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ABSTRACT

To our knowledge, in the field of large language models, all existing reinforcement
fine-tuning algorithms require generating a complete reasoning process starting
from the question, which results in a substantial time overhead during the rollout
phase of training.Challenging this conventional approach, we propose the assump-
tion that during reinforcement fine-tuning, the model only needs to generate part
of the reasoning process. We analyze the impact of different segments of the
reasoning path on the correctness of the final result, and based on these insights,
we introduce Policy Optimization with Experience Replay (POER), a plug-
and-play reinforcement fine-tuning algorithm. Unlike traditional reinforcement
fine-tuning algorithms that generate full reasoning paths, POER trains the model
by generating suffixes of the reasoning path using experience caching, thereby
significantly reducing training time while improving training stability.From evalua-
tions during the rollout phase of training, POER reduces token generation in this
phase by approximately 95%, greatly lowering the theoretical time overhead. In
practical training, compared with full-path reinforcement fine-tuning algorithms,
POER reduces the training time of the 1.5B model by 90% and the 7B model by
72%, while maintaining performance comparable to typical algorithms such as
GRPO and DAPO. We have open-sourced the code in an anonymous repository:
https://anonymous.4open.science/r/POER-4BF2
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Figure 1: The left figure shows the DeepSeekR1-Qwen-Distill-7b and DeepSeekR1-Qwen-Distill-
1.5b models. For each question, an initial answer is generated and then truncated; from the truncation
point, 256 answers are subsequently generated, and the relationship between truncation length and
the overall average accuracy is analyzed. The right figure shows 256 answers generated for each
training question. Answers exceeding 2048 tokens are selected, and BERT is used to measure
the similarity between equal-length prefix segments. The similarity metric is defined as:sim =

2 Zn—l n BERT(s;)-BERT(s;)
n(n—1) £«i=1 Zj=i+1 [|BERT(s;)|| [[BERT(s;)]|

1 INTRODUCTION

In recent years, large language models (LLMs) (OpenAl et al.| 2024b; [Touvron et al., 2023} | Zeng et al.,
2023)) have achieved remarkable breakthroughs in reasoning and generalization capabilities (Wang
et al.L[2025), particularly after the introduction of reinforcement learning (RL) during the post-training
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stage (Ouyang et al., 2022). Pioneering works such as OpenAI’s O1 (OpenAl et al.l [2024a)) and
DeepSeek-R1 (DeepSeek-Al et al.| 2025) have demonstrated impressive reasoning-time efficiency,
primarily due to the synergistic combination of reinforcement learning and chain-of-thought (CoT)
reasoning (Wei et al., [2023)). This paradigm shift highlights the transformative potential of RL-based
post-training in pushing the boundaries of LLM performance.

Despite its promising prospects, applying reinforcement learning in post-training remains immature
and highly challenging, with numerous obstacles hindering its widespread adoption. Regarding time
overhead, RL fine-tuning typically generates many samples during the sampling stage. However,
parameter updates cannot proceed until all samples are completed, leading to significant underutiliza-
tion of computational resources. Furthermore, during RL fine-tuning of language models, rewards
are computed only after generating the final token based on task-specific criteria. This paradigm,
known as Reinforcement Learning with Verifiable Rewards (RLVR) (Lambert et al., [2025)), lacks
intermediate feedback and produces sparse rewards. Such sparsity hinders the model’s ability to learn
optimal policies and contributes to training instability (Lightman et al.||[2023)).

Most current research efforts addressing these challenges focus on optimizing the policy gradient
function (Sutton et al.| [1999), which has achieved some success. However, these approaches often
overlook the critical role of sampling strategies.

We observe that a significant underlying issue stems from the policy model’s need to identify a reason-
ing trajectory from the beginning of the problem to the correct answer. This approach—comparing
entire reasoning paths using policy gradients—Ieads to excessive randomness during the sampling
phase. Although it expands the search space, it often fails to find suitable reasoning paths, resulting
in inefficient sampling and high variance.

An alternative perspective arises: since exploring a complete reasoning path from the beginning of the
problem introduces various drawbacks, why not train the policy model to complete a reasoning path
based on partially correct reasoning process hint instead? We found that this is feasible. Through
our experiments, enabling the model to complete correct reasoning paths can still effectively teach it
to generate whole reasoning trajectories from the initial problem statement. Based on this insight,
we propose the Policy Optimization with Experience Replay(POER). Our method is grounded in a
reasonable assumption: the early tokens of a reasoning path that leads to the correct answer are more
likely to guide the model toward the correct reasoning trajectory. Furthermore, we investigate the
relationship between the length of the truncated trailing tokens and the model’s generation accuracy.
The results confirm that the initial tokens of correct answers play a crucial role in steering the model
toward correct solutions, and that longer prefix lengths positively correlate with higher generation
accuracy.

Specifically, we construct a cache pool for the GRPO to store previously generated reasoning paths
and continuously update it during training. After we complete the sampling generation stage for
each question, we add the reasoning path that leads to the correct answer into the cache. When we
later reencounter the same question, we retrieve the first n tokens of the corresponding reasoning
path from the cache, prepend them to the prompt, and then perform sampling. Experimental results
show that this method is plug-and-play, improves training stability during the RL stage, significantly
reduces the policy model’s sampling time cost, and achieves notable performance gains.

Contributions We propose POER, a novel framework for reinforcement fine-tuning of LLMs,
introducing an experience replay mechanism in the sampling stage. Key advantages are: plug-and-
play: easily integrates into other RL fine-tuning methods; reduced resource consumption: up to
92.6% faster training; strong stability: mitigates common RL instability in reasoning models.

We evaluate POER on Deepseek-R1-Distill-Qwen 1.5B and 7B across six datasets. Results show
around 90% reduction in training time, a 2% performance improvement over GRPO and DAPO, and
support for mini-batch, multi-step updates.

2 RELATED WORKS

Reinforcement Fine-Tuning Reinforcement Fine-Tuning (RFT) guides the model fine-tuning
process through the reward mechanisms of reinforcement learning, greatly enhancing generalization
and accuracy. Kimi v1.5 (Team et al., [2025) and ReFT (Luong et al., [2024) employ traditional
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Proximal Policy Optimization (PPO) (Schulman et al., 2017) for RFT and have demonstrated excellent
performance. DeepSeek-R1 (DeepSeek-Al et al., 2025) adopts GRPO and uses verifiable reward
strategies to compute policy gradients directly. DAPO (Yu et al.,[2025b)) further optimizes GRPO to
improve training stability. R1-V (Chen et al.), VLM-R1 (Shen et al.,[2025a)), and LMM-R1 (Peng
et al.,|2025) extend RFT into the multi-modal domain. While many reinforcement learning algorithms
suffer from reward saturation as training steps increase, leading to reward hacking (Eisenstein et al.}
2024])). Satori (Shen et al.||2025b) uses SFT distillation to mitigate it, and O1-Prune (Luo et al.l [2025)
employs post-hoc length pruning to enhance stability.

Efficient Inference Test-time scaling (Chen et al., 2024)) significantly increases training and
inference costs, as models tend to generate lengthy reasoning chains. To reduce the time cost of RL
training, UPFT (Ji et al.| |2025)) proposes fine-tuning the model using only the first n tokens. However,
it is impossible to validate reasoning accuracy properly. ThinkPrune (Hou et al.,2025) sets a length
constraint during RL training to limit the model’s thinking length and reduce inference costs. O1-
Prune (Luo et al.| 2025) enhances training stability through length pruning and reduces the high cost
associated with long reasoning chains. |[Hao et al.[(2024) optimizes inference by compressing lengthy
reasoning chains into latent space, while |Chen et al.[(2025)); Yu et al.| (2025a) reduces inference costs
by aggregating tokens.
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Figure 2: Overview of the POER framework. The entire training process is described as follows:
Cached answer fragments are used by the model to generate new responses; either the best or a random
response is selected based on the reward system for optimization; and the cache is continuously
updated to improve training efficiency and stability.

3.1 CACHE POOL INITIALIZATION
First, we denote the dataset of samples as D = {qk}{f:l, where g, represents the k-th question in the

dataset. We denote the initial model parameters as 6, and we represent the model’s answering policy
by mp,. Before training begins, we initialize the cache pool as C (0) as follows:

CO = {(q, ar) | a ~ ma,(ak), Yar € D} M

This stage uses the initial model policy to sample the dataset D. To retrieve the response ay
corresponding to question g from the cache pool, we define the retrieval operation as:

ax = {a| (qx,a) € C}. @

Here, a; denotes the answer associated with question g, in the cache pool C.
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3.2 TRUNCATED ANSWER SAMPLING OPTIMIZATION

Sampling Generation At each sampling stage, we use the POER strategy to retrieve the historical
response aj for each question g; from the cache pool C. We then remove the last m tokens and
concatenate the remaining prefix with g to generate a new response 0. We express this process as:

. . ar = {a | (qx,a) € C}
0=a% ™ 7o (- | aw, a[o'_m]), where 3)
g g m ~Uu{0,1,...,L}

Here, L is the maximum truncation length, /{0, 1, ..., L} samples a truncation point uniformly from
[0, L], al ™™ truncates the last m. tokens of ay, and 7o (-|qx, al” ™) generates a new continuation
based on the question and prefix. In this paper, L is either fixed or set dynamically based on the

shortest response in a sampling group G, denoted as ¢, where:
¢ = min{len(o1),len(0s),...,len(og)} €))

Policy Optimization with Experience Replay  After completing the sampling generation, POER
adopts Group Relative estimation of advantage. For a given question-answer pair (qx, ax), the
behavioral policy 7, , samples a group of G individual responses {o;}$ ; from the model. Then,

by normalizing the group rewards {R;}$ ,, the advantage of each response is computed as:

9 :E t—m —m
Teorr(00) =B ) cun(0.4) (0, ~al” Tiwo (- qu.al® ™)

1 & 1 o
G 2o 2
= Jj=1

. . (%)
{min l:ri’j (Gt)Am, Cllp (Ti,j (0,:), 1-— €, 1 + 6) Ai7j:| — ,BDKL(TFQt ||7Tref)}

where:

7, (0,519, 0i,<;) : R; — mean({R;}{,)
7, (0¢) = , Ay = (6)
IO = ol o) T T Sd((R)E)

Since POER is policy-agnostic, we propose a unified forward reinforcement learning paradigm based
on experience replay. We can then write the policy gradient function of POER in a more general form
as:

lo|

VHJPOER(G) = E(q,o)NC T § g(Qvo,ja 7Tref) Vg IOg 779(0j|Q»0<j) @)
N—— |O| = ————
Data Source Gradient Coefficient

Equation[7)is derived from the standard policy gradient formulation. The above equations indicate that
only the sampling stage is affected by POER, while the policy gradient function remains unaltered. As
a result, POER exhibits a plug-and-play nature and can be easily integrated into other reinforcement
fine-tuning algorithms.

Compared to the traditional GRPO strategy, a previously sampled historical response trajectory is
introduced by POER as a constraint into the subsequent sampling process. In this way, the policy
space g explored during training is confined. Such a constraint regularizes the gradient descent
space during learning, which can be expressed as:

Var(||Vedrorrll2) < Var(||VeJarrol2) (®)

In theory, our method enables a more stable training process. We provide detailed mathematical
proofs in Appendix
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3.3 CACHE PooL UPDATE

After each gradient update, we adopt the e-greedy algorithm to update the experience cache by
selecting the highest-reward response from the current inference results. Specifically, when the
random variable u ~ U(0, 1) satisfies u < &, we select the response with the highest group reward;
otherwise, we randomly select a suboptimal response. We formalize the update process as:

C(t) _ <C(t_1) U {(q}m Oargmax{Ri}?zl)}> \ {(qk7ak)}7 ifu < &, 9)
(C(tq) U {(gx, Og,)}) \ {(qx,ar)}, otherwise.

Here, we denote the highest-reward response in the group as 0,gmax(r,}¢ | » and we randomly select
another candidate response as og-.

3.4 LENGTH-AWARE REWARD SHAPING

However, since the same response prefix is shared during the sampling phase, the diversity of
responses within the group is reduced compared to the GRPO algorithm. This lower diversity results
in more similar reward signals, thereby diminishing the effectiveness of policy gradient estimation.
To ensure meaningful gradients, reasonable reward differences are maintained within the group, even
when all responses are correct.

A Length-Aware Reward Shaping method is proposed to address this issue. This method is based
on the assumption that: For the same question, a reasoning path that reaches the correct answer
more concisely should be rewarded with a higher value. Specifically, for each response o; in the
group, its length-aware reward R(s;) is computed as:

- 7(s:)
R(s;) = clip <1 ool m, ./\/l> (10)

Here, r(s;) is the original reward, and /¢ is the average length of group G, defined as f,of =
|—é‘ leill len(0;). The parameter o > 0 controls the sensitivity of the reward to length differences.

m and M are the lower and upper bounds for reward clipping to avoid extremely large or small
values. clip(-, m, M) denotes restricting a value within the interval [m, M].

We then iterate the above steps in Sections[3.2]and until a predefined stopping step T is reached.

Through mathematical derivation, we demonstrate that length-aware rewards are better suited for
the POER algorithm; the two can complement each other, and when the guiding path is within a
certain threshold, they can enable the model to achieve greater performance gains. In contrast, the
GRPO algorithm, lacking an initial fixed guiding path, results in high variance for length-aware
rewards, making it difficult to accurately estimate the true effective policy gradient, and is therefore
not suitable for using length-aware rewards. Detailed proof is provided in Appendix [C]

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Base Models To demonstrate the effectiveness and generality of POER, we evaluate it on two
open-source inference models with 1.5B and 7B parameters, namely Deepseek-r1-qwen-distill-1.5b
and Deepseek-r1-qwen-distill-7b (DeepSeek-Al et al., |2025; Bai et al., 2023)). Notably, we skip
the supervised fine-tuning (SFT) phase, which is usually a prerequisite for reinforcement learning
to enhance performance (Chu et al.| [2025)), as the selected models have already undergone this
stage (DeepSeek-Al et al., [2025).

Evaluation and Datasets We evaluate the models on six standard reasoning evaluation datasets:
aime?25(math ai, b), aime?24(math ai, [a), nat h500(Hendrycks et al.,[2021), amc?2 3(math ai, |c),
minerva(Lewkowycz et al.;,|2022) and o1 ympicbench(He et al.|[2024). To ensure fairness, all
evaluations use the 1 ighteval(Habib et al.,[2023) toolkit.
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Implementation Details During training, we use 7k samples from the open—-rs dataset (Dang
& Ngol 2025)) with a global batch size of 576 for 4 epochs. Experiments are run on a single H20
machine with 8xH20 96G GPUs. We generate 6 samples per prompt, set the temperature to 0.7, and
fix the maximum generation length at 4096. For the length-aware reward, we use m = 0.5, M =1,
and o = 0.01. All models are fully fine-tuned. Due to time constraints, only zero-shot performance
is averaged over three runs; all other ablation experiments are run once.

4.2 7ZERO-SHOT PERFORMANCE

We set the maximum truncation length L for each group to half of the minimum response length £.
Then, we train the DeepSeek-R1-Qwen-1.5B and DeepSeek-R1-Qwen-7B models for four epochs
using the original GRPO algorithm, the DAPO algorithm, as well as their POER variants, with a
batch size of 576 and a maximum generation length of 4096 tokens. To ensure that the experimental
results are not caused by randomness, we repeat the training three times for each experiment. We
then compare their mean accuracy on the designated evaluation datasets.

Table 1: Performance of the POER algorithm on test datasets. Arrows indicate performance changes
relative to the base model: | indicates improvement, | indicates decline. w/ R means length-aware
reward is used, w/o R means length-aware reward is not used. +POER shows the effect of applying
the POER algorithm on top of the above method.

Model | AIME25 AIME24 MATHS500 AMC23 Minerva OlyB Avg
1.5B Models
DeepSeek-R1-Qwen-1.5B 16.7 28.8 82.2 62.9 26.5 433 434
+ GRPO(w/o R) 24.4 31.1 85.7 72.5 29.8 51.37 49.1
+ POER 24.4 25.6] 84.3 69.2 29.5 51.77 47.5
+ GRPO(w/ R) 22.2 32.2 83.8 70.8 27.5 50.57 47.8
+ POER 24.4 35.6 85.3 83.3 29.8 51.87 51.7
+ DAPO(w/o R) 30.0 24.4| 86.2 84.2 29.7 5277 51.2
+ POER 28.9 24.4| 86.0 84.5 29.3 52.17 509
+ DAPO(w/ R) 26.7 30.0 85.0 84.1 29.7 51.17 50.2
+ POER 32.2 30.0 86.2 86.1 29.1 52.37 52.7
7B Models
DeepSeek-R1-Qwen-7B 43.3 55.5 92.8 90.0 44.5 674 65.6
+ GRPO(w/o R) 43.3 53.3] 95.0 90.0 44.5 67.2] 65.6
+ POER 43.3 46.6] 92.5] 89.2 423 67.77 63.6]
+ GRPO(w/ R) 40.0 | 48.9) 95.0 88.3 435, 66.0] 63.6]
+ POER 50.0 61.1 94.2 90.8 437, 67.3] 67.8
+ DAPO(w/o R) 43.3 53.3] 94.6 90.2 45.1 67.77 65.7
+ POER 46.7 52.2] 94.2 91.2 427, 649 653]
+ DAPO(w/ R) 42.2] 56.7 93.2 91.8 44.6 64.5] 65.5]
+ POER 46.7 54.5] 94.8 95.2 431 64.5] 66.5

As shown in Table[I] as mentioned in the Method section, length-aware rewards complement the
POER algorithm. Incorporating group-wise length-aware rewards enables POER to achieve higher
accuracy on test benchmarks than GRPO and DAPO for both the 1.5B and 7B model sizes. Without
group-wise length-aware rewards, POER may experience some performance degradation; therefore,
when using POER for accelerated training, it is recommended to include group-wise length-aware
rewards to enhance performance.

4.3 TRAINING TIME OVERHEAD

To investigate the training time overhead of GRPO and POER, each experiment is conducted on
a machine with 8 H20 GPUs, using only a single GPU for sampling during the training phase. It
should be noted that POER introduces additional inference overhead during the cache initialization
phase, where parallel inference is performed across all GPUs using the v1 1m framework. When the
dataset size is 7k and the parallel batch size is 256, this phase takes approximately 20 minutes. Our
experiments reveal that the primary factors affecting the relative training speed between POER and
GRPO are the number of group samples G and the maximum truncation length L, while the impact
of batch size is relatively minor.
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Table 2: The average number of tokens gener-
ated per sample with the POER method 40
L 1.5B Model 7B Model 7
300 145.88 147.06 230
500 158.41 168.17 E
800 382.20 397.89 i;zs
GRPO 2689.51 245791 £ 20
=
15
10.7
.. . 10 78 L locmmm=emTTTT *
Table 3: Training time of POER and GRPO [ —— T
under 4 epochs with L = 800, h represents z z "
hours Group G
Method ‘ 1.5B Model 7B Model
GRPO 7728 h 3453 h Figure 3: The impact of maximum truncation

length L and group size G on the acceleration
+POER 8.37h 23.50h ratio of POER under the 1.5B and 7B model set-
tings.Due to the memory limitation of a single
machine, the maximum generation length for 7B
(G) is 2048, while for all other cases it is 4096.

We study training speed for both 1.5B and 7B models. With maximum truncation length fixed at
L = 300, we set per-GPU batch sizes of 2 (1.5B) and 1 (7B), and evaluate group sizes G = 6, 8, 16.
As shown in Figure[3] smaller G yields greater acceleration for POER, reducing training time to 7.4%
of GRPO for 1.5B and 21.1% for 7B. We also study the effect of L with G = 6. Figure [3|shows that
larger L increases POER’s relative training time, with a smaller rise for the 7B model than for the
1.5B model.

The actual training speed is affected by many factors, so we propose a fairer comparison: using
the average tokens generated per sample. Since prefill is much faster than decoding, more tokens
in prefill lead to shorter decoding time.As shown in Table [2} under the original GRPO algorithm,
each sample requires an average of 2689.51 tokens and 2457.91 tokens for the 1.5B and 7B models,
respectively. In contrast, with the POER algorithm, the number can be reduced to as low as 145.88
tokens and 147.06 tokens. From the perspective of the decode stage, the time overhead of POER is
only about 5% of that of GRPO. Table [3|presents the detailed training time overhead of the original
GRPO and POER algorithms over 4 epochs.

It is worth noting that the average number of tokens generated by the GRPO algorithm for the 1.5B
model is higher than that for the 7B model. However, when constrained by POER, the number of
tokens generated is lower. This is because the POER algorithm preserves shorter correct answers,
and the exploration capability of the 1.5B model, once guided, is weaker compared to that of the 7B
model, leading to this phenomenon.

4.4 STABILITY ANALYSIS

Traditional RL methods like GRPO and PPO are unstable in multi-step training: performance often
degrades with more iterations, and response length tends to shorten. Consequently, GRPO fine-tuning
usually limits iteration numbers to prevent deterioration, with accuracy and response length used to
measure model degradation (DeepSeek-Al et al., [2025). POER addresses this by using a cache pool
mechanism, and we conduct comparative experiments to quantify its improved training stability over
GRPO.

During the training process, we use a batch size of 18 to train the 7B and 1.5B models for four epochs,
and monitor changes in response length and model performance, as shown in Figure @ and[5] In this
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multi-step iterative training setup, GRPO experiences a collapse in response length around the 200th
iteration, while POER maintains stable response lengths throughout the process. On the other hand,
as shown in Table 4] the model performance after training with GRPO deteriorated, especially for the
1.5B model, where accuracy dropped by 8.6%. In contrast, POER results in a 5.4% improvement in
accuracy.

Table 4: Performance of GRPO and POER on Evaluation Datasets in Multi-Step Iteration Scenarios

Model | AIME25 AIME24 MATH500 AMC23 Minerva OlyB Avg
DeepSeek-R1-Qwen-7B 433 55.5 92.8 90.0 445 674 656
+ GRPO(W/o R) 40.0,  50.0/ 94.2 90.0 412/ 66.7] 63.7)
+ POER 46.6 56.7 92.8 90.0 414/ 66.1) 656
DeepSeck-R1-Qwen-1.5B | 16.7 28.8 82.2 62.9 265 433 434
+ GRPO(W/o R) 100,  10.0) 67.0) 450,  20.6) 31.4] 348
+ POER 20.0 36.7 82.8 72.5 2941 515 488

Beyond the instability from reward sparsity, GRPO suffers from strong locality due to its inter-group
comparison strategy, limiting performance improvements. POER mitigates this by introducing an
experience cache, using an external cached policy 7 to approximate the main policy my during
updates. This provides a global context, enhances training stability, and allows POER to maintain
consistent performance over long iterations.

Table 5: Impact of a and L on validation accuracy (%) of DeepSeek-R1-Qwen-1.5B

L | o | AIME25 AIME24 MATHS00 AMC23 Minerva OlyB Avg

0 26.7 333 82.8 70.0 27.9 524 489

300 0.01 26.7 333 85.2 71.5 294 52.0  50.7
0.1 233 36.7 85.8 75.0 324 51.0  50.7

1 233 36.7 83.2 72.5 31.6 532  50.1

0 30.0 333 84.4 70.0 29.0 50.5 495

0.5¢ 0.01 23.3 16.7 86.4 67.5 320 553 469
: 0.1 36.7 333 85.2 75.0 27.9 52.7 518

1 30.0 30.0 82.6 60.0 31.6 51.6  47.6

0 333 26.7 84.6 75.0 27.8 533  50.1

/ 0.01 36.7 30.0 84.0 70.0 31.6 523  50.7

0.1 30.0 36.7 84.4 70.0 28.3 53,5 504

1 26.7 26.7 854 65.0 30.5 523 478

5 MORE ANALYSIS

Impact of Maximum Truncation Length and o« Intuitively, the maximum truncation length L and
« are not independent factors. To study their effect on training, we train the model with combinations
of L = 300,0.5¢,¢ and « = 0,0.01,0.1,1. Notably, when a@ = 0, the intra-group length-aware
reward is disabled, so all correct reasoning paths receive the same reward.
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Figure 6: Pass@N performance of the GRPO and POER algorithms on the AIME24 dataset with the
maximum truncation length set to 300. The left figure shows the case with a maximum generation

length of 2048, and the right figure shows the case with a maximum generation length of 4096

The DeepSeek-R1-Qwen-1.5B model is trained for two epochs with a batch size of 336 to amplify
differences in training outcomes for easier observation. The evaluation results are shown in Table [5}
under a fixed L, performance first improves as « increases and then declines.

Effect of max_length on Exploration Capability To investigate the impact of max_length
settings on the model’s initial exploration ability, we set the maximum truncate length of POER
to 300 and examined the performance of the 1.5B and 7B models on the AIME24 dataset under
two settings: max_length = 2048 andmax_length = 4096. As shown in Figure@ POER
demonstrates lower exploration ability compared to GRPO, and the gap between the two methods
gradually widens as max_length increases. This result also indicates that POER exhibits a certain
disadvantage in exploration ability during the early iterations.

Impact of Cache Pool Update Strategy on Model’s Pass@N Performance To study the effect of
training epochs on exploration, we evaluate the 1.5B and 7B models on AIME24 with max_length
set to 2048 and 4096 under epoch = 1,2. As shown in Figure [7] updating the cache pool
over epochs enables the model to explore more diverse and higher-quality solution paths, steadily
improving performance to match or surpass GRPO. Overall, while POER reduces raw exploration,
the experience cache and epsilon-greedy strategy guide the model toward higher-quality paths.

Poer Models 2048 Poer Models 4096

50 Metric |

°
o®

Accuracy (%)

133 k) 133 133

Figure 7: PassN performance of the GRPO and POER algorithms on the AIME24 dataset with the
maximum truncation length set to 300 and epochs set to 1 and 2. The left figure shows the case with a
maximum generation length of 2048, and the right figure shows the case with a maximum generation
length of 4096

6 CONCLUSION

In this paper, we present POER, a plug-and-play algorithm designed to optimize the reinforcement
fine-tuning of large models. POER aims to enhance the fine-tuning phase of large language models
by introducing an experience replay mechanism. This mechanism allows the model to learn from
previously collected high-quality responses during generation. POER significantly reduces model
training time while improving the fine-tuned model’s performance and enhancing stability during the
reinforcement fine-tuning phase.
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THE USAGE OF LLM

In this work, we use LLMs to polish the paper, generate materials for framework diagrams, and
retrieve related work.
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A PSEUDO CODE FOR POER TRAINING PROCESS

The pseudo code of Policy Optimization with Experience Replay(POER) in the training process is as
follows.

Algorithm 1: Compact POER Training

Input: Dataset D, model 7y, cache C ©), params 7, 3, €, G
Output: Model 7y, cache C (1)
Initialize Cache:
¢ =g
for g, € D do
L €9 @ U{(gn, oy (-lar))}
fort < 1to 7 do
Rollout:
for g, € D do
ax + {a | (qr,a) €CU D}
for g + 1to G do
L a9 « Concat(agcoz_m],mt_l(-|qk,af:_m]))

3

R « r(g, &)

Optimize:
0 < 0:—1 + Vo JaRPO—Cache
Update Cache:
for g, € D do
if u < € then

‘ ct-Yy {(qu Oargmax{Ri}iczl)} \ {(qk7 ak)}
else
[ € ¢ ¢ U {(ge.00)} \ (gr 1) /UG

B PROOF OF POER GRADIENT STABILITY

Policy gradient estimation. The reasoning process of traditional GRPO and Policy Optimization
with Experience Replay(POER) can be expressed as 7(+|qx) and 7 (+|(qx, ar)), where g, € Crqu, is
a sample in raw training dataset C.,,, and corresponding (g, ar) € C, is one example in training
replay buffer C, which updates during the training process.

For any sample gy, it holds that (q) C (g, ax). Hence, for the response space of an arbitrary policy
model, the total variance can give

Var(- | qi) = ]E(qwkﬂqk[\/ar(. | (qk,ak))] +Var(qk,ak)|qk<E[. | (qk,ak)}). (11)

Because the second term on the right-hand side is non-negative, i.e. Var(y, q,)q, (E[-|(qx,ax)]) > 0,
we obtain

Var(- | ) 2 Egganion | Ver(- | (ge,a1)]. (12)
Treating (qx, ax) as an augmentation of g allows this inequality to simplify to
Var(- | gr) = Var(- | (ax ax)). (13)

In the policy space, equation[I3] becomes

Var (mg(ay | 1))

Y

Var (mg(ag | (qx,ar))). (14)

Assume there exists a parameter vector 6 such that the policy can be locally approximated by the
first-order expansion

o = T, + V' (00) (0 — ). (15)

The variance of my in a neighbourhood of 6, can then be estimated as

02(779) .~ V@OEQ Vg, , (16)
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where Xy denotes the covariance matrix of the parameter estimates.

Throughout training, the realizations of 7y can be treated as i.i.d. random variables. As the sample
size n — oo, the empirical mean and variance converge to

n

1 2 n
u(mg) = ]E[ﬂ'g] = ;(Wg)i7 Var(ﬂ'g) = ]E[ﬂ'g] — ,u(ﬂ'g) ~ —7 VWEOEQ Vg, -
On account of E[rZ] = pu(mg)?, while 3y = I also holds, then
02(7r9) = Var(mg) = Vﬂgo Vg, = HVWQO ||22 a7
Combining the above with equation [[3]yields the policy space gradient estimation.
[¥ro(aq 1 aw)]|, = ||V (e | (axa0))]] (18)

This establishes that conditioning on the augmented information (g, ay,) strictly reduces—or at worst
preserves—the magnitude of the policy-gradient variance.

Let’s review the GRPO update policy. At training step ¢, the optimisation target of Generative
Reinforcement Policy Optimisation (GRPO) can be written as

Jarpo(0) = E(y aymct-1(Q,4) {0i} ~mo,_, (12))

G [o]

1 1 . N . N

5 E E min (ri’j(ﬁt)Ai,j, c11p<ri7j(9t), 1 — €, ]. —+ G)Aiyj — ﬁDKL(ﬂ—Ot ||7Tref))‘|
i=1 j=1

[oi]

(19)
Here o
0.) — 7o, (0i,5 | q) A R; — mean({Ri}izl)
73,5 (0r) = P 4y = ] G
ﬂ-gt—l(O'L»] | q) btd({j{i}iZI)
Relative to GRPO, POER only changes the policy ratio by conditioning on the prefix 0; «:
TEJQER(Gt) _ o, (Oivj | 4, 01'7<j) (20)

9,1 (015 | @5 0i<j)

Because the c1ip operation truncates high-error updates, both algorithms behave identically when-
ever clipping is activated.

Gradient of the optimization policy. For the plain GRPO ratio one obtains

Vome, (0ij 1q) 7o, (01 ]q)
Vor;:(0;) = 1 d = ALY Vlog mg, (0i . 21
i (6) 0, (005 19) o, (00 1) 0 (0i519) @b

The Kullback-Leibler divergence with respect to a frozen reference policy 7. satisfies

VoDxi(mo, || Trer) = VoEr,, [log o, — log Wref}

=Enr,, [V@ log g, + (log mp, — log mret) Vg log W@t} (22)

= ]Ewt [V@ log Ty, (log :9; + 1)}

As Er, [Vglogmg,] = 0 by normalisation, the expression simplifies to
VoDxL =E, [Vologmg(o|s) - log mg(o|s)]
= Z w9V log mg(o|s) - log mg(o|s)
o (23)
1 |oi|
Z w9V log mg(0;]$) - log m(0i]$)

loil =
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Resulting policy gradient. Aggregating the intra-group updates yields the estimator

‘Oll
VeJarro = Eg f0,} lG Z or] - Z(Mt 1(0\q — B logme, (0| q)) 7, (0 | q) Vglog ma, (0 | q)}

‘Oll
1
q,{o lG Z 4] Z(m B log mg, (0 | CI)> Vo, (0 | Q)]
24

The second line follows by noting that 7y, Vylog 79, = Vg, . Equation above provides the final
form of the GRPO gradient used for parameter updates at step ¢.

Without consideration of KL divergence. If the KL-divergence term is temporarily ignored, the
GRPO gradient estimator reduces to

[oil

VeJarro = Eq 0 | & Z o 2 Z o) Vmo(ag | i) |- (25)

Because of equation equation

IVoTarrollz > |[Vedrorr||2- (26)

Including the KL divergence. At the initial step (¢ = 0) both algorithms share the same reference
policy, hence
VoJcrro = VoIPOER- (27)

For the first update (¢ = 1) equation|[I§]implies
Vo, (ag | gr)lla = [IV7a, (ag | g ar)ll2- (28)

Here we record V7, (a4 | qi,ax) as Vmy . Consequently, the difference of the two policy gradients
becomes

Ay = ||v0jGRPO||2 — IVoIproER||2

[oi]

A
~ Blogma,) Vs, |12 — || (52

- mogwgnwglnz)].

Fatod \o|
(29)
Let 0 := Vg, (i) —Vemy, (i) > 0. For one random dimension the mean-value theorem yields
. . ’ogs I _8(7r10g7r) . 1o /
o, (Z) log o, (Z) — Ty, (Z) IOg Ty, ('L) - T S (7791 (Z) — Ty, (Z))v C € [7T61 ) 77—(7'1] - [07 1)

(30)
Taking the directional derivative with respect to 6 gives

. . 67'1'9 log Uyl . .
(1 + logmg, (i) Vg, (i) — (1 + log mp, (i)) Vg, (i) =, me=c(V7a.(0) - Vg, (i)
a’ﬂ'g log )
= am, =
3D
Hence
log g, (i) Vg, (i) — log mf, (i) Vg, (i) = (25522 | —1)d = (log¢)6 < 0,  (32)
because log ¢ < 0.
Extending this argument component-wise to the full parameter vector shows
log 79, Vg, < logmy, Vi, (33)
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and therefore

| — Blogmg, Vg, [l2 > || — Blogmy, Vi, |2, (34)
We have thus established
Vo, Jarrollz > Ve, Tporr||2- (35)
Let the generic update rule be
0; =01 +nVeJ. (36)
Then
v V (o, Vo, Vo, \V4
Vo _ Y0 #0000, V0 T) 5 Vo0 _ g, (37)
To; 1 TG, _1 o,

i.e. each step re-enters the original policy-gradient (PG) regime. Using equation [35]one obtains for
every ¢ > 1

Ve, v, Vo, Vﬂ'/g,_ o,
0; — = 0; 2 i—1 ; i—1 2 v log /1, 1 (38)
T0; 1 T,y ;1 T,y T, 4
By induction this yields the general relation
IVeTcrrollz > [[VeTrorr||2 for all optimisation steps. (39)

Equation equation 39| completes the proof that, under identical hyper-parameters, GRPO provides
gradient updates at least as large as those of POER, both without and with the KL divergence.
Meanwhile, since both of them follow a normal distribution with zero mean, it follows that:

Var(|Vedrorr|l2) < Var(||VeJarrol2) (40)

C THEOREM

Preliminary. Let g denote the prompt, o a sampled response with length £ = len(o), and let the
group-wise reference length be ¢ = é Zil len(o;). Write Al = ¢ — Lo and fix a window
|Al| < 7. For a sensitivity parameter v > 0 define the length weight 5o (¢) = o{a(liet — £)) =
(1 + e~ober=0)=1 ¢ (0,1) and the shaped reward R, = clip(so(¢)r, m, M) with clipping
bounds m < M, where 7 is the original per-sample reward.

Consider POER with replay distribution g and current policy my, truncated importance ratio

, T;f(((flqu))) for a constant ¢ > 1, token-averaged score function Vylogmg(o | ¢q) =

ﬁ Z‘](il Vologmg(o; | 0<j,q), and a centered advantage A, = R, — b, with group baseline
b = E[R,, | q, group]. The single-sample gradient contribution is

p = min(c

Jo = P (AﬁJK — Blogmy(o | q)) Vylogme(o | q). 41)
Assume ||Vglogmg(o | q)|| < L, E[r?] < oo, and that

1. the conditional variance 0% (¢) := Var(A | £) of the unshaped advantage A is nondecreasing
in 4,

2. the tail probability P(’T—/f > ¢ | £) is nondecreasing in /.
If ar < 1, then there exists a* > 0 such that for all 0 < a < «* the mean-squared error

MSE,, := Var(ga) + ||E[ga] — Vo J||? of the POER gradient estimator with length-aware shaping
satisfies

MSE, < min{MSEOPOER, MSESRPO, inf MSEgRPO}, (42)
a>

that is, it strictly improves upon both the unshaped POER baseline and the GRPO baselines in a
nontrivial neighborhood of o = 0.
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Proof. The proof makes explicit the first-order behavior in « of both the variance and the bias terms.
Throughout the window |A¢| < 7 the sigmoid admits the uniform Taylor expansion

1
sall) = 5 = TAL+ By f),  [Re(a,0)] < Coa?r?, 43)
for some constant C independent of « and ¢. Writing R, = s, (¢) r on the non-clipping region and
absorbing the clipping into the moment bounds later, the centered advantage becomes
Al = (%7‘ —E[} r]) - %(Aﬁr - E[Mr]) + Ro(a,0)r —E[Ro(a,0)r].  (44)

=:Fs(a)

Substituting equation [44]into equation [41]and taking expectations yields

Elga] — E[go] = —% E[p (Aﬁr — E[AET]) Vo logm(o | q)} + E[p Es(a) Vg logma(o | q)}

(45)
By Cauchy—Schwarz and the bounds on p and the score function, the norm of the first term on the
right-hand side satisfies

HE[p (Alr — E[AL]) V, logWg} H < cL (E[(Mr —IE[AM})Q])U2 < cLr (B
(46)
hence ||E[ga] — E[go]|| < % c L7 (E[r?])Y/? + ¢ LE[|E2()|]. Using |Es(a)| < 2C2a27%|r| and

E[r?] < oo gives the bias bound
IElga] = Elgo]|| < Coar + Cia®r?, (47)

for constants C, C; depending only on (¢, L, E[r?], C). Consequently the squared-bias contribution
to MSE,, is O(a?7?).

For the variance term, expand the second moment as
Efllgal?] < 2E[(4}, — Blogm)” ||[Vologm||’| < L?E|(4], — Blogm)’|.  (48)

The cross terms between A/, and 3 log 7y are uniformly bounded in v by Jensen and the finite second

moments of 7 and log my. The a-dependent leading component arises from E[A;Q]. Within the
non-clipping region and after centering, the contribution that depends on length is proportional to

E[s0(0)* 0%(0)] = E[sa(€)’] Elod(£)] — Cov(sa(€)*, 0% (0)). (49)

Since s, (¢) is nonincreasing in ¢ while 0% (¢) is nondecreasing in ¢ by assumption, the reverse
Chebyshev inequality ensures that the covariance in equation[49]is nonpositive and is strictly negative
unless s,,(¢)* and o (¢) are almost surely constant. Differentiating E[s,,(¢)?] at & = 0 and using
equation 43|yields E[s, (¢)?] = 1 + O(a?7?), while differentiating the covariance at @ = 0 gives a
strictly negative slope whenever the variance 0% (¢) is not degenerate. Therefore there exists 7 > 0
such that

Var(g,) < CQLQ(%E - na + O(a272)> + Cp, (50)

where 02 = E[0%(¢)] and Cj collects the 3-dependent but a-independent finite terms.

The POER-specific truncation bias can be written as the deviation between the untruncated importance-
weight estimator and the truncated one. Let w = %’ and X, = (A!, — Blogmy) Vg log my. The bias

vector equals
berip(@) = E[(w = p) Xa] = Ef(w - )" Xa], (51

s0 that [|berip ()| < E[(w — )* [ Xall] < E[(w —c)* (|AL| + |B][log ml) L].

Assumption 2 implies that the event {w > ¢} is more likely at larger ¢, whereas | A’ | is reduced at
larger £ because s, (¢) decreases with ¢ and the clipping of R,, further upper-bounds its magnitude.

Consequently the mapping « — ||baip(c)|| is nonincreasing for small «, and in particular
[|betip (@)]| < |betip(0)]|. Since MSE,, contains ||beiip(r)||?, this term does not increase with «
near zero.
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Combining equation[47]and equation [50and adding the nonincreasing truncation-bias square gives

MSE. = Var(ga) + [Elgal=VoJ|* < 2L2(10% = na+ 0(a*r)) + [lbaip (@) + O(a*7?).

(52)
Choosing a* > 0 sufficiently small so that the linear decrease —7n a dominates the aggregated
O(a27?) remainders ensures that MSE,, < MSE{“F® forall 0 < o < o* with ar < 1.

Since GRPO coincides with the on-policy case without any truncation channel, its «-
dependence shares the same variance reduction mechanism but lacks the nonincreasing
truncation-bias term ||baip(c)||%; therefore the same choice of a also yields MSELOFR <
min{MSESTFO inf 5.0 MSEFRF} whenever ||biip (0)]| > 0, which holds generically under as-
sumption (ii). This proves the stated improvement.

lol

Remark. The token-wise averaging in GRPO, ﬁ > =1, multiplies the effective per-sample weight

by |o|~! and thus accentuates the negative covariance in equation[49] because |o| ! is also nonin-
creasing in . The group baseline b,, used to define A/, guarantees that the constant component of
Sq(£) is removed, while the window condition a7 < 1 keeps s,,(¢) within the near-linear regime
where equation [43]is valid and the remainder terms are uniformly controlled.

D USING A LARGE MODEL’S CACHE POOL TO GUIDE SMALL MODEL
TRAINING

We design the following experiment to explore whether introducing a more powerful model for
question sampling during the cache pool initialization phase can influence the resulting cache policy,
thereby allowing the original model to indirectly benefit from the distillation of the stronger model’s
reasoning capabilities.

Specifically, we use the cache pool initialized by deepseek-r1-qwen-7b as the initial cache pool for
deepseek-r1-qwen-1.5b. Then, following the original experimental setup, we train for two epochs and
evaluate the final performance. As shown in Table[6] when trained using the cache pool generated by
the 7B model, the 1.5B model did not significantly improve performance.

Table 6: The Performance of a 7B Model’s Cache Pool on a 1.5B Model

Model AIME24 MATHS500 AMC23 Minerva OlyB Avg
DeepSeek-R1-Qwen-1.5B  23.3 84.8 75.0 28.7  53.5 53.1

E CoST OVERHEAD

In this section, we present the cost overhead of several additional open-source models with the same
parameters, as well as that of the series of models based on our POER algorithm.

Table 7: Comparison of data usage and computational costs with 1.5B models.

| DeepScaleR-1.5B-Preview | Still-3-1.5B-Preview | POER
Base Model | DeepSeek-R1-Distill-Qwen-1.5B
Hardware 8x A100 80GB 1x8 A100 80GB 1x8 A100 80GB
Time 240h 150h 3h
Cost Est. | $3629 \ $2268 \ $24
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Table 8: Comparison of data usage and computational costs with 7B models.

\ rStar-Math-7B(Guan et al., [2025) \ Eurus-2-7B-PRIME
Base Model | Qwen2.5-Math-7B
Hardware L O o 1x8 A100 80GB
Time - 72h
Cost Est. | - \ $1088
\ Qwen2.5-7B-SimpleRL(Zeng et al.,[2025) ‘ POER
Base Model | Qwen2.5-Math-7B | DeepSeek-R1-Distill-Qwen-1.5B
Hardware ‘ 4x6 A100 80GB ‘ 1x8 A100 80GB
Time 36h 7h
Cost Est. | $1633 \ $56

F MORE ANALYSIS

The impact of cache pool update strategies To investigate the impact of different cache pool
update strategies on model performance, we set ¢ to 0, 0.1, 0.5, and 1 during training. In addition,
we also evaluate the model with cache pool updates completely disabled. As shown in Table[9] the
performance of the 1.5B model exhibits a trend of first improving and then declining as € increases.
The best performance is achieved when € = 0.1, with an average accuracy of 52.6%.

Table 9: The impact of € on model zero-shot performance.In the table, no update denotes the case
where the cache pool is not updated, which serves as a baseline for comparison.

€ | AIME25 AIME24 MATHS00 AMC23 Minerva OlyB  Avg
0 23.3 30.0 84.8 75.0 28.3 52.4 50.0
0.1 23.3 36.7 854 87.5 29.4 53.0 52.6
0.5 30.0 26.7 83.8 72.5 28.3 524 49.0
0.9 26.7 36.7 84.4 70.0 29.8 53.0 50.1
no update 26.7 30.0 82.8 75.0 29.4 51.2 49.2

G TIME OVERHEAD FOR CACHE POOL INITIALIZATION

This section reports whether POER can still achieve significant training acceleration and performance
improvement under extreme conditions, such as when the number of epochs is only 1.

Table 10: Cache pool initialization time (minutes) for 1.5B and 7B models under different GPU types,
dataset sizes, and GPU counts

1.5B Model 7B Model
Dataset GPU 1 4 8 Dataset GPU 1 4 8
Tk H20 34.78 24.61 15.10 7K H20 58.57 26.44 17.95
A100 32.11 21.45 13.98 A100 55.43 22.56 16.19
70k H20 34791 249.14 160.87 70k H20 58295 26128 179.13
A100 327.19 21478 135.89 A100 566.49 23891 167.57

Table shows the model initialization time for the 1.5B and 7B models under different GPU count
configurations.Table [IT]shows the training time for one epoch on an 8-card H20 machine and an
8-card A100 machine, including the computational overhead of cache initialization. As seen from the
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table, even in extreme cases with only a single epoch of training, POER can still provide significant
acceleration.

Table 11: Training time comparison (in hours) of DeepSeek-R1-Qwen models on H20 and A100
GPUs.

Model | H20 (hours) | A100 (hours)
DeepSeek-R1-Qwen-1.5B
POER 14.45 12.41
GRPO 40.98 37.35
DeepSeek-R1-Qwen-7B
POER 39.64 37.38
GRPO 114.50 105.70
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