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Abstract

Anomaly detection methods typically require fully observed data for model training
and inference and cannot handle incomplete data, while the missing data problem
is pervasive in science and engineering, leading to challenges in many important
applications such as abnormal user detection in recommendation systems and
novel or anomalous cell detection in bioinformatics, where the missing rates can
be higher than 30% or even 80%. In this work, first, we construct and evaluate
a straightforward strategy, “impute-then-detect”, via combining state-of-the-art
imputation methods with unsupervised anomaly detection methods, where the
training data are composed of normal samples only. We observe that such two-
stage methods frequently yield imputation bias from normal data, namely, the
imputation methods are inclined to make incomplete samples “normal”, where the
fundamental reason is that the imputation models learned only on normal data and
cannot generalize well to abnormal data in the inference stage. To address this
challenge, we propose an end-to-end method that integrates data imputation with
anomaly detection into a unified optimization problem. The proposed model learns
to generate well-designed pseudo-abnormal samples to mitigate the imputation
bias and ensure the discrimination ability of both the imputation and detection
processes. Furthermore, we provide theoretical guarantees for the effectiveness
of the proposed method, proving that the proposed method can correctly detect
anomalies with high probability. Experimental results on datasets with manually
constructed missing values and inherent missing values demonstrate that our pro-
posed method effectively mitigates the imputation bias and surpasses the baseline
methods significantly. The source code of our method is available at https://
github.com/jicongfan/ImAD-Anomaly-Detection-With-Missing-Data.

1 Introduction

Anomaly detection (AD) [Breunig et al., 2000, Schölkopf et al., 2001, Liu et al., 2008, Pevnỳ, 2016,
Zong et al., 2018, Ruff et al., 2018, Cai and Fan, 2022, Fu et al., 2024, Zhang et al., 2024, Xiao
et al., 2025], aiming at identifying anomalous or novel samples in data, is a crucial machine learning
problem. It finds extensive applications in many high-stakes fields such as biology, healthcare,
finance, and cybersecurity. Data missing or incompleteness, a persistent and unavoidable issue in
many real-world situations, often arises during the processes of data collection, transmission, and
storage. Moreover, in fields like bioinformatics (e.g. single-cell RNA sequencing) [Zhang and
Zhang, 2018], psychology (e.g. questionnaire data) [Schlomer et al., 2010], and recommendation
systems (e.g. user-item interaction data) [Shani and Gunawardana, 2011, Fan et al., 2024], the data
missing rates are often higher than 30% or even 80%. Indeed, the missing data problems lead to

∗Corresponding author

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/jicongfan/ImAD-Anomaly-Detection-With-Missing-Data
https://github.com/jicongfan/ImAD-Anomaly-Detection-With-Missing-Data


many challenges for anomaly detection, such as detecting anomalous cells or rare cell types based
on incomplete single-cell RNA sequencing data [Fa et al., 2021] and identifying abnormal users in
recommendation systems [Yang and Cai, 2017]. Regrettably, most existing AD methods necessitate
complete data in both the training and test sets, rendering them ill-equipped to handle datasets
with missing values. Consequently, addressing the AD challenge in the context of incomplete data
becomes both necessary and inevitable.
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Figure 1: Performance (AUROC) degradation of
anomaly detection methods with increasing miss-
ing rate on Adult and KDD datasets.

A naive strategy is filling the missing values
by statistical characteristics such as mean or
median and then performing anomaly detec-
tion. Taking two real-world datasets “Adult” and
“KDD” as examples, we consider the mechanism
missing completely at random and fill the miss-
ing entries with the variable means and then
perform a classical AD methods Isolation For-
est [Liu et al., 2008]) and two deep learning
based AD methods (Deep SVDD [Ruff et al.,
2018] and NeutraL AD [Qiu et al., 2021]). The
results are shown in Figure 1. The detection
accuracies of the four methods degrade signifi-
cantly with the missing rate increases. This verified the failure of the naive strategy and the difficulty
of unsupervised anomaly detection with missing values. Besides the naive imputation, one may
consider using more powerful imputation algorithms [Dempster et al., 1977, Pigott, 2001, Candes
and Recht, 2012, Stekhoven and Bühlmann, 2012, Gondara and Wang, 2018, Yoon et al., 2018, Fan
et al., 2020, Muzellec et al., 2020] to recover the missing values and subsequently implementing AD
algorithms on imputed data. We refer to this strategy as “impute-then-detect”.

IForest Deep SVDD NeutraL AD
0.2

0.3

0.4

0.5

0.6

R
ec

al
l

Adult

complete data
imputed by MissForest
imputed by GAIN

IForest Deep SVDD NeutraL AD
0.8

0.85

0.9

0.95

1.0

R
ec

al
l

KDD

complete data
imputed by MissForest
imputed by GAIN

Figure 2: The degradation of recall rate of abnor-
mal data on “impute-then-detect” methods.

It is worth noting that, for unsupervised anomaly
detection, where the training set is composed of
only normal samples, such “impute-then-detect”
methods would yield imputation bias for normal
data, i.e., the imputation methods are inclined
to recover an abnormal sample with missing val-
ues as “normal” as possible during the inference,
which leads to lower recall or higher false neg-
ative rate. Figure 2 clearly shows the negative
impacts of the imputation bias, which is worth
studying and addressing. The main challenge is
that the training set and test set do not satisfy the
condition of identical distribution and the impu-
tation model trained only on incomplete normal
data does not generalize well to incomplete ab-
normal data. In Section 4.2, we quantitatively and comprehensively evaluate the “impute-then-detect”
methods using state-of-the-art imputation algorithms and AD algorithms.

To tackle the aforementioned problem, in this paper, we propose an end-to-end method, called ImAD,
for unsupervised anomaly detection on incomplete data. The main idea of ImAD is to integrate data
imputation and anomaly detection into a unified optimization objective and alleviate imputation bias
by automatically learning to generate pseudo-abnormal samples. Note that the pseudo-abnormal
samples are by-products of the training process and we do not use any extra data in all experiments.
Our contributions are summarized as follows.

• We study the imputation bias problem of the “impute-then-detect” pipeline and quantitatively
evaluate their detection performance.

• We propose a novel method ImAD for AD on incomplete data. To the best of our knowledge, it
is the first end-to-end unsupervised AD method in the presence of missing value.

• We provide theoretical guarantees for ImAD, proving that it can correctly detect anomalies with
high probability.

• We compare ImAD with more than 9 baselines on 11 real datasets of various domains, covering
datasets with manually constructed missing values and datasets with inherent missing values.
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2 Related Work

Missing Data Imputation Data imputation fills missing data with plausible values and provides
imputed data for downstream tasks such as classification, clustering, and visualization. As the missing
data problem is prevalent in many fields, the study on missing data imputation is extensive, and many
algorithms have been proposed in the past decades. Mayer et al. [2019] pointed out that there are
approximately 150 implementations available to handle missing data. These methods can be roughly
organized into three categories. The first category is based on the iterative regression model, such as
well-known methods Multiple Imputation by Chained Equations (MICE) [Royston and White, 2011]
and MissForest [Stekhoven and Bühlmann, 2012] that trains random forests on observed data through
an iterative imputation scheme. The second category is the matrix completion methods [Candes and
Recht, 2012, Mazumder et al., 2010, Fan and Chow, 2018, Fan et al., 2019, 2020]. The third category
is based on deep learning especially deep generative models [Fan and Chow, 2017, Yoon et al., 2018,
Li et al., 2019, Muzellec et al., 2020]. For instance, Yoon et al. [2018] proposed generative adversarial
imputation network (GAIN) based on generative adversarial network (GAN) [Goodfellow et al.,
2014] and [Tashiro et al., 2021] proposed conditional score-based diffusion models for probabilistic
time-series imputation (CSDI) based diffusion model [Sohl-Dickstein et al., 2015]. Indeed, these
deep imputation methods often achieve state-of-the-art performance in the tasks of missing data
imputation, when the distributions of the training data and testing data are identical. However, their
performance in recovering the missing values for unsupervised AD is rarely studied.

Anomaly detection on incomplete data The research on anomaly detection in the presence of
missing values is very limited. To the best of the authors’ knowledge, [Zemicheal and Dietterich,
2019] is the first work evaluating the detection performance of anomaly detection methods combined
with different data imputation techniques. Their experiments of anomaly detection on a few UCI
datasets with missing values showed that implementations of unsupervised anomaly detection methods
such as Isolation Forest [Liu et al., 2008] on incomplete data should always include algorithms for
handling missing values and the imputation contributes to improving the detection performance of
anomaly methods. Fan et al. [2022] studied the problem of statistical process monitoring with missing
values and proposed a fast incremental nonlinear matrix completion method for online and sequential
imputation. Sarda et al. [2023] provided a study of existing unsupervised anomaly detection methods
on GAN-imputed data.

It’s worth noting that the strategies used in [Zemicheal and Dietterich, 2019, Fan et al., 2022, Sarda
et al., 2023] are two-stage methods, where the imputation models are trained on the training dataset
that does not contain any abnormal data or only contains very few unlabeled outliers. As a result, the
imputation model will not generalize well on abnormal data during the inference and will use the
learned pattern of normal data to fill the missing values of abnormal data, which makes the abnormal
data similar to normal data and hence lowers detection accuracy. In contrast, our method integrates
data imputation and anomaly detection into a unified process, and alleviates the imputation bias via
introducing pseudo-abnormal samples, and hence achieves superior detection accuracy.

3 Proposed Method

3.1 Problem Formulation and Our Motivation

Given n samples x1,x2, · · · ,xn drawn from an unknown distribution Dx ⊆ Rm, the goal of
unsupervised AD is to learn a decision function f : Rm → {0, 1} by utilizing only these n
samples, such that f(x) = 0 if x ∈ Dx and f(x) = 1 if x /∈ Dx. We consider the scenario that
X := [x⊤

1 ,x
⊤
2 , · · · ,x⊤

n ]
⊤ ∈ Rn×m contains missing values. Let M ∈ {0, 1}n×m be a mask matrix

determined by some missing mechanism M such as MCAR, MAR, or MNAR, where Mi,j = 1
means Xi,j is observed and Mi,j = 0 means Xi,j is missing. Then the observed incomplete matrix is

X̆ = [x̆⊤
1 , x̆

⊤
2 , · · · , x̆⊤

n ]
⊤ = M(X) = X⊙M (1)

where ⊙ is the Hadamard product. Equation (1) implies that the missing values of X are temporarily
filled with zeros. In many scenarios such as gene expression data analysis, recommendation systems,
and questionnaire surveys, the data missing rate in X̆ is often high. Training an anomaly detection
model f on X̆ and using it to detect anomalies in new incomplete data has practical significance
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such as detecting anomalous cells or rare cell types in bioinformatics, identifying abnormal users in
recommendation systems, and recognizing unusual subjects using questionnaires of psychology.

As mentioned before, conventional AD methods are vulnerable to missing values and a good impu-
tation algorithm can raise the detection accuracy of an anomaly detection method to some extent.
However, the strategy “impute-then-detect” is inclined to make incomplete abnormal samples normal
and hence cannot provide satisfactory detection performance. Therefore, in this work, we aim to
provide an end-to-end unsupervised anomaly detection method in the presence of missing values to
mitigate the imputation bias and improve the detection accuracy. The most challenging problem is that
the imputation model (denoted as I) trained only on incomplete normal data cannot generalize well to
incomplete abnormal data. To solve the challenge, we take the following strategy and consideration.

We propose to learn a model that can generate some pseudo-abnormal samples, and then learn an
imputation model from both the original normal data and the generated pseudo-abnormal samples.
Thus, the learned imputation model can generalize well to incomplete abnormal data during inference
and recover the missing values with high accuracy, which further improves the accuracy of anomaly
detection. However, we encounter the following issues.

• It is non-trivial to generate meaningful pseudo-abnormal samples that are similar enough to
real ones. The reason is that the distribution (i.e., Dx) of training data is unknown and the data
dimension m is often high.

• The incompleteness of X further increases the difficulty of generating pseudo-abnormal samples.
• On the other hand, the generated pseudo-abnormal samples should not be too far from the normal

data, where a large gap will make the learned imputation model fail to impute the abnormal
samples close to normal data and cause the abnormal samples to be hard to detect.

• The generating model, imputation model, and detection model should be coordinated with each
other and as a whole to ensure the reliability of the inference.

3.2 Learning Framework of ImAD

Figure 3: Visualization of Dz

and Dz̃ in 2-D latent space Z .

To address the aforementioned challenges, we propose to find a
d-dimensional latent space Z where the normal data are lying and
then generate pseudo-abnormal samples around the normal samples
in Z . The samples in Z will be mapped back by a neural network
to the original data space, yielding reliable pseudo-abnormal data.

We define Dz as the latent distribution of the normal data in Z and
define Dz̃ as the latent distribution of pseudo-abnormal data in Z .
Since the patterns of normality are limited and the patterns of abnor-
mality are unlimited, we let Dz be a truncated Gaussian distribution
(a hyperball denoted by B, with radius r1) in Z and assume that the
remaining region of Z is the abnormal region, denoted as Z \ B.
It should be pointed out that there is no need to define Dz̃ in the
entire space Z \ B, which will be explained in the discussion for
Theorem 3.2(b) and further supported by Theorem 3.4 in Section
3.4. Instead, we only need to define Dz̃ in a small region of Z \ B that encloses B, which will reduce
the uncertainty of random sampling (or samples size equivalently) and make it easier for mapping the
samples back to the original data space. Thus, we define Dz̃ as a hypershell surrounding B and let
Dz̃ be a truncated Gaussian. The radii of the two hyperspheres forming the hypershell are r1 and r2
respectively, where r2 > r1. An illustration of Dz and Dz̃ in 2-D space is shown in Figure 3, where
Dz and Dz̃ are truncated Gaussian from N (0, 0.52 · I2) and N (0, I2) respectively. The theoretical
analysis for sampling from Dz and Dz̃ is in Appendix A. We learn a reconstructor R : Rd → Rm to
transform the samples drawn from Dz to the original data distribution Dx, i.e.,

Dx ≈ R(Dz). (2)

R is actually a reconstruction model that recovers the original data from the latent space Z . With Dz̃

and R, we can obtain a distribution Dx̃ of pseudo-abnormal data in the original data space as

Dx̃ := R(Dz̃). (3)

The samples (denoted by x̃) drawn from Dx̃ are reasonable pseudo-abnormal samples, which will be
explained by the discussion for Theorem 3.2(a) in Section 3.4.
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Figure 4: ImAD framework. X̆ and ˘̃X denote the normal and pseudo-abnormal data with missing
values, respectively, while X̂ and ˆ̃X are the corresponding imputed data.

Now we use a projector P : Rm → Rd to transform Dx and Dx̃ into Dz and Dz̃ respectively, i.e.,

Dz ≈ P(Dx), Dz̃ ≈ P(Dx̃). (4)

However, the training set X̆ = M(X) is incomplete, and we need to learn an imputation model I to
recover the missing values, i.e., X̂ = I(X̆). More generally, we denote

Dx̂ = I(Dx̆). (5)

We hope that the imputation model is also able to recover the missing values of the generated
pseudo-abnormal samples if they have, though they are complete. We thus remove some values of the
generated pseudo-abnormal samples x̃ ∼ Dx̃ using missing mechanism M̃ and let D˘̃x = M̃(Dx̃).

The missing values are then recovered by

Dˆ̃x = I(D˘̃x). (6)

This step mitigates the problem of imputation bias encountered by the “impute-then-detect” methods.

Let EI , EP , and ER denote some distance or discrepancy measure between distributions. We here
show how to achieve the goals of (2), (3), (4), (5), and (6) in a unified optimization problem. First,
for normal data, we solve

minimize
I,P,R

EI(I(Dx̆),Dx̆ | M) + EP (P(Dx̂),Dz) + ER(R(P(Dx̂)),Dx̆ | M
)

(7)

For the generated pseudo-abnormal data, we solve

minimize
I,P,R

EI
(
I(M̃(R(Dz̃))),M̃(R(Dz̃)) | M̃

)
+ EP

(
P(I(M̃(R(Dz̃)))),Dz̃) (8)

Let Ê· be a finite-sample estimation of E·. Combining (7) and (8), we obtain the objective of ImAD:

minimize
I,P,R

ÊI(I([X̆; ˘̃X]), [X̆; ˘̃X] | [M, M̃])︸ ︷︷ ︸
L(DI)

+ ÊP (P([X̂; ˆ̃X]), [Z; Z̃])︸ ︷︷ ︸
L(AD)

+ ÊR(R(P(X̂)), X̆ | M)︸ ︷︷ ︸
L(RE)

(9)
where ˘̃X = R(Z̃)⊙ M̃, ˆ̃X = I( ˘̃X), and [·; ·] denotes the row-wise concatenation of two matrices.
In (9), the samples in Z are drawn from Dz and the samples in Z̃ are drawn from Dz̃. The roles of
the three parts of the objective function in (9) are analyzed as follows.

• L(DI) denotes the data imputation loss. With this loss, the imputation model will be able to
recover the missing values of normal data and abnormal data.
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• L(AD) denotes the anomaly detection loss. With this loss, the anomaly detection model will be
discriminative and be able to project normal data and abnormal data into different regions in Z .

• L(RE) denotes the reconstruction loss. This loss is to ensure that Dz and Dz̃ are meaningful.

We see that our method ImAD couples data imputation with anomaly detection to a unified optimiza-
tion objective. Figure 4 depicts the overall framework of ImAD, where the green and red arrows
show the flow paths of normal data (starting from X̆) and pseudo-abnormal data (starting from Z̃)
respectively. The reconstructors in Figure 4 share parameters.

3.3 Specific Implementation of ImAD

We use three neural networks hψ, fθ and gϕ with parameters ψ, θ, ϕ to model I,P and R respectively.
For E , we consider two different cases. If the samples are pair-wise, we directly use the square loss,
which is simple and efficient. Thus, in LDI and LRE, we use the square loss, and the square loss
for LRE is masked by M. When the samples are not pair-wise, we take advantage of the Sinkhorn
distance [Cuturi, 2013] derived from the optimal transport theory. The Sinkhorn distance between
two distributions DU and DV supported by their finite samples U = {u1,u2, · · · ,unu} ∼ Du and
V = {v1,v2, · · · ,vnv} ∼ Dv is defined as

Sinkhorn(U ,V) :=min
P

⟨P,C⟩F + η
∑
i,j

Pij log(Pij), s.t. P1 = a,PT1 = b,P ≥ 0

(10)
where P ∈ Rnu×nv is the transport plan and C ∈ Rnu×nv is the metric cost matrix. The two
probability vectors a and b satisfy aT1 = 1,bT1 = 1, and η ≥ 0 is a trade-off between the
Wasserstein distance and entropy regularization.

By applying hψ, fθ, gϕ, square loss, and Sinkhorn distance to (9), we obtain the following problem:

minimize
ψ,θ,ϕ

Sinkhorn(fθ(hψ(X̆)),Z) + α∥Z̃− fθ(hψ(gϕ(Z̃)⊙ M̃))∥2F︸ ︷︷ ︸
L(AD)

+ β∥([X̆; ˘̃X]− hψ([X̆; ˘̃X]))⊙ [M; M̃]∥2F︸ ︷︷ ︸
L(DI)

+λ∥(X̆− gϕ(fθ(hψ(X̆))))⊙M∥2F︸ ︷︷ ︸
L(RE)

(11)

Solving the problem (11), we get well trained imputer hψ∗ and projector fθ∗ . For a new sample x̆new
containing missing values, we define an anomaly score s(·) by

s(x̆new) = ∥fθ∗(hψ∗(x̆new))∥, (12)

which is the distance to the origin in the latent space. If s(x̆new) > r1, x̆new is detected as abnormal.
Otherwise, x̆new is treated as a normal sample.

3.4 Theoretical Guarantees for ImAD

WLOG, we assume fθ, gϕ, and hψ all have L layers, where θ = {Wf
1 ,W

f
2 , . . . ,W

f
L}, ϕ =

{Wg
1,W

g
2, . . . ,W

g
L}, and ψ = {Wh

1 ,W
h
2 , . . . ,W

h
L}. Denote the spectral norm and ℓ2,1-norm of

a matrix as ∥ · ∥σ and ∥ · ∥2,1 respectively. We also make the following assumptions.

Assumption 3.1. For fθ, gϕ, and hψ , the following conditions hold: 1) ∥Wf
l ∥σ ≤ αf , ∥Wg

l ∥σ ≤ αg ,
∥Wh

l ∥σ ≤ αh, ∀l ∈ [L]; 2) ∥Wf
l ∥2,1 ≤ bf , ∥Wg

l ∥2,1 ≤ bg, ∥Wh
l ∥2,1 ≤ bh, ∀l ∈ [L]; 3) all

activation functions in fθ, gϕ, and hψ are ρ-Lipschitz continuous; 4) the maximum width of the layers
in fθ, gϕ, and hψ is d̄.

The following theorem can be used to obtain some deterministic guarantee for ImAD.
Theorem 3.2. Under Assumption 3.1, we have:
(a) ∥gϕ(z)− gϕ(z̃)∥ ≤ ρLαLg ∥z− z̃∥ holds for any z, z̃;
(b) ∥fθ(hψ(x̆))− fθ(hψ(˘̃x))∥ ≤ ρ2LαLf α

L
h∥x̆− ˘̃x∥ holds for any x̆ and ˘̃x.

Theorem 3.2(a) indicates that in the latent space Z , if an abnormal sample z̃ ∼ Dz̃ is close to a
normal sample z ∼ Dz, in the original data space, the corresponding abnormal sample x̃ is still close
to the normal sample x provided that αg is not too large. This means the generated pseudo-abnormal
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samples are practical and useful. For Theorem 3.2(b), let’s consider an incomplete abnormal sample
˘̃x and assume that its closest incomplete pseudo-abnormal sample generated by the z̃ on the outer
hypersphere (shown in Figure 3) is ˘̃x∗, where ∥˘̃x − ˘̃x∗∥ = β. Then in the latent space, we have
∥z̃− z̃∗∥ ≤ ρ2LαLf α

L
hβ. Let the radii of the inner and outer hyperspheres be r1 and r2 respectively.

Now we can conclude that if r2 − r1 > ρ2LαLf α
L
hβ, z̃ is outside the decision region given by the

inner hypersphere and hence ˘̃x is successfully detected as an abnormal sample.

Now we study the theoretical guarantees for our ImAD in the sense of expectation. Let r1 be the
thresholds for the anomaly score defined by (12) to determine whether a sample is normal or not.
Let r2 be the radius of the outer hypersphere enclosing Dz̃. Let s̄x̆ be the average anomaly score of
the (incomplete) normal training data, i.e., s̄2x̆ = 1

n

∑n
i=1 s(x̆i)

2. Let ε̄2˘̃x := 1
n

∑n
i=1 |r22 − s(˘̃xi)

2|,
where ˘̃xi are the (incomplete) pseudo-abnormal samples generated during the training stage. With
these definitions and Assumption 3.1, the following (proved in Appendix C) presents the theoretical
generalization ability of our ImAD.
Theorem 3.3. Suppose the squared anomaly score s(x̆)2 of normal data is always upper-bounded by
γ, |r22 − s(˘̃x)2| of the pseudo-abnormal data is always upper-bounded by γ̃, and the absolute output

of fθ is always upper-bounded by ϑ. Suppose the samples in X̆ and ˘̃X are independently drawn Dx̆

and D˘̃x respectively. Define κ = αLf α
L
h , ζ =

(
1 + L

( bf
αf

)2/3
+ L

(
bh
αh

)2/3)3/2
, ∆ = r21 − s̄2x̆, and

∆̃ = r22 − r21 − ε̄2˘̃x.

(a) For normal data from Dx̆, over the randomness of X̆,

P [EDx̆
[s(x̆)] > r1] ≤ δ, (13)

where δ = 2 exp
(
− 2n

(
∆− 8γ+48R lnn

n

)2
/(9γ2)

)
and R = ρ2L−1ϑκζ∥X̆∥F

√
d ln(2d̄2).

(b) For abnormal data from D˘̃x, over the randomness of ˘̃X,

P
[
ED˘̃x

[s(˘̃x)] ≥ r1

]
≥ 1− δ̃, (14)

where δ̃ = 2 exp

(
−2n

(
∆̃− 8γ̃+48R̃ lnn

n

)2
/(9γ̃2)

)
and R̃ = ρ2L−1ϑκζ∥ ˘̃X∥F

√
d ln(2d̄2).

Theorem 3.3(a) means that a normal sample, in expectation, is detected as anomalous with probability
at almost δ, where δ is close to zero under some mild conditions such as L is not too large and n is
not too small. In other words, a false alarm happens with low probability. Theorem 3.3 (b) means that
an abnormal sample drawn from D˘̃x, in expectation, can be successfully detected with probability
at least 1− δ, where δ is close to zero under some mild conditions. Theorem 3.3(b) also indicates
that a larger r2 is better. It is worth noting that here we only focus on D˘̃x, which is defined by Dz̃,
M̃, and gϕ. D˘̃x can be regarded as a distribution of difficult anomalous data that are close to normal
data. The anomalous samples drawn from space out of D˘̃x are much easier to detect, which is further
supported by the following theorem (proved in Appendix D).
Theorem 3.4. Let c be a constant satisfying ∥fθ ◦ hψ ◦ gϕ(z)− fθ ◦ hψ ◦ gϕ(z′)∥ ≥ c∥z− z′∥ for
any z, z′ and assume that ∥fθ ◦ hψ ◦ gϕ(0)− 0∥ ≤ ε. Any samples drawn from the space out of D˘̃x
can be correctly detected if cr2 − ε > r1.

4 Experiments

4.1 Datasets, Baselines, and Implementation Details

We compare ImAD with “impute-then-detect” methods on 11 publicly available tabular datasets from
various fields, including seven datasets with manually constructed missing values and four datasets
with inherent missing values. In all experiments, only incomplete normal data are used in the training
stage, but there are both incomplete normal and abnormal data during the inference. The statistics
of all datasets are in Table 1 and a detailed description of all datasets is in Appendix J. Considering
the “impute-then-detect” strategy, for data imputation, we use MissForest [Stekhoven and Bühlmann,
2012] and GAIN [Yoon et al., 2018]. For anomaly detection, we use Isolation Forest [Liu et al.,
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2008], Deep SVDD [Ruff et al., 2018], NeutraL AD [Qiu et al., 2021] and DPAD [Fu et al., 2024].
The pairwise combination between the imputation and anomaly detection methods yields eight
“impute-then-detect” baselines.

Table 1: Statistics of datasets. The “normal” and “abnormal” denote the number of normal and
abnormal samples, respectively. “missing samples rate” means the proportion of samples with missing
values and “missing entries rate” means the proportion of all missing values.

dataset field features instances normal abnormal

without
inherent
missing
values

Adult income census 14 30,162 22,658 7,508
Botnet cybersecurity 115 40,607 13,113 27,494
KDD cybersecurity 121 494,021 396,743 97,278

Arrhythmia medical diagnosis 274 452 320 132
Speech speech recognition 400 3,686 3,625 61

Segerstolpe cell analysis 1,000 702 329 372
Usoskin cell analysis 25,334 610 232 378
dataset field features instances missing samples rate missing entries rate

with
inherent
missing
values

Titanic pattern recognition 9 891 79.46% 10.79%
MovieLens1M recommendation system 498 6,040 100% 82.41%

Bladder cell analysis 23,341 2,500 100% 86.93%
Seq2-Heart cell analysis 23,341 4,365 100% 88.51%

We use MLPs to construct the three modules of ImAD, Adam [Kingma and Ba, 2015] as the
optimizer and set coefficient η of entropy regularization term in Sinkhorn distance to 0.1 in all
experiments. Other experimental hyper-parameters are provided in Appendix J. Sensitivity analysis
of hyper-parameters is provided in Appendix I. A detailed description of distinct missing mechanisms,
including MCAR, MAR, and MNAR, is provided in Appendix J. In this study, we let the missing
rate mr be 0.2 or 0.5, which is consistent with the previous data imputation works [Yoon et al., 2018,
Muzellec et al., 2020]. We use the AUROC (Area Under the Receiver Operating Characteristic curve)
and AUPRC (Area Under the Precision-Recall curve) to evaluate the detection performance. ALL
experiments were conducted on 20 Cores Intel(R) Xeon(R) Gold 6248 CPU with one NVIDIA Tesla
V100 GPU, CUDA 12.0. We report the average results of five runs.

4.2 Experimental Results on Datasets with Manually Constructed Missing Values

Before presenting the numerical results, we show the effectiveness of the generated pseudo-abnormal
samples learned for the Botnet dataset in Figure 5, where we directly let the latent space Z be 2-D for
convenient visualization. We see that the pseudo-abnormal samples cover the region of real abnormal
samples, which matches our motivation and expectation.

Figure 5: Two-dimensional visualization on Botnet.

The results of anomaly detection with missing data under the setting of MCAR are shown in Table 2
and more results under MCAR are provided in Appendix K. In Table 2, “Mean-Filling” denotes that
the missing values are filled with feature means.

We have the following observations from the Table 2:

• The detection performance of “impute-then-detect” methods does not decrease with the increas-
ing of missing rate from 0.2 to 0.5 in some cases (emphasized by underline), which indicates
the adverse impact of imputation bias for the detection algorithm. The main reason is that a
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Table 2: Detection performance in terms of AUROC and AUPRC (%, mean and std) on datasets with
manually constructed missing values under MCAR. mr denotes the missing rate. The best result in
each case is marked in bold.

DI Methods AD Methods
KDD Adult

AUROC(%) AUPRC(%) AUROC(%) AUPRC(%)
mr = 0.2 mr = 0.5 mr = 0.2 mr = 0.5 mr = 0.2 mr = 0.5 mr = 0.2 mr = 0.5

Mean-Filling

I-Forest 74.71(1.92) 57.44(5.71) 81.19(1.31) 64.37(5.95) 59.63(0.56) 56.01(0.84) 57.99(1.03) 59.25(0.72)
Deep SVDD 95.44(1.17) 85.32(4.26) 95.09(1.36) 84.91(4.31) 62.53(5.35) 57.37(2.55) 62.28(6.81) 59.03(3.19)
NeutraL AD 96.63(1.05) 87.39(1.72) 88.69(1.36) 88.10(2.87) 60.37(2.50) 54.64(1.08) 63.20(2.86) 57.43(1.16)

DPAD 52.55(2.41) 53.73(2.45) 55.21(3.03) 53.51(2.46) 61.93(0.17) 59.17(0.35) 66.72(0.10) 62.42(0.13)

MissForest

I-Forest 94.90(1.95) 93.37(2.15) 93.24(2.38) 93.21(1.92) 60.06(1.69) 60.73(0.69) 57.12(2.16) 56.80(1.27)
Deep SVDD 93.58(2.46) 91.84(5.91) 85.77(2.95) 88.79(1.29) 62.33(4.86) 61.21(2.24) 55.31(2.91) 55.45(1.72)
NeutraL AD 94.00(1.72) 92.68(2.44) 93.87(1.57) 94.88(2.86) 58.79(1.88) 55.12(3.41) 50.07(6.50) 52.27(3.61)

DPAD 70.65(4.61) 60.80(1.08) 76.37(2.58) 62.07(0.08) 64.39(0.15) 63.82(0.23) 68.68(0.31) 64.80(0.13)

GAIN

I-Forest 82.78(3.80) 79.94(0.39) 90.33(1.58) 89.52(1.07) 59.53(0.91) 61.18(1.61) 57.05(1.02) 56.87(1.09)
Deep SVDD 88.68(4.87) 88.44(5.54) 88.36(3.42) 85.45(5.67) 58.65(3.44) 65.44(2.40) 57.61(4.24) 59.55(2.34)
NeutraL AD 90.48(3.24) 84.10(0.91) 84.61(1.30) 84.08(1.71) 55.04(1.81) 56.44(2.13) 53.00(6.80) 59.06(3.97)

DPAD 70.34(8.20) 90.80(0.09) 72.29(10.59) 94.49(0.04) 62.10(0.85) 62.60(0.18) 68.39(0.42) 68.48(0.21)

ImAD (Ours) 97.01(0.33) 90.78(1.35) 95.96(0.18) 91.58(0.32) 76.51(2.12) 71.19(1.63) 73.42(2.08) 71.50(2.02)

DI Methods AD Methods
Arrhythmia Speech

AUROC(%) AUPRC(%) AUROC(%) AUPRC(%)
mr = 0.2 mr = 0.5 mr = 0.2 mr = 0.5 mr = 0.2 mr = 0.5 mr = 0.2 mr = 0.5

Mean-Filling

I-Forest 78.83(1.48) 76.29(1.62) 75.83(0.86) 76.05(2.16) 26.28(1.45) 34.54(2.03) 36.10(0.47) 38.98(0.79)
Deep SVDD 66.22(1.89) 62.60(4.67) 71.76(1.81) 66.46(3.93) 53.90(5.43) 52.80(1.57) 57.52(4.22) 53.75(2.67)
NeutraL AD 79.02(1.91) 74.87(2.15) 81.02(1.97) 76.79(2.34) 49.54(3.91) 50.65(4.58) 50.79(2.26) 51.82(1.87)

DPAD 78.33(1.47) 73.37(3.23) 78.97(1.46) 74.63(2.41) 40.22(2.79) 42.22(4.16) 46.26(2.39) 45.58(2.01)

MissForest

I-Forest 80.72(0.62) 81.54(0.95) 77.91(1.85) 77.95(0.97) 28.58(2.95) 29.09(1.14) 36.83(1.06) 37.29(0.76)
Deep SVDD 72.63(0.99) 75.80(4.07) 70.94(0.75) 77.39(4.55) 60.37(0.87) 40.14(4.30) 58.93(1.35) 42.08(2.16)
NeutraL AD 47.38(4.81) 44.30(2.11) 50.87(3.53) 50.12(2.52) 56.51(4.87) 54.11(3.77) 55.44(4.36) 52.26(3.97)

DPAD 80.79(1.11) 82.64(1.27) 80.35(1.76) 83.30(1.42) 44.81(5.10) 43.32(3.71) 48.57(3.26) 47.63(3.88)

GAIN

I-Forest 77.19(0.81) 76.29(1.35) 76.40(1.86) 76.29(1.35) 29.33(0.59) 29.23(2.13) 39.92(0.21) 40.04(0.63)
Deep SVDD 57.14(5.41) 48.86(2.35) 59.35(2.58) 54.03(2.45) 54.95(1.79) 46.54(2.10) 54.38(0.96) 47.54(1.75)
NeutraL AD 37.96(5.09) 33.98(4.12) 42.57(2.56) 42.35(1.96) 56.80(4.89) 57.24(5.51) 54.76(4.58) 55.05(5.58)

DPAD 79.07(1.29) 80.11(4.13) 76.48(0.97) 79.67(4.77) 41.91(3.78) 44.95(2.16) 46.46(2.79) 49.69(2.18)

ImAD (Ours) 82.24(1.76) 81.76(1.19) 83.74(1.85) 83.37(1.36) 61.94(2.77) 58.66(1.40) 60.43(3.33) 58.13(1.48)

lower missing rate implies a simpler imputation task, leading to a more pronounced imputation
bias from normal data, which makes the abnormal data more “normal”, thereby increasing the
difficulty of detection for such two-stage methods.

• The “impute-then-detect” methods with “MissForest” (simple and shallow imputation algo-
rithms) achieve better detection performance than those with “GAIN” (generative and deep
imputation model) in most cases, suggesting that a sophisticated imputation module may not
contribute positively to subsequent anomaly detection because the identical distribution assump-
tion does not hold here. The outstanding recovery ability leads to a pronounced imputation bias
and further affects the detection task.

• Compared with all baselines, ImAD achieves better detection performance in almost all cases.
Besides, different from the “impute-then-detect” methods, the performance of ImAD increases
with the changes of missing rate from 0.5 to 0.2 in all cases. This indicates that the imputation
module of ImAD generalizes well on incomplete abnormal data and the generated pseudo-
abnormal samples can alleviate the bias.

4.3 Experimental Results on Datasets with Inherent Missing Values

We report experimental results on the four datasets with inherent missing values in Table 3, where the
naive imputation methods “Zero-Filling” and ‘Mean-Filling” are also considered. Observing Table 3,
we notice that the naive imputation methods are insufficient for subsequent detection tasks when
facing high missing rates and the imputation bias impacts the detection accuracy of “impute-then-
detect” methods. Our ImAD outperforms all baselines in all cases. It indicates that our proposed
method is practical and effective for real-world anomaly detection with missing data.

4.4 Impact of Different Missing Mechanisms

Given a real dataset, the missing mechanism is usually unknown and difficult to estimate. It is
expected that when the missing mechanism M̃ in generating (incomplete) pseudo-normal samples is
closer to the missing mechanism M in the real data, the performance of ImAD should be better. In
this section, we analyze the impact of different M̃ on the detection performance of ImAD. Note that
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Table 3: Detection accuracy (AUROC and AUPRC (%, mean and std)) on four real-world datasets
with inherent missing values. The best result in each case is marked in bold.

DI Methods AD Methods Titanic MovieLens1M Bladder Seq2-Heart
AUROC(%) AUPRC(%) AUROC(%) AUPRC(%) AUROC(%) AUPRC(%) AUROC(%) AUPRC(%)

Zero-Filling

I-Forest 77.44(0.29) 77.74(0.17) 35.53(0.43) 40.87(0.32) 32.22(0.72) 39.23(0.41) 48.78(0.63) 46.25(0.54)
Deep SVDD 54.03(1.88) 53.49(3.21) 41.38(0.98) 43.44(0.58) 68.40(2.37) 76.32(2.44) 71.12(0.90) 65.19(0.95)
NeutraL AD 49.94(0.58) 47.10(1.31) 39.29(0.79) 44.05(0.72) 63.29(0.39) 64.86(0.84) 82.84(3.37) 78.76(2.17)

DPAD 79.50(0.91) 79.07(1.30) 44.10(3.46) 46.12(2.29) 99.99(0.00) 99.99(0.00) 95.31(0.32) 93.38(0.69)

Mean-Filling

I-Forest 79.60(0.65) 78.64(0.94) 36.30(0.75) 41.47(0.46) 44.06(3.12) 46.63(3.88) 54.69(2.32) 51.98(2.07)
Deep SVDD 53.87(0.09) 52.41(0.36) 48.18(2.06) 46.64(0.93) 81.97(3.44) 78.89(3.78) 75.16(1.05) 71.12(0.65)
NeutraL AD 66.15(2.00) 63.38(2.77) 38.34(0.69) 42.15(0.46) 99.15(0.39 99.38(2.64) 89.87(8.36) 86.57(8.50)

DPAD 67.02(0.66) 69.85(0.88) 47.74(4.08) 48.52(2.89) 97.52(1.43) 97.88(1.15) 77.93(10.20) 76.37(8.95)

MissForest

I-Forest 79.72(0.28) 78.50(0.33) 36.34(1.04) 41.45(0.25) 44.53(2.84) 46.84(1.94) 64.58(3.98) 58.56(3.10)
Deep SVDD 60.46(8.59) 60.78(3.73) 56.04(0.49) 53.79(0.41) 95.53(1.59) 97.04(0.81) 94.29(0.42) 92.30(0.45)
NeutraL AD 54.63(4.42) 52.13(3.16) 57.14(1.18) 55.07(1.72) 66.41(4.66) 68.01(2.52) 91.80(1.18) 90.87(1.16)

DPAD 68.18(1.45) 70.01(0.31) 47.50(4.40) 48.49(3.04) 96.96(1.30) 97.29(1.07) 78.03(5.20) 74.67(5.33)

GAIN

I-Forest 79.46(0.79) 78.69(0.96) 64.84(1.04) 62.63(1.09) 45.77(2.39) 47.62(2.19) 64.62(3.31) 58.82(2.32)
Deep SVDD 70.59(4.54) 66.43(4.17) 58.99(1.81) 56.68(2.11) 95.43(1.18) 96.78(0.47) 93.93(0.37) 91.54(0.67)
NeutraL AD 53.71(2.74) 51.55(2.25) 50.72(2.88) 51.47(2.38) 65.30(3.98) 65.68(4.69) 91.48(0.76) 90.79(1.36)

DPAD 78.12(0.97) 77.41(1.04) 59.98(1.86) 58.98(1.90) 96.89(1.85) 97.25(1.56) 74.99(2.76) 73.16(1.93)

ImAD (Ours) 82.09(0.99) 81.39(0.84) 66.32(1.36) 65.34(1.35) 100(0.00) 100(0.00) 96.62(0.11) 96.40(0.19)

for the synthetic incomplete data, we accurately know the missing mechanism. The experimental
results are reported in Table 4. On real incomplete data, our method is robust to the setting of missing
mechanism M̃ and has better overall performance when M̃ is MCAR. Therefore, based on Occam’s
Razor principle and the empirical results, we recommend using MCAR as the missing mechanism for
the generated pseudo-abnormal samples when the real missing mechanism is unknown. On the other
hand, as shown in Table 4, on synthetic incomplete data, detection performance degrades when M̃ is
different from M.

Table 4: Performance comparison of different missing mechanisms M̃.

Dataset Missing Mechanism M
of Normal Data

Missing Mechanism of Pseudo-Abnormal Samples M̃

MCAR MAR MNAR

AUROC(%) AUPRC(%) AUROC(%) AUPRC(%) AUROC(%) AUPRC(%)

Titanic Unknown 82.09 81.39 79.06 77.08 80.50 79.17
MovieLens1M Unknown 66.32 65.34 63.14 63.39 61.44 60.91
Bladder Unknown 100.00 100.00 99.95 99.95 100.00 100.00
Seq2_Heart Unknown 96.62 96.40 96.79 96.60 95.56 94.41
Adult MCAR 71.19 71.50 64.11 66.44 67.28 66.72
Adult MAR 65.66 67.23 74.61 70.74 71.14 69.69
Adult MNAR 70.69 69.17 68.35 68.78 71.60 68.97

4.5 More Experimental Results

The appendices contain the following additional results: I. Performance gain from pseudo-abnormal
samples (Appendix G); II. Influence of the constrained radii r1, r2 (Appendix H); III. Sensitivity
analysis of hyperparameters (Appendix I); IV. Impact of different missing rates for training and test
set(Appendix K); V. Results of MAR and MNAR (Appendix K).

5 Conclusion

This paper proposed ImAD, the first end-to-end unsupervised anomaly detection method on incom-
plete data. ImAD integrates data imputation with anomaly detection into a unified optimization
objective and automatically generates pseudo-abnormal samples to alleviate the imputation bias.
We theoretically proved the effectiveness of ImAD and empirically evaluated ImAD on multiple
real-world datasets. The results showed that ImAD mitigates imputation bias from normal data and
provides an effective solution for unsupervised anomaly detection in the presence of missing values.
One limitation of this work is that we haven’t considered the applications on incomplete image data
and incomplete time series.
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A Analysis for Sampling in Latent Space

To project the normal data onto target distribution and generate pseudo-abnormal data, our proposed
method involves sampling from two latent distributions Dz,Dz̃ ∼ N (0, σ2Id). In this section, we
provide a lower bound for the constrained sampling radius r, given a sampling probability p that
provides a probabilistic guarantee, namely, to obtain N points from a truncated Gaussian, we
need to sample N/p times from a Gaussian distribution. Subsequently, we perform sampling
within the truncated Gaussian distribution with a constrained radius r.

For target distribution Dz, we expect that it is compact and can be easily sampled, in which the
compactness is to ensure a clear and reliable decision boundary between normal and abnormal data.
Therefore, we select truncated Gaussian from N (0, σ2Id) as target distribution Dz and bound Dz in a
d-dimensional radius r hyperball centering at origin. For radius r, we have the following proposition.
Proposition A.1. Let Fd denote the cumulative distribution function (CDF) of the chi-square

distribution χ2(d). For a given probability 0 < p < 1 , when r ≥ σ
√
F−1
d (p), the sampling

probability in Dz satisfies P (∥z∥2 < r2) ≥ p where z = [z1, z2, · · · , zd] and z1, . . . , zd
i.i.d.∼

N (0, σ2).

Proof. We have

z1, . . . , zd
i.i.d.∼ N (0, σ2) =⇒ z1

σ
, . . . ,

zd
σ

i.i.d.∼ N (0, 1) =⇒
∑d
i=1 z

2
i

σ2
∼ χ2(d). (15)

Let Y =
∑d

i=1 z
2
i

σ2 , we get

P
(
Y < F−1

d (p)
)
= p

=⇒ P

(∑d
i=1 z

2
i

σ2
< F−1

d (p)

)
= p

=⇒ P

(
d∑
i=1

z2i < σ2 · F−1
d (p)

)
= p

=⇒ P

(
∥z∥2 <

(
σ
√
F−1
d (p)

)2
)

= p.

(16)

Therefore, r ≥ σ
√
F−1
d (p) =⇒ P

(
∥z∥2 < r2

)
≥ p.

According to the analysis in Section 3.2, we select truncated Gaussian from N (0, σ̃2Id) as target
distribution Dz̃ and bound Dz̃ between two d-dimensional hyperspheres with radii r1, r2 respectively,
centering at origin, where r2 > r1. For radius r1, r2, we have the following proposition.
Proposition A.2. Let Fd denote the cumulative distribution function (CDF) of the chi-square

distribution χ2(d). For a given probability 0 < p < 1 , when r1 ≤ σ̃
√
F−1
d (p1), r2 ≥ σ̃

√
F−1
d (p2)

and satisfies p = p2 − p1, the sampling probability in Dz̃ satisfies P (r21 < ∥z∥2 < r22) ≥ p where
z = [z1, z2, · · · , zd] and z1, . . . , zd

i.i.d.∼ N (0, σ̃2).

Proof. According the proof for Proposition A.1, we have

r ≥ σ̃
√
F−1
d (p) =⇒ P (∥z∥2 < r2) ≥ p. (17)

Therefore,

r1 ≤ σ̃
√
F−1
d (p1) =⇒ P (∥z∥2 < r21) ≤ p1, and

r2 ≥ σ̃
√
F−1
d (p2) =⇒ P (∥z∥2 < r22) ≥ p2.

(18)

Therefore, we get P
(
∥z∥2 < r22)− P (∥z∥2 < r21

)
= P

(
r21 < ∥z∥2 < r22

)
≥ p2 − p1 = p.
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As shown in Figure 3, we set radius r1 of Dz̃ equals to radius r of Dz. Also, we maintain the settings
r1 = r in all experiments to make the introduced pseudo-abnormal samples are not far from the
normal data.

B Proof for Theorem 3.2

Proof. Recall that gϕ was defined as

gϕ(z) = σL(W
g
L(· · ·σ2(W

g
2(σ1(W

g
1z))) · · · )). (19)

Then for any z, z̃ ∈ Rd, we have

∥gϕ(z)− gϕ(z̃)∥
=∥σL(Wg

L(· · ·σ2(W
g
2(σ1(W

g
1z))) · · · ))− σL(W

g
L(· · ·σ2(W

g
2(σ1(W

g
1 z̃))) · · · ))∥

≤ρ∥Wg
L(· · ·σ2(W

g
2(σ1(W

g
1z))) · · · )−Wg

L(· · ·σ2(W
g
2(σ1(W

g
1 z̃))) · · · )∥

≤ρ∥Wg
L∥σ∥σL−1(· · ·σ2(Wg

2(σ1(W
g
1z))) · · · )− σL−1(· · ·σ2(Wg

2(σ1(W
g
1 z̃))) · · · )∥

≤ρL
(

L∏
l=1

∥Wg
l ∥σ

)
∥z− z̃∥

≤ρLαLg ∥z− z̃∥.

(20)

This finished the proof for part (a) of the theorem. The proof for part (b) is similar and omitted here
for simplicity.

C Proof for Theorem 3.3

We define the following model class

F = {π ◦ fθ ◦ hψ : Rd → R} (21)

where fθ and hψ satisfy the Assumption 3.1 and π is the sum of squares of the outputs of fθ ◦ hψ,
corresponding to the definition of the anomaly score, meaning s(x)2 = π(fθ(hψ(x))). The following
lemma (proved by Appendix E) provides the covering number bound of F .

Lemma C.1. Under Assumption 3.1, for any ϵ > 0, it holds that

lnN
(
ϵ,FX̆, ∥ · ∥F

)
≤ ∥X̆∥2F ln(d̄2)ρ4L−2(2ϑ)2dκ2ζ2

ϵ2

where κ2 = α2L
f α2L

h and ζ2 =

(
1 + L

(
bf
αf

)2/3
+ L

(
bh
αh

)2/3)3

.

Suppose the loss function is µ-Lipschitz, it follows from Lemma C.1 that

lnN
(
ϵ, ℓ ◦ FX̆, ∥ · ∥F

)
≤ lnN

(
ϵ

µ
,FX̆, ∥ · ∥F

)
≤µ

2∥X̆∥2F ln(2d̄2)ρ4L−2(2ϑ)2dκ2ζ2

ϵ2

(22)

With the covering number, we can bound the Rademacher complexity by the following Dudley
entropy integral:

Lemma C.2 (Lemma A.5 of [Bartlett et al., 2017], reformulated). Let Fγ := ℓ ◦FX̆ be a real-valued
function class taking values in [0, γ], and assume that 0 ∈ Fγ . Then

RX̆(Fγ) ≤ inf
α>0

(
4αγ√
n

+
12

n

∫ γ
√
n

γα

√
lnN (ϵ,Fγ , ∥ · ∥) dϵ

)
.
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Combining (22) and Lemma C.2, and letting R2 := µ2∥X̆∥2F ln(2d̄2)ρ4L(2ϑ)2dκ2ζ2, we obtain

RG(Fγ) ≤ inf
α>0

(
4αγ√
n

+
12

n

∫ γ
√
n

γα

R

ϵ
dϵ

)

= inf
α>0

(
4αγ√
n

+
12R

n
ln

(√
n

α

))
≤ 4γ

n
+

12R lnn

n
(23)

where we have chosen α = 1√
n

.

The following lemma is the classical generalization error bound based on the Rademacher complexity.
Lemma C.3. Given hypothesis function space F mapping x ∈ X to Rd and γ > 0, define
Fγ := {(x, y) 7→ lγ(f(x), y) : f ∈ F}, where lγ(ŷ, y) ≤ γ. Then, with probability at least

1− δ over a sample X of size n, every f ∈ F satisfies Lγ(f) ≤ L̂γ(f) + 2RX(Fγ) + 3γ
√

ln (2/δ)
2n .

Now using Lemma C.3 and inequality (23), we have

Lγ(f) ≤ L̂γ(f) +
8γ + 24R lnn

n
+ 3γ

√
ln (2/δ)

2n
. (24)

For Theorem 3.3(a), the loss function is ℓ(ŷ, y) = |ŷ − y| = ŷ, where y ≡ 0 and ŷ = s(x̆)2 due
to the definition of the anomaly score. This also means that the Lipschitz constant µ of ℓ is 1. We
assume that the squared anomaly scores on the normal training data are upper bounded by γ. Let
L̂γ(f) =

1
n

∑n
i=1 s(x̆i)

2 and Lγ(f) = EDx̆
[s(x)2]. It follows from (24) that

EDx̆
[s(x̆)2] ≤ 1

n

n∑
i=1

s(x̆i)
2 +

8γ + 24R lnn

n
+ 3γ

√
ln (2/δ)

2n
. (25)

Let r1 be the threshold determined by the training data to judge whether a sample is anomalous or
not. We let

1

n

n∑
i=1

s(x̆i)
2 +

8γ + 24R lnn

n
+ 3γ

√
ln (2/δ)

2n
= r21 (26)

and solve for δ:

δ = 2 exp

−
2n
(
r21 − s̄2 − 8γ+24R lnn

n

)2
9γ2

 (27)

where s̄2 = 1
n

∑n
i=1 s(x̆i)

2. Then we rewrite (25) as

EDx̆
[s(x̆)2] ≤ r21, (28)

which holds with probability at least 1− δ. In other words,

P
[
EDx̆

[s(x̆)2] > r21
]
≤ δ, (29)

which implies
P [EDx̆

[s(x̆)] > r1] ≤ δ, (30)
because both s(x̆) and r1 are nonnegative. We complete the proof for Theorem 3.3(a).

For Theorem 3.3(b), R2 := µ2∥ ˘̃X∥2F ln(2d̄2)ρ4L(2ϑ)2dκ2ζ2. We consider the following loss
function

ℓ(˘̃x) =
∣∣∣r22 − s(˘̃x)2

∣∣∣ . (31)

The Lipshitz constant of this loss is 1. Suppose the loss is upper bounded by γ̃. Similar to the proof
for Theorem 3.3 (a), we have

ED˘̃x
[ℓ(˘̃x)] ≤ 1

n

n∑
i=1

ℓ(˘̃xi) +
8γ̃ + 24R lnn

n
+ 3γ̃

√
ln (2/δ)

2n
. (32)

17



Let
1

n

n∑
i=1

ℓ(˘̃xi) +
8γ̃ + 24R lnn

n
+ 3γ̃

√
ln (2/δ)

2n
= τ (33)

and solve for δ:

δ = 2 exp

−
2n
(
τ − ε̄− 8γ̃+24R lnn

n

)2
9γ̃2

 (34)

where ε̄ = 1
n

∑n
i=1 ℓ(

˘̃xi). Then we rewrite (32) as

ED˘̃x
[|r22 − s(˘̃x)2|] ≤ τ, (35)

which holds with probability at least 1− δ. In other words,

P
[
ED˘̃x

[|r22 − s(˘̃x)2|] ≤ τ
]
≥ 1− δ. (36)

Since |r22 − s(˘̃x)2| ≤ τ implies that s(˘̃x)2 ≥ r22 − τ , letting τ = r22 − r21 , we arrive at

P
[
ED˘̃x

[s(˘̃x)2] ≥ r21

]
≥ 1− δ, (37)

which also means
P
[
ED˘̃x

[s(˘̃x)] ≥ r1

]
≥ 1− δ, (38)

because both s(˘̃x) and r1 are nonnegative. Renaming δ as δ̃, we finish the proof. Note that in the
theorem of the main paper, we have put outside the constant 4 in R2. That’s why the constant 24
becomes 48.

D Proof for Theorem 3.4

Proof. The anomalous samples (denoted by x̆) drawn from space out of Dx̆ are much easier to detect.
The reason is that, in the latent space, these anomalous samples (denoted by z̆′) are sufficiently far
from the normal region (Dz). According to the definition of Dx̆, we have z̆′ = f ◦h(x̆) = f ◦h◦g(z̆).
According to the definition of the anomaly score, we need to measure ∥z̆′ − 0∥. We have

∥z̆′ − 0∥
=∥f ◦ h ◦ g(z̆)− f ◦ h ◦ g(0) + f ◦ h ◦ g(0)− 0∥
≥∥f ◦ h ◦ g(z̆)− f ◦ h ◦ g(0)∥ − ∥f ◦ h ◦ g(0)− 0∥
≥c∥z̆− 0∥ − ∥f ◦ h ◦ g(0)− 0∥
≥cr2 − ε

where c is some constant depending on the networks and we have assumed that ∥f ◦h◦g(0)−0∥ ≤ ε.
Now suppose that r2 is sufficiently large such that cr2 − ε > r1, then ∥z̆′ − 0∥ > r1, meaning that z̆′
is outside the inner hypersphere and hence can be detected successfully. Nevertheless, determining
an exact c is still an open problem for neural networks.

E Proof for Lemma C.1

Proof. In F , π can be regarded as an additional layer of the neural network, where the activation
function for each element of z is square, the weight matrix for the output is a vector consisting of d
ones, and the activation function for the final output is linear. Thus, π ◦ fθ ◦ gψ has 2L+ 1 layers.
For the square activation function, the Lipschitz constant is 2ϑ. For the final output layer, the spectral
norm of the weights is

√
d, which is equal to the ℓ2.1 norm because it is a vector.

Lemma E.1 (Theorem 3.3 of [Bartlett et al., 2017]). Let fixed nonlinearities (σ1, . . . , σL) and
reference matrices (M1, . . . ,ML) be given, where σi is ρi-Lipschitz and σi(0) = 0. Let spec-
tral norm bounds (s1, . . . , sL), and matrix (2, 1) norm bounds (b1, . . . , bL) be given. Let data
matrix X ∈ Rn×d be given, where the n rows correspond to data points. Let HX denote
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the family of matrices obtained by evaluating X with all choices of network FA : HX :={
FA
(
XT
)
: A = (A1, . . . , AL) , ∥Ai∥σ ≤ si,

∥∥A⊤
i −M⊤

i

∥∥
2,1

≤ bi

}
, where each matrix has di-

mension at most W along each axis. Then for any ϵ > 0,

lnN (HX , ϵ, ∥ · ∥F ) ≤
∥X∥2F ln

(
2W 2

)
ϵ2

 L∏
j=1

s2jρ
2
j

( L∑
i=1

(
bi
si

)2/3
)3

.

Then using Lemma E.1 and Assumption 3.1, we can obtain

lnN
(
ϵ,FX̆, ∥ · ∥F

)
≤ ∥X̆∥2F ln(2d̄2)ρ4L−2(2ϑ)2dκζ

ϵ2

where κ = α2L
f α2L

h and ζ =

(
1 + L

(
bf
αf

)2/3
+ L

(
bh
αh

)2/3)3

. This finished the proof.

F Time Complexity Analysis

The notations used in the complexity analysis are explained as follows:

• n,m to denote the number of samples of the training phase and inference phase, respectively.
• Missforest is a well-known data imputation algorithm based on random forest (O(t1 ·v ·n log n))

where t1 denotes the number of trees, v denotes the number of attributes.
• T, Tg, Td, Tae, Toc denote the iterations of corresponding methods.
• L̄ and d̄ denote the number of layers of the neural network and the maximum width of the layers

of the corresponding models, respectively.
• t2 denotes the number of trees of I-Forest and t is the maximum iterations of the Sinkhorn

algorithm.
• p, ψ,K denote the key parameters of the corresponding methods.

Table 5: The time complexity of training and inference.

DI Methods AD Methods Time Complexity (Training) Time Complexity (Inference)

MissForest
O(T · p(t1 · v · n log n))

I-Forest O(T · p(t1 · v · n log n) + t2 · ψ logψ) O(p(t1 · v ·m log n) + t2 ·m logψ)
Deep SVDD O(T · p(t1 · v · n log n) + (Tae + Toc)(nd̄

2L̄+ n)) O(p(t1 · v ·m log n) + (md̄2L̄+m))
NeutraL AD O(T · p(t1 · v · n log n) + T (nd̄2L̄+ n ·K)) O(p(t1 · v ·m log n) + (md̄2L̄+m ·K))

DPAD O(T · p(t1 · v · n log n) + T (nd̄2L̄+ n2)) O(p(t1 · v ·m log n) + (md̄2L̄+mn))

GAIN
O((Tg + Td)nd̄

2L̄)

I-Forest O((Tg + Td)nd̄
2L̄+ t2 · ψ logψ) O(md̄2L̄+ t2 ·m logψ)

Deep SVDD O((Tg + Td)nd̄
2L̄+ (Tae + Toc)(nd̄

2L̄+ n)) O(md̄2L̄+ (md̄2L̄+m))
NeutraL AD O((Tg + Td)nd̄

2L̄+ T (nd̄2L̄+ n ·K)) O(md̄2L̄+ (md̄2L̄+m ·K))
DPAD O((Tg + Td)nd̄

2L̄+ T (nd̄2L̄+ n2)) O(md̄2L̄+ (md̄2L̄+mn))

ImAD (Ours) O(T (nd̄2L̄+ t · n2)) O(md̄2L̄+m)

G Gain of Detection Performance from Pseudo-Abnormal Samples

G.1 ImAD Benefits from Learning Pseudo-abnormal Samples

In this section, we explore the influences of introduced pseudo-abnormal samples for detection
performance. On all datasets used in our experiments, we remove the pseudo-abnormal samples in
the training process and only use incomplete normal data to train ImAD. The experimental results
are shown in Table 6 and Table 7, where the detection performance of ImAD is improved in all the
cases when introducing pseudo-abnormal samples into the training process. This indicates that the
generated pseudo-abnormal samples are practical and effective for anomaly detection on incomplete
data.

G.2 ImAD’s Pseudo-abnormal Samples Can Improve “impute-then-detect” Methods

Furthermore, we save the generated pseudo-abnormal data from the training process of ImAD on
Titanic and Bladder, and then we add them into the training set for data imputation of “impute-then-
detect” methods. The related results are provided in Table 8. We see that the pseudo-abnormal
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samples learned by our ImAD can improve the performance of “impute-then-detect” methods. The
reason is that with the pseudo-abnormal data, the imputation algorithms, i.e., MissForest and GAIN,
generalize better on the test data. These results further confirm the effectiveness of the generative
module of our ImAD.

Table 6: Gain of detection performance of ImAD from pseudo-abnormal samples on datasets with
manually constructed missing values.

Datasets Settings AUROC(%) AUPRC(%)
mr=0.2 mr=0.5 mr=0.2 mr=0.5

Adult ImAD w/o pseudo-abnormal samples 65.30 (4.36) 68.15 (5.66) 67.49 (3.98) 69.50 (4.35)
ImAD 76.51 (2.12) 71.19 (1.63) 73.42 (2.08) 71.50 (2.02)

KDD ImAD w/o pseudo-abnormal samples 96.00 (2.03) 91.50 (1.59) 94.70 (1.03) 92.09 (1.14)
ImAD 97.01 (0.33) 90.78 (1.35) 95.96 (0.18) 91.58 (0.32)

Botnet ImAD w/o pseudo-abnormal samples 99.78 (0.05) 99.38 (0.16) 99.78 (0.05) 99.40 (0.15)
ImAD 99.71 (0.22) 99.53 (0.25) 99.68 (0.24) 99.58 (0.20)

Arrhythmia ImAD w/o pseudo-abnormal samples 78.28 (4.03) 79.04 (0.73) 76.98 (3.55) 78.27 (1.88)
ImAD 82.24 (1.76) 81.76 (1.19) 83.74 (1.85) 83.37 (1.36)

Speech ImAD w/o pseudo-abnormal samples 53.22 (3.62) 47.28 (4.27) 53.47 (4.66) 49.92(3.13)
ImAD 61.94 (2.77) 58.66 (1.40) 60.43 (3.33) 58.13 (1.48)

Segerstolpe ImAD w/o pseudo-abnormal samples 97.29 (0.93) 96.53 (1.15) 96.62 (0.90) 96.60 (1.16)
ImAD 99.14 (0.88) 96.86 (0.67) 98.98 (1.18) 96.85 (0.54)

Usoskin ImAD w/o pseudo-abnormal samples 79.07 (2.13) 76.67 (1.27) 79.43 (0.94) 78.57 (2.48)
ImAD 84.95 (1.29) 79.23 (2.49) 85.48 (2.34) 80.06 (3.40)

Table 7: Gain of detection performance of ImAD from pseudo-abnormal samples on datasets with
inherent missing values.

Datasets Settings AUROC(%) AUPRC(%)

Titanic ImAD w/o pseudo-abnormal samples 76.14 (1.66) 75.46 (1.32)
ImAD 82.09 (0.99) 81.39 (0.84)

MovieLens1M ImAD w/o pseudo-abnormal samples 60.62(1.35) 60.29(1.44)
ImAD 66.32 (1.36) 65.34 (1.35)

Bladder ImAD w/o pseudo-abnormal samples 99.90 (0.21) 99.87 (0.29)
ImAD 1.00 (0.00) 1.00 (0.00)

Seq2-Heart ImAD w/o pseudo-abnormal samples 95.19 (0.71) 94.27 (1.18)
ImAD 96.62 (0.11) 96.40 (0.19)

Table 8: Gain of detection performance provided by the pseudo-abnormal samples for “impute-then-
detect” methods.

Settings Titanic Bladder

Imputation Method AD method AUROC(%) AUPRC(%) AUROC(%) AUPRC(%)

MissForest IForest 79.72 78.50 44.53 46.84
MissForest with pseudo-abnormal data IForest 79.24 78.72 50.33 51.67

GAIN IForest 79.46 78.69 45.77 47.62
GAIN with pseudo-abnormal data IForest 79.91 79.47 50.29 52.83

H Influence of Constrained Radii r1, r2 for Detection Performance

In this section, we explore the influences of constrained radii r1, r2 for detection performance. We
change the latent dimension d = {4, 8, 16, 32, 64, 128, 256, 512} and carry out related experiments.
Detailed experimental settings and results are provided in Table 9 and Figure 6 and Figure 7,
respectively.
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Figure 6: The detection performance on Adult, Botnet and KDD with different latent dimension.

As showed in Table 9, we change the dimension d of latent space and then get r = σ
√
F−1
d (p) (See

Proposition A.1) and set target distribution Dz ∼ N (0, 0.52 · Id),Dz̃ ∼ N (0, Id) and set p = 0.9.

Table 9: The constrained radii r1, r2 under with different latent dimensions.

Radius Latent Dimension (d)
4 8 16 32 64 128 256 512

r1 = 0.5
√
F−1
d (0.9) 1.39 1.82 2.42 3.26 4.44 6.10 8.45 11.76

r2 =
√
F−1
d (0.9) 2.78 3.65 4.85 6.52 8.88 12.20 16.90 23.52

Figure 6 and Figure 7 shows the fluctuation of detection performance with different latent dimension
d. It can be observed that our method is not very sensitive to changes in the radii r1 and r2, but its
performance degrades with a reduction in the latent dimension. This is reasonable since the smaller
latent dimension results in more information loss.

I Ablation Study and Sensitivity Analysis of Hyperparameters

For hyper-parameters α, β, λ used in our experiments, we vary them in a large range to analyze
the sensitivity of ImAD under MCAR. For hyper-parameter β, it cannot be set to 0 because the
imputation module is an indispensable part in the presence of missing values. The average results are
shown in Figure 8.
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Figure 7: The detection performance on Arrhythmia, Speech, Segerstolpe and Usoskin with different
latent dimension.
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Figure 8: Sensitivity analysis of hyperparameters α, β, λ on Adult dataset.
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J Detailed Experimental Implementations

J.1 Dataset Description

• Adult2 [Becker and Kohavi, 1996] is from the 1994 Census Income database with 14 variables
including both categorical and continuous variables. The samples of income ≤ 50K are regarded
as normal data, and the samples of income > 50K are regarded as abnormal data. Data
preparation follows the previous work [Han et al., 2023].

• KDD3[Lichman, 2013] is the KDDCUP99 10 percent dataset from the UCI repository and
contains 121 variables including both categorical and continuous variables. The attack samples
are regarded as normal data, and the non-attack samples are regarded as abnormal data.

• Arrhythmia4 [Rayana, 2016] is an ECG dataset. It was used to identify arrhythmic samples in
five classes and contains 452 instances with 274 attributes.

• Speech5 [Rayana, 2016] consists of 3686 segments of English speech spoken with different
accents and is represented by 400-dimensional so-called i-vectors which are widely used state-
of-the-art features for speaker and language recognition.

• Segerstolpe6 [Segerstolpe et al., 2016] is a scRNA-seq dataset of human pancreas islets which
includes six cell types: “alpha”, “beta”, “delta”, “ductal”, “endothelial” and “gamma”. In our
experiments, “alpha” is regarded as normal data and “beta” is regarded as abnormal data.

• Usoskin7 [Usoskin et al., 2015] is a dataset employed for the analysis of sensory neuron cells,
specifically originating from the mouse lumbar dorsal root ganglion. The dataset encompasses
four distinct cell types: non-peptidergic nociceptor cells (NP), peptidergic nociceptor cells
(PEP), neurofilament-containing cells (NF), and tyrosine hydroxylase-containing cells (TH). In
our experiment, TH is regarded as normal data and PEP is abnormal data.

• Botnet8 [Meidan et al., 2018] is a public botnet datasets for the IoT. it was gathered from 9
commercial IoT devices authentically infected by Mirai and BASHLITE. There are 7,062,606
instances in the original datasets. In our experiments, we use “Ecobee_Thermostat” subset of
the original data, in which “benign_traffic” is regarded as normal data and “gafgyt_attacks” is
regarded as abnormal data. The “gafgyt_attacks” has five attack types and we randomly select
1,000 samples from each type as abnormal data of the test set.

• Titanic9 [Chen et al., 2023] is a classification dataset to detect the survival on the Titanic. In
our experiments, we use nine features including “gender, ticket, cabin, age, sibsp, parch, fare,
embarked and pclass”. The instances that did not survive are considered normal samples and
those that survived are considered abnormal(or unusual) samples.

• MovieLens1M10 Han et al. [2021] contains 1,000,209 anonymous rating of approximately 3,900
movies made by 6,040 MovieLens users who joined MovieLens in 2000. Due to the missing rate
of the original dataset is near 95%, we remove some columns with quite high missing rate and
obtain a new dataset with 82% missing rate. Since the age of all samples is divided into seven
groups, we chose the middle five groups (18 < age < 56) as normal samples and the remaining
as abnormal samples.

• Bladder11 is a cell transcriptome data from the model organism Mus musculus, in which
contains 4 cell types (bladder cell, bladder urothelial cell, endothelial cell and leukocyte). We
use the instance from “bladder cell” as normal samples and those from “ leukocyte” as abnormal
samples.

• Seq2-Heart12 [Schaum et al., 2018] is a single cell transcriptome data from the model organism
Mus musculus, containing nearly 100,000 cells from 20 organs and tissues. There are 8 cell
types in this data. We use the instances with “fibroblast” type as normal samples and those with
“myofibroblast” type as abnormal samples.

2https://archive.ics.uci.edu/dataset/2/adult
3https://kdd.ics.uci.edu/databases/kddcup99/
4http://odds.cs.stonybrook.edu/arrhythmia-dataset/
5https://odds.cs.stonybrook.edu/speech-dataset/
6https://cblast.gao-lab.org/download
7https://linnarssonlab.org/drg/
8https://archive.ics.uci.edu/dataset/442/detection+of+iot+botnet+attacks+n+baiot
9https://www.kaggle.com/c/titanic/data

10https://grouplens.org/datasets/movielens/1m/
11https://cblast.gao-lab.org/download
12https://cblast.gao-lab.org/download
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J.2 Missing Mechanisms

In this work, we evaluate the detection performance of all the baselines under the three distinct
missing mechanisms and we follow the previous work [Muzellec et al., 2020] to set the missing value
generation mechanism.

A detailed explanation of our implementation is provided as follows.

• MCAR: missing completely at random if the missingness is independent of the data. In our
implementation, each entry is masked according to the realization of a Bernoulli random variable
with parameter p = {0.2, 0.5}.

• MAR: missing at random if the missingness depends only on the observed values. In the MAR
setting, for all experiments, a fixed subset of variables that cannot have missing values is sampled.
Then, the entries from the remaining variables are masked according to a logistic model with
random weights, which takes the non-missing variables as inputs. A bias term is fitted using line
search to attain the desired proportion of missing values.

• MNAR: missing not at random if the missingness depends on both the observed values and the
unobserved values. In the MNAR setting, first, we sample a subset of variables whose values in
the lower and upper p-th percentiles are masked according to a Bernoulli random variable, and
the values in-between are left not missing.

J.3 Sampling in Target Distribution

In our experiments, we select two truncated Gaussian distribution N (0, σ2Id) with different σ as
target distribution Dz,Dz̃ and set σ = 0.5, σ = 1.0 respectively. For target distribution Dz ∼
N (0, 0.52 · Id), according to the Proposition A.1, we set constrained radius r = 0.5

√
F−1
d (p) where

d denotes the latent dimension and set p = 0.9. Similarity, for target distribution Dz̃ ∼ N (0, Id), we

set r1 = r and r2 =
√
F−1
d (p) and set p = 0.9.

J.4 All Baselines

For the data imputation method used in our experiments, GAIN 13, MissOT 14, we use official
code and the hyperparameters are fine-tuned as suggested in the original paper. For MissForest,
we use missingpy 15 which is a library for missing data imputation in Python to implement the
MissForest [Stekhoven and Bühlmann, 2012] algorithm. For anomaly detection method, Deep
SVDD 16 [Rubin, 1976], NeutraL AD 17 [Qiu et al., 2021] and DPAD [Fu et al., 2024], we use official
code and the hyperparameters are fine-tuned as suggested in the original paper. For Isolation Forest,
we use scikit-learn 18 to implement the Isolation Forest [Liu et al., 2008] algorithm.

J.5 Hyper-parameter Settings

The hyperparameters used in our experiments are provided in Table 10.

K More Experimental Results

In this section, we conduct experiments on the Speech dataset with a missing rate mr ∈
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}. The related results are visualized in Figure 9, where the detec-
tion performance of ”impute-then-detect” methods does not degrade and some of them even improve
with the increasing of missing rate from 0.1 to 0.8. Moreover, our proposed method outperforms all
baselines in almost all cases.

13https://github.com/jsyoon0823/GAIN
14https://github.com/BorisMuzellec/MissingDataOT
15https://pypi.org/project/missingpy/
16https://github.com/lukasruff/Deep-SVDD-PyTorch
17https://github.com/boschresearch/NeuTraL-AD
18https://scikit-learn.org/stable/
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Table 10: Hyperparameters settings of the proposed method on all datasets.

Datasets Missing rate Latent dimension Learning rate α β λ

Adult mr=0.2 4 0.0002 5 20 1
mr=0.5 4 0.0002 1 10 2

Botnet mr=0.2 32 0.0001 1 1 1
mr=0.5 32 0.0001 1 1 1

KDD mr=0.2 32 0.0001 1 5 1
mr=0.5 32 0.0001 1 5 1

Arrhythmia mr=0.2 128 0.0001 1 1 1
mr=0.5 128 0.0001 1 1 1

Speech mr=0.2 128 0.0005 0.2 0.1 1
mr=0.5 128 0.0005 0.2 0.2 1

Segerstolpe mr=0.2 128 0.0001 1 1 1
mr=0.5 128 0.0001 1 1 1

Usoskin mr=0.2 128 0.0001 0.2 0.2 0.2
mr=0.5 128 0.0001 0.2 0.2 0.2

Titanic - 4 0.0001 0.1 0.1 0.01
MovieLens1M - 128 0.005 1 1 1

Bladder - 128 0.0001 1 0.01 1
Seq2-Heart - 128 0.0001 1 1 1
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Figure 9: The performance fluctuation with the changes of missing rate from 0.1 to 0.8 on the Speech
dataset. “MeanF” and “MissF” denotes Mean-Filling and MissForest, respectively.

In some real scenarios, it is possible that the missing rates of training and test sets are not equal. In
this section, we conduct related experiments on the Speech dataset. In these experiments, we keep
the missing rate mr = 0.5 on the training set and change the missing rate from 0.2 to 0.8 on the test
set. We visualize the experimental results in Figure 10.
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Figure 10: The performance fluctuation with the changes of missing rate from 0.2 to 0.8 on the test
set of Speech. “MeanF” and “MissF” denotes Mean-Filling and MissForest, respectively.
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With such an experimental setup, the performance of the methods based on Mean-Filling and
MissForest fluctuates significantly. Our proposed method outperforms all baselines in almost all
cases in spite of also showing some degree of performance fluctuation.

The experimental results on the Segerstolpe and Usoskin with MCAR are provided in Table 11. The
experimental results on the Botnet dataset with MCAR are provided in Table 12. In addition to
the missing mechanism MCAR, we also compare ImAD with “impute-then-detect” baselines under
missing mechanism MAR and MNAR. Note that we did not employ GAIN [Yoon et al., 2018] under
MAR and MNAR because GAIN was proposed under the assumption of MCAR. Instead, we utilize
MissOT [Muzellec et al., 2020] as the imputation method under MAR and MNAR. For all baselines,
the experimental results on the Adult dataset under MAR and MNAR are shown in Table 13 and
Table 14, respectively, in which, our proposed method outperforms all two-stage baselines in all
cases.

Table 11: Detection accuracy (AUROC and AUPRC (%, mean and std)) on Segerstolpe and Usoskin
datasets with MCAR. The best result in each case is marked in bold.

DI Methods AD Methods
Segerstolpe Usoskin

AUROC(%) AUPRC(%) AUROC(%) AUPRC(%)
mr = 0.2 mr = 0.5 mr = 0.2 mr = 0.5 mr = 0.2 mr = 0.5 mr = 0.2 mr = 0.5

Mean-Filling

I-Forest 94.48(1.93) 91.23(3.22) 95.09(2.18) 91.77(3.49) 44.49(5.41) 38.53(2.93) 46.57(5.26) 41.61(2.29)
Deep SVDD 94.14(1.91) 91.52(2.46) 94.46(1.57) 87.89(2.02) 78.57(0.15) 78.41(0.34) 80.86(0.18) 80.61(0.23)
NeutraL AD 98.66(0.74) 94.93(1.80) 98.15(1.34) 94.02(2.98) 69.95(2.74) 66.73(4.59) 75.07(2.34) 69.63(4.60)

DPAD 98.78(0.66) 96.02(0.83) 98.36(1.34) 94.77(1.93) 81.95(1.57) 80.23(1.14) 83.27(0.89) 82.38(0.84)

MissForest

I-Forest 94.91 (1.35) 96.68(0.79) 95.94(1.23) 97.56(0.59) 45.19(4.56) 49.64(7.43) 46.97(3.04) 49.74(5.64)
Deep SVDD 96.20(2.66) 89.24(1.44) 97.53(1.40) 90.65(0.57) 37.47(3.83) 43.61(7.49) 50.55(2.02) 55.05(4.81)
NeutraL AD 97.89(1.45) 89.38(2.80) 97.71(1.76) 84.61(3.78) 57.43(4.59) 53.74(2.27) 63.65(2.40) 61.05(4.16)

DPAD 97.09(0.74) 95.31(1.36) 94.93(1.05) 93.75(1.79) 81.25(1.93) 80.52(1.80) 83.58(1.32) 82.69(1.02)

GAIN
I-Forest 94.25(0.90) 92.07(1.82) 96.14(0.75) 93.94(1.62) 40.96(2.02) 37.11(2.12) 46.29(1.76) 42.86(1.22)

Deep SVDD 92.46(4.25) 94.32(1.93) 92.25(2.40) 92.88(1.26) 49.99(5.69) 65.48(2.94) 54.85(1.61) 64.54(0.74)
NeutraL AD 97.52(0.37) 90.10(0.90) 97.52(1.02) 90.10(0.82) 56.18(2.62) 64.80(1.85) 64.85(2.68) 73.33(1.31)

DPAD 98.53(1.23) 98.50(1.25) 97.42(2.52) 97.73(2.07) 83.92(1.29) 81.60(0.95) 84.30(0.91) 82.98(0.56)

ImAD (Ours) 99.14(0.88) 96.86(0.67) 98.98(1.18) 96.85(0.54) 84.95(1.29) 82.94(1.79) 85.48(2.34) 83.61(1.39)

Table 12: Detection performance in terms of AUROC and AUPRC (%, mean and std) on Botnet with
MCAR. mr denotes the missing rate. The best result in each case is marked in bold. The results that
exhibit an increase with the rising missing rate mr from 0.2 to 0.5 are emphasized by underlining.

DI Methods AD Methods AUROC AUPRC
mr = 0.2 mr = 0.5 mr = 0.2 mr = 0.5

Mean-Filling

I-Forest 91.71(1.63) 72.08(3.49) 93.72(1.53) 73.72(3.20)
Deep SVDD 50.07(0.55) 57.87(0.95) 61.19(0.43) 63.60(0.68)
NeutraL AD 72.60(3.86) 48.95(3.52) 63.13(4.28) 49.45(3.04)

DPAD 66.28(0.14) 57.92(0.71) 68.25(0.24) 63.97(0.35)

MissForest

I-Forest 95.72(0.96) 93.86(0.70) 97.25(0.69) 95.68(0.52)
Deep SVDD 96.72(0.87) 97.51(0.94) 96.60(0.80) 97.62(0.89)
NeutraL AD 99.04(0.26) 97.27(0.59) 98.92(0.24) 97.68(0.53)

DPAD 81.98(0.60) 76.74(0.60) 85.03(0.26) 78.25(0.30)

GAIN

I-Forest 96.16(0.24) 94.01(0.73) 97.61(0.21) 96.18(0.44)
Deep SVDD 98.68(0.11) 98.02(0.41) 98.35(0.14) 97.59(0.46)
NeutraL AD 97.42(0.33) 99.56(0.27) 96.89(0.36) 99.41(0.35)

DPAD 99.55(0.71) 97.63(0.01) 99.33(0.85) 96.92(0.04)

ImAD (Ours) 99.71(0.22) 99.53(0.25) 99.68(0.24) 99.58(0.20)

L Limitations and Future Work

Anomaly detection and data imputation are ubiquitous tasks across various data types. In this work,
we primarily focus on incomplete tabular data. However, other data types, such as image and time-
series data, also need to be studied in similar scenarios. Therefore, we will conduct further studies on
more data types in future work based on ImAD.
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Table 13: Detection performance in terms of AUROC and AUPRC (% mean and std) on Adult with
MAR. The best result in each case is marked in bold.

DI Methods AD Methods AUROC AUPRC
mr = 0.2 mr = 0.5 mr = 0.2 mr = 0.5

MissForest

I-Forest 60.54(0.92) 61.94(1.07) 56.98(1.19) 58.14(1.30)
Deep SVDD 61.53(6.24) 56.22(7.75) 65.49(3.30) 61.76(3.16)
NeutraL AD 52.29(1.51) 51.96(1.01) 55.70(0.88) 54.47(0.56)

DPAD 63.54(0.27) 65.40(0.39) 68.43(0.39) 67.14(0.26)

MissOT(MLP)

I-Forest 45.63(2.93) 41.94(2.27) 45.37(0.73) 44.97(0.76)
Deep SVDD 51.68(4.17) 39.59(6.95) 53.71(3.95) 54.13(3.36)
NeutraL AD 52.54(0.78) 47.24(1.96) 50.79(0.76) 47.29(1.59)

DPAD 55.83(1.04) 50.93(2.62) 53.94(1.22) 50.56(1.39)

ImAD (Ours) 77.43(3.42) 74.61(2.18) 75.07(1.75) 70.74(1.21)

Table 14: Detection performance in terms of AUROC and AUPRC (% mean and std) on Adult with
MNAR. The best result in each case is marked in bold.

DI Methods AD Methods AUROC AUPRC
mr = 0.2 mr = 0.5 mr = 0.2 mr = 0.5

MissForest

I-Forest 60.53(1.40) 60.24(1.05) 56.84(0.62) 57.54(1.07)
Deep SVDD 54.90(7.71) 57.54(4.33) 63.74(2.27) 62.48(2.19)
NeutraL AD 53.07(1.26) 50.82(2.35) 55.41(1.01) 52.52(1.01)

DPAD 65.36(0.44) 63.23(0.22) 69.19(0.30) 64.50(0.25)

MissOT(MLP)

I-Forest 44.78(2.68) 38.62(1.52) 45.72(0.95) 43.23(1.01)
Deep SVDD 45.77(8.47) 50.29(6.28) 54.04(2.57) 50.90(2.43)
NeutraL AD 49.87(1.07) 49.38(1.07) 50.20(0.42) 48.37(0.81)

DPAD 54.96(3.19) 54.10(2.50) 53.49(1.85) 51.98(1.80)

ImAD (Ours) 73.73(3.57) 72.35(1.53) 71.60(0.74) 68.97(0.31)
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
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Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Appendix K.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
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• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: See Section 3.4 and Appendix A,B,C.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
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• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See Section 4.1 and Appendix I.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: All the datasets used are publicly available and we provide the download URLs
(see Appendix I) for each dataset. We provide experimental code in the supplementary
materials.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not

29

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See Section 4.1 and Appendix I.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: See Section 4.2 and 4.3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: All details are included in the paper.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.
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• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: See the Section 4.1 and Appendix I.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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