
GEM-RAG: Graphical Eigen Memories For
Retrieval Augmented Generation

Brendan Hogan Rappazzo, Yingheng Wang, Aaron Ferber, Carla Gomes
Department of Computer Science

Cornell University
Ithaca, New York 14850

Email: {bhr54, yw2349, amf272, cpg5}@cornell.edu

Abstract—The ability to form, retrieve, and reason about mem-
ories in response to stimuli serves as the cornerstone for general
intelligence - shaping entities capable of learning, adaptation, and
intuitive insight. Large Language Models (LLMs) have proven
their ability, given the proper memories or context, to reason
and respond meaningfully to stimuli. However, they are still
unable to optimally encode, store, and retrieve memories - the
ability to do this would unlock their full ability to operate as AI
agents, and to specialize to niche domains. To remedy this, one
promising area of research is Retrieval Augmented Generation
(RAG), which aims to augment LLMs by providing them with
rich in-context examples and information. In question-answering
(QA) applications, RAG methods embed the text of interest in
chunks, and retrieve the most relevant chunks for a prompt
using text embeddings. Motivated by human memory encoding
and retrieval, we aim to improve over standard RAG methods
by generating and encoding higher-level information and tagging
the chunks by their utility to answer questions. We introduce
Graphical Eigen Memories For Retrieval Augmented Generation
(GEM-RAG). GEM-RAG works by tagging each chunk of text
in a given text corpus with LLM generated “utility” questions,
connecting chunks in a graph based on the similarity of both their
text and utility questions, and then using the eigendecomposition
of the memory graph to build higher level summary nodes that
capture the main themes of the text. As a result, GEM-RAG not
only provides a more principled method for RAG tasks, but also
synthesizes graphical eigen memory (GEM) which can be useful
for both exploring text and understanding which components are
relevant to a given question. We evaluate GEM-RAG, using both
UnifiedQA and GPT-3.5 Turbo as the LLMs, with SBERT, and
OpenAI’s text encoders on two standard QA tasks, showing that
GEM-RAG outperforms other state-of-the-art RAG methods on
these tasks. We also discuss the implications of having a robust
RAG system and future directions.

I. INTRODUCTION

The ability to create intelligent machines has long occu-
pied the fascination of humankind, from the automata of the
medieval error, formalization of logic in the 17th century and
evolving with the emergence of computing theory and artificial
intelligence concepts in the 19th century. Now in the modern
era, the possibility of generating Artificial General Intelligence
(AGI) [1] seems as close as ever, in particular just within the
past three years with the advent of massive scale machine
learning systems, especially Large Language Models (LLMs),
and Large Multimodal Models (LMMs).

LLMs have emerged as remarkably powerful general knowl-
edge stores, with the ability to perform impressively on a large

variety of tasks [2], [3], [4]. Further, given their large context
lengths, its has been shown that they have a powerful ability
to perform in-context learning, whether it be for chat-like
applications where it can reference parts of the conversation
dynamically, adapting to classification tasks [5], or reasoning
tasks through chain-of-thought prompting [6]. LLMs appear
to have solved one part of the general intelligence equation,
given the proper context, much like a human mind given the
proper working memory stream, they can reason and respond
to questions reasonably. But without a way to encode, store
and retrieve information that extends outside of their context,
LLMs are missing an extremely important part of general
intelligence, they are unable to form long-term, and ongoing
memories as AI agents, and are unable to adapt to new niche
domains.

If LLMs were able to perfectly encode, store and retrieve
memories it would open the possibility for AI agents to
remember decades of conversations, research publications,
literary works, and more, building hierarchies of memories
and knowledge about the world. It would allow advanced
QA models to read and encode huge amounts of niche text
documents, and provide robust conversations or QA citing
content in those documents. Expanding this idea for LMMs,
this would enable the ability to retrieve text, memories, audio,
imagery, video, and more, paving the way for more potent
models and use cases.

Motivated by this problem, retrieval augmented generation
(RAG) has been an increasingly active area of research,
which aims to adapt static LLMs to new and niche domain
applications [7], [8], [9], [10], [11]. While RAG methods can
work for any type of text-based information, whether it be
memories [12] or images in the case of vision LMMs [13], one
standard setting is that concerning large corpora of text from
stories, articles, books, etc. In these settings, RAG generally
works by first splitting the text into chunks, and obtaining an
embedding for each chunk. Given a new prompt, the RAG
system will embed it, return the top k nearest chunks in
embedding space, and then prompt the LLM to answer the
prompt given the context chunks [14].

Current RAG systems empirically work reasonably well, but
are far from optimal and have several issues, of which we
will discuss two. Firstly, while it is a good approximation,
purely finding the similarity between the prompt and each

ar
X

iv
:2

40
9.

15
56

6v
1

 [
cs

.C
L

]
 2

3
Se

p
20

24

No, to make sense of the claim that
savings are bad you must argue
either that interest rates have no
effect on spending (try telling that
to the National Association of
Homebuilders) or that potential
savings are so high compared with
investment opportunities that the
Fed cannot bring the two in line
even at a near-zero interest rate.

To justify the claim that savings are
actually bad for growth (as opposed to the
quite different, more reasonable position
that they are not as crucial as some would
claim), you must convincingly argue that
the Fed is impotent--that it cannot, by
lowering interest rates, ensure that an
increase in desired savings gets translated
into higher investment It is not enough to
argue that interest rates are only one of
several influences on investment.

Step 1: Text Chunking &
Utility Question Generation

Step 2: Question Embedding
& Similarity Computing

Step 3: Building Weighted Complete Graph

To argue that savings are detrimental to
growth, one must contend that interest rates
do not impact spending or that the potential
for savings outweighs available investment
opportunities to the extent that even near-
zero interest rates cannot align the two.
Additionally, it must be convincingly argued
that the Federal Reserve lacks the ability to
stimulate higher investment through
lowering interest rates in response to
increased savings. Merely suggesting that
interest rates are just one of many factors
influencing investment is insufficient to
support the claim that savings hinder growth.

Step 4: Theme Summarization via Spectral Decomposition

Summary
node

Summarized by LLMs using text within the same theme

What is the specific claim
being made about savings
and growth in the text?

Embedding
Model

Most similar

Step 5: Context Retrieval via Similarity Search

Question/prompt query as LLMs input

0.12

0.44

0.37

0.82

0.29

Question embedding

Text chunk 1 Text chunk 2

Search
path

Node

Document Text embedding

LLMs-prompted
Utility Questions

Dummy
node

Text
Chunk

Fig. 1. An overview of the graph construction and retrieval process for GEM-RAG. Given a corpus of text, the text is first grouped into chunks of text.
GEM-RAG then generates utility questions for each chunk of text using an LLM, where a utility question asks something that could be answered given the
text chunk as context. Next GEM-RAG uses these utility questions and respective embeddings to build a weighted graph. Summary nodes are then generated
using the graph’s spectral decomposition, using the eigenvectors to represent different orthogonal modes or “eigenthemes” of the text. For retrieval, GEM-RAG
embeds the question or prompt, and searches the graph for the optimal nodes or context to return.

chunk in the embedding space may not be the best method
to retrieve the most relevant chunks to answer a question. The
texts may be similar in style or phrasing, giving a superficially
high similarity score, while the context or purpose of the
text unrelated to the question. Secondly, often answering
complex questions requires a synthesis of information across
many chunks of text, and understanding how different chunks
are interrelated and connect to each other conceptually is
important for retrieval.

Aiming to solve these problems, we took inspiration from
human cognition, specifically how humans encode and retrieve
information based on the information’s relevance and utility
[15]. For instance, information tends to be better encoded if the
person is tested on the material [16], suggesting the importance
of understanding the utility of the encoded information. Fur-
ther, the more often memories are retrieved together, the more
humans will synthesize this data into higher level summaries
[17].

Motivated by human cognition, we propose Graphical Eigen
Memories For Retrieval Augmented Generation (GEM-RAG).
Given a corpus of text, our method splits the text into chunks
and then generates several relevant “utility” questions using
an LLM. The embeddings of these utility questions help build
a complete weighted graph, where the weight between two
nodes is the similarity of the utility questions. With this
memory graph, and motivated by the observation that humans
tend to synthesize information that is often retrieved together,

we perform a random-walk analysis on the graph, by using
the spectral decomposition of the normalized graph Laplacian.
The intuition is that the eigenvectors of this decomposition
provides an understanding of the key orthogonal themes
present in the passage, by providing the different modes
based on memory node similarity. We use the top components
of important eigenvectors to then produce “eigenthemes” or
summary nodes, which capture the higher-level structure of
the text. This synthesized graph constitutes the graphical eigen
memory, or GEM. At retrieval time, we find the most similar
utility question to the prompt/question, and then perform best
first search on the GEM, to retrieve a sub-graph containing the
context chunks ultimately passed to the LLM. A schematic of
our method can be seen in Figure 1.

We believe developing a robust RAG system will enable
LLMs to become rich AI-agents, adapting smartly to niche
scientific domains, and unlock other important applications de-
pendent on actively using memory. To best constrain and study
the effectiveness of our method, we quantitatively evaluate the
accuracy of our model on two QA datasets, QuALITY [18]
and Qasper [19]. We compare our method against a baseline
of the standard RAG procedure, as well as against a recent
state-of-the-art method, RAPTOR [20]. For each method we
explore using the SBERT [21] and OpenAI’s text-embedding-
ada-002 embedding models, as well as the UnifiedQA [22] and
GPT-3 [23] as LLMs. We show that in most cases our method
gives better performance, and we provide ablation experiments

to give an understanding of the effect of the number of eigen
summary nodes and utility questions. Lastly, while the primary
use-case of the synthesized graphical eigen memory (GEM) is
to perform RAG for an LLM, we also explore how the GEM
is a standalone object agnostic to the LLM. Ultimately, the
GEM can be used to explore and visualize data, which we
showcase in a web demo for an example graph.

Our contributions are as follows, 1) We introduce a novel
RAG system inspired by human cognition that encodes, store
and retrieves information by its utility. 2) We further formulate
generating summary nodes as a random walk problem, and
use eignedecomposition to generate summary nodes. 3) We
demonstrate the effectiveness of our RAG method on two
QA datasets, using multiple different embedding and language
models. We ran several ablation experiments to better un-
derstand the effectiveness of our method. 4) We release an
interactive web demo of an example GEM, to showcase how
the graph works, and to emphasize its use as a standalone
object.

II. RELATED WORK

Large Language Models (LLMs) LLMs have proven to
be extremely powerful general knowledge stores [24], [22],
[25]. It has also been shown in some cases, that fine-tuning
can produce data specific models [26]. The advent of better
hardware and algorithms has allowed for them to have larger
context lengths, which can handle more information to be
learned or retrieved in-context. However, it has been shown
that longer contexts have diminishing returns, can lead to a
loss of information [27], [28], still necessitating the use of
retrieving relevant contextual information.

It has also been shown, that with large context length models
can perform very well on short story QA tasks [29]. However,
it should be noted that these methods retrieve the entire story
as context, with thousands of tokens, where as we study
only returning hundreds, as is the case in RAG methods. The
motivation for this is discussed in the experimental section.

Retrieval Augmentation Methods The area of retrieval
augmented generation has seen recent interest. In the work
[7] initially introduced the idea of augmenting the context of
an LLMs with the retrieved information. Further work shown
by [8], [9], [10], [14] expanded on the idea, conceptualizing
how LLMs could use retrieved context to trace where its
response was coming from. In the work [30] proposed learning
the retriever and LLM model jointly where as another work
proposed using a tree-decoding algorithm for multi-answer
retrieval [31]. Many works use different hierarchies of data
summary [32], [33]. The work in [34] also showed how
hierarchies can be built using recursive summarization. In
the work [35] showed that RAG methods, while improving
over baselines, often fail to provide enough key context to
properly answer the question. It has also been showed how
to use LLMs to generate summaries of chunks of text for
improved accuracy. And the benefits of doing RAG with a
custom encoder module [36], [37] Recently, Recursive Ab-
strative Processing For Tree-Organized Retrieval [20], studied

the effects of building hierarchical trees of chunk summaries
based on aggregating textual chunks by similarity. However,
this approach fails to consider the biases of textual similarity
and limits the node synthesis to a tree structure.

III. METHODS

A. Connection to Human Cognition

GEM draws its design and motivation from the intricacies
of human cognition, namely, the processes by which humans
encode, store and retrieve information. Specifically, we draw
inspiration from how it is believed the human brain prioritizes
information based on its utility, and that information that is
most often retrieved together gets summarized together [15].

Our first observation from psychology is the so called
“testing effect”, which observes that if humans are tested on
subject material, they are more likely to accurately remember
it [16]. This may be because, by testing, the information can
be associated to a specific utility in our cognition, and thus is
“tagged” with information that makes it easier to retrieve. To
this end, we aim to better tag each chunk of information, by
“tagging” it with LLM generated utility questions, which help
express what information a specific text chunk has, and why
it might be useful.

Our second observation in that in human cognition, the more
often memories are retrieved together, the more likely the will
continue to be retrieved together [17]. In the context of our
utility questions method and their respective text embeddings,
we can build a graph constituting all chunks of the text as
nodes, and the strength of their connections as the similarity
of their question embeddings. We can then, inspired by this
observation of human cognition, try to build higher level
summary nodes based off the modes of the graph, i.e. the
nodes that are likely to be retrieved together given a prompt.
Our intuition is that by performing an eigendecomposition,
each eigenvector will capture different mode or themes in the
text, that would often be retrieved together, and thus should
be used to generate summary nodes.

B. Graphical Eigen Memories

Our method at a high level involves several steps to first
construct the graph, by chunking the text, generating utility
questions, building the initial graph, and finally using the
eigenvectors from spectral decomposition of normalized graph
Laplacian to build the summary nodes. Then, with the GEM
produced, we show how it can be used to perform RAG.
The specifics of our implementation are discussed in the
experiments section. A schematic of our method can be seen
in Figure 1.

1) Memory Graph Construction: Chunking Text chunking
is standard practice in RAG where the corpus of text of interest
C is split apart into chunks, {CHUNK1 . . . CHUNKn}, where each
chunk, CHUNKi has some number T tokens. In practice the text
can be split by number of characters or number of tokens. For
a corpus of text we first chunk the text into n chunks, where
each chunk is T tokens long, and n = N

c , where N is the
total number of tokens in the text.

Generating Utility Questions Given each text CHUNKi, we
then prompt an LLM to generate some m number of utility
questions. This can be represented by a function Q, that takes
a chunk of text, and an integer, m, and generates m utility
questions. Formally, given CHUNKi, we compute Q(CHUNKi,m)
which give a set of utility questions {qi1, qi2, . . . , qim}.

Text Embeddings In order to quantify the similarity of each
utility question to each other and/or to a prompt, we need to
embed the text into a high dimensional feature space, given
by a text encoder. More specifically, given a text embedding
function E, for each node i, we compute the embedding v as
follows: vi = E(CHUNKi). Similarly, we also compute this
embedding for each utility question by the same function.
However, in order to best encode the information of the utility
question we make the utility question’s embedding the average
of the questions embedding, and the base text’s embedding,
that is vij = (E(qij) + vi)/2.

Building the Weighted Complete Graph Given the em-
bedding of each chunk of text, as well as each chunk’s
corresponding utility questions and respective embeddings, we
then generate the fully connected graph. For each node/chunk
pair i, j, we consider the sum of the similarity metric between
all of node i’s utility question embeddings, to that of node j’s
base text embedding. More formally, let G = (N , E) be the
memory graph we are constructing. Let the nodes be given by:
N = {CHUNK1, CHUNK2, . . . , CHUNKK}, where each node t has
utility questions Qt = {qt1, qt2, . . . , qtm}, and base text em-
bedding vt. Then, For each (t, v) ∈ N ×N , and for each i ∈
{1, 2, . . . ,m}, generate an edge between t and v with weight∑m

i=0 SIM(vti, vv). Any function could be used to compute the
similarity, but in all cases we use standard cosine similarity,
i.e., SIM(a, b) = a·b

∥a∥∥b∥ .
Building the Summary Nodes In order to build an en-

coding system that encodes this higher level information we
formulate this as a random walk or spectral decomposition
problem. Intuitively, in this context, each eigenvalue and
its corresponding eigenvector reveal a distinct ‘theme’ or
conceptual dimension in the graph. By summarizing the top
component nodes of each eigenvector components, using an
LLM, we can understand the most significant relationships and
conceptual clusters within the graph.

More specifically, let S = (sij)n×n be the similarity matrix
of the graph, where sij is the sum weight between the m SIM

values of each utility questions of nodes i and to node j. By
attaching each sij to a weighted edge eij, we can map the
similarity matrix S onto the memory graph G. Thus, we can
better understand the relationship between different text pieces
of the document by analyzing the properties and behaviors of
G.

Since different documents possess different connectivity
and node centrality, the spectrums will also be at different
scales. To better quantify how influential each node is without
degree bias, we transform S to a variant of normalized graph
Laplacian L, which is L = D−1/2(S − I)D−1/2, where
D = diag(di) is the degree matrix and I is the identity
matrix. Then we conduct spectral decomposition by solving

Algorithm 1 Retrieval from GEM-RAG
Input: p (prompt), B (budget)
Output: C (set of context nodes)

1: vp ← E(p) ▷ Embed the prompt p using the embedding
function E

2: Q ← Set of all utility question embeddings
3: C ← {∅} ▷ Initialize retrieval set C to the empty set.
4: while |C| < B do ▷ Expand the set until the budget B is

reached
5: n = argmax

ni∈Q\C
SIM(vp, vni)

6: C ← C ∪ {n} ▷ Add the most relevant node n to the
set C

7: end while
8: return C ▷ Return the set C as the context for the

prompt p

the following Lx⃗ = λx⃗. With the resulting eigenvalues
λ1, λ2, . . . , λn ordered in non-increasing order of their magni-
tude. The corresponding eigenvectors x⃗1, x⃗2, . . . , x⃗n represent
the principal themes. Then, for each eigenvector x⃗k, select the
top e components, xk1, xk2, . . . , xke, representing the most
relevant nodes for the k-th theme. Then we prompt an LLM,
given the text passages associated with xk1, xk2, . . . , xke, to
summarize the text, summarizing the high-level information.
With the produced summary text, we introduce it as a new
node in the graph. Lastly, as in previous steps, we produce
utility questions, embeddings for the utility questions, and
connect it to every other node in the graph in the manner
previously described.

Analysis of Graph Spectrum
From spectral graph theory [38], [39], the eigenvalues of L

exhibit these properties: (1)
∑

λi = 0, (2) each eigenvalue λi

falls within the range [−1, 1], and (3) the largest eigenvalue λ1

is 1. The similarity matrix S−I , with zero diagonals, has (n2−
n) non-zero elements, leading to an O(n2) complexity for
the normalized Laplacian transformation. Subsequent spectral
decomposition via the Lanczos algorithm [40] incurs an O(n3)
computational complexity.

Given that all text chunk nodes are clustered into different
themes via spectral decomposition, we can observe some
interesting properties on S from such clustering behavior.

Remark 1: Suppose the document includes k essential
themes. The modularity of S can be formulated as follows:

S =

 Ŝ11 · · · Ŝ1k

...
. . .

...
Ŝk1 · · · Ŝkk


where Ŝij has ni rows. Thus, each diagonal block Ŝii satisfies
0 < ni − ||Ŝii||F < ϵ, which implies ||Ŝij ||F → 0 for each
off-diagonal block. Then we can characterize S’s spectrum
via the behavior of its eigenvalues, i.e., 0 < 1− λi < ϵ,∀i ∈
{1, 2, . . . , k} and 0 < |λi| < ϵ,∀i ∈ {k + 1, k + 2, . . . , n}.

Embedding LLM RAG Acc HARD Acc

SBERT UnifiedQA GEM-RAG 52.14% 44.70%
SBERT UnifiedQA RAPTOR 51.71% 43.30%
SBERT UnifiedQA Embed 51.04% 44.06%

SBERT GPT3.5 GEM-RAG 61.84% 51.60%
SBERT GPT3.5 RAPTOR 60.13% 50.32%
SBERT GPT3.5 Embed 58.61% 47.25%

OpenAI UnifiedQA GEM-RAG 52.81% 44.83%
OpenAI UnifiedQA RAPTOR 53.48% 44.96%
OpenAI UnifiedQA Embed 52.14% 42.53%

OpenAI GPT3.5 GEM-RAG 63.37% 51.85%
OpenAI GPT3.5 RAPTOR 60.32% 50.96%
OpenAI GPT3.5 Embed 60.32% 49.55%

OpenAI GPT3.5 GEM-RAG (k-Means) 61.42% 50.83%
TABLE I

RESULTS ON THE QUALITY DEV DATASET FOR ALL EMBEDDING, LLM AND RAG PAIRS.

These properties confer on S effective clustering capabili-
ties, where text chunks within the same theme exhibit higher
similarity and lower similarity across different themes.

Remark 2: Consider a sequence where each term is the ratio
βi of λi,∀i ≥ 2 to the largest eigenvalue λ1. If there exists
some index d ≥ 2 such that βd is close to 1, and βd−βd+1 > c
where c indicates the cutoff that identifies the first significant
gap between a pair of adjacent ratios, then d is the estimated
number of essential themes in the document.

Remark 3: Let Λ =
∑

i λ
2
i . A higher Λ indicates more

distinct clustering themes within the document; otherwise, the
differentiation between themes becomes ambiguous.

2) Retrieval: Given a built GEM, our method is then
ready to answer prompts/question about the given dataset. The
process works as follows, given a prompt/question p, and some
budget B of nodes to return, we first produce an embedding
of the prompt to give vp = E(p). We then find, out of the
entire graph, the utility question that has the highest SIM.
Specifically, let Q = {q1, q2, . . . , qn} be the set of all utility
questions, find q∗ = argmax

q∈Q
SIM(vp, E(q)). Then, from the

associated node with q∗ we perform a best first search, to find
the next nodes, up to B to include in the context set. Once we
reach the budget we return the context. The full details can be
seen in Algorithm 1.

The LLM is then given this context, followed by the
question and prompted to answer.

C. Method Trade-Offs

While the robustness of our method leads to our improved
results, it does come with some trade-offs that are important
to discuss, particularly in terms of computational complexity,
and potential costs.

First, generating utility questions via an LLM can become a
significant cost, either computationally or monetarily ,depend-
ing on the number of nodes in the dataset, and the number
of utility questions. Generating a graph with n nodes and q
utility questions requires nq LLM calls. The graph building is
all pre-computed, so in most cases this extra cost is okay, but
it is worth noting.

Secondly, in order to generate higher level summary nodes
we do eigendecomposition which has a complexity of O(n3)
where n is the number of nodes. With a large number of nodes
this complexity may require consideration.

IV. EXPERIMENTS

Our method, and RAG methods in general can be used for
a host of tasks, including AI agent memory, fine-tuning LLMs
for niche scientific domains etc. For purposes of comparison
we evaluate the efficacy of our model in the context of QA
for medium length documents.

A. Setting

It should be noted that RAG methods in general aim to
study the specific problem of retrieving optimal small context
windows from large data sets and returning them to an LLM
for processing. However, this setting is of ongoing debate and
change within the research community, as large LLMs have
increasingly large context lengths, making it possible to fit
massive amounts of data within a single prompt. We feel, that
even with larger and larger context windows, the problem of
retrieval is still of interest because in a real-world setting, the
data sets of interest are often still much larger than the current
context windows of the biggest models, and returning massive
amounts of context tokens is impractical and costly. Secondly,
even with a larger context, it has been shown that LLMs can
be prone to forget information in the context, and can be prone
to hallucinate information. Lastly, with more precise retrieval
it makes it easier to verify and track the information that an
LLM is using to answer a question. For these reasons, we feel
that the retrieval methods are still highly motivated despite
the evergrowing context length of large models. Retrieval also
requires no finetuning, and uses LLMs “off-of-the-shelf”.

To properly compare our method to other recent work
we study datasets where often the entire data set can fit in
the context of an LLM. For this reason, while our method
outperforms other retrieval methods, which are all limited to
400 tokens of context, there has been work that uses thousands
of tokens of context and outperforms retrieval metrics such as

Embedding LLM RAG F1

SBERT GPT3.5 GEM-RAG 18.53%
SBERT GPT3.5 RAPTOR 18.51%
SBERT GPT3.5 Embed 19.24%

OpenAI GPT3.5 GEM-RAG 20.13%
OpenAI GPT3.5 RAPTOR 18.13%
OpenAI GPT3.5 Embed 19.07%

TABLE II
RESULTS ON THE QASPER DATA SET FOR ALL EMBEDDING, LLM AND

RAG PAIRS.

[29]. Again, we feel this is impractical for larger data sets,
and only use these datasets to showcase our method against
similar recent work.

B. Datasets

a) QuALITY: The Question Answering with Long Input
Texts, Yes! (QuALITY) dataset [18] contains 230 medium
length passages (about 5000 tokens), for which each passage
has associated multiple choice questions and ground truth
answers for. Additionally, each set of questions has a subset of
HARD questions which are particularly challenging. Specifi-
cally we use the ‘dev’ data split. For the ablations experiments
we use the first 50 passages from this set, whereas for the main
experiments in Table I we use the remaining 180.

b) Qasper: The Qasper data set [19] contains over 1500
academic NLP papers. Each paper has associated multiple
choice questions and ground truth answers. We perform our
experiments over the first 100 papers in the data set.

C. Baselines

We compare our method to the standard RAG method,
of embedding each chunk of text, and embedding the given
prompt, and finding the most similar chunks to the prompt,
up to a specific budget. Additionally, we compare to a recent
work that showed promising results, Recursive Abstractive
Processing For Tree-Organized Retrieval (RAPTOR) method
[20]. RAPTOR primarily aims to tackle the problem of pro-
ducing hierarchies of nodes, that summarizes the text passage
appropriately.

D. Evaluation

The QuALITY dataset has multiple choice questions with
ground truth answers, for this dataset we calculate the accuracy
and report the overall accuracy, as well as the accuracy
on the HARD subset. The Qasper dataset has answer types
that are either Abstractive, Extractive, Yes/NO or Answer-
able/Unanswerable. We use the F1 score to evaluate efficacy
of the methods for this dataset.

E. Experimental Parameters

Our objective with these experiments is to evaluate the
efficacy of our model across different text embedding models
and LLMs. We use the SBERT [21], and the OpenAI text-
embedding-ada-002 text embedding models. We also use the
UnifiedQA [22] and GPT3.5 Turbo LLMs. For the QuALITY

data set we consider all possible combinations of text encoders,
LLMs and RAG methods. For the Qasper dataset we consider
all embedding and RAG models but only using GPT-3.5 Turbo
as the LLM.

For all experiments we use a chunk size of 100 tokens, and
we allow 400 tokens of context, meaning four nodes of con-
text. Even though GPT3.5 can support a much larger context,
we aim to study the setting where only few nodes/chunks can
be used, to better isolate the effectiveness of the RAG method
in question, rather than the attention mechanism of the LLM.
For the summarization method for GEM-RAG and RAPTOR,
as well at the utility question method for GEM-RAG we use
GPT3.5 Turbo as the LLM. All similarity measurements were
done using cosine similarity. For the GEM-RAG method we
use two eigencomponents, and five utility questions. In our
ablation experiments we show the effect of varying both of
these parameters. For the ablation experiments we evaluate
the accuracy on the first 50 articles of the QuALITY data set,
whereas for the main experiments we evaluate on the latter
180 articles.

F. Results

QuALITY Results The results from our experimentation
can be seen in Table I. We observe that in all settings, except
for those using the OpenAI embedding model, and UnifiedQA
LLM, our model gives the best performance, in both the
over all accuracy and accuracy on the HARD subset. Also
notably, the difference is exaggerated most on the highest
accuracy setting, using OpenAI’s embedding, and GPT-3.5
Turbo, suggesting this difference is exaggerated the more
robust the embedding and LLM models used are.

Additionally, we looked at the performance of our method
if we use k-Means instead of spectral clustering. We observe a
performance drop, which indicates the spectral graph analysis
performs better than more standard clustering.

Qasper Results The results from our experimentation can
be seen in Table II. In this setting we only use GPT3.5Turbo
as the LLM and consider using both SBERT and the OpenAPI
text embedding models. We see that our method performs best
for the OpenAI’s text-embedding-ada-002 embedding model,
and gives the best over all score. However, it performs behind
the standard RAG method when considering SBERT.

GEM For Data Visualization We would like to stress that
while GEM has been formulated to be primarily used as a
method for RAG, the produced GEM is a standalone object
that can be used with any LLM to do QA work, as well as
a tool to visualize and organize data. We provide an example
visualization for a single story in the QuALITY data set at the
following url: https://detailed-swan.static.domains/GEM.html.

Ablation Study In order to test the tuneable hyperpa-
rameters of our model, the number of eigencomponents and
the number of utility questions, we performed three ablation
experiments, the results of which can be seen in Figure 2.
In the first we keep the number of components constant at
ten, and vary the number of utility questions. We observe that
the accuracy with respect to the number of utility questions

https://detailed-swan.static.domains/GEM.html

0 1 2 3 4 5
Number of Utility Questions

0.53

0.54

0.55

0.56

0.57

0.58

0.59
Ac

cu
ra

cy
Accuracy vs. Number of Utility Questions

0 2 4 6 8 10
Number of Eigen Components

Accuracy vs. Number of Eigen Components

Fig. 2. Ablation study on the effect of number of utility questions and eigencomponents for a 50 passage subset of the QuALITY data set. The accuracy from
more utility questions quickly becomes saturated, whereas the best number of eigencomponents is two. Intuitively the number of utility questions capture the
amount of information per chunk, whereas the number of components covers the importance of summaries in the domain of questions.

Eigen-components Percent of nodes returned that are eigen/summary

0 0.0
2 14.4
4 24.5
6 32.8
8 38.1
10 42.6

TABLE III
PERCENT OF RETURNED NODES THAT ARE EIGEN/SUMMARY NODES.

increased up until three, but quickly becomes saturated. Zero
utility questions indicates that we just compare the embedding
of each text chunk directly. Conversely, for the second plot,
we hold the number of utility questions at five, and vary the
number of eigencompnents. Here we observe the actual best
performance is with two components.

Intuitively, the number of eigencomponents capture how
important high-level themes are to the questions of interest,
and the number of utility questions capture how much detail
can be in embedded in a single chunk. These parameters
should be tuned to the specific task at hand, and we used
50 passages from QuALITY as a hold out set to inform the
hyperparameters for the remaining 180 passages.

In the third study, seen in Table III we look at, for the
number of eigencomponents available, the percent of nodes
returned as context that are eigen summary nodes. As can be
seen in the table, with more eigen-components, they become
more likely to be returned as part of the context. This may be
good for questions that are more high-level, but bad for more
detailed questions, as is the case in the QuALITY dataset.

V. DISCUSSION AND CONCLUSION

We developed GEM-RAG, a method for RAG inspired by
human cognition, that tags each memory or chunk by the spe-

cific utility of its information and relation to other memories.
Further, we use these utility questions to formulate a weighted
fully connected graph. We perform an eigendecomposition
on this memory graph to robustly extract “eigenthemes”, and
create summary nodes for each theme. We observe in most
cases, for multiple text embeddings and LLMs, our method
out-performs standard baselines. We also show that a produced
GEM is a standalone object: it can be used with any LLM
to be searchable and conversable, and provides a principled
visualization for understanding textual data. We believe an
optimal RAG method has the ability to greatly improve the
ability of LLMs, enabling real AI agents that can leverage
massive histories of conversations, or adapt to massive niche
data sets without fine-tuning. Further, these RAG methods can
extend to LMMs, retrieving text, images, videos, sound, etc.,
and bringing us closer to simulating human cognition.

VI. ACKNOWLEDGEMENTS

This project is partially supported by the National Science
Foundation (NSF); the Eric and Wendy Schmidt AI in Science
Postdoctoral Fellowship, a program of Schmidt Sciences, LLC;
the National Institute of Food and Agriculture (US-DA/NIFA);
the Air Force Office of Scientific Research) (AFOSR), and
Toyota Research Institute (TRI).

REFERENCES

[1] S. Bubeck, V. Chandrasekaran, R. Eldan, J. Gehrke, E. Horvitz, E. Ka-
mar, P. Lee, Y. T. Lee, Y. Li, S. Lundberg, H. Nori, H. Palangi, M. T.
Ribeiro, and Y. Zhang, “Sparks of artificial general intelligence: Early
experiments with gpt-4,” 2023.

[2] F. Petroni, T. RocktÃCschel, P. Lewis, A. Bakhtin, Y. Wu, A. H.
Miller, and S. Riedel, “Language models as knowledge bases?” 2019.
[Online]. Available: https://arxiv.org/abs/1909.01066v2

[3] Z. Jiang, F. F. Xu, J. Araki, and G. Neubig, “How can we know what
language models know?” CoRR, vol. abs/1911.12543, 2019. [Online].
Available: http://arxiv.org/abs/1911.12543

https://arxiv.org/abs/1909.01066v2
http://arxiv.org/abs/1911.12543

[4] S. Bubeck, V. Chandrasekaran, R. Eldan, J. Gehrke, E. Horvitz, E. Ka-
mar, P. Lee, Y. T. Lee, Y. Li, S. Lundberg, H. Nori, H. Palangi, M. T.
Ribeiro, and Y. Zhang, “Sparks of artificial general intelligence: Early
experiments with gpt-4,” 2023.

[5] A. Raventós, M. Paul, F. Chen, and S. Ganguli, “Pretraining task
diversity and the emergence of non-bayesian in-context learning for
regression,” 2023.

[6] S. Yao, D. Yu, J. Zhao, I. Shafran, T. L. Griffiths, Y. Cao, and
K. Narasimhan, “Tree of thoughts: Deliberate problem solving with large
language models,” 2023.

[7] P. S. H. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin,
N. Goyal, H. Küttler, M. Lewis, W. Yih, T. Rocktäschel, S. Riedel,
and D. Kiela, “Retrieval-augmented generation for knowledge-intensive
NLP tasks,” CoRR, vol. abs/2005.11401, 2020. [Online]. Available:
https://arxiv.org/abs/2005.11401

[8] ——, “Retrieval-augmented generation for knowledge-intensive NLP
tasks,” CoRR, vol. abs/2005.11401, 2020. [Online]. Available: https:
//arxiv.org/abs/2005.11401

[9] A. W. Yu, D. Dohan, M. Luong, R. Zhao, K. Chen, M. Norouzi,
and Q. V. Le, “Qanet: Combining local convolution with global
self-attention for reading comprehension,” CoRR, vol. abs/1804.09541,
2018. [Online]. Available: http://arxiv.org/abs/1804.09541

[10] O. Ram, Y. Levine, I. Dalmedigos, D. Muhlgay, A. Shashua, K. Leyton-
Brown, and Y. Shoham, “In-context retrieval-augmented language mod-
els,” 2023.

[11] G. Izacard, P. Lewis, M. Lomeli, L. Hosseini, F. Petroni, T. Schick,
J. Dwivedi-Yu, A. Joulin, S. Riedel, and E. Grave, “Atlas: Few-shot
learning with retrieval augmented language models,” 2022.

[12] J. S. Park, J. C. O’Brien, C. J. Cai, M. R. Morris, P. Liang, and M. S.
Bernstein, “Generative agents: Interactive simulacra of human behavior,”
2023.

[13] J. Yuan, S. Sun, D. Omeiza, B. Zhao, P. Newman, L. Kunze, and
M. Gadd, “Rag-driver: Generalisable driving explanations with retrieval-
augmented in-context learning in multi-modal large language model,”
2024.

[14] E. Akyürek, T. Bolukbasi, F. Liu, B. Xiong, I. Tenney, J. Andreas, and
K. Guu, “Towards tracing factual knowledge in language models back
to the training data,” 2022.

[15] B. Goldstein, Cognitive Psychology: Connecting Mind, Research, and
Everyday Experience, 5th Edition. Boston, Massachusetts: Cengage
Learning, 2018.

[16] I. Henry L. Roediger and J. D. Karpicke, “Test-enhanced learning:
Taking memory tests improves long-term retention,” Psychological
Science, vol. 17, no. 3, pp. 249–255, 2006, pMID: 16507066. [Online].
Available: https://doi.org/10.1111/j.1467-9280.2006.01693.x

[17] M. Bolognesi and G. Steen, “Editors’ introduction: Abstract concepts:
Structure, processing, and modeling,” Topics in Cognitive Science,
vol. 10, no. 3, pp. 490–500, 2018.

[18] R. Y. Pang, A. Parrish, N. Joshi, N. Nangia, J. Phang, A. Chen,
V. Padmakumar, J. Ma, J. Thompson, H. He, and S. R. Bowman,
“Quality: Question answering with long input texts, yes!” 2022.

[19] P. Dasigi, K. Lo, I. Beltagy, A. Cohan, N. A. Smith, and M. Gardner,
“A dataset of information-seeking questions and answers anchored in
research papers,” in Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computational Linguistics:
Human Language Technologies, K. Toutanova, A. Rumshisky,
L. Zettlemoyer, D. Hakkani-Tur, I. Beltagy, S. Bethard, R. Cotterell,
T. Chakraborty, and Y. Zhou, Eds. Online: Association for
Computational Linguistics, Jun. 2021, pp. 4599–4610. [Online].
Available: https://aclanthology.org/2021.naacl-main.365

[20] P. Sarthi, S. Abdullah, A. Tuli, S. Khanna, A. Goldie, and C. D.
Manning, “Raptor: Recursive abstractive processing for tree-organized
retrieval,” 2024.

[21] N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings
using siamese bert-networks,” CoRR, vol. abs/1908.10084, 2019.
[Online]. Available: http://arxiv.org/abs/1908.10084

[22] D. Khashabi, T. Khot, A. Sabharwal, O. Tafjord, P. Clark, and
H. Hajishirzi, “Unifiedqa: Crossing format boundaries with a single
QA system,” CoRR, vol. abs/2005.00700, 2020. [Online]. Available:
https://arxiv.org/abs/2005.00700

[23] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal,
A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh,
D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler,

M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish,
A. Radford, I. Sutskever, and D. Amodei, “Language models are few-
shot learners,” CoRR, vol. abs/2005.14165, 2020. [Online]. Available:
https://arxiv.org/abs/2005.14165

[24] ——, “Language models are few-shot learners,” CoRR, vol.
abs/2005.14165, 2020. [Online]. Available: https://arxiv.org/abs/2005.
14165

[25] OpenAI, “Gpt-4 technical report,” 2023.
[26] A. Roberts, C. Raffel, and N. Shazeer, “How much knowledge can you

pack into the parameters of a language model?” in Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), B. Webber, T. Cohn, Y. He, and Y. Liu, Eds. Online:
Association for Computational Linguistics, Nov. 2020, pp. 5418–5426.
[Online]. Available: https://aclanthology.org/2020.emnlp-main.437

[27] N. F. Liu, K. Lin, J. Hewitt, A. Paranjape, M. Bevilacqua, F. Petroni, and
P. Liang, “Lost in the middle: How language models use long contexts,”
2023.

[28] S. Sun, K. Krishna, A. Mattarella-Micke, and M. Iyyer, “Do long-range
language models actually use long-range context?” in Proceedings
of the 2021 Conference on Empirical Methods in Natural Language
Processing, M.-F. Moens, X. Huang, L. Specia, and S. W.-t. Yih,
Eds. Online and Punta Cana, Dominican Republic: Association
for Computational Linguistics, Nov. 2021, pp. 807–822. [Online].
Available: https://aclanthology.org/2021.emnlp-main.62

[29] U. Shaham, M. Ivgi, A. Efrat, J. Berant, and O. Levy, “Zeroscrolls:
A zero-shot benchmark for long text understanding,” 2023. [Online].
Available: https://arxiv.org/abs/2305.14196

[30] G. Izacard, P. Lewis, M. Lomeli, L. Hosseini, F. Petroni, T. Schick,
J. Dwivedi-Yu, A. Joulin, S. Riedel, and E. Grave, “Atlas: Few-shot
learning with retrieval augmented language models,” 2022.

[31] S. Min, K. Lee, M.-W. Chang, K. Toutanova, and H. Hajishirzi, “Joint
passage ranking for diverse multi-answer retrieval,” in Proceedings
of the 2021 Conference on Empirical Methods in Natural Language
Processing, M.-F. Moens, X. Huang, L. Specia, and S. W.-t. Yih,
Eds. Online and Punta Cana, Dominican Republic: Association
for Computational Linguistics, Nov. 2021, pp. 6997–7008. [Online].
Available: https://aclanthology.org/2021.emnlp-main.560

[32] M. G. Arivazhagan, L. Liu, P. Qi, X. Chen, W. Y. Wang, and Z. Huang,
“Hybrid hierarchical retrieval for open-domain question answering,” in
Findings of the Association for Computational Linguistics: ACL 2023,
A. Rogers, J. Boyd-Graber, and N. Okazaki, Eds. Toronto, Canada:
Association for Computational Linguistics, Jul. 2023, pp. 10 680–10 689.
[Online]. Available: https://aclanthology.org/2023.findings-acl.679

[33] Y. Liu, K. Hashimoto, Y. Zhou, S. Yavuz, C. Xiong, and
P. Yu, “Dense hierarchical retrieval for open-domain question
answering,” in Findings of the Association for Computational
Linguistics: EMNLP 2021, M.-F. Moens, X. Huang, L. Specia, and
S. W.-t. Yih, Eds. Punta Cana, Dominican Republic: Association
for Computational Linguistics, Nov. 2021, pp. 188–200. [Online].
Available: https://aclanthology.org/2021.findings-emnlp.19

[34] J. Wu, L. Ouyang, D. M. Ziegler, N. Stiennon, R. Lowe, J. Leike, and
P. Christiano, “Recursively summarizing books with human feedback,”
2021.

[35] B. Newman, L. Soldaini, R. Fok, A. Cohan, and K. Lo, “A question
answering framework for decontextualizing user-facing snippets from
scientific documents,” 2023.

[36] T. Gao, H. Yen, J. Yu, and D. Chen, “Enabling large language models
to generate text with citations,” 2023.

[37] V. Karpukhin, B. Oguz, S. Min, P. Lewis, L. Wu, S. Edunov,
D. Chen, and W.-t. Yih, “Dense passage retrieval for open-domain
question answering,” in Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP),
B. Webber, T. Cohn, Y. He, and Y. Liu, Eds. Online: Association
for Computational Linguistics, Nov. 2020, pp. 6769–6781. [Online].
Available: https://aclanthology.org/2020.emnlp-main.550

[38] F. R. Chung, Spectral graph theory. American Mathematical Soc.,
1997, vol. 92.

[39] W. Li, W.-K. Ng, Y. Liu, and K.-L. Ong, “Enhancing the effectiveness
of clustering with spectra analysis,” IEEE Transactions on Knowledge
and Data Engineering, vol. 19, no. 7, pp. 887–902, 2007.

[40] C. Lanczos, “An iteration method for the solution of the eigenvalue
problem of linear differential and integral operators,” J. Res. Natl. Bur.
Stand. B, vol. 45, pp. 255–282, 1950.

https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
http://arxiv.org/abs/1804.09541
https://doi.org/10.1111/j.1467-9280.2006.01693.x
https://aclanthology.org/2021.naacl-main.365
http://arxiv.org/abs/1908.10084
https://arxiv.org/abs/2005.00700
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://aclanthology.org/2020.emnlp-main.437
https://aclanthology.org/2021.emnlp-main.62
https://arxiv.org/abs/2305.14196
https://aclanthology.org/2021.emnlp-main.560
https://aclanthology.org/2023.findings-acl.679
https://aclanthology.org/2021.findings-emnlp.19
https://aclanthology.org/2020.emnlp-main.550

	Introduction
	Related Work
	Methods
	Connection to Human Cognition
	Graphical Eigen Memories
	Memory Graph Construction
	Retrieval

	Method Trade-Offs

	Experiments
	Setting
	Datasets
	Baselines
	Evaluation
	Experimental Parameters
	Results

	Discussion and Conclusion
	Acknowledgements
	References

