
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

POLICY OPTIMIZATION WITH EXPERIENCE REPLAY:
GUIDING REASONING MODELS TO COMPLETE THE
REASONING PATH

Anonymous authors
Paper under double-blind review

ABSTRACT

To our knowledge, in the field of large language models, all existing reinforcement
fine-tuning algorithms require generating a complete reasoning process starting
from the question, which results in a substantial time overhead during the rollout
phase of training.Challenging this conventional approach, we propose the assump-
tion that during reinforcement fine-tuning, the model only needs to generate part
of the reasoning process. We analyze the impact of different segments of the
reasoning path on the correctness of the final result, and based on these insights,
we introduce Policy Optimization with Experience Replay (POER), a plug-
and-play reinforcement fine-tuning algorithm. Unlike traditional reinforcement
fine-tuning algorithms that generate full reasoning paths, POER trains the model
by generating suffixes of the reasoning path using experience caching, thereby
significantly reducing training time while improving training stability.From evalua-
tions during the rollout phase of training, POER reduces token generation in this
phase by approximately 95%, greatly lowering the theoretical time overhead. In
practical training, compared with full-path reinforcement fine-tuning algorithms,
POER reduces the training time of the 1.5B model by 90% and the 7B model by
72%, while maintaining performance comparable to typical algorithms such as
GRPO and DAPO. We have open-sourced the code in an anonymous repository:
https://anonymous.4open.science/r/POER-4BF2

Figure 1: The left figure shows the DeepSeekR1-Qwen-Distill-7b and DeepSeekR1-Qwen-Distill-
1.5b models. For each question, an initial answer is generated and then truncated; from the truncation
point, 256 answers are subsequently generated, and the relationship between truncation length and
the overall average accuracy is analyzed. The right figure shows 256 answers generated for each
training question. Answers exceeding 2048 tokens are selected, and BERT is used to measure
the similarity between equal-length prefix segments. The similarity metric is defined as:sim =

2
n(n−1)

∑n−1
i=1

∑n
j=i+1

BERT(si)·BERT(sj)⊤

∥BERT(si)∥ ∥BERT(sj)∥

1 INTRODUCTION

In recent years, large language models (LLMs) (OpenAI et al., 2024b; Touvron et al., 2023; Zeng et al.,
2023) have achieved remarkable breakthroughs in reasoning and generalization capabilities (Wang
et al., 2025), particularly after the introduction of reinforcement learning (RL) during the post-training

1

https://anonymous.4open.science/r/POER-4BF2

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

stage (Ouyang et al., 2022). Pioneering works such as OpenAI’s O1 (OpenAI et al., 2024a) and
DeepSeek-R1 (DeepSeek-AI et al., 2025) have demonstrated impressive reasoning-time efficiency,
primarily due to the synergistic combination of reinforcement learning and chain-of-thought (CoT)
reasoning (Wei et al., 2023). This paradigm shift highlights the transformative potential of RL-based
post-training in pushing the boundaries of LLM performance.

Despite its promising prospects, applying reinforcement learning in post-training remains immature
and highly challenging, with numerous obstacles hindering its widespread adoption. Regarding time
overhead, RL fine-tuning typically generates many samples during the sampling stage. However,
parameter updates cannot proceed until all samples are completed, leading to significant underutiliza-
tion of computational resources. Furthermore, during RL fine-tuning of language models, rewards
are computed only after generating the final token based on task-specific criteria. This paradigm,
known as Reinforcement Learning with Verifiable Rewards (RLVR) (Lambert et al., 2025), lacks
intermediate feedback and produces sparse rewards. Such sparsity hinders the model’s ability to learn
optimal policies and contributes to training instability (Lightman et al., 2023).

Most current research efforts addressing these challenges focus on optimizing the policy gradient
function (Sutton et al., 1999), which has achieved some success. However, these approaches often
overlook the critical role of sampling strategies.

We observe that a significant underlying issue stems from the policy model’s need to identify a reason-
ing trajectory from the beginning of the problem to the correct answer. This approach—comparing
entire reasoning paths using policy gradients—leads to excessive randomness during the sampling
phase. Although it expands the search space, it often fails to find suitable reasoning paths, resulting
in inefficient sampling and high variance.

An alternative perspective arises: since exploring a complete reasoning path from the beginning of the
problem introduces various drawbacks, why not train the policy model to complete a reasoning path
based on partially correct reasoning process hint instead? We found that this is feasible. Through
our experiments, enabling the model to complete correct reasoning paths can still effectively teach it
to generate whole reasoning trajectories from the initial problem statement. Based on this insight,
we propose the Policy Optimization with Experience Replay(POER). Our method is grounded in a
reasonable assumption: the early tokens of a reasoning path that leads to the correct answer are more
likely to guide the model toward the correct reasoning trajectory. Furthermore, we investigate the
relationship between the length of the truncated trailing tokens and the model’s generation accuracy.
The results confirm that the initial tokens of correct answers play a crucial role in steering the model
toward correct solutions, and that longer prefix lengths positively correlate with higher generation
accuracy.

Specifically, we construct a cache pool for the GRPO to store previously generated reasoning paths
and continuously update it during training. After we complete the sampling generation stage for
each question, we add the reasoning path that leads to the correct answer into the cache. When we
later reencounter the same question, we retrieve the first n tokens of the corresponding reasoning
path from the cache, prepend them to the prompt, and then perform sampling. Experimental results
show that this method is plug-and-play, improves training stability during the RL stage, significantly
reduces the policy model’s sampling time cost, and achieves notable performance gains.

Contributions We propose POER, a novel framework for reinforcement fine-tuning of LLMs,
introducing an experience replay mechanism in the sampling stage. Key advantages are: plug-and-
play: easily integrates into other RL fine-tuning methods; reduced resource consumption: up to
92.6% faster training; strong stability: mitigates common RL instability in reasoning models.

We evaluate POER on Deepseek-R1-Distill-Qwen 1.5B and 7B across six datasets. Results show
around 90% reduction in training time, a 2% performance improvement over GRPO and DAPO, and
support for mini-batch, multi-step updates.

2 RELATED WORKS

Reinforcement Fine-Tuning Reinforcement Fine-Tuning (RFT) guides the model fine-tuning
process through the reward mechanisms of reinforcement learning, greatly enhancing generalization
and accuracy. Kimi v1.5 (Team et al., 2025) and ReFT (Luong et al., 2024) employ traditional

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Proximal Policy Optimization (PPO) (Schulman et al., 2017) for RFT and have demonstrated excellent
performance. DeepSeek-R1 (DeepSeek-AI et al., 2025) adopts GRPO and uses verifiable reward
strategies to compute policy gradients directly. DAPO (Yu et al., 2025b) further optimizes GRPO to
improve training stability. R1-V (Chen et al.), VLM-R1 (Shen et al., 2025a), and LMM-R1 (Peng
et al., 2025) extend RFT into the multi-modal domain. While many reinforcement learning algorithms
suffer from reward saturation as training steps increase, leading to reward hacking (Eisenstein et al.,
2024). Satori (Shen et al., 2025b) uses SFT distillation to mitigate it, and O1-Prune (Luo et al., 2025)
employs post-hoc length pruning to enhance stability.

Efficient Inference Test-time scaling (Chen et al., 2024) significantly increases training and
inference costs, as models tend to generate lengthy reasoning chains. To reduce the time cost of RL
training, UPFT (Ji et al., 2025) proposes fine-tuning the model using only the first n tokens. However,
it is impossible to validate reasoning accuracy properly. ThinkPrune (Hou et al., 2025) sets a length
constraint during RL training to limit the model’s thinking length and reduce inference costs. O1-
Prune (Luo et al., 2025) enhances training stability through length pruning and reduces the high cost
associated with long reasoning chains. Hao et al. (2024) optimizes inference by compressing lengthy
reasoning chains into latent space, while Chen et al. (2025); Yu et al. (2025a) reduces inference costs
by aggregating tokens.

3 METHOD

Step1 Cache Init Step2 Cache Updated Step3 Optimization

Replace

Pick an answer

Answer 1

Answer N

...

Answer 1

Answer N

...

Policy ModelQuestion 1

Question N

...

Prefix

Policy Model

Answer i'

Answer i''

Answer i'''

Optimization

Answer i''

Answer i random
or

Discard

PrefixQuestion i

Completions

Answer i

Derive the answer

Figure 2: Overview of the POER framework. The entire training process is described as follows:
Cached answer fragments are used by the model to generate new responses; either the best or a random
response is selected based on the reward system for optimization; and the cache is continuously
updated to improve training efficiency and stability.

3.1 CACHE POOL INITIALIZATION

First, we denote the dataset of samples as D = {qk}Nk=1, where qk represents the k-th question in the
dataset. We denote the initial model parameters as θ0, and we represent the model’s answering policy
by πθ0 . Before training begins, we initialize the cache pool as C(0) as follows:

C(0) = {(qk, ak) | ak ∼ πθ0(·|qk),∀qk ∈ D} (1)

This stage uses the initial model policy to sample the dataset D. To retrieve the response ak
corresponding to question qk from the cache pool, we define the retrieval operation as:

ak := {a | (qk, a) ∈ C}. (2)

Here, ak denotes the answer associated with question qk in the cache pool C.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.2 TRUNCATED ANSWER SAMPLING OPTIMIZATION

Sampling Generation At each sampling stage, we use the POER strategy to retrieve the historical
response ak for each question qk from the cache pool C. We then remove the last m tokens and
concatenate the remaining prefix with qk to generate a new response o. We express this process as:

o = a
[0:−m]
k ∥πθ

(
· | qk, a[0:−m]

k

)
, where

{
ak := {a | (qk, a) ∈ C}

m ∼ U{0, 1, ..., L}
(3)

Here, L is the maximum truncation length, U{0, 1, ..., L} samples a truncation point uniformly from
[0, L], a[0:−m]

k truncates the last m tokens of ak, and πθ(·|qk, a[0:−m]
k) generates a new continuation

based on the question and prefix. In this paper, L is either fixed or set dynamically based on the
shortest response in a sampling group G, denoted as ℓ, where:

ℓ = min{len(o1), len(o2), . . . , len(oG)} (4)

Policy Optimization with Experience Replay After completing the sampling generation, POER
adopts Group Relative estimation of advantage. For a given question-answer pair (qk, ak), the
behavioral policy πθt−1

samples a group of G individual responses {oi}Gi=1 from the model. Then,
by normalizing the group rewards {Ri}Gi=1, the advantage of each response is computed as:

JPOER(θt) = E
(q,a)∼C(t−1)(Q,A),{oi}G

i=1∼a
[0:−m]
k ∥πθ

(
· | qk,a[0:−m]

k

)
1

G

G∑
i=1

1

|oi|

|oi|∑
j=1

{
min

[
ri,j(θt)Âi,j , clip

(
ri,j(θt), 1− ϵ, 1 + ϵ

)
Âi,j

]
− βDKL(πθt∥πref)

} (5)

where:

ri,j(θt) =
πθt(oi,j |q, oi,<j)

πθt−1
(oi,j |q, oi,<j)

, Âi,j =
Ri −mean({Ri}Gi=1)

std({Ri}Gi=1)
(6)

Since POER is policy-agnostic, we propose a unified forward reinforcement learning paradigm based
on experience replay. We can then write the policy gradient function of POER in a more general form
as:

∇θJPOER(θ) = E(q,o)∼C︸ ︷︷ ︸
Data Source

 1

|o|

|o|∑
j=1

G(q, o, j, πref)︸ ︷︷ ︸
Gradient Coefficient

∇θ log πθ(oj |q, o<j)

 (7)

Equation 7 is derived from the standard policy gradient formulation. The above equations indicate that
only the sampling stage is affected by POER, while the policy gradient function remains unaltered. As
a result, POER exhibits a plug-and-play nature and can be easily integrated into other reinforcement
fine-tuning algorithms.

Compared to the traditional GRPO strategy, a previously sampled historical response trajectory is
introduced by POER as a constraint into the subsequent sampling process. In this way, the policy
space πθ explored during training is confined. Such a constraint regularizes the gradient descent
space during learning, which can be expressed as:

V ar(∥∇θJPOER∥2) ≤ V ar(∥∇θJGRPO∥2) (8)

In theory, our method enables a more stable training process. We provide detailed mathematical
proofs in Appendix B.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.3 CACHE POOL UPDATE

After each gradient update, we adopt the ε-greedy algorithm to update the experience cache by
selecting the highest-reward response from the current inference results. Specifically, when the
random variable u ∼ U(0, 1) satisfies u ≤ ε, we select the response with the highest group reward;
otherwise, we randomly select a suboptimal response. We formalize the update process as:

C(t) =

{(
C(t−1) ∪

{
(qk, oargmax{Ri}G

i=1
)
})

\ {(qk, ak)} , if u ≤ ε,(
C(t−1) ∪ {(qk, og′)}

)
\ {(qk, ak)} , otherwise.

(9)

Here, we denote the highest-reward response in the group as oargmax{Ri}G
i=1

, and we randomly select
another candidate response as og′ .

3.4 LENGTH-AWARE REWARD SHAPING

However, since the same response prefix is shared during the sampling phase, the diversity of
responses within the group is reduced compared to the GRPO algorithm. This lower diversity results
in more similar reward signals, thereby diminishing the effectiveness of policy gradient estimation.
To ensure meaningful gradients, reasonable reward differences are maintained within the group, even
when all responses are correct.

A Length-Aware Reward Shaping method is proposed to address this issue. This method is based
on the assumption that: For the same question, a reasoning path that reaches the correct answer
more concisely should be rewarded with a higher value. Specifically, for each response oi in the
group, its length-aware reward R(si) is computed as:

R(si) = clip
(

r(si)

1 + e−α(ℓref−len(oi))
, m, M

)
(10)

Here, r(si) is the original reward, and ℓref is the average length of group G, defined as ℓref =
1
|G|

∑|G|
i=1 len(oi). The parameter α > 0 controls the sensitivity of the reward to length differences.

m and M are the lower and upper bounds for reward clipping to avoid extremely large or small
values. clip(·,m,M) denotes restricting a value within the interval [m,M].

We then iterate the above steps in Sections 3.2 and 3.3 until a predefined stopping step T is reached.

Through mathematical derivation, we demonstrate that length-aware rewards are better suited for
the POER algorithm; the two can complement each other, and when the guiding path is within a
certain threshold, they can enable the model to achieve greater performance gains. In contrast, the
GRPO algorithm, lacking an initial fixed guiding path, results in high variance for length-aware
rewards, making it difficult to accurately estimate the true effective policy gradient, and is therefore
not suitable for using length-aware rewards. Detailed proof is provided in Appendix C.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Base Models To demonstrate the effectiveness and generality of POER, we evaluate it on two
open-source inference models with 1.5B and 7B parameters, namely Deepseek-r1-qwen-distill-1.5b
and Deepseek-r1-qwen-distill-7b (DeepSeek-AI et al., 2025; Bai et al., 2023). Notably, we skip
the supervised fine-tuning (SFT) phase, which is usually a prerequisite for reinforcement learning
to enhance performance (Chu et al., 2025), as the selected models have already undergone this
stage (DeepSeek-AI et al., 2025).

Evaluation and Datasets We evaluate the models on six standard reasoning evaluation datasets:
aime25(math ai, b), aime24(math ai, a), math500(Hendrycks et al., 2021), amc23(math ai, c),
minerva(Lewkowycz et al., 2022) and olympicbench(He et al., 2024). To ensure fairness, all
evaluations use the lighteval(Habib et al., 2023) toolkit.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Implementation Details During training, we use 7k samples from the open-rs dataset (Dang
& Ngo, 2025) with a global batch size of 576 for 4 epochs. Experiments are run on a single H20
machine with 8×H20 96G GPUs. We generate 6 samples per prompt, set the temperature to 0.7, and
fix the maximum generation length at 4096. For the length-aware reward, we use m = 0.5, M = 1,
and α = 0.01. All models are fully fine-tuned. Due to time constraints, only zero-shot performance
is averaged over three runs; all other ablation experiments are run once.

4.2 ZERO-SHOT PERFORMANCE

We set the maximum truncation length L for each group to half of the minimum response length ℓ.
Then, we train the DeepSeek-R1-Qwen-1.5B and DeepSeek-R1-Qwen-7B models for four epochs
using the original GRPO algorithm, the DAPO algorithm, as well as their POER variants, with a
batch size of 576 and a maximum generation length of 4096 tokens. To ensure that the experimental
results are not caused by randomness, we repeat the training three times for each experiment. We
then compare their mean accuracy on the designated evaluation datasets.

Table 1: Performance of the POER algorithm on test datasets. Arrows indicate performance changes
relative to the base model: ↑ indicates improvement, ↓ indicates decline. w/ R means length-aware
reward is used, w/o R means length-aware reward is not used. +POER shows the effect of applying
the POER algorithm on top of the above method.

Model AIME25 AIME24 MATH500 AMC23 Minerva OlyB Avg
1.5B Models

DeepSeek-R1-Qwen-1.5B 16.7 28.8 82.2 62.9 26.5 43.3 43.4
+ GRPO(w/o R) 24.4↑ 31.1↑ 85.7↑ 72.5↑ 29.8↑ 51.3↑ 49.1↑

+ POER 24.4↑ 25.6↓ 84.3↑ 69.2↑ 29.5↑ 51.7↑ 47.5↑
+ GRPO(w/ R) 22.2↑ 32.2↑ 83.8↑ 70.8↑ 27.5↑ 50.5↑ 47.8↑

+ POER 24.4↑ 35.6↑ 85.3↑ 83.3↑ 29.8↑ 51.8↑ 51.7↑
+ DAPO(w/o R) 30.0↑ 24.4↓ 86.2↑ 84.2↑ 29.7↑ 52.7↑ 51.2↑

+ POER 28.9↑ 24.4↓ 86.0↑ 84.5↑ 29.3↑ 52.1↑ 50.9↑
+ DAPO(w/ R) 26.7↑ 30.0↑ 85.0↑ 84.1↑ 29.7↑ 51.1↑ 50.2↑

+ POER 32.2↑ 30.0↑ 86.2↑ 86.1↑ 29.1↑ 52.3↑ 52.7↑
7B Models

DeepSeek-R1-Qwen-7B 43.3 55.5 92.8 90.0 44.5 67.4 65.6
+ GRPO(w/o R) 43.3 53.3↓ 95.0↑ 90.0 44.5 67.2↓ 65.6

+ POER 43.3 46.6↓ 92.5↓ 89.2↑ 42.3↓ 67.7↑ 63.6↓
+ GRPO(w/ R) 40.0 ↓ 48.9↓ 95.0↑ 88.3↑ 43.5↓ 66.0↓ 63.6↓

+ POER 50.0↑ 61.1↑ 94.2↑ 90.8↑ 43.7↓ 67.3↓ 67.8↑
+ DAPO(w/o R) 43.3 53.3↓ 94.6↑ 90.2↑ 45.1↑ 67.7↑ 65.7↑

+ POER 46.7↑ 52.2↓ 94.2↑ 91.2↑ 42.7↓ 64.9↓ 65.3↓
+ DAPO(w/ R) 42.2↓ 56.7↑ 93.2↑ 91.8↑ 44.6↑ 64.5↓ 65.5↓

+ POER 46.7↑ 54.5↓ 94.8↑ 95.2↑ 43.1↓ 64.5↓ 66.5↑

As shown in Table 1, as mentioned in the Method section, length-aware rewards complement the
POER algorithm. Incorporating group-wise length-aware rewards enables POER to achieve higher
accuracy on test benchmarks than GRPO and DAPO for both the 1.5B and 7B model sizes. Without
group-wise length-aware rewards, POER may experience some performance degradation; therefore,
when using POER for accelerated training, it is recommended to include group-wise length-aware
rewards to enhance performance.

4.3 TRAINING TIME OVERHEAD

To investigate the training time overhead of GRPO and POER, each experiment is conducted on
a machine with 8 H20 GPUs, using only a single GPU for sampling during the training phase. It
should be noted that POER introduces additional inference overhead during the cache initialization
phase, where parallel inference is performed across all GPUs using the vllm framework. When the
dataset size is 7k and the parallel batch size is 256, this phase takes approximately 20 minutes. Our
experiments reveal that the primary factors affecting the relative training speed between POER and
GRPO are the number of group samples G and the maximum truncation length L, while the impact
of batch size is relatively minor.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: The average number of tokens gener-
ated per sample with the POER method

L 1.5B Model 7B Model

300 145.88 147.06
500 158.41 168.17
800 382.20 397.89

GRPO 2689.51 2457.91

Table 3: Training time of POER and GRPO
under 4 epochs with L = 800, h represents
hours

Method 1.5B Model 7B Model

GRPO 77.28 h 84.53 h
+POER 8.37 h 23.50 h

Figure 3: The impact of maximum truncation
length L and group size G on the acceleration
ratio of POER under the 1.5B and 7B model set-
tings.Due to the memory limitation of a single
machine, the maximum generation length for 7B
(G) is 2048, while for all other cases it is 4096.

We study training speed for both 1.5B and 7B models. With maximum truncation length fixed at
L = 300, we set per-GPU batch sizes of 2 (1.5B) and 1 (7B), and evaluate group sizes G = 6, 8, 16.
As shown in Figure 3, smaller G yields greater acceleration for POER, reducing training time to 7.4%
of GRPO for 1.5B and 21.1% for 7B. We also study the effect of L with G = 6. Figure 3 shows that
larger L increases POER’s relative training time, with a smaller rise for the 7B model than for the
1.5B model.

The actual training speed is affected by many factors, so we propose a fairer comparison: using
the average tokens generated per sample. Since prefill is much faster than decoding, more tokens
in prefill lead to shorter decoding time.As shown in Table 2, under the original GRPO algorithm,
each sample requires an average of 2689.51 tokens and 2457.91 tokens for the 1.5B and 7B models,
respectively. In contrast, with the POER algorithm, the number can be reduced to as low as 145.88
tokens and 147.06 tokens. From the perspective of the decode stage, the time overhead of POER is
only about 5% of that of GRPO. Table 3 presents the detailed training time overhead of the original
GRPO and POER algorithms over 4 epochs.

It is worth noting that the average number of tokens generated by the GRPO algorithm for the 1.5B
model is higher than that for the 7B model. However, when constrained by POER, the number of
tokens generated is lower. This is because the POER algorithm preserves shorter correct answers,
and the exploration capability of the 1.5B model, once guided, is weaker compared to that of the 7B
model, leading to this phenomenon.

4.4 STABILITY ANALYSIS

Traditional RL methods like GRPO and PPO are unstable in multi-step training: performance often
degrades with more iterations, and response length tends to shorten. Consequently, GRPO fine-tuning
usually limits iteration numbers to prevent deterioration, with accuracy and response length used to
measure model degradation (DeepSeek-AI et al., 2025). POER addresses this by using a cache pool
mechanism, and we conduct comparative experiments to quantify its improved training stability over
GRPO.

During the training process, we use a batch size of 18 to train the 7B and 1.5B models for four epochs,
and monitor changes in response length and model performance, as shown in Figure 4 and 5. In this

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 4: Response Length of GRPO and POER
on a 1.5B Model as a Function of Training Step

Figure 5: Response Length of GRPO and POER
on a 7B Model as a Function of Training Step

multi-step iterative training setup, GRPO experiences a collapse in response length around the 200th
iteration, while POER maintains stable response lengths throughout the process. On the other hand,
as shown in Table 4, the model performance after training with GRPO deteriorated, especially for the
1.5B model, where accuracy dropped by 8.6%. In contrast, POER results in a 5.4% improvement in
accuracy.

Table 4: Performance of GRPO and POER on Evaluation Datasets in Multi-Step Iteration Scenarios

Model AIME25 AIME24 MATH500 AMC23 Minerva OlyB Avg
DeepSeek-R1-Qwen-7B 43.3 55.5 92.8 90.0 44.5 67.4 65.6

+ GRPO(w/o R) 40.0↓ 50.0↓ 94.2↑ 90.0 41.2↓ 66.7↓ 63.7↓
+ POER 46.6↑ 56.7↑ 92.8 90.0 41.4↓ 66.1↓ 65.6

DeepSeek-R1-Qwen-1.5B 16.7 28.8 82.2 62.9 26.5 43.3 43.4
+ GRPO(w/o R) 10.0↓ 10.0↓ 67.0↓ 45.0↓ 20.6↓ 31.4↓ 34.8↓

+ POER 20.0↑ 36.7↑ 82.8↑ 72.5↑ 29.4↑ 51.5↑ 48.8↑

Beyond the instability from reward sparsity, GRPO suffers from strong locality due to its inter-group
comparison strategy, limiting performance improvements. POER mitigates this by introducing an
experience cache, using an external cached policy πC to approximate the main policy πθ during
updates. This provides a global context, enhances training stability, and allows POER to maintain
consistent performance over long iterations.

Table 5: Impact of α and L on validation accuracy (%) of DeepSeek-R1-Qwen-1.5B

L α AIME25 AIME24 MATH500 AMC23 Minerva OlyB Avg

300

0 26.7 33.3 82.8 70.0 27.9 52.4 48.9
0.01 26.7 33.3 85.2 77.5 29.4 52.0 50.7
0.1 23.3 36.7 85.8 75.0 32.4 51.0 50.7
1 23.3 36.7 83.2 72.5 31.6 53.2 50.1

0.5ℓ

0 30.0 33.3 84.4 70.0 29.0 50.5 49.5
0.01 23.3 16.7 86.4 67.5 32.0 55.3 46.9
0.1 36.7 33.3 85.2 75.0 27.9 52.7 51.8
1 30.0 30.0 82.6 60.0 31.6 51.6 47.6

ℓ

0 33.3 26.7 84.6 75.0 27.8 53.3 50.1
0.01 36.7 30.0 84.0 70.0 31.6 52.3 50.7
0.1 30.0 36.7 84.4 70.0 28.3 53.5 50.4
1 26.7 26.7 85.4 65.0 30.5 52.3 47.8

5 MORE ANALYSIS

Impact of Maximum Truncation Length and α Intuitively, the maximum truncation length L and
α are not independent factors. To study their effect on training, we train the model with combinations
of L = 300, 0.5ℓ, ℓ and α = 0, 0.01, 0.1, 1. Notably, when α = 0, the intra-group length-aware
reward is disabled, so all correct reasoning paths receive the same reward.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 6: Pass@N performance of the GRPO and POER algorithms on the AIME24 dataset with the
maximum truncation length set to 300. The left figure shows the case with a maximum generation
length of 2048, and the right figure shows the case with a maximum generation length of 4096

The DeepSeek-R1-Qwen-1.5B model is trained for two epochs with a batch size of 336 to amplify
differences in training outcomes for easier observation. The evaluation results are shown in Table 5:
under a fixed L, performance first improves as α increases and then declines.

Effect of max_length on Exploration Capability To investigate the impact of max_length
settings on the model’s initial exploration ability, we set the maximum truncate length of POER
to 300 and examined the performance of the 1.5B and 7B models on the AIME24 dataset under
two settings: max_length = 2048 and max_length = 4096. As shown in Figure 6, POER
demonstrates lower exploration ability compared to GRPO, and the gap between the two methods
gradually widens as max_length increases. This result also indicates that POER exhibits a certain
disadvantage in exploration ability during the early iterations.

Impact of Cache Pool Update Strategy on Model’s Pass@N Performance To study the effect of
training epochs on exploration, we evaluate the 1.5B and 7B models on AIME24 with max_length
set to 2048 and 4096 under epoch = 1,2. As shown in Figure 7, updating the cache pool
over epochs enables the model to explore more diverse and higher-quality solution paths, steadily
improving performance to match or surpass GRPO. Overall, while POER reduces raw exploration,
the experience cache and epsilon-greedy strategy guide the model toward higher-quality paths.

Figure 7: PassN performance of the GRPO and POER algorithms on the AIME24 dataset with the
maximum truncation length set to 300 and epochs set to 1 and 2. The left figure shows the case with a
maximum generation length of 2048, and the right figure shows the case with a maximum generation
length of 4096

6 CONCLUSION

In this paper, we present POER, a plug-and-play algorithm designed to optimize the reinforcement
fine-tuning of large models. POER aims to enhance the fine-tuning phase of large language models
by introducing an experience replay mechanism. This mechanism allows the model to learn from
previously collected high-quality responses during generation. POER significantly reduces model
training time while improving the fine-tuned model’s performance and enhancing stability during the
reinforcement fine-tuning phase.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

THE USAGE OF LLM

In this work, we use LLMs to polish the paper, generate materials for framework diagrams, and
retrieve related work.

ETHICS STATEMENT

This study does not involve any personal data, sensitive information, or high-risk application sce-
narios. No ethically controversial datasets or models were used. All experimental data are standard
benchmark datasets that are publicly available, and the sole purpose of this research is to advance the
development of reinforcement fine-tuning algorithm. Therefore, we believe this work does not pose
any significant ethical risks.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our experiments, we have provided the complete implementation
code in the supplementary materials. All technical details, including the evaluation benchmarks,
baseline methods, and training hyperparameter settings used in this work, can be found in Section
4.1.

REFERENCES

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu,
Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi Tan,
Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng Xu, Jin
Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan, Zheng
Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang Zhou, Jingren Zhou,
Xiaohuan Zhou, and Tianhang Zhu. Qwen technical report. arXiv preprint arXiv:2309.16609,
2023.

Liang Chen, Lei Li, Haozhe Zhao, and Yifan Song. Vinci r1-v: Reinforcing super generalization
ability in vision-language models with less than 3.

Yi Chen, Jian Xu, Xu-Yao Zhang, Wen-Zhuo Liu, Yang-Yang Liu, and Cheng-Lin Liu. Recoverable
compression: A multimodal vision token recovery mechanism guided by text information. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 39, pp. 2293–2301, 2025.

Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shenglong
Ye, Hao Tian, Zhaoyang Liu, et al. Expanding performance boundaries of open-source multimodal
models with model, data, and test-time scaling. arXiv preprint arXiv:2412.05271, 2024.

Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V.
Le, Sergey Levine, and Yi Ma. Sft memorizes, rl generalizes: A comparative study of foundation
model post-training, 2025. URL https://arxiv.org/abs/2501.17161.

Quy-Anh Dang and Chris Ngo. Reinforcement learning for reasoning in small llms: What works and
what doesn’t, 2025. URL https://arxiv.org/abs/2503.16219.

DeepSeek-AI, Daya Guo, Dejian Yang, and et al. Deepseek-r1: Incentivizing reasoning capability in
llms via reinforcement learning, 2025. URL https://arxiv.org/abs/2501.12948.

Jacob Eisenstein, Chirag Nagpal, Alekh Agarwal, Ahmad Beirami, Alexander Nicholas D’Amour,
Krishnamurthy Dj Dvijotham, Adam Fisch, Katherine A Heller, Stephen Robert Pfohl, Deepak
Ramachandran, et al. Helping or herding? reward model ensembles mitigate but do not eliminate
reward hacking. In First Conference on Language Modeling, 2024.

Xinyu Guan, Li Lyna Zhang, Yifei Liu, Ning Shang, Youran Sun, Yi Zhu, Fan Yang, and Mao Yang.
rstar-math: Small llms can master math reasoning with self-evolved deep thinking, 2025. URL
https://arxiv.org/abs/2501.04519.

10

https://arxiv.org/abs/2501.17161
https://arxiv.org/abs/2503.16219
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.04519

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Nathan Habib, Clémentine Fourrier, Hynek Kydlíček, Thomas Wolf, and Lewis Tunstall. Lighte-
val: A lightweight framework for llm evaluation, 2023. URL https://github.com/
huggingface/lighteval.

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong
Tian. Training large language models to reason in a continuous latent space. arXiv preprint
arXiv:2412.06769, 2024.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
Xu Han, Yujie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan Liu, and Maosong Sun. Olympiad-
bench: A challenging benchmark for promoting agi with olympiad-level bilingual multimodal
scientific problems, 2024. URL https://arxiv.org/abs/2402.14008.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset, 2021. URL
https://arxiv.org/abs/2103.03874.

Bairu Hou, Yang Zhang, Jiabao Ji, Yujian Liu, Kaizhi Qian, Jacob Andreas, and Shiyu Chang.
Thinkprune: Pruning long chain-of-thought of llms via reinforcement learning. arXiv preprint
arXiv:2504.01296, 2025.

Ke Ji, Jiahao Xu, Tian Liang, Qiuzhi Liu, Zhiwei He, Xingyu Chen, Xiaoyuan Liu, Zhijie Wang,
Junying Chen, Benyou Wang, et al. The first few tokens are all you need: An efficient and effective
unsupervised prefix fine-tuning method for reasoning models. arXiv preprint arXiv:2503.02875,
2025.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman,
Lester James V. Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, Yuling Gu, Saumya Malik, Victoria
Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Chris Wilhelm, Luca
Soldaini, Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and Hannaneh Hajishirzi. Tulu 3:
Pushing frontiers in open language model post-training, 2025. URL https://arxiv.org/
abs/2411.15124.

Aitor Lewkowycz, Anders Johan Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski,
Vinay Venkatesh Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo,
Yuhuai Wu, Behnam Neyshabur, Guy Gur-Ari, and Vedant Misra. Solving quantitative rea-
soning problems with language models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=IFXTZERXdM7.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step, 2023. URL
https://arxiv.org/abs/2305.20050.

Haotian Luo, Li Shen, Haiying He, Yibo Wang, Shiwei Liu, Wei Li, Naiqiang Tan, Xiaochun Cao,
and Dacheng Tao. O1-pruner: Length-harmonizing fine-tuning for o1-like reasoning pruning.
arXiv preprint arXiv:2501.12570, 2025.

Trung Quoc Luong, Xinbo Zhang, Zhanming Jie, Peng Sun, Xiaoran Jin, and Hang Li. Reft:
Reasoning with reinforced fine-tuning. arXiv preprint arXiv:2401.08967, 3, 2024.

math ai. AIME24, year = 2024, url = https://huggingface.co/datasets/math-ai/aime24, a.

math ai. AIME25, year = 2025, url = https://huggingface.co/datasets/math-ai/aime25, b.

math ai. AMC23, year = 2023, url = https://huggingface.co/datasets/math-ai/ amc23, c.

OpenAI, , Aaron Jaech, and Adam Kalai et al. Openai o1 system card, 2024a. URL https:
//arxiv.org/abs/2412.16720.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, and et al. Gpt-4 technical report, 2024b.
URL https://arxiv.org/abs/2303.08774.

11

https://github.com/huggingface/lighteval
https://github.com/huggingface/lighteval
https://arxiv.org/abs/2402.14008
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2411.15124
https://arxiv.org/abs/2411.15124
https://openreview.net/forum?id=IFXTZERXdM7
https://arxiv.org/abs/2305.20050
https://arxiv.org/abs/2412.16720
https://arxiv.org/abs/2412.16720
https://arxiv.org/abs/2303.08774

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton,
Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and
Ryan Lowe. Training language models to follow instructions with human feedback, 2022. URL
https://arxiv.org/abs/2203.02155.

Yingzhe Peng, Gongrui Zhang, Miaosen Zhang, Zhiyuan You, Jie Liu, Qipeng Zhu, Kai Yang,
Xingzhong Xu, Xin Geng, and Xu Yang. Lmm-r1: Empowering 3b lmms with strong reasoning
abilities through two-stage rule-based rl. arXiv preprint arXiv:2503.07536, 2025.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Haozhan Shen, Peng Liu, Jingcheng Li, Chunxin Fang, Yibo Ma, Jiajia Liao, Qiaoli Shen, Zilun
Zhang, Kangjia Zhao, Qianqian Zhang, et al. Vlm-r1: A stable and generalizable r1-style large
vision-language model. arXiv preprint arXiv:2504.07615, 2025a.

Maohao Shen, Guangtao Zeng, Zhenting Qi, Zhang-Wei Hong, Zhenfang Chen, Wei Lu, Gregory
Wornell, Subhro Das, David Cox, and Chuang Gan. Satori: Reinforcement learning with chain-of-
action-thought enhances llm reasoning via autoregressive search. arXiv preprint arXiv:2502.02508,
2025b.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradi-
ent methods for reinforcement learning with function approximation. In S. Solla, T. Leen,
and K. Müller (eds.), Advances in Neural Information Processing Systems, volume 12.
MIT Press, 1999. URL https://proceedings.neurips.cc/paper_files/paper/
1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
llms. arXiv preprint arXiv:2501.12599, 2025.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
models, 2023. URL https://arxiv.org/abs/2302.13971.

Xinming Wang, Jian Xu, Aslan H Feng, Yi Chen, Haiyang Guo, Fei Zhu, Yuanqi Shao, Minsi Ren,
Hongzhu Yi, Sheng Lian, et al. The hitchhiker’s guide to autonomous research: A survey of
scientific agents. Authorea Preprints, 2025.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le,
and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models, 2023.
URL https://arxiv.org/abs/2201.11903.

Gaotong Yu, Yi Chen, and Jian Xu. Sparsity meets similarity: Leveraging long-tail distribution
for dynamic optimized token representation in multimodal large language models, 2025a. URL
https://arxiv.org/abs/2409.01162.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong
Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng, Yuxuan Tong, Chi
Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen, Jiangjie Chen, Chengyi
Wang, Hongli Yu, Weinan Dai, Yuxuan Song, Xiangpeng Wei, Hao Zhou, Jingjing Liu, Wei-Ying
Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingxuan Wang. Dapo: An open-source
llm reinforcement learning system at scale, 2025b. URL https://arxiv.org/abs/2503.
14476.

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang, Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu,
Wendi Zheng, Xiao Xia, Weng Lam Tam, Zixuan Ma, Yufei Xue, Jidong Zhai, Wenguang Chen,
Peng Zhang, Yuxiao Dong, and Jie Tang. Glm-130b: An open bilingual pre-trained model, 2023.
URL https://arxiv.org/abs/2210.02414.

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-
zoo: Investigating and taming zero reinforcement learning for open base models in the wild, 2025.
URL https://arxiv.org/abs/2503.18892.

12

https://arxiv.org/abs/2203.02155
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2409.01162
https://arxiv.org/abs/2503.14476
https://arxiv.org/abs/2503.14476
https://arxiv.org/abs/2210.02414
https://arxiv.org/abs/2503.18892

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A PSEUDO CODE FOR POER TRAINING PROCESS

The pseudo code of Policy Optimization with Experience Replay(POER) in the training process is as
follows.

Algorithm 1: Compact POER Training

Input: Dataset D, model πθ0 , cache C(0), params η, β, ϵ,G
Output: Model πθT , cache C(T)

Initialize Cache:
C(0) = ∅
for qk ∈ D do
C(0) ← C(0) ∪ {(qk, πθ0(·|qk))}

for t← 1 to T do
Rollout:
for qk ∈ D do

ak ← {a | (qk, a) ∈ C(t−1)}
for g ← 1 to G do

ã
(g)
i ← Concat(a[0:−m]

k , πθt−1(·|qk, a
[0:−m]
k))

R
(g)
i ← r(qk, ã

(g)
i)

Optimize:
θt ← θt−1 + η∇θJGRPO−Cache

Update Cache:
for qk ∈ D do

if u ≤ ϵ then
C(t−1) ∪

{
(qk, oargmax{Ri}Gi=1

)
}
\ {(qk, ak)}

else
C(t) ← C(t−1) ∪ {(qk, og′)} \ (qk, ak) ; // g′ ∼ U(1, G)

B PROOF OF POER GRADIENT STABILITY

Policy gradient estimation. The reasoning process of traditional GRPO and Policy Optimization
with Experience Replay(POER) can be expressed as π(·|qk) and π(·|(qk, ak)), where qk ∈ Craw, is
a sample in raw training dataset Craw and corresponding (qk, ak) ∈ C, is one example in training
replay buffer C, which updates during the training process.

For any sample qk, it holds that (qk) ⊂ (qk, ak). Hence, for the response space of an arbitrary policy
model, the total variance can give

Var(· | qk) = E(qk,ak)|qk

[
Var

(
· | (qk, ak)

)]
+Var(qk,ak)|qk

(
E
[
· | (qk, ak)

])
. (11)

Because the second term on the right-hand side is non-negative, i.e. Var(qk,ak)|qk (E[·|(qk, ak)]) ≥ 0,
we obtain

Var(· | qk) ≥ E(qk,ak)|qk

[
Var

(
· | (qk, ak)

)]
. (12)

Treating (qk, ak) as an augmentation of qk allows this inequality to simplify to

Var(· | qk) ≥ Var
(
· | (qk, ak)

)
. (13)

In the policy space, equation 13 becomes

Var
(
πθ(ag | qk)

)
≥ Var

(
πθ(ag | (qk, ak))

)
. (14)

Assume there exists a parameter vector θ0 such that the policy can be locally approximated by the
first-order expansion

πθ = πθ0 +∇π⊤(θ0)
(
θ − θ0

)
. (15)

The variance of πθ in a neighbourhood of θ0 can then be estimated as

σ2
(
πθ

)
≈ ∇π⊤θ0Σθ ∇πθ0 , (16)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

where Σθ denotes the covariance matrix of the parameter estimates.

Throughout training, the realizations of πθ can be treated as i.i.d. random variables. As the sample
size n → ∞, the empirical mean and variance converge to

µ
(
πθ

)
= E

[
πθ

]
=

1

n

n∑
i=1

(πθ)i, Var
(
πθ

)
= E

[
π2
θ

]
− µ

(
πθ

)2 ≈ n

n− 1
∇π⊤θ0Σθ ∇πθ0 .

On account of E[π2
θ] = µ(πθ)

2, while Σθ = I also holds, then

σ2
(
πθ

)
= Var

(
πθ

)
= ∇π⊤θ0∇πθ0 =

∥∥∇πθ0

∥∥ 2

2
. (17)

Combining the above with equation 13 yields the policy space gradient estimation.∥∥∥∇πθ

(
ag | qk

)∥∥∥
2

≥
∥∥∥∇πθ

(
ag | (qk, ak)

)∥∥∥
2
. (18)

This establishes that conditioning on the augmented information (qk, ak) strictly reduces—or at worst
preserves—the magnitude of the policy-gradient variance.

Let’s review the GRPO update policy. At training step t, the optimisation target of Generative
Reinforcement Policy Optimisation (GRPO) can be written as

JGRPO(θt) = E(q,a)∼C(t−1)(Q,A),{oi}G
i=1∼πθt−1

(·|q))[
1

G

G∑
i=1

1

|oi|

|oi|∑
j=1

min

(
ri,j(θt)Âi,j , clip

(
ri,j(θt), 1− ϵ, 1 + ϵ

)
Âi,j − βDKL(πθt∥πref)

)]
(19)

Here

ri,j(θt) =
πθt(oi,j | q)
πθt−1

(oi,j | q)
, Âi,j =

Ri −mean
(
{Ri}Gi=1

)
std

(
{Ri}Gi=1

) .

Relative to GRPO, POER only changes the policy ratio by conditioning on the prefix oi,<j :

rPOER
i,j (θt) =

πθt(oi,j | q, oi,<j)

πθt−1
(oi,j | q, oi,<j)

. (20)

Because the clip operation truncates high-error updates, both algorithms behave identically when-
ever clipping is activated.

Gradient of the optimization policy. For the plain GRPO ratio one obtains

∇θ ri,j(θt) =
∇θπθt(oi,j | q)
πθt−1

(oi,j | q)
=

πθt(oi,j | q)
πθt−1

(oi,j | q)
∇θlog πθt(oi,j | q). (21)

The Kullback–Leibler divergence with respect to a frozen reference policy πref satisfies

∇θDKL

(
πθt ∥πref

)
= ∇θEπθt

[
log πθt − log πref

]
= Eπθt

[
∇θ log πθt +

(
log πθt − log πref

)
∇θ log πθt

]
= Eπθt

[
∇θ log πθt

(
log

πθt

πref
+ 1

)] (22)

As Eπθt
[∇θ log πθt] = 0 by normalisation, the expression simplifies to

∇θDKL =Eπθ
[∇θ log πθ(o|s) · log πθ(o|s)]

=
∑
πθ

πθ∇θ log πθ(o|s) · log πθ(o|s)

=
1

|oi|

|oi|∑
t=1

πθ∇θ log πθ(oi|s) · log πθ(oi|s)

(23)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Resulting policy gradient. Aggregating the intra-group updates yields the estimator

∇θJGRPO = Eq,{oi}

[
1

G

G∑
i=1

1

|oi|

|oi|∑
j=1

(
Âi,j

πθt−1
(o|q) − β log πθt(o | q)

)
πθt(o | q)∇θlog πθt(o | q)

]

= Eq,{oi}

[
1

G

G∑
i=1

1

|oi|

|oi|∑
j=1

(
Âi,j

πθt−1
(o|q) − β log πθt(o | q)

)
∇θπθt(o | q)

]
.

(24)

The second line follows by noting that πθt∇θlog πθt = ∇θπθt . Equation above provides the final
form of the GRPO gradient used for parameter updates at step t.

Without consideration of KL divergence. If the KL–divergence term is temporarily ignored, the
GRPO gradient estimator reduces to

∇θJGRPO = Eq,{oi}

[
1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

(Âi,t

πθt−1

)
∇πθ(ag | qk)

]
. (25)

Because of equation equation 18,

∥∇θJGRPO∥2 ≥ ∥∇θJPOER∥2. (26)

Including the KL divergence. At the initial step (t = 0) both algorithms share the same reference
policy, hence

∇θJGRPO = ∇θJPOER. (27)

For the first update (t = 1) equation 18 implies

∥∇πθ1(ag | qk)∥2 ≥ ∥∇πθ1(ag | qk, ak)∥2. (28)

Here we record ∇πθ1(ag | qk, ak) as ∇π′
θ1

. Consequently, the difference of the two policy gradients
becomes

∆1 = ∥∇θJGRPO∥2 − ∥∇θJPOER∥2

= Eq,{oi}

[
1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

(
∥(Âi,1

πθ0
− β log πθ1)∇πθ1∥2 − ∥(Â

′
i,1

πθ0
− β log π′

θ1)∇π′
θ1∥2

)]
.

(29)

Let δ := ∇θπθ1(i)−∇θπ
′
θ1
(i) ≥ 0. For one random dimension the mean-value theorem yields

πθ1(i) log πθ1(i)− π′
θ1(i) log π

′
θ1(i) =

∂(π log π)

∂π

∣∣∣
π=ζ

(πθ1(i)− π′
θ1(i)), ζ ∈ [π′

θ1 , πθ1] ⊂ [0, 1).

(30)
Taking the directional derivative with respect to θ gives

(1 + log πθ1(i))∇πθ1(i)− (1 + log π′
θ1(i))∇π′

θ1(i) =
∂πθ log πθ

∂ πθ
|πθ=ζ(∇πθ1(i)−∇π′

θ1(i))

=
∂πθ log πθ

∂ πθ
|πθ=ζδ

(31)
Hence

log πθ1(i)∇πθ1(i)− log π′
θ1(i)∇π′

θ1(i) =
(∂(π log π)

∂π

∣∣
π=ζ

− 1
)
δ = (log ζ) δ ≤ 0, (32)

because log ζ < 0.

Extending this argument component-wise to the full parameter vector shows

log πθ1 ∇πθ1 ⪯ log π′
θ1 ∇π′

θ1 , (33)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

and therefore
∥ − β log πθ1 ∇πθ1∥2 ≥ ∥ − β log π′

θ1 ∇π′
θ1∥2, (34)

We have thus established
∥∇θ1JGRPO∥2 ≥ ∥∇θ1JPOER∥2. (35)

Let the generic update rule be
θi = θi−1 + η∇θJ . (36)

Then
∇πθi

πθi−1

=
∇
(
πθi−1 + η∇πθi−1∇θi−1J

)
πθi−1

≥
∇πθi−1

πθi−1

= ∇ log πθi−1
, (37)

i.e. each step re-enters the original policy-gradient (PG) regime. Using equation 35 one obtains for
every i ≥ 1

∇πθi

πθi−1

−
∇π′

θi

π′
θi−1

≥
∇πθi−1

πθi−1

−
∇π′

θi−1

π′
θi−1

≥ ∇ log
πθi−1

π′
θi−1

. (38)

By induction this yields the general relation

∥∇θJGRPO∥2 ≥ ∥∇θJPOER∥2 for all optimisation steps. (39)

Equation equation 39 completes the proof that, under identical hyper-parameters, GRPO provides
gradient updates at least as large as those of POER, both without and with the KL divergence.
Meanwhile, since both of them follow a normal distribution with zero mean, it follows that:

V ar(∥∇θJPOER∥2) ≤ V ar(∥∇θJGRPO∥2) (40)

C THEOREM

Preliminary. Let q denote the prompt, o a sampled response with length ℓ = len(o), and let the
group-wise reference length be ℓref = 1

G

∑G
i=1 len(oi). Write ∆ℓ = ℓ − ℓref and fix a window

|∆ℓ| ≤ τ . For a sensitivity parameter α > 0 define the length weight sα(ℓ) = σ
(
α(ℓref − ℓ)

)
=

(1 + e−α(ℓref−ℓ))−1 ∈ (0, 1) and the shaped reward Rα = clip
(
sα(ℓ) r, m, M

)
with clipping

bounds m < M, where r is the original per-sample reward.

Consider POER with replay distribution µ and current policy πθ, truncated importance ratio
ρ = min

(
c, πθ(o|q)

µ(o|q)
)

for a constant c ≥ 1, token-averaged score function ∇θ log πθ(o | q) =

1
|o|

∑|o|
j=1 ∇θ log πθ(oj | o<j , q), and a centered advantage A′

α = Rα − bα with group baseline
bα = E[Rα | q, group]. The single-sample gradient contribution is

gα = ρ
(
A′

α − β log πθ(o | q)
)
∇θ log πθ(o | q). (41)

Assume ∥∇θ log πθ(o | q)∥ ≤ L, E[r2] < ∞, and that

1. the conditional variance σ2
A(ℓ) := Var(A | ℓ) of the unshaped advantage A is nondecreasing

in ℓ,

2. the tail probability P
(
πθ

µ > c | ℓ
)

is nondecreasing in ℓ.

If ατ ≤ 1, then there exists α⋆ > 0 such that for all 0 < α ≤ α⋆ the mean-squared error
MSEα := Var(gα) + ∥E[gα]−∇θJ∥2 of the POER gradient estimator with length-aware shaping
satisfies

MSEα < min
{
MSEPOER

0 , MSEGRPO
0 , inf

α̃>0
MSEGRPO

α̃

}
, (42)

that is, it strictly improves upon both the unshaped POER baseline and the GRPO baselines in a
nontrivial neighborhood of α = 0.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Proof. The proof makes explicit the first-order behavior in α of both the variance and the bias terms.
Throughout the window |∆ℓ| ≤ τ the sigmoid admits the uniform Taylor expansion

sα(ℓ) =
1

2
− α

4
∆ℓ + R2(α, ℓ), |R2(α, ℓ)| ≤ C2 α

2τ2, (43)

for some constant C2 independent of α and ℓ. Writing Rα = sα(ℓ) r on the non-clipping region and
absorbing the clipping into the moment bounds later, the centered advantage becomes

A′
α =

(
1
2 r − E[12 r]

)
− α

4

(
∆ℓ r − E[∆ℓ r]

)
+ R2(α, ℓ) r − E[R2(α, ℓ) r]︸ ︷︷ ︸

=:E2(α)

. (44)

Substituting equation 44 into equation 41 and taking expectations yields

E[gα]− E[g0] = −α

4
E
[
ρ
(
∆ℓ r − E[∆ℓ r]

)
∇θ log πθ(o | q)

]
+ E

[
ρ E2(α) ∇θ log πθ(o | q)

]
.

(45)
By Cauchy–Schwarz and the bounds on ρ and the score function, the norm of the first term on the
right-hand side satisfies∥∥∥E[ρ (

∆ℓ r − E[∆ℓ r]
)
∇θ log πθ

]∥∥∥ ≤ cL
(
E
[
(∆ℓ r − E[∆ℓ r])2

])1/2

≤ cL τ
(
E[r2]

)1/2
,

(46)
hence ∥E[gα] − E[g0]∥ ≤ α

4 cL τ (E[r2])1/2 + cLE[|E2(α)|]. Using |E2(α)| ≤ 2C2α
2τ2|r| and

E[r2] < ∞ gives the bias bound

∥E[gα]− E[g0]∥ ≤ Cb α τ + C ′
b α

2τ2, (47)

for constants Cb, C
′
b depending only on (c, L,E[r2], C2). Consequently the squared-bias contribution

to MSEα is O(α2τ2).

For the variance term, expand the second moment as

E
[
∥gα∥2

]
≤ c2 E

[(
A′

α − β log πθ

)2 ∥∥∇θ log πθ

∥∥2] ≤ c2L2 E
[(
A′

α − β log πθ

)2]
. (48)

The cross terms between A′
α and β log πθ are uniformly bounded in α by Jensen and the finite second

moments of r and log πθ. The α-dependent leading component arises from E[A′
α
2
]. Within the

non-clipping region and after centering, the contribution that depends on length is proportional to

E
[
sα(ℓ)

2 σ2
A(ℓ)

]
= E[sα(ℓ)2] E[σ2

A(ℓ)] − Cov
(
sα(ℓ)

2, σ2
A(ℓ)

)
. (49)

Since sα(ℓ) is nonincreasing in ℓ while σ2
A(ℓ) is nondecreasing in ℓ by assumption, the reverse

Chebyshev inequality ensures that the covariance in equation 49 is nonpositive and is strictly negative
unless sα(ℓ)2 and σ2

A(ℓ) are almost surely constant. Differentiating E[sα(ℓ)2] at α = 0 and using
equation 43 yields E[sα(ℓ)2] = 1

4 +O(α2τ2), while differentiating the covariance at α = 0 gives a
strictly negative slope whenever the variance σ2

A(ℓ) is not degenerate. Therefore there exists η > 0
such that

Var(gα) ≤ c2L2
(

1
4 σ

2
A − η α + O(α2τ2)

)
+ Cβ , (50)

where σ2
A = E[σ2

A(ℓ)] and Cβ collects the β-dependent but α-independent finite terms.

The POER-specific truncation bias can be written as the deviation between the untruncated importance-
weight estimator and the truncated one. Let w = πθ

µ and Xα = (A′
α − β log πθ)∇θ log πθ. The bias

vector equals
bclip(α) = E

[
(w − ρ)Xα

]
= E

[
(w − c)+ Xα

]
, (51)

so that ∥bclip(α)∥ ≤ E
[
(w − c)+ ∥Xα∥

]
≤ E

[
(w − c)+ (|A′

α|+ |β|| log πθ|)L
]
.

Assumption 2 implies that the event {w > c} is more likely at larger ℓ, whereas |A′
α| is reduced at

larger ℓ because sα(ℓ) decreases with ℓ and the clipping of Rα further upper-bounds its magnitude.

Consequently the mapping α 7→ ∥bclip(α)∥ is nonincreasing for small α, and in particular
∥bclip(α)∥ ≤ ∥bclip(0)∥. Since MSEα contains ∥bclip(α)∥2, this term does not increase with α
near zero.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Combining equation 47 and equation 50 and adding the nonincreasing truncation-bias square gives

MSEα = Var(gα) +
∥∥E[gα]−∇θJ

∥∥2 ≤ c2L2
(

1
4 σ

2
A − η α + O(α2τ2)

)
+ ∥bclip(α)∥2 + O(α2τ2).

(52)
Choosing α⋆ > 0 sufficiently small so that the linear decrease −η α dominates the aggregated
O(α2τ2) remainders ensures that MSEα < MSEPOER

0 for all 0 < α ≤ α⋆ with ατ ≤ 1.

Since GRPO coincides with the on-policy case without any truncation channel, its α-
dependence shares the same variance reduction mechanism but lacks the nonincreasing
truncation-bias term ∥bclip(α)∥2; therefore the same choice of α also yields MSEPOER

α <

min{MSEGRPO
0 , infα̃>0 MSEGRPO

α̃ } whenever ∥bclip(0)∥ > 0, which holds generically under as-
sumption (ii). This proves the stated improvement.

Remark. The token-wise averaging in GRPO, 1
|o|

∑|o|
j=1, multiplies the effective per-sample weight

by |o|−1 and thus accentuates the negative covariance in equation 49, because |o|−1 is also nonin-
creasing in ℓ. The group baseline bα used to define A′

α guarantees that the constant component of
sα(ℓ) is removed, while the window condition ατ ≤ 1 keeps sα(ℓ) within the near-linear regime
where equation 43 is valid and the remainder terms are uniformly controlled.

D USING A LARGE MODEL’S CACHE POOL TO GUIDE SMALL MODEL
TRAINING

We design the following experiment to explore whether introducing a more powerful model for
question sampling during the cache pool initialization phase can influence the resulting cache policy,
thereby allowing the original model to indirectly benefit from the distillation of the stronger model’s
reasoning capabilities.

Specifically, we use the cache pool initialized by deepseek-r1-qwen-7b as the initial cache pool for
deepseek-r1-qwen-1.5b. Then, following the original experimental setup, we train for two epochs and
evaluate the final performance. As shown in Table 6, when trained using the cache pool generated by
the 7B model, the 1.5B model did not significantly improve performance.

Table 6: The Performance of a 7B Model’s Cache Pool on a 1.5B Model

Model AIME24 MATH500 AMC23 Minerva OlyB Avg

DeepSeek-R1-Qwen-1.5B 23.3 84.8 75.0 28.7 53.5 53.1

E COST OVERHEAD

In this section, we present the cost overhead of several additional open-source models with the same
parameters, as well as that of the series of models based on our POER algorithm.

Table 7: Comparison of data usage and computational costs with 1.5B models.

DeepScaleR-1.5B-Preview Still-3-1.5B-Preview POER
Base Model DeepSeek-R1-Distill-Qwen-1.5B

Hardware 8× A100 80GB 1×8 A100 80GB 1×8 A100 80GB
Time 240h 150h 3h

Cost Est. $3629 $2268 $24

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 8: Comparison of data usage and computational costs with 7B models.

rStar-Math-7B(Guan et al., 2025) Eurus-2-7B-PRIME
Base Model Qwen2.5-Math-7B

Hardware 10×8 H100 80GB,
15×4 A100 40GB 1×8 A100 80GB

Time – 72h

Cost Est. – $1088

Qwen2.5-7B-SimpleRL(Zeng et al., 2025) POER
Base Model Qwen2.5-Math-7B DeepSeek-R1-Distill-Qwen-1.5B

Hardware 4×6 A100 80GB 1×8 A100 80GB
Time 36h 7h

Cost Est. $1633 $56

F MORE ANALYSIS

The impact of cache pool update strategies To investigate the impact of different cache pool
update strategies on model performance, we set ϵ to 0, 0.1, 0.5, and 1 during training. In addition,
we also evaluate the model with cache pool updates completely disabled. As shown in Table 9, the
performance of the 1.5B model exhibits a trend of first improving and then declining as ϵ increases.
The best performance is achieved when ϵ = 0.1, with an average accuracy of 52.6%.

Table 9: The impact of ϵ on model zero-shot performance.In the table, no update denotes the case
where the cache pool is not updated, which serves as a baseline for comparison.

ϵ AIME25 AIME24 MATH500 AMC23 Minerva OlyB Avg
0 23.3 30.0 84.8 75.0 28.3 52.4 50.0
0.1 23.3 36.7 85.4 87.5 29.4 53.0 52.6
0.5 30.0 26.7 83.8 72.5 28.3 52.4 49.0
0.9 26.7 36.7 84.4 70.0 29.8 53.0 50.1
no update 26.7 30.0 82.8 75.0 29.4 51.2 49.2

G TIME OVERHEAD FOR CACHE POOL INITIALIZATION

This section reports whether POER can still achieve significant training acceleration and performance
improvement under extreme conditions, such as when the number of epochs is only 1.

Table 10: Cache pool initialization time (minutes) for 1.5B and 7B models under different GPU types,
dataset sizes, and GPU counts

1.5B Model

Dataset GPU 1 4 8

7k H20 34.78 24.61 15.10
A100 32.11 21.45 13.98

70k H20 347.91 249.14 160.87
A100 327.19 214.78 135.89

7B Model

Dataset GPU 1 4 8

7k H20 58.57 26.44 17.95
A100 55.43 22.56 16.19

70k H20 582.95 261.28 179.13
A100 566.49 238.91 167.57

Table 10 shows the model initialization time for the 1.5B and 7B models under different GPU count
configurations.Table 11 shows the training time for one epoch on an 8-card H20 machine and an
8-card A100 machine, including the computational overhead of cache initialization. As seen from the

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

table, even in extreme cases with only a single epoch of training, POER can still provide significant
acceleration.

Table 11: Training time comparison (in hours) of DeepSeek-R1-Qwen models on H20 and A100
GPUs.

Model H20 (hours) A100 (hours)
DeepSeek-R1-Qwen-1.5B

POER 14.45 12.41
GRPO 40.98 37.35

DeepSeek-R1-Qwen-7B
POER 39.64 37.38
GRPO 114.50 105.70

20

	Introduction
	Related Works
	Method
	Cache Pool Initialization
	Truncated Answer Sampling Optimization
	Cache Pool Update
	Length-Aware Reward Shaping

	Experiments
	Experimental Setup
	Zero-shot performance
	Training Time Overhead
	Stability Analysis

	More Analysis
	Conclusion
	Pseudo Code for POER Training Process
	Proof of POER Gradient Stability
	theorem
	Using a large model's cache pool to guide small model training
	Cost Overhead
	More Analysis
	Time Overhead for Cache Pool Initialization

