 2025) proposes fine-tuning the model using only the first n tokens. However,
it is impossible to validate reasoning accuracy properly. ThinkPrune (Hou et al., 2025) sets a length
constraint during RL training to limit the model’s thinking length and reduce inference costs. O1-
Prune (Luo et al., 2025) enhances training stability through length pruning and reduces the high cost
associated with long reasoning chains. Hao et al. (2024) optimizes inference by compressing lengthy
reasoning chains into latent space, while Chen et al. (2025); Yu et al. (2025a) reduces inference costs
by aggregating tokens.

3 METHOD

Step1  Cache Init Step2  Cache Updated Step3  Optimization

Replace

Pick an answer

Answer 1

Answer N

...

Answer 1

Answer N

...

Policy ModelQuestion 1

Question N

...

Prefix

Policy Model

Answer i'

Answer i''

Answer i'''

Optimization

Answer i''

Answer i random
or

Discard

PrefixQuestion i

Completions

Answer i

Derive the answer

Figure 2: Overview of the POER framework. The entire training process is described as follows:
Cached answer fragments are used by the model to generate new responses; either the best or a random
response is selected based on the reward system for optimization; and the cache is continuously
updated to improve training efficiency and stability.

3.1 CACHE POOL INITIALIZATION

First, we denote the dataset of samples as D = {qk}Nk=1, where qk represents the k-th question in the
dataset. We denote the initial model parameters as θ0, and we represent the model’s answering policy
by πθ0 . Before training begins, we initialize the cache pool as C(0) as follows:

C(0) = {(qk, ak) | ak ∼ πθ0(·|qk),∀qk ∈ D} (1)

This stage uses the initial model policy to sample the dataset D. To retrieve the response ak
corresponding to question qk from the cache pool, we define the retrieval operation as:

ak := {a | (qk, a) ∈ C}. (2)

Here, ak denotes the answer associated with question qk in the cache pool C.

3
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3.2 TRUNCATED ANSWER SAMPLING OPTIMIZATION

Sampling Generation At each sampling stage, we use the POER strategy to retrieve the historical
response ak for each question qk from the cache pool C. We then remove the last m tokens and
concatenate the remaining prefix with qk to generate a new response o. We express this process as:

o = a
[0:−m]
k ∥πθ

(
· | qk, a[0:−m]

k

)
, where

{
ak := {a | (qk, a) ∈ C}

m ∼ U{0, 1, ..., L}
(3)

Here, L is the maximum truncation length, U{0, 1, ..., L} samples a truncation point uniformly from
[0, L], a[0:−m]

k truncates the last m tokens of ak, and πθ(·|qk, a[0:−m]
k ) generates a new continuation

based on the question and prefix. In this paper, L is either fixed or set dynamically based on the
shortest response in a sampling group G, denoted as ℓ, where:

ℓ = min{len(o1), len(o2), . . . , len(oG)} (4)

Policy Optimization with Experience Replay After completing the sampling generation, POER
adopts Group Relative estimation of advantage. For a given question-answer pair (qk, ak), the
behavioral policy πθt−1

samples a group of G individual responses {oi}Gi=1 from the model. Then,
by normalizing the group rewards {Ri}Gi=1, the advantage of each response is computed as:

JPOER(θt) = E
(q,a)∼C(t−1)(Q,A),{oi}G

i=1∼a
[0:−m]
k ∥πθ

(
· | qk,a[0:−m]

k

)
1

G

G∑
i=1

1

|oi|

|oi|∑
j=1

{
min

[
ri,j(θt)Âi,j , clip

(
ri,j(θt), 1− ϵ, 1 + ϵ

)
Âi,j

]
− βDKL(πθt∥πref)

} (5)

where:

ri,j(θt) =
πθt(oi,j |q, oi,<j)

πθt−1
(oi,j |q, oi,<j)

, Âi,j =
Ri −mean({Ri}Gi=1)

std({Ri}Gi=1)
(6)

Since POER is policy-agnostic, we propose a unified forward reinforcement learning paradigm based
on experience replay. We can then write the policy gradient function of POER in a more general form
as:

∇θJPOER(θ) = E(q,o)∼C︸ ︷︷ ︸
Data Source

 1

|o|

|o|∑
j=1

G(q, o, j, πref )︸ ︷︷ ︸
Gradient Coefficient

∇θ log πθ(oj |q, o<j)

 (7)

Equation 7 is derived from the standard policy gradient formulation. The above equations indicate that
only the sampling stage is affected by POER, while the policy gradient function remains unaltered. As
a result, POER exhibits a plug-and-play nature and can be easily integrated into other reinforcement
fine-tuning algorithms.

Compared to the traditional GRPO strategy, a previously sampled historical response trajectory is
introduced by POER as a constraint into the subsequent sampling process. In this way, the policy
space πθ explored during training is confined. Such a constraint regularizes the gradient descent
space during learning, which can be expressed as:

V ar(∥∇θJPOER∥2) ≤ V ar(∥∇θJGRPO∥2) (8)

In theory, our method enables a more stable training process. We provide detailed mathematical
proofs in Appendix B.
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3.3 CACHE POOL UPDATE

After each gradient update, we adopt the ε-greedy algorithm to update the experience cache by
selecting the highest-reward response from the current inference results. Specifically, when the
random variable u ∼ U(0, 1) satisfies u ≤ ε, we select the response with the highest group reward;
otherwise, we randomly select a suboptimal response. We formalize the update process as:

C(t) =

{(
C(t−1) ∪

{
(qk, oargmax{Ri}G

i=1
)
})

\ {(qk, ak)} , if u ≤ ε,(
C(t−1) ∪ {(qk, og′)}

)
\ {(qk, ak)} , otherwise.

(9)

Here, we denote the highest-reward response in the group as oargmax{Ri}G
i=1

, and we randomly select
another candidate response as og′ .

3.4 LENGTH-AWARE REWARD SHAPING

However, since the same response prefix is shared during the sampling phase, the diversity of
responses within the group is reduced compared to the GRPO algorithm. This lower diversity results
in more similar reward signals, thereby diminishing the effectiveness of policy gradient estimation.
To ensure meaningful gradients, reasonable reward differences are maintained within the group, even
when all responses are correct.

A Length-Aware Reward Shaping method is proposed to address this issue. This method is based
on the assumption that: For the same question, a reasoning path that reaches the correct answer
more concisely should be rewarded with a higher value. Specifically, for each response oi in the
group, its length-aware reward R(si) is computed as:

R(si) = clip
(

r(si)

1 + e−α(ℓref−len(oi))
, m, M

)
(10)

Here, r(si) is the original reward, and ℓref is the average length of group G, defined as ℓref =
1
|G|

∑|G|
i=1 len(oi). The parameter α > 0 controls the sensitivity of the reward to length differences.

m and M are the lower and upper bounds for reward clipping to avoid extremely large or small
values. clip(·,m,M) denotes restricting a value within the interval [m,M].

We then iterate the above steps in Sections 3.2 and 3.3 until a predefined stopping step T is reached.

Through mathematical derivation, we demonstrate that length-aware rewards are better suited for
the POER algorithm; the two can complement each other, and when the guiding path is within a
certain threshold, they can enable the model to achieve greater performance gains. In contrast, the
GRPO algorithm, lacking an initial fixed guiding path, results in high variance for length-aware
rewards, making it difficult to accurately estimate the true effective policy gradient, and is therefore
not suitable for using length-aware rewards. Detailed proof is provided in Appendix C.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Base Models To demonstrate the effectiveness and generality of POER, we evaluate it on two
open-source inference models with 1.5B and 7B parameters, namely Deepseek-r1-qwen-distill-1.5b
and Deepseek-r1-qwen-distill-7b (DeepSeek-AI et al., 2025; Bai et al., 2023). Notably, we skip
the supervised fine-tuning (SFT) phase, which is usually a prerequisite for reinforcement learning
to enhance performance (Chu et al., 2025), as the selected models have already undergone this
stage (DeepSeek-AI et al., 2025).

Evaluation and Datasets We evaluate the models on six standard reasoning evaluation datasets:
aime25(math ai, b), aime24(math ai, a), math500(Hendrycks et al., 2021), amc23(math ai, c),
minerva(Lewkowycz et al., 2022) and olympicbench(He et al., 2024). To ensure fairness, all
evaluations use the lighteval(Habib et al., 2023) toolkit.

5
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Implementation Details During training, we use 7k samples from the open-rs dataset (Dang
& Ngo, 2025) with a global batch size of 576 for 4 epochs. Experiments are run on a single H20
machine with 8×H20 96G GPUs. We generate 6 samples per prompt, set the temperature to 0.7, and
fix the maximum generation length at 4096. For the length-aware reward, we use m = 0.5, M = 1,
and α = 0.01. All models are fully fine-tuned. Due to time constraints, only zero-shot performance
is averaged over three runs; all other ablation experiments are run once.

4.2 ZERO-SHOT PERFORMANCE

We set the maximum truncation length L for each group to half of the minimum response length ℓ.
Then, we train the DeepSeek-R1-Qwen-1.5B and DeepSeek-R1-Qwen-7B models for four epochs
using the original GRPO algorithm, the DAPO algorithm, as well as their POER variants, with a
batch size of 576 and a maximum generation length of 4096 tokens. To ensure that the experimental
results are not caused by randomness, we repeat the training three times for each experiment. We
then compare their mean accuracy on the designated evaluation datasets.

Table 1: Performance of the POER algorithm on test datasets. Arrows indicate performance changes
relative to the base model: ↑ indicates improvement, ↓ indicates decline. w/ R means length-aware
reward is used, w/o R means length-aware reward is not used. +POER shows the effect of applying
the POER algorithm on top of the above method.

Model AIME25 AIME24 MATH500 AMC23 Minerva OlyB Avg
1.5B Models

DeepSeek-R1-Qwen-1.5B 16.7 28.8 82.2 62.9 26.5 43.3 43.4
+ GRPO(w/o R) 24.4↑ 31.1↑ 85.7↑ 72.5↑ 29.8↑ 51.3↑ 49.1↑

+ POER 24.4↑ 25.6↓ 84.3↑ 69.2↑ 29.5↑ 51.7↑ 47.5↑
+ GRPO(w/ R) 22.2↑ 32.2↑ 83.8↑ 70.8↑ 27.5↑ 50.5↑ 47.8↑

+ POER 24.4↑ 35.6↑ 85.3↑ 83.3↑ 29.8↑ 51.8↑ 51.7↑
+ DAPO(w/o R) 30.0↑ 24.4↓ 86.2↑ 84.2↑ 29.7↑ 52.7↑ 51.2↑

+ POER 28.9↑ 24.4↓ 86.0↑ 84.5↑ 29.3↑ 52.1↑ 50.9↑
+ DAPO(w/ R) 26.7↑ 30.0↑ 85.0↑ 84.1↑ 29.7↑ 51.1↑ 50.2↑

+ POER 32.2↑ 30.0↑ 86.2↑ 86.1↑ 29.1↑ 52.3↑ 52.7↑
7B Models

DeepSeek-R1-Qwen-7B 43.3 55.5 92.8 90.0 44.5 67.4 65.6
+ GRPO(w/o R) 43.3 53.3↓ 95.0↑ 90.0 44.5 67.2↓ 65.6

+ POER 43.3 46.6↓ 92.5↓ 89.2↑ 42.3↓ 67.7↑ 63.6↓
+ GRPO(w/ R) 40.0 ↓ 48.9↓ 95.0↑ 88.3↑ 43.5↓ 66.0↓ 63.6↓

+ POER 50.0↑ 61.1↑ 94.2↑ 90.8↑ 43.7↓ 67.3↓ 67.8↑
+ DAPO(w/o R) 43.3 53.3↓ 94.6↑ 90.2↑ 45.1↑ 67.7↑ 65.7↑

+ POER 46.7↑ 52.2↓ 94.2↑ 91.2↑ 42.7↓ 64.9↓ 65.3↓
+ DAPO(w/ R) 42.2↓ 56.7↑ 93.2↑ 91.8↑ 44.6↑ 64.5↓ 65.5↓

+ POER 46.7↑ 54.5↓ 94.8↑ 95.2↑ 43.1↓ 64.5↓ 66.5↑

As shown in Table 1, as mentioned in the Method section, length-aware rewards complement the
POER algorithm. Incorporating group-wise length-aware rewards enables POER to achieve higher
accuracy on test benchmarks than GRPO and DAPO for both the 1.5B and 7B model sizes. Without
group-wise length-aware rewards, POER may experience some performance degradation; therefore,
when using POER for accelerated training, it is recommended to include group-wise length-aware
rewards to enhance performance.

4.3 TRAINING TIME OVERHEAD

To investigate the training time overhead of GRPO and POER, each experiment is conducted on
a machine with 8 H20 GPUs, using only a single GPU for sampling during the training phase. It
should be noted that POER introduces additional inference overhead during the cache initialization
phase, where parallel inference is performed across all GPUs using the vllm framework. When the
dataset size is 7k and the parallel batch size is 256, this phase takes approximately 20 minutes. Our
experiments reveal that the primary factors affecting the relative training speed between POER and
GRPO are the number of group samples G and the maximum truncation length L, while the impact
of batch size is relatively minor.

6
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Table 2: The average number of tokens gener-
ated per sample with the POER method

L 1.5B Model 7B Model

300 145.88 147.06
500 158.41 168.17
800 382.20 397.89

GRPO 2689.51 2457.91

Table 3: Training time of POER and GRPO
under 4 epochs with L = 800, h represents
hours

Method 1.5B Model 7B Model

GRPO 77.28 h 84.53 h
+POER 8.37 h 23.50 h

Figure 3: The impact of maximum truncation
length L and group size G on the acceleration
ratio of POER under the 1.5B and 7B model set-
tings.Due to the memory limitation of a single
machine, the maximum generation length for 7B
(G) is 2048, while for all other cases it is 4096.

We study training speed for both 1.5B and 7B models. With maximum truncation length fixed at
L = 300, we set per-GPU batch sizes of 2 (1.5B) and 1 (7B), and evaluate group sizes G = 6, 8, 16.
As shown in Figure 3, smaller G yields greater acceleration for POER, reducing training time to 7.4%
of GRPO for 1.5B and 21.1% for 7B. We also study the effect of L with G = 6. Figure 3 shows that
larger L increases POER’s relative training time, with a smaller rise for the 7B model than for the
1.5B model.

The actual training speed is affected by many factors, so we propose a fairer comparison: using
the average tokens generated per sample. Since prefill is much faster than decoding, more tokens
in prefill lead to shorter decoding time.As shown in Table 2, under the original GRPO algorithm,
each sample requires an average of 2689.51 tokens and 2457.91 tokens for the 1.5B and 7B models,
respectively. In contrast, with the POER algorithm, the number can be reduced to as low as 145.88
tokens and 147.06 tokens. From the perspective of the decode stage, the time overhead of POER is
only about 5% of that of GRPO. Table 3 presents the detailed training time overhead of the original
GRPO and POER algorithms over 4 epochs.

It is worth noting that the average number of tokens generated by the GRPO algorithm for the 1.5B
model is higher than that for the 7B model. However, when constrained by POER, the number of
tokens generated is lower. This is because the POER algorithm preserves shorter correct answers,
and the exploration capability of the 1.5B model, once guided, is weaker compared to that of the 7B
model, leading to this phenomenon.

4.4 STABILITY ANALYSIS

Traditional RL methods like GRPO and PPO are unstable in multi-step training: performance often
degrades with more iterations, and response length tends to shorten. Consequently, GRPO fine-tuning
usually limits iteration numbers to prevent deterioration, with accuracy and response length used to
measure model degradation (DeepSeek-AI et al., 2025). POER addresses this by using a cache pool
mechanism, and we conduct comparative experiments to quantify its improved training stability over
GRPO.

During the training process, we use a batch size of 18 to train the 7B and 1.5B models for four epochs,
and monitor changes in response length and model performance, as shown in Figure 4 and 5. In this

7
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Figure 4: Response Length of GRPO and POER
on a 1.5B Model as a Function of Training Step

Figure 5: Response Length of GRPO and POER
on a 7B Model as a Function of Training Step

multi-step iterative training setup, GRPO experiences a collapse in response length around the 200th
iteration, while POER maintains stable response lengths throughout the process. On the other hand,
as shown in Table 4, the model performance after training with GRPO deteriorated, especially for the
1.5B model, where accuracy dropped by 8.6%. In contrast, POER results in a 5.4% improvement in
accuracy.

Table 4: Performance of GRPO and POER on Evaluation Datasets in Multi-Step Iteration Scenarios

Model AIME25 AIME24 MATH500 AMC23 Minerva OlyB Avg
DeepSeek-R1-Qwen-7B 43.3 55.5 92.8 90.0 44.5 67.4 65.6

+ GRPO(w/o R) 40.0↓ 50.0↓ 94.2↑ 90.0 41.2↓ 66.7↓ 63.7↓
+ POER 46.6↑ 56.7↑ 92.8 90.0 41.4↓ 66.1↓ 65.6

DeepSeek-R1-Qwen-1.5B 16.7 28.8 82.2 62.9 26.5 43.3 43.4
+ GRPO(w/o R) 10.0↓ 10.0↓ 67.0↓ 45.0↓ 20.6↓ 31.4↓ 34.8↓

+ POER 20.0↑ 36.7↑ 82.8↑ 72.5↑ 29.4↑ 51.5↑ 48.8↑

Beyond the instability from reward sparsity, GRPO suffers from strong locality due to its inter-group
comparison strategy, limiting performance improvements. POER mitigates this by introducing an
experience cache, using an external cached policy πC to approximate the main policy πθ during
updates. This provides a global context, enhances training stability, and allows POER to maintain
consistent performance over long iterations.

Table 5: Impact of α and L on validation accuracy (%) of DeepSeek-R1-Qwen-1.5B

L α AIME25 AIME24 MATH500 AMC23 Minerva OlyB Avg

300

0 26.7 33.3 82.8 70.0 27.9 52.4 48.9
0.01 26.7 33.3 85.2 77.5 29.4 52.0 50.7
0.1 23.3 36.7 85.8 75.0 32.4 51.0 50.7
1 23.3 36.7 83.2 72.5 31.6 53.2 50.1

0.5ℓ

0 30.0 33.3 84.4 70.0 29.0 50.5 49.5
0.01 23.3 16.7 86.4 67.5 32.0 55.3 46.9
0.1 36.7 33.3 85.2 75.0 27.9 52.7 51.8
1 30.0 30.0 82.6 60.0 31.6 51.6 47.6

ℓ

0 33.3 26.7 84.6 75.0 27.8 53.3 50.1
0.01 36.7 30.0 84.0 70.0 31.6 52.3 50.7
0.1 30.0 36.7 84.4 70.0 28.3 53.5 50.4
1 26.7 26.7 85.4 65.0 30.5 52.3 47.8

5 MORE ANALYSIS

Impact of Maximum Truncation Length and α Intuitively, the maximum truncation length L and
α are not independent factors. To study their effect on training, we train the model with combinations
of L = 300, 0.5ℓ, ℓ and α = 0, 0.01, 0.1, 1. Notably, when α = 0, the intra-group length-aware
reward is disabled, so all correct reasoning paths receive the same reward.

8
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Figure 6: Pass@N performance of the GRPO and POER algorithms on the AIME24 dataset with the
maximum truncation length set to 300. The left figure shows the case with a maximum generation
length of 2048, and the right figure shows the case with a maximum generation length of 4096

The DeepSeek-R1-Qwen-1.5B model is trained for two epochs with a batch size of 336 to amplify
differences in training outcomes for easier observation. The evaluation results are shown in Table 5:
under a fixed L, performance first improves as α increases and then declines.

Effect of max_length on Exploration Capability To investigate the impact of max_length
settings on the model’s initial exploration ability, we set the maximum truncate length of POER
to 300 and examined the performance of the 1.5B and 7B models on the AIME24 dataset under
two settings: max_length = 2048 and max_length = 4096. As shown in Figure 6, POER
demonstrates lower exploration ability compared to GRPO, and the gap between the two methods
gradually widens as max_length increases. This result also indicates that POER exhibits a certain
disadvantage in exploration ability during the early iterations.

Impact of Cache Pool Update Strategy on Model’s Pass@N Performance To study the effect of
training epochs on exploration, we evaluate the 1.5B and 7B models on AIME24 with max_length
set to 2048 and 4096 under epoch = 1,2. As shown in Figure 7, updating the cache pool
over epochs enables the model to explore more diverse and higher-quality solution paths, steadily
improving performance to match or surpass GRPO. Overall, while POER reduces raw exploration,
the experience cache and epsilon-greedy strategy guide the model toward higher-quality paths.

Figure 7: PassN performance of the GRPO and POER algorithms on the AIME24 dataset with the
maximum truncation length set to 300 and epochs set to 1 and 2. The left figure shows the case with a
maximum generation length of 2048, and the right figure shows the case with a maximum generation
length of 4096

6 CONCLUSION

In this paper, we present POER, a plug-and-play algorithm designed to optimize the reinforcement
fine-tuning of large models. POER aims to enhance the fine-tuning phase of large language models
by introducing an experience replay mechanism. This mechanism allows the model to learn from
previously collected high-quality responses during generation. POER significantly reduces model
training time while improving the fine-tuned model’s performance and enhancing stability during the
reinforcement fine-tuning phase.

9
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THE USAGE OF LLM

In this work, we use LLMs to polish the paper, generate materials for framework diagrams, and
retrieve related work.

ETHICS STATEMENT

This study does not involve any personal data, sensitive information, or high-risk application sce-
narios. No ethically controversial datasets or models were used. All experimental data are standard
benchmark datasets that are publicly available, and the sole purpose of this research is to advance the
development of reinforcement fine-tuning algorithm. Therefore, we believe this work does not pose
any significant ethical risks.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our experiments, we have provided the complete implementation
code in the supplementary materials. All technical details, including the evaluation benchmarks,
baseline methods, and training hyperparameter settings used in this work, can be found in Section
4.1.
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A PSEUDO CODE FOR POER TRAINING PROCESS

The pseudo code of Policy Optimization with Experience Replay(POER) in the training process is as
follows.

Algorithm 1: Compact POER Training

Input: Dataset D, model πθ0 , cache C(0), params η, β, ϵ,G
Output: Model πθT , cache C(T )

Initialize Cache:
C(0) = ∅
for qk ∈ D do
C(0) ← C(0) ∪ {(qk, πθ0(·|qk))}

for t← 1 to T do
Rollout:
for qk ∈ D do

ak ← {a | (qk, a) ∈ C(t−1)}
for g ← 1 to G do

ã
(g)
i ← Concat(a[0:−m]

k , πθt−1(·|qk, a
[0:−m]
k ))

R
(g)
i ← r(qk, ã

(g)
i )

Optimize:
θt ← θt−1 + η∇θJGRPO−Cache

Update Cache:
for qk ∈ D do

if u ≤ ϵ then
C(t−1) ∪

{
(qk, oargmax{Ri}Gi=1

)
}
\ {(qk, ak)}

else
C(t) ← C(t−1) ∪ {(qk, og′)} \ (qk, ak) ; // g′ ∼ U(1, G)

B PROOF OF POER GRADIENT STABILITY

Policy gradient estimation. The reasoning process of traditional GRPO and Policy Optimization
with Experience Replay(POER) can be expressed as π(·|qk) and π(·|(qk, ak)), where qk ∈ Craw, is
a sample in raw training dataset Craw and corresponding (qk, ak) ∈ C, is one example in training
replay buffer C, which updates during the training process.

For any sample qk, it holds that (qk) ⊂ (qk, ak). Hence, for the response space of an arbitrary policy
model, the total variance can give

Var( · | qk) = E(qk,ak)|qk

[
Var

(
· | (qk, ak)

)]
+Var(qk,ak)|qk

(
E
[
· | (qk, ak)

])
. (11)

Because the second term on the right-hand side is non-negative, i.e. Var(qk,ak)|qk (E[·|(qk, ak)]) ≥ 0,
we obtain

Var( · | qk) ≥ E(qk,ak)|qk

[
Var

(
· | (qk, ak)

)]
. (12)

Treating (qk, ak) as an augmentation of qk allows this inequality to simplify to

Var( · | qk) ≥ Var
(
· | (qk, ak)

)
. (13)

In the policy space, equation 13 becomes

Var
(
πθ(ag | qk)

)
≥ Var

(
πθ(ag | (qk, ak))

)
. (14)

Assume there exists a parameter vector θ0 such that the policy can be locally approximated by the
first-order expansion

πθ = πθ0 +∇π⊤(θ0)
(
θ − θ0

)
. (15)

The variance of πθ in a neighbourhood of θ0 can then be estimated as

σ2
(
πθ

)
≈ ∇π⊤θ0Σθ ∇πθ0 , (16)

13
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where Σθ denotes the covariance matrix of the parameter estimates.

Throughout training, the realizations of πθ can be treated as i.i.d. random variables. As the sample
size n → ∞, the empirical mean and variance converge to

µ
(
πθ

)
= E

[
πθ

]
=

1

n

n∑
i=1

(πθ)i, Var
(
πθ

)
= E

[
π2
θ

]
− µ

(
πθ

)2 ≈ n

n− 1
∇π⊤θ0Σθ ∇πθ0 .

On account of E[π2
θ ] = µ(πθ)

2, while Σθ = I also holds, then

σ2
(
πθ

)
= Var

(
πθ

)
= ∇π⊤θ0∇πθ0 =

∥∥∇πθ0

∥∥ 2

2
. (17)

Combining the above with equation 13 yields the policy space gradient estimation.∥∥∥∇πθ

(
ag | qk

)∥∥∥
2

≥
∥∥∥∇πθ

(
ag | (qk, ak)

)∥∥∥
2
. (18)

This establishes that conditioning on the augmented information (qk, ak) strictly reduces—or at worst
preserves—the magnitude of the policy-gradient variance.

Let’s review the GRPO update policy. At training step t, the optimisation target of Generative
Reinforcement Policy Optimisation (GRPO) can be written as

JGRPO(θt) = E(q,a)∼C(t−1)(Q,A),{oi}G
i=1∼πθt−1

(·|q))[
1

G

G∑
i=1

1

|oi|

|oi|∑
j=1

min

(
ri,j(θt)Âi,j , clip

(
ri,j(θt), 1− ϵ, 1 + ϵ

)
Âi,j − βDKL(πθt∥πref)

)]
(19)

Here

ri,j(θt) =
πθt(oi,j | q)
πθt−1

(oi,j | q)
, Âi,j =

Ri −mean
(
{Ri}Gi=1

)
std

(
{Ri}Gi=1

) .

Relative to GRPO, POER only changes the policy ratio by conditioning on the prefix oi,<j :

rPOER
i,j (θt) =

πθt(oi,j | q, oi,<j)

πθt−1
(oi,j | q, oi,<j)

. (20)

Because the clip operation truncates high-error updates, both algorithms behave identically when-
ever clipping is activated.

Gradient of the optimization policy. For the plain GRPO ratio one obtains

∇θ ri,j(θt) =
∇θπθt(oi,j | q)
πθt−1

(oi,j | q)
=

πθt(oi,j | q)
πθt−1

(oi,j | q)
∇θlog πθt(oi,j | q). (21)

The Kullback–Leibler divergence with respect to a frozen reference policy πref satisfies

∇θDKL

(
πθt ∥πref

)
= ∇θEπθt

[
log πθt − log πref

]
= Eπθt

[
∇θ log πθt +

(
log πθt − log πref

)
∇θ log πθt

]
= Eπθt

[
∇θ log πθt

(
log

πθt

πref
+ 1

)] (22)

As Eπθt
[∇θ log πθt ] = 0 by normalisation, the expression simplifies to

∇θDKL =Eπθ
[∇θ log πθ(o|s) · log πθ(o|s)]

=
∑
πθ

πθ∇θ log πθ(o|s) · log πθ(o|s)

=
1

|oi|

|oi|∑
t=1

πθ∇θ log πθ(oi|s) · log πθ(oi|s)

(23)
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Resulting policy gradient. Aggregating the intra-group updates yields the estimator

∇θJGRPO = Eq,{oi}

[
1

G

G∑
i=1

1

|oi|

|oi|∑
j=1

(
Âi,j

πθt−1
(o|q) − β log πθt(o | q)

)
πθt(o | q)∇θlog πθt(o | q)

]

= Eq,{oi}

[
1

G

G∑
i=1

1

|oi|

|oi|∑
j=1

(
Âi,j

πθt−1
(o|q) − β log πθt(o | q)

)
∇θπθt(o | q)

]
.

(24)

The second line follows by noting that πθt∇θlog πθt = ∇θπθt . Equation above provides the final
form of the GRPO gradient used for parameter updates at step t.

Without consideration of KL divergence. If the KL–divergence term is temporarily ignored, the
GRPO gradient estimator reduces to

∇θJGRPO = Eq,{oi}

[
1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

( Âi,t

πθt−1

)
∇πθ(ag | qk)

]
. (25)

Because of equation equation 18,

∥∇θJGRPO∥2 ≥ ∥∇θJPOER∥2. (26)

Including the KL divergence. At the initial step (t = 0) both algorithms share the same reference
policy, hence

∇θJGRPO = ∇θJPOER. (27)

For the first update (t = 1) equation 18 implies

∥∇πθ1(ag | qk)∥2 ≥ ∥∇πθ1(ag | qk, ak)∥2. (28)

Here we record ∇πθ1(ag | qk, ak) as ∇π′
θ1

. Consequently, the difference of the two policy gradients
becomes

∆1 = ∥∇θJGRPO∥2 − ∥∇θJPOER∥2

= Eq,{oi}

[
1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

(
∥( Âi,1

πθ0
− β log πθ1)∇πθ1∥2 − ∥( Â

′
i,1

πθ0
− β log π′

θ1)∇π′
θ1∥2

)]
.

(29)

Let δ := ∇θπθ1(i)−∇θπ
′
θ1
(i) ≥ 0. For one random dimension the mean-value theorem yields

πθ1(i) log πθ1(i)− π′
θ1(i) log π

′
θ1(i) =

∂(π log π)

∂π

∣∣∣
π=ζ

(πθ1(i)− π′
θ1(i)), ζ ∈ [π′

θ1 , πθ1 ] ⊂ [0, 1).

(30)
Taking the directional derivative with respect to θ gives

(1 + log πθ1(i))∇πθ1(i)− (1 + log π′
θ1(i))∇π′

θ1(i) =
∂πθ log πθ

∂ πθ
|πθ=ζ(∇πθ1(i)−∇π′

θ1(i))

=
∂πθ log πθ

∂ πθ
|πθ=ζδ

(31)
Hence

log πθ1(i)∇πθ1(i)− log π′
θ1(i)∇π′

θ1(i) =
(∂(π log π)

∂π

∣∣
π=ζ

− 1
)
δ = (log ζ) δ ≤ 0, (32)

because log ζ < 0.

Extending this argument component-wise to the full parameter vector shows

log πθ1 ∇πθ1 ⪯ log π′
θ1 ∇π′

θ1 , (33)
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and therefore
∥ − β log πθ1 ∇πθ1∥2 ≥ ∥ − β log π′

θ1 ∇π′
θ1∥2, (34)

We have thus established
∥∇θ1JGRPO∥2 ≥ ∥∇θ1JPOER∥2. (35)

Let the generic update rule be
θi = θi−1 + η∇θJ . (36)

Then
∇πθi

πθi−1

=
∇
(
πθi−1 + η∇πθi−1∇θi−1J

)
πθi−1

≥
∇πθi−1

πθi−1

= ∇ log πθi−1
, (37)

i.e. each step re-enters the original policy-gradient (PG) regime. Using equation 35 one obtains for
every i ≥ 1

∇πθi

πθi−1

−
∇π′

θi

π′
θi−1

≥
∇πθi−1

πθi−1

−
∇π′

θi−1

π′
θi−1

≥ ∇ log
πθi−1

π′
θi−1

. (38)

By induction this yields the general relation

∥∇θJGRPO∥2 ≥ ∥∇θJPOER∥2 for all optimisation steps. (39)

Equation equation 39 completes the proof that, under identical hyper-parameters, GRPO provides
gradient updates at least as large as those of POER, both without and with the KL divergence.
Meanwhile, since both of them follow a normal distribution with zero mean, it follows that:

V ar(∥∇θJPOER∥2) ≤ V ar(∥∇θJGRPO∥2) (40)

C THEOREM

Preliminary. Let q denote the prompt, o a sampled response with length ℓ = len(o), and let the
group-wise reference length be ℓref = 1

G

∑G
i=1 len(oi). Write ∆ℓ = ℓ − ℓref and fix a window

|∆ℓ| ≤ τ . For a sensitivity parameter α > 0 define the length weight sα(ℓ) = σ
(
α(ℓref − ℓ)

)
=

(1 + e−α(ℓref−ℓ))−1 ∈ (0, 1) and the shaped reward Rα = clip
(
sα(ℓ) r, m, M

)
with clipping

bounds m < M, where r is the original per-sample reward.

Consider POER with replay distribution µ and current policy πθ, truncated importance ratio
ρ = min

(
c, πθ(o|q)

µ(o|q)
)

for a constant c ≥ 1, token-averaged score function ∇θ log πθ(o | q) =

1
|o|

∑|o|
j=1 ∇θ log πθ(oj | o<j , q), and a centered advantage A′

α = Rα − bα with group baseline
bα = E[Rα | q, group]. The single-sample gradient contribution is

gα = ρ
(
A′

α − β log πθ(o | q)
)
∇θ log πθ(o | q). (41)

Assume ∥∇θ log πθ(o | q)∥ ≤ L, E[r2] < ∞, and that

1. the conditional variance σ2
A(ℓ) := Var(A | ℓ) of the unshaped advantage A is nondecreasing

in ℓ,

2. the tail probability P
(
πθ

µ > c | ℓ
)

is nondecreasing in ℓ.

If ατ ≤ 1, then there exists α⋆ > 0 such that for all 0 < α ≤ α⋆ the mean-squared error
MSEα := Var(gα) + ∥E[gα]−∇θJ∥2 of the POER gradient estimator with length-aware shaping
satisfies

MSEα < min
{
MSEPOER

0 , MSEGRPO
0 , inf

α̃>0
MSEGRPO

α̃

}
, (42)

that is, it strictly improves upon both the unshaped POER baseline and the GRPO baselines in a
nontrivial neighborhood of α = 0.
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Proof. The proof makes explicit the first-order behavior in α of both the variance and the bias terms.
Throughout the window |∆ℓ| ≤ τ the sigmoid admits the uniform Taylor expansion

sα(ℓ) =
1

2
− α

4
∆ℓ + R2(α, ℓ), |R2(α, ℓ)| ≤ C2 α

2τ2, (43)

for some constant C2 independent of α and ℓ. Writing Rα = sα(ℓ) r on the non-clipping region and
absorbing the clipping into the moment bounds later, the centered advantage becomes

A′
α =

(
1
2 r − E[ 12 r]

)
− α

4

(
∆ℓ r − E[∆ℓ r]

)
+ R2(α, ℓ) r − E[R2(α, ℓ) r]︸ ︷︷ ︸

=:E2(α)

. (44)

Substituting equation 44 into equation 41 and taking expectations yields

E[gα]− E[g0] = −α

4
E
[
ρ
(
∆ℓ r − E[∆ℓ r]

)
∇θ log πθ(o | q)

]
+ E

[
ρ E2(α) ∇θ log πθ(o | q)

]
.

(45)
By Cauchy–Schwarz and the bounds on ρ and the score function, the norm of the first term on the
right-hand side satisfies∥∥∥E[ρ (

∆ℓ r − E[∆ℓ r]
)
∇θ log πθ

]∥∥∥ ≤ cL
(
E
[
(∆ℓ r − E[∆ℓ r])2

])1/2

≤ cL τ
(
E[r2]

)1/2
,

(46)
hence ∥E[gα] − E[g0]∥ ≤ α

4 cL τ (E[r2])1/2 + cLE[|E2(α)|]. Using |E2(α)| ≤ 2C2α
2τ2|r| and

E[r2] < ∞ gives the bias bound

∥E[gα]− E[g0]∥ ≤ Cb α τ + C ′
b α

2τ2, (47)

for constants Cb, C
′
b depending only on (c, L,E[r2], C2). Consequently the squared-bias contribution

to MSEα is O(α2τ2).

For the variance term, expand the second moment as

E
[
∥gα∥2

]
≤ c2 E

[(
A′

α − β log πθ

)2 ∥∥∇θ log πθ

∥∥2] ≤ c2L2 E
[(
A′

α − β log πθ

)2]
. (48)

The cross terms between A′
α and β log πθ are uniformly bounded in α by Jensen and the finite second

moments of r and log πθ. The α-dependent leading component arises from E[A′
α
2
]. Within the

non-clipping region and after centering, the contribution that depends on length is proportional to

E
[
sα(ℓ)

2 σ2
A(ℓ)

]
= E[sα(ℓ)2] E[σ2

A(ℓ)] − Cov
(
sα(ℓ)

2, σ2
A(ℓ)

)
. (49)

Since sα(ℓ) is nonincreasing in ℓ while σ2
A(ℓ) is nondecreasing in ℓ by assumption, the reverse

Chebyshev inequality ensures that the covariance in equation 49 is nonpositive and is strictly negative
unless sα(ℓ)2 and σ2

A(ℓ) are almost surely constant. Differentiating E[sα(ℓ)2] at α = 0 and using
equation 43 yields E[sα(ℓ)2] = 1

4 +O(α2τ2), while differentiating the covariance at α = 0 gives a
strictly negative slope whenever the variance σ2

A(ℓ) is not degenerate. Therefore there exists η > 0
such that

Var(gα) ≤ c2L2
(

1
4 σ

2
A − η α + O(α2τ2)

)
+ Cβ , (50)

where σ2
A = E[σ2

A(ℓ)] and Cβ collects the β-dependent but α-independent finite terms.

The POER-specific truncation bias can be written as the deviation between the untruncated importance-
weight estimator and the truncated one. Let w = πθ

µ and Xα = (A′
α − β log πθ)∇θ log πθ. The bias

vector equals
bclip(α) = E

[
(w − ρ)Xα

]
= E

[
(w − c)+ Xα

]
, (51)

so that ∥bclip(α)∥ ≤ E
[
(w − c)+ ∥Xα∥

]
≤ E

[
(w − c)+ (|A′

α|+ |β|| log πθ|)L
]
.

Assumption 2 implies that the event {w > c} is more likely at larger ℓ, whereas |A′
α| is reduced at

larger ℓ because sα(ℓ) decreases with ℓ and the clipping of Rα further upper-bounds its magnitude.

Consequently the mapping α 7→ ∥bclip(α)∥ is nonincreasing for small α, and in particular
∥bclip(α)∥ ≤ ∥bclip(0)∥. Since MSEα contains ∥bclip(α)∥2, this term does not increase with α
near zero.
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Combining equation 47 and equation 50 and adding the nonincreasing truncation-bias square gives

MSEα = Var(gα) +
∥∥E[gα]−∇θJ

∥∥2 ≤ c2L2
(

1
4 σ

2
A − η α + O(α2τ2)

)
+ ∥bclip(α)∥2 + O(α2τ2).

(52)
Choosing α⋆ > 0 sufficiently small so that the linear decrease −η α dominates the aggregated
O(α2τ2) remainders ensures that MSEα < MSEPOER

0 for all 0 < α ≤ α⋆ with ατ ≤ 1.

Since GRPO coincides with the on-policy case without any truncation channel, its α-
dependence shares the same variance reduction mechanism but lacks the nonincreasing
truncation-bias term ∥bclip(α)∥2; therefore the same choice of α also yields MSEPOER

α <

min{MSEGRPO
0 , infα̃>0 MSEGRPO

α̃ } whenever ∥bclip(0)∥ > 0, which holds generically under as-
sumption (ii). This proves the stated improvement.

Remark. The token-wise averaging in GRPO, 1
|o|

∑|o|
j=1, multiplies the effective per-sample weight

by |o|−1 and thus accentuates the negative covariance in equation 49, because |o|−1 is also nonin-
creasing in ℓ. The group baseline bα used to define A′

α guarantees that the constant component of
sα(ℓ) is removed, while the window condition ατ ≤ 1 keeps sα(ℓ) within the near-linear regime
where equation 43 is valid and the remainder terms are uniformly controlled.

D USING A LARGE MODEL’S CACHE POOL TO GUIDE SMALL MODEL
TRAINING

We design the following experiment to explore whether introducing a more powerful model for
question sampling during the cache pool initialization phase can influence the resulting cache policy,
thereby allowing the original model to indirectly benefit from the distillation of the stronger model’s
reasoning capabilities.

Specifically, we use the cache pool initialized by deepseek-r1-qwen-7b as the initial cache pool for
deepseek-r1-qwen-1.5b. Then, following the original experimental setup, we train for two epochs and
evaluate the final performance. As shown in Table 6, when trained using the cache pool generated by
the 7B model, the 1.5B model did not significantly improve performance.

Table 6: The Performance of a 7B Model’s Cache Pool on a 1.5B Model

Model AIME24 MATH500 AMC23 Minerva OlyB Avg

DeepSeek-R1-Qwen-1.5B 23.3 84.8 75.0 28.7 53.5 53.1

E COST OVERHEAD

In this section, we present the cost overhead of several additional open-source models with the same
parameters, as well as that of the series of models based on our POER algorithm.

Table 7: Comparison of data usage and computational costs with 1.5B models.

DeepScaleR-1.5B-Preview Still-3-1.5B-Preview POER
Base Model DeepSeek-R1-Distill-Qwen-1.5B

Hardware 8× A100 80GB 1×8 A100 80GB 1×8 A100 80GB
Time 240h 150h 3h

Cost Est. $3629 $2268 $24
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Table 8: Comparison of data usage and computational costs with 7B models.

rStar-Math-7B(Guan et al., 2025) Eurus-2-7B-PRIME
Base Model Qwen2.5-Math-7B

Hardware 10×8 H100 80GB,
15×4 A100 40GB 1×8 A100 80GB

Time – 72h

Cost Est. – $1088

Qwen2.5-7B-SimpleRL(Zeng et al., 2025) POER
Base Model Qwen2.5-Math-7B DeepSeek-R1-Distill-Qwen-1.5B

Hardware 4×6 A100 80GB 1×8 A100 80GB
Time 36h 7h

Cost Est. $1633 $56

F MORE ANALYSIS

The impact of cache pool update strategies To investigate the impact of different cache pool
update strategies on model performance, we set ϵ to 0, 0.1, 0.5, and 1 during training. In addition,
we also evaluate the model with cache pool updates completely disabled. As shown in Table 9, the
performance of the 1.5B model exhibits a trend of first improving and then declining as ϵ increases.
The best performance is achieved when ϵ = 0.1, with an average accuracy of 52.6%.

Table 9: The impact of ϵ on model zero-shot performance.In the table, no update denotes the case
where the cache pool is not updated, which serves as a baseline for comparison.

ϵ AIME25 AIME24 MATH500 AMC23 Minerva OlyB Avg
0 23.3 30.0 84.8 75.0 28.3 52.4 50.0
0.1 23.3 36.7 85.4 87.5 29.4 53.0 52.6
0.5 30.0 26.7 83.8 72.5 28.3 52.4 49.0
0.9 26.7 36.7 84.4 70.0 29.8 53.0 50.1
no update 26.7 30.0 82.8 75.0 29.4 51.2 49.2

G TIME OVERHEAD FOR CACHE POOL INITIALIZATION

This section reports whether POER can still achieve significant training acceleration and performance
improvement under extreme conditions, such as when the number of epochs is only 1.

Table 10: Cache pool initialization time (minutes) for 1.5B and 7B models under different GPU types,
dataset sizes, and GPU counts

1.5B Model

Dataset GPU 1 4 8

7k H20 34.78 24.61 15.10
A100 32.11 21.45 13.98

70k H20 347.91 249.14 160.87
A100 327.19 214.78 135.89

7B Model

Dataset GPU 1 4 8

7k H20 58.57 26.44 17.95
A100 55.43 22.56 16.19

70k H20 582.95 261.28 179.13
A100 566.49 238.91 167.57

Table 10 shows the model initialization time for the 1.5B and 7B models under different GPU count
configurations.Table 11 shows the training time for one epoch on an 8-card H20 machine and an
8-card A100 machine, including the computational overhead of cache initialization. As seen from the
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table, even in extreme cases with only a single epoch of training, POER can still provide significant
acceleration.

Table 11: Training time comparison (in hours) of DeepSeek-R1-Qwen models on H20 and A100
GPUs.

Model H20 (hours) A100 (hours)
DeepSeek-R1-Qwen-1.5B

POER 14.45 12.41
GRPO 40.98 37.35

DeepSeek-R1-Qwen-7B
POER 39.64 37.38
GRPO 114.50 105.70
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