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ABSTRACT

The currently leading artificial neural network (ANN) models of the visual ven-
tral stream – which are derived from a combination of performance optimization
and robustification methods -– have demonstrated a remarkable degree of behav-
ioral alignment with humans on visual categorization tasks. Extending upon pre-
vious work, we show that not only can these models guide image perturbations
that change the induced human category percepts, but they also can enhance hu-
man ability to accurately report the original ground truth. Furthermore, we find
that the same models can also be used out-of-the-box to predict the proportion of
correct human responses to individual images, providing a simple, human-aligned
estimator of the relative difficulty of each image. Motivated by these observations,
we propose to augment visual learning in humans in a way that improves human
categorization accuracy at test time. Our learning augmentation approach consists
of (i) selecting images based on their model-estimated recognition difficulty, and
(ii) using image perturbations that aid recognition for novice learners. We find
that combining these model-based strategies gives rise to test-time categorization
accuracy gains of 33-72% relative to control subjects without these interventions,
despite using the same number of training feedback trials. Surprisingly, beyond
the accuracy gain, the training time for the augmented learning group was also
shorter by 20-23%. We demonstrate the efficacy of our approach in a fine-grained
categorization task with natural images, as well as tasks in two clinically relevant
image domains – histology and dermoscopy – where visual learning is notoriously
challenging. To the best of our knowledge, this is the first application of ANNs
to increase visual learning performance in humans by enhancing category-specific
features.1

1 INTRODUCTION

Over the last decade, specific artificial neural network (ANN) models have been shown to be the
best image-computable emulators of neural processing along the human and monkey ventral visual
stream and its support of a range of human visual tasks, as measured by human behavior. Iterative
efforts have developed even better models in this same vein that are more and more accurate emu-
lators. Indeed, among the most contemporary of such models – so called “robustified” deep ANN
models (Ma̧dry et al., 2018) – have been shown to allow the design of images to predictably control
both ventral stream neural activity (Guo et al., 2022) and human object categorization reports (Gaziv
et al., 2024; Croce & Hein, 2020).

Learning to recognize new, unfamiliar categories in images is a task that the human visual system
normally excels at. Importantly, despite being a basic task for humans, visual learning of new cat-
egories often carries significant practical relevance: for example, medical students and residents
devote numerous hours to mastering the diagnosis of various diseases in image modalities such as
histology (microscopic images of cells and tissues) and dermoscopy (skin lesions). They achieve
this by practicing category recognition on a variety of imaged examples representing different cases.
Studies of perceptual learning with simple tasks, such as line orientation discrimination, effectively
show a curriculum effect whereby providing easy trials to a novice learner before gradually increas-

1We will make our code and data publicly available upon publication.
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Figure 1: Robustified ANNs can be used out-of-the-box as image-recognition difficulty esti-
mators and ground-truth percept enhancers. We consider a 16-way basic animal classification task:
A1 Correspondence between human categorization accuracy and the model-computed ground-truth logit ac-
tivation value. The curve denotes a logistic regression model predicting the probability of a correct response
based on the logit value (AUC=0.71 under 10-fold cross validation, p < 0.001). A2 Example images with
varying ground truth logit values (predicted difficulty) B1 Perturbing images by ground truth logit maximization
increases recognition accuracy progressively with the perturbation ℓ2-norm pixel budget ϵ. Other off-the-shelf
image enhancement methods do not increase categorization accuracy, despite inducing larger perturbations of
ϵ = 43, ϵ = 106, and ϵ = 26 on average from left to right. B2 Example images: Unmodified (left), enhanced
by ground truth logit maximization with pixel budget ϵ = 10 and ϵ = 20, and by off-the-shelf methods (right).
All vertical error bars are 95% CI by bootstrap. Horizontal error bars in A1 denote SD over images within
each of the logit value bins.

ing the difficulty promotes faster perceptual learning (Lu & Dosher, 2022). Motivated by these
findings, here, we asked whether the human-behavioral and neural alignment that is attributed to
these models makes them useful in helping humans learn to recognize new, unknown categories.
Enhancing learning with a model, therefore, serves as both another scientific test of the model’s
validity and a beneficial application for human education.

To test the viability of model-guided boosting of visual category learning in humans, we first estab-
lished two key empirical observations, summarized in Fig. 1: (i) We found that the human error rate
in an object categorization task is highly predicted by the ground truth logit activation of a robus-
tified ANN, rendering it a valid image-recognition difficulty score for humans. (ii) We found that
this relationship also holds in reverse – pixel-level perturbations can be guided using the model in a
way that increases the ground truth logit activation, generating a “perturbed” version of the image
that is “easier” to recognize as the ground truth label suggests. Notably, other off-the-shelf image
enhancement methods do not result in significant increases in categorization accuracy by humans.
We thus propose a method that combines model-based image difficulty prediction and enhancement
to generate optimized curricula for novice humans learning challenging image classification tasks.

Our proposed method, “Logit-Weighted Image Selection and Enhancement” (L-WISE), is illustrated
in Fig. 2. In the general setting, a novice human learner completes a categorization learning task
on an online platform. A labeled image dataset, with unfamiliar category labels, is used to teach
the categories by showing examples and providing per-trial feedback after each image category
judgment by the learner. Upon completion of the training phase, test accuracy is measured on held-
out images in similar trials without feedback (Fig. 2ABC).
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Figure 2: Robustified ANNs can be used to boost novel-object recognition learning in humans.
A novice human learner performs an image categorization task, which consists of a training phase (B) and
a test phase (C). Images for both phases are randomly drawn from a labeled image dataset of fine-grained
unfamiliar categories (A). Feedback (correct/incorrect, with indication of the correct category) is delivered
during the training phase only. Our proposed “Logit-Weighted Image Selection and Enhancement” (L-WISE)
approach uses an ANN model (D) to augment the visual learning curriculum by using the difficulty score to
sample images based on a predefined profile of maximal difficulty per trial (E), and by enhancing images for
easier recognition with an enhancement magnitude of a predefined trial-sequence profile (F).

L-WISE intervenes on this naive visual learning baseline using a robustified ANN model in two
ways: (i) it uses the difficulty score to sample images based on a predefined profile of maximal dif-
ficulty per trial (Fig. 2DE); (ii) it “perturbs” training images to be easier for recognition with an en-
hancement magnitude parameter similarly governed by a predefined trial-sequence profile (Fig. 2D-
F).

Surprisingly, despite the human visual system being well-adapted for rapidly learning new visual
categories, we find that L-WISE gives rise to substantial gains of 33-72% in test-time accuracy
margins above chance relative to control subjects without these interventions. In addition to im-
proved accuracy, the duration of the training for the augmented learning group was significantly
reduced. We further demonstrate the practical utility of our approach in boosting visual category
learning across varied image domains and category spaces. In particular, we considered three main
categorization tasks: moth species in natural images, dermoscopy images, and histology images.

Notably, our approach is inspired by recent findings demonstrating model-guided perturbations that
accurately modulate category percepts away from the ground truth label (Gaziv et al., 2024). In
this work, we conversely seek to amplify the ground truth percept, i.e., to facilitate the correct
categorization of a given image.

Our contributions are several-fold:
• We establish a new state-of-the-art in predicting image recognition difficulty for humans, using a
simple approach employing robustified ANN logit activations.
• We show that the leading models of the ventral visual stream can guide image perturbations that
enhance human ability to accurately report the original ground truth label.
• We propose a novel model-based visual learning augmentation approach for humans that sub-
stantially increases test-time categorization accuracy at a reduced training time. To the best of our
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knowledge, this is the first application of image enhancement to augment human visual learning.
• We demonstrate the general applicability of our proposed approach on categorization tasks across
a range of image domains – including clinically relevant ones.

2 RELATED WORK

We develop two important capabilities that form the foundation of our approach to assisting learners:
(1) state-of-the-art predictions of the classification difficulty of images for humans, and (2) image
perturbations that increase human categorization accuracy. Many works have ranked the difficulty of
images to design curricula for ANNs (Wang et al., 2021b). Leading approaches include the c-score
learning speed proxy (Jiang et al., 2021) and the prediction depth (Baldock et al., 2021) calculated
for each image. Mayo et al. (2023) applied these techniques to predict the difficulty of natural
images for humans, defined as either the minimum viewing time required to classify a given image
correctly, or (as in our work) the proportion of humans who correctly classify it. Here, we show that
the logit score associated with the ground truth class from a robustified ANN model more accurately
predicts human image difficulty than prior approaches.

Enhancing image quality has been the focus of many previous studies (Qi et al., 2021), ranging from
correction of factors such as lighting and contrast (e.g., Zuiderveld (1994); Jobson et al. (1997))
to ANN models that “upsample” images to higher resolution (Anwar et al., 2020). However, very
little research has focused on enhancing images to more strongly represent a specific category. Prior
works in this vein focused on making images easier for ANN models to classify correctly (Kim
et al., 2023; Tussupov et al., 2023) or less vulnerable to subsequent adversarial attacks (Salman
et al., 2021; Frosio & Kautz, 2023). Such perturbations, however, do not strongly affect human
perception due to misalignment between human and machine perception (Gaziv et al., 2024).

Other studies focused on model-human alignment. Brain-Score directly benchmarks ANN mod-
els with respect to neural representation and downstream behavior (Schrimpf et al., 2018); “Har-
monization” methods directly drive alignment by an auxiliary objective on ANN-predicted feature
importance maps and crowd-sourced ones (Fel et al., 2022). Other works introduce architecture
components to account for additional aspects of human vision, such as the dorsal-stream “where”
pathway in the brain (Choi et al., 2023).

A key property that enables ANNs to generate human-interpretable image perturbations is that of
perceptually aligned gradients, which is closely related to adversarial robustness and can be induced
through adversarial training Ganz et al. (2023); Gaziv et al. (2024). Here, we apply adversarially-
trained ANNs to enhance images such that they are more strongly associated with their ground
truth label by the guiding model and by humans. To the best of our knowledge, we are the first to
demonstrate improved human performance on image classification tasks through category-specific
image enhancement.

Our primary goal is to apply difficulty prediction and image enhancement to assist human learning.
The emerging field of machine teaching (Zhu, 2015) employs machine learning to find or generate
optimal “teaching sets” that can be used to train other models or humans. While many such ap-
proaches have been successfully applied to training machine learning models (e.g., Liu et al. (2017);
Qiu et al. (2023)), few studies have successfully enhanced image category learning in humans and
most of these focus on teaching set selection. Singla et al. (2014) propose STRICT, which optimizes
the expected decrease in learner error based on how the selected images and their labels constrain
a linear hypothesis class in a feature space. Johns et al. (2015) extend a similar approach to select
images in an online fashion by modeling the learner’s progress. MaxGrad (Wang et al., 2021a) uses
bi-level optimization to iteratively refine a teaching set by modeling learners as optimal empirical
risk minimizers. Most similar to our work are approaches like EXPLAIN (Mac Aodha et al., 2018),
which uses ANN class activation maps (CAMs) to highlight relevant image regions while providing
feedback to the learner. EXPLAIN also selects a curriculum of images based on (a) a multi-class
adaptation of STRICT, (b) representativeness (mean feature-space distance to other images of the
same class), and (c) the estimated difficulty (entropy) of the CAM explanations. Chang et al. (2023)
use bounding boxes to highlight image regions attended to by experts and not novices, allowing hu-
mans to more accurately match bird or flower images to one species among five shown in a gallery.

Our approach departs from previous studies in several ways. We make explicit estimates of im-
age difficulty with unprecedented accuracy to select easier images for early-stage learners. We are
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unique in employing category-specific image enhancement, which is a novel technique in itself, to
improve the teaching efficacy of a given set of images. While Mac Aodha et al. (2018) and Chang
et al. (2023) help learners by explicitly highlighting where learners should attend to in the image, we
take a distinct and complementary approach by implicitly highlighting what learners must attend to
in order to classify images correctly.

3 OVERVIEW OF APPROACH AND EXPERIMENTS

Our approach to improve visual learning in humans is based on two key observations in the leading
models of the ventral visual stream: (i) they can predict image recognition difficulty well for humans
(Fig. 1A), and (ii) they can be used to perturb images in a way that enhances human ability to
accurately report the original ground truth (Fig. 1B). In other words, these models can be used out-
of-the-box as category-recognition difficulty estimators, and category-percept enhancers. As such,
we propose using them to augment a visual learning sequence that is used to learn and practice
recognition of unfamiliar image classes in various challenging categorization tasks.

Fig. 2 summarizes our approach. In the naive baseline scenario, the novice learner is presented with
a sequence of training trials, where in each, a randomly selected image from one of N categories is
presented, and the user is tasked to perform an N -way categorization task through an online survey
platform. During this training phase, the learner receives correct/incorrect feedback after each trial.
Notably, the category labels are made meaningless by assigning them to be a random Greek name
unrelated to the task, such that learners start at chance level. At the end of the training phase, the
experiment transitions into the test phase, where the same task continues over a held-out set of
images, and no feedback is delivered. During the test phase we measure the visual learning outcome
of interest, the test accuracy (Fig. 2A-C).

Harnessing the key observations on robustified ANNs, our approach uses a model to optimize the
training phase in a way that improves the test accuracy via two mechanisms: (i) sampling training
images based on their predicted recognition difficulty, and (ii) enhancing the training images. Both
mechanisms have “strength” control knobs which are generally time dependent, namely the maxi-
mally allowable difficulty of an image at a given trial, and the corresponding enhancement strength.
The latter is approximated via the ℓ2-norm pixel-budget ϵ. Using these mechanisms, the user of our
approach can flexibly define arbitrary time-dependent profiles for image selection and enhancement
(Fig. 2D-F). In this study, we focused on a linear ramp profile for the allowable image difficulty at
a given time and on exponential tapering of the enhancement ϵ. Intuitively, this should correspond
to an easy-to-challenging traversal during the training phase. Notably, extensively optimizing these
profiles was not our goal.

Incorporating these mechanisms led to significant gains in the test-time accuracy of human par-
ticipants, while also requiring less time to complete the training phase (which includes a constant
number of trials). This result was robustly obtainable across the varied image domains and category
spaces tested. In particular, we considered three categorization tasks: moth species in natural images,
dermoscopy images (skin lesion diagnosis), and histology images (benign lesions vs pre-cancerouss
lesion diagnosis). We next describe the model and explain the two model-based mechanisms that
drive the boost in visual learning.

3.1 TRAINING TASK-SPECIFIC ROBUSTIFIED MODELS

To obtain robustified models for a task specific category space, we adversarially-trained ResNet-50
ANNs (He et al., 2016) on the ImageNet-1K (Deng et al., 2009) and iNaturalist 2021 (Van Horn
et al., 2021) datasets (separately) using the same technique from Mądry et al. (2018). To adapt the
resulting model to the three categorization tasks of interest, we conducted additional adversarial
fine-tuning on the smaller datasets: a small subset of moth species images from iNaturalist, the
HAM10000 skin lesion dermoscopy dataset (Tschandl et al., 2018), and the MHIST colon histology
dataset (Wei et al., 2021).

3.2 PREDICTING CATEGORY RECOGNITION DIFFICULTY

We propose an elegant way to predict the human categorization error rate on a given image, which
suggests a new image-recognition difficulty score: the logit activation (pre-softmax) at the ground
truth category output. The higher this logit value is, the lower the human categorization error rate.
We established this relationship through user study reports in a basic natural image categorization
task with 16 animal categories (Fig. 1A). We found this robustified model-based metric to be the
current state-of-the-art in predicting human error rates (see Appendix Fig. S4).
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Figure 3: Novice learners who had their curriculum augmented by our method showed im-
proved test-time categorization accuracy for previously unfamiliar categories. Empirical results
for a 4-way fine-grained moth species categorization task. Panel A shows examples of the four moth classes
in the task, side-by-side with their model-based enhanced versions at the highest pixel budget used in our ex-
periments (ϵ = 8). While subtle, one notable difference is the distinctive wing spots of moth class 2, which are
enlarged in the enhanced version of the image. Also shown are difference images showing the (5x magnified)
difference between original and enhanced versions, and heat maps with more red coloration in regions of larger
changes from enhancement. B compares the average smoothed accuracy of participants in the L-WISE group
and a control group. Shaded areas denote 95% CI by bootstrap. The test accuracy gain of the L-WISE group
relative to the control group is statistically significant (chi-square, p < 0.001). C,D show the trial-dependent
empirical profiles of the average image difficulty percentile of selected images, which (noisily) step-wise in-
creases, and the perturbation pixel budget for enhancement (ϵ), which step-wise decreases. The profiles of the
baseline controls (black dotted lines) are uniform, indicating randomly-selected images with no enhancement.

3.3 GENERATING IMAGE PERTURBATIONS TO ENHANCE CATEGORY PERCEPT

Given a bona fide metric of image difficulty, backpropagation on the model from output back to
pixel space allows us to perturb an image to be easier to recognize with respect to its ground truth
label. To this end, we impose a criterion to maximize the ground-truth logit activation, while also
constraining the perturbations to be within a predefined ℓ2-norm pixel-budget. This approach is
analogous to Gaziv et al. (2024) but is designed to enhance the ground truth percept, rather than
guiding away from it.

4 RESULTS

We used robustified ANNs to both enhance images and predict the difficulty of images across multi-
ple domains. We applied each of these techniques to improve the final test performance (on original,
unmodified images) of novices learning challenging image classification tasks.

4.1 MODELS CAN BOTH PREDICT IMAGE RECOGNITION DIFFICULTY AND REDUCE IT

We tested the effects of image enhancement via maximization of the ground truth logit from ro-
bustified ANNs on human image categorization accuracy. We successfully demonstrate that we can
enhance images by maximizing the ground truth logit from a robustified ANN (ResNet-50) using
gradient descent in image pixel space. As the size of the perturbations grows (ℓ2-norm pixel budget
ϵ), human participants become increasingly accurate on a 16-way animal photograph classification
task derived from ImageNet (Fig. 1B1, chance = 1/16). While mean accuracy on the original, un-
modified (ϵ = 0) images was 0.75, mean accuracy on enhanced images was as high as 0.84 at ϵ = 20.
The accuracy gains from enhancement appear to reach a saturation point as the perturbations grow
larger. The improvements in accuracy are also somewhat dependent on the starting ground truth
logit score, as shown in Appendix Fig. S8: accuracy gains are significantly higher for “difficult”
images than for “easy” images. Baseline enhancement algorithms Contrast-Limited Adaptive His-
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Figure 4: Our approach can boost accuracy and time efficiency of image category learning
for humans across varied image domains, including clinically-relevant ones. Panel A compares
the mean test-time accuracy and training-phase duration of human participants who learned a moth photo,
dermoscopy, or histology classification task, randomized to L-WISE and control groups. All differences between
L-WISE and the control group are statistically significant (chi-squared test, p < 0.05). Panel B shows how
precision and recall in L-WISE and control groups, with each point representing a specific class in one of the
three tasks. All error bars show 95% bootstrap confidence intervals. Each class from the dermoscopy and
histology tasks is illustrated in panels C and D respectively, similarly to the moth classes in Fig. 3A.

togram Equalization (CLAHE), Multi-Scale Retinex with Color Restoration (MSRCR), and Adobe
Photoshop Lightroom’s “Auto” enhancement feature (LR) had no significant effect on performance,
despite inducing image perturbations of considerably larger ℓ2 norm on average than the ℓ2 pixel
budget ϵ values we used for model-based enhancement.

We also demonstrate that the robustified model’s ground truth logit Lgt(x) is strongly correlated with
the rate at which humans choose the ground truth category associated with image x in a 16-way basic
animal classification task (Fig. 1A). We used robustified ResNet-50 to calculate Lgt for each of the
2,400 distinct natural images used in the task, and applied logistic regression to predict binary correct
vs. incorrect responses to individual image trials (pooling responses to original images and MSRCR,
CLAHE, and LR control images to increase sample size). The logistic regression model (Fig. 1A)
used Lgt to predict the correctness of the trial responses with AUC = 0.71 (10-fold cross-validation,
p < 0.001). Notably, we found this simple approach to be better aligned with human error rates than
the c-score, a state-of-the-art metric at predicting the difficulty of images for humans (Mayo et al.,
2023) (see Appendix Fig. S4). We also demonstrate difficulty prediction and image enhancement
with XCiT vision transformers (see Appendix Figs. S5-S7).

4.2 L-WISE IMPROVES BOTH LEARNING SPEED AND TEST ACCURACY FOR HUMANS

We applied both image difficulty prediction and image enhancement in a novel framework that
designs curriculum image sequences for novices learning challenging image classification tasks.
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Idaea moth photos Skin lesion dermoscopy
Mean Acc. Training Time Mean Acc. Training Time

Chance level 0.25 - 0.25 -
Control 0.47 (0.45, 0.50) 14.0 (13.8, 14.2) 0.38 (0.36, 0.40) 13.5 (13.4, 13.7)

ET 0.58* (0.55, 0.61) 11.8 (11.7, 11.9) 0.45* (0.43, 0.47) 13.1 (12.9, 13.3)
ET (shuffled) 0.53* (0.50, 0.56) 15.1 (14.8, 15.4) 0.39 (0.36, 0.42) 13.3 (13.2, 13.4)

DS 0.49 (0.47, 0.52) 13.9 (13.7, 14.1) 0.44* (0.42, 0.48) 11.5 (11.4, 11.6)
DS (shuffled) 0.58* (0.55, 0.60) 12.6 (12.5, 12.8) 0.45* (0.42, 0.48) 11.0 (10.9, 11.1)

L-WISE 0.60* (0.58, 0.64) 11.1 (11.0, 11.2) 0.47* (0.44, 0.50) 10.5 (10.4, 10.5)
Table 1: Both image enhancement tapering (ET) and image difficulty selection (DS) contribute
to ability of L-WISE to assist learners. The benefits of image enhancement are dependent on
easy-to-hard sequencing (“ET” outperforms “ET (shuffled)”), but the benefits of difficulty-based
selection appear to stem from simply showing an easier distribution of images during training (“DS
(shuffled)” is as good as or better than “DS”). Training times are in minutes. Parentheses show 95%
bootstrap confidence intervals for the mean with 10,000 bootstrap replicates. * denotes a significant
difference in accuracy from the control group (p < 0.01, χ2(1) test).

Our Logit-Weighted Image Selection and Enhancement (L-WISE) algorithm operates on image trial
sequences used for training human participants on image classification tasks. The performance
of each participant is subsequently evaluated in a testing phase, which includes randomly-selected,
unmodified images (unaffected by L-WISE). During the early portion of the training phase, L-WISE
randomly selects images from below a certain difficulty percentile that linearly increases as the
training phase progresses. Selected images are enhanced at each trial during this period, within an
ℓ2 pixel budget ϵ that decreases in a stepwise-exponential fashion (Fig. 3C-D).

We tested L-WISE’s efficacy at improving test-time accuracy of human learners in three challenging
image category learning tasks (Figs. 3-4). Participants were randomly assigned to an L-WISE group
or a control group (randomly-selected, non-enhanced images). L-WISE increased the average test-
time accuracy margin above chance levels by 57.6% on a 4-way moth classification task (p < 0.001
on chi-squared test), by 72.3% on a 4-way skin lesion dermoscopy task (p < 0.001), and by 33.1%
on a binary colon polyp histology task (p = 0.023) (Fig. 4A). In all three tasks, participant accuracy
in the L-WISE group increased initially and then declined to varying degrees as more and more
difficult images were selected and the degree of enhancement simultaneously reduced. In addition
to improving test-time accuracy, L-WISE decreased the mean time to learn the task (with a fixed
number of training trials) by 20% for the moth task, 23% for the dermoscopy task, and 22% for the
histology task (Fig. 4A).

4.3 IMAGE ENHANCEMENT AND SELECTION BOTH CONTRIBUTE TO EFFICACY OF L-WISE

We tested several ablated versions of L-WISE to determine the relative contributions and potential
additive benefits of its components, which include (A) image enhancement based on logit optimiza-
tion, (B) image selection based on logit-estimated difficulty, and (3) easy-to-hard curriculum trends
enabled by A and B. The results of our ablation study, which employed the moth classification and
skin lesion dermoscopy tasks, are shown in Table 1. In “Enhancement Tapering,” (ET) only the
enhancement component of L-WISE is used, with no difficulty-based image selection. Conversely,
in “Difficulty Selection” (DS), images are not enhanced. In “ET (shuffled)” and “DS (shuffled),”
the order of training trials is randomly permuted after either the ET or DS intervention. We hypoth-
esized that shuffling would abolish at least some of the potential accuracy gains attributable to ET
and DS due to the possible usefulness of easy-to-hard ordering.

The results show that both ET and DS have strong benefits in isolation. ET increased the test-phase
accuracy margin above chance by 46.8% for the moth task and 56.5% for the dermoscopy task, while
DS increased the same margin by 8.1% (not significant) and 53.2% respectively. ET (shuffled) was
less effective, increasing the margin above chance by 23.0% for the moth task and 11.2% (not sig-
nificant) for the dermoscopy task. Surprisingly, DS (shuffle) outperformed DS without shuffling,
increasing the margin above chance by 45.2% for the moth task and 58.2% for the dermoscopy task
(the increase of DS (shuffle) relative to DS is statistically significant for the moth task only). Unab-
lated L-WISE numerically outperformed all ablated conditions, increasing the margin above chance
by 57.6% for the moth task and 72.3% in the dermoscopy task. However, additional paired com-
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parisons indicated that the differences between these increases and those from ET or DS (shuffled)
are not statistically significant for either task. ET and DS did demonstrate a statistically significant
additive benefit in terms of learning efficiency, however. On the moth task, training time was 6%
shorter for L-WISE than the next fastest group, which was ET. Similarly, on the dermoscopy task,
training time was 5% shorter for L-WISE than the next fastest group, DS (shuffled).

5 DISCUSSION

In this study, we demonstrate that the leading models of the ventral visual stream, the robustified
ANNs, can be used to both predict the empirical image recognition difficulty as reported by humans,
and generate “perturbed”, enhanced, versions of it that are easier to categorize as the ground truth.
We harness these properties to design a model-based curriculum design for human image category
learning. We show that a combination of selecting images within a certain difficulty range and
perturbing those images to enhance the perception of the ground truth category leads to substantial
improvements in human test-time classification performance under realistic conditions.

The results of our ablation study show that at least a portion of these improvements can be achieved
with image enhancement alone: humans can learn from distorted images and subsequently achieve
superior generalization to unseen examples (Table 1). There are several possible explanations for
this effect. Image enhancements might draw the learner’s attention to relevant features, such as
the distinctive dot in the middle of each wing of the Idaea biselata moth in Fig. 3B (Hufnagel,
1767), or the multiple colors and irregular borders that appear to be enhanced in the melanoma
image of Fig. 4 (Tsao et al., 2015). Enhancements might also attenuate features that distract from or
contradict the ground truth: for example, in Appendix Fig. S8B, buffalo standing behind the ground
truth “antelope” are variously blurred or nearly erased. Analogously, images with high ground truth
logits (low predicted difficulty) might tend to have clear class-relevant features and few distracting or
contradictory features. These parallel explanations for the effects of image enhancement and image
selection could help explain why the “enhancement tapering” and “difficulty selection” strategies in
isolation provide comparable accuracy gains to each other, and why combining both strategies did
not lead to large additive improvements in accuracy (although full L-WISE did enable significantly
shorter training time than either strategy alone).

5.1 LIMITATIONS

This work is a proof-of-concept demonstration that robustified models can be applied to augment
image category learning in humans. We did not exhaustively search for optimal curriculum design
strategies image enhancement hyperparameters, nor did we study the “dose-dependency” of image
enhancement or selection. L-WISE applies a fixed schedule for all learners: human learning could
plausibly be boosted further by adapting the degree of image enhancement or the difficulty of se-
lected images to the learner’s progress in real time (Lu & Dosher, 2022; Mettler & Kellman, 2014).

One caveat to our approach is that logit maximization can sometimes appear to have a homogenizing
effect on image distributions. For example, “benign mole” dermoscopy images enhanced with high
ϵ budgets tend to all resemble smooth and uniform blobs (see appendix Fig. S9H for an example):
this clearly illustrates a task-relevant difference from melanoma (which tends to be asymmetric with
irregular borders (Tsao et al., 2015)), but obscures much of the real-world heterogeneity among be-
nign moles. A similar risk might apply to image selection: images with high ground truth logits
might belong to limited regions of the overall class distribution. Biased perturbations or selections
reflecting biases in the underlying datasets are another concerning possibility, particularly for der-
moscopy (Daneshjou et al., 2022). These caveats must be thoroughly investigated before real-world
educational applications of L-WISE, particularly in the medical domain.

6 METHODS

Predicting Image Difficulty. To predict the relative difficulty d ∈ [0, 1] of each image, we extract the
logit value corresponding to the image’s ground truth class (Lgt) immediately upstream of the final
softmax function. We sort the logits in descending order such that L(1) ≥ L(2) ≥ ... ≥ L(nci,s

).
nci,s is the number of images for a given class ci and training/validation/testing category designation
s. We calculate difficulty percentile dj for image j using the equation dj = rank(L(j))/nci,s.

Generating Perturbations to Enhance Images. To enhance an image using a pretrained ANN, we
maximize Lgt through projected gradient ascent, onto a hypersphere of radius ϵ, in pixel-space (See
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Appendix Section S1 for model training and projection details). In some cases, we also explicitly
minimize the logit of competing classes. We generate perturbed image x′ via the optimization:

x′ = x+ argmax
∥δ∥<ϵ

Lgt(x+ δ)− α

c− 1

∑
ci∈C,ci ̸=gt

Lci(x+ δ) (1)

In equation 1, δ is a perturbation tensor of the same dimensionality as x and an ℓ2 norm less than
pixel budget ϵ. Lgt is the ANN’s logit score associated with the ground truth class, and Lci is the
logit associated with class ci (c is the total number of classes, C is the set of competing classes).
α determines the extent to which logits for competing classes are minimized.We set α = 0 for the
ImageNet animal classification experiments and α = 1 for the learning experiments.

Image classification and learning experiments with human participants. We recruited 521 human
subjects using the online platform Prolific. We allowed subjects to participate in multiple experi-
ments, but only once for each of the three learning tasks. We used the JsPsych library (De Leeuw,
2015) with the JsPsychPsychophsics plugin (Kuroki, 2021) for all experiments. All experiments in-
cluded 10-12.5% attention check trials where the participant is asked to classify an image of a circle
or triangle. We analyzed data from participants with ≥ 90% attention check accuracy.

To measure the effects of enhancement on a presumably already-learned task, we tested the accuracy
of human subjects at classifying 16 basic types of animals (frog, bird, dog, etc., see Appendix
section S3). Images were shown for 17 milliseconds each, after which the participant was given 15
seconds to respond. All images were drawn from the validation set of ImageNet (Deng et al., 2009).
Appendix Fig. S2 shows screenshots of the task as it appeared to participants. Each subject viewed
interspersed images from 9 conditions: original images, images enhanced by maximizing Lgt with
ϵ = 5, 10, 15, and 20, images disrupted by minimizing Lgt with ϵ = 10, and images enhanced with
three baseline enhancement algorithms (see Fig. 1). Participants were notified after each incorrect
response and given a small monetary bonus for each correct response (except for disrupted images).
62 participants viewed 18 images for each of 16 classes, 2 from each condition, in a shuffled ordering
for a total of 288 trials per participant and 17,856 overall. These main trials followed a screening
phase with 32 trials (200ms presentation times, 24 or more correct with at least one correct per class
required to proceed, multiple screening attempts allowed) and a 32-trial warm-up phase with 17ms
image presentations. Screening and warm-up phases used original, unmodified images, and data
from these phases was not included in any analyses.

The image category learning tasks consisted of either 4 (moths, dermoscopy) or 2 (histology) image
classes. Participants were shown each image for up to 10 seconds and used the mouse (4-way tasks)
or keyboard (binary task, “F” and “J” keys) to respond. After each trial, the participant was notified
of the ground truth label and whether their response was correct. (screenshots in appendix Fig. S3).
Each session consisted of 8 training blocks of 16 trials each (4 per class, or 2 per class for histology),
and 2 testing blocks of 20 trials each during which no post-trial feedback was provided. Each block
contained an equal number of images from each class in random order. Participants were informed
upon recruitment that they could receive a progressively higher monetary bonus if their test-phase
accuracy exceeded certain thresholds. Before participating in the main learning tasks, subjects had
to first learn an easier binary classification task (leatherback vs. loggerhead turtles) and respond
correctly to at least 7 of 8 test-phase trials. We randomly assigned ~30 participants per experimental
condition, with ~60 participants for ablation study control conditions (min. 27, max. 68).

Assisting learners with the L-WISE algorithm. L-WISE consists of two strategies applied in par-
allel: Enhancement Tapering (ET) and Difficulty Selection (DS). Both strategies operate only on
images in the first 6 of 8 trial blocks in the training phase. In ET, we enhanced images in the first
block of training-phase trials with ϵ = 8. ϵ is halved for each subsequent block until it is set to 0 after
the 6th block. In DS, only images with d < db were sampled for each block b. db was incremented
by 0.15 at the end of each of the first six blocks, beginning at d1 = 0.1 and reaching d7, d8 = 1.0.
Determining an effective schedule of ϵ and dmax did not require extensive hyperparameter tuning.
After a pilot experiment in which we decreased ϵ linearly starting from ϵ = 20, (see appendix
Fig. S9H-M), we switched to the ϵ schedule above changed no other hyperparameters for any of the
three learning tasks/image domains. In the “shuffled” versions of DS and ET (Section 4.3), all trials
in the first 6 blocks are selected or enhanced before a constrained shuffling procedure, where each
image may switch positions with any other of the same class regardless of d or ϵ.
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7 ETHICS STATEMENT

This study involved experiments with human participants conducted over the internet, using the
Prolific platform for the main experiments and Amazon Mechanical Turk for pilot experiments. We
followed a study protocol approved by the ((anonymized IRB information)). Participants provided
informed consent before participating in any experiments. The experiments posed no greater than
minimal risk to the participants. All participants were anonymous, and all data is de-identified.
Participants were provided with our contact information, and that of the ((anonymized research
office of our institution)), for any questions or concerns about the study. We calibrated the participant
compensation amounts for each experiment to meet or exceed the equivalent of $15.00 USD per
hour, including during screening tasks. Participants were recruited using the "Standard Sample"
option in Prolific, and were diverse in gender, age, and race/ethnicity (please see Table S2 for a
demographic breakdown).

We hope that our work will eventually lead to practical and beneficial applications in education
- for example, in the training of doctors in certain specialties such as pathology, radiology and
dermatology where visual perceptual learning is an important part of clinical training. We wish to
emphasize, however, that more work is needed before our methods can be safely applied in sensitive
or high-stakes settings. For example, we apply our approach to improve human performance on
a dermoscopy skin lesion classification task derived from the HAM10000 dataset (Tschandl et al.,
2018). This dataset is heavily skewed towards images of pale skin, likely a reflection of the lower
incidence of skin cancers such as melanoma among people with darker skin tones (Cormier et al.,
2006). Models trained on this dataset are known to perform poorly for patients with darker skin
(Daneshjou et al., 2022), where melanoma tends to have a different appearance, unfamiliarity with
which on the part of clinicians contributes to delayed diagnosis and increased mortality among such
patients (Thompson et al., 2023). It is plausible that maximizing the melanoma-associated logit
of a robustified model perturbs the images to look more like an average presentation of melanoma
(i.e., on light skin), which would risk imparting this bias onto the learner. A similar risk might
apply to image selection: images with the highest groundtruth logits (which L-WISE presents at the
beginning of learning) might tend to belong to specific subclasses or limited regions of the overall
class distribution. The possibility of biased perturbations or image selections must be thoroughly
investigated in future work before any applications of our methods in this domain.

8 REPRODUCIBILITY STATEMENT

We list all hyperparameters for training robustified neural networks and using them to enhance im-
ages in the appendix. Upon publication, we will provide source code that reproduces all data pro-
cessing steps, figure plotting, and experiments. This includes experiments with human participants:
we have developed a flexible framework for automated deployment of web-based image category
learning experiments to a suite of cloud-based services, including hosting the task as an interactive
web page and mechanisms for random group assignment and data collection. The experiments with
human participants can therefore be reproduced and readily extended or modified with only a modest
amount of configuration required.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

REFERENCES

Adobe Inc. Adobe photoshop lightroom classic, 2024. URL https://www.adobe.com/
products/photoshop-lightroom-classic.html. Version 13.5.1.

Alaaeldin Ali, Hugo Touvron, Mathilde Caron, Piotr Bojanowski, Matthijs Douze, Armand Joulin,
Ivan Laptev, Natalia Neverova, Gabriel Synnaeve, Jakob Verbeek, et al. Xcit: Cross-covariance
image transformers. Advances in neural information processing systems, 34:20014–20027, 2021.

Saeed Anwar, Salman Khan, and Nick Barnes. A deep journey into super-resolution: A survey.
ACM Computing Surveys (CSUR), 53(3):1–34, 2020.

Robert Baldock, Hartmut Maennel, and Behnam Neyshabur. Deep learning through the lens of
example difficulty. Advances in Neural Information Processing Systems, 34:10876–10889, 2021.

Dongliang Chang, Kaiyue Pang, Ruoyi Du, Yujun Tong, Yi-Zhe Song, Zhanyu Ma, and Jun Guo.
Making a bird ai expert work for you and me. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 45(10):12068–12084, 2023.

Joseph A Chapman and John EC Flux. Introduction to the lagomorpha. In Lagomorph biology:
evolution, ecology, and conservation, pp. 1–9. Springer, 2008.

Minkyu Choi, Kuan Han, Xiaokai Wang, Yizhen Zhang, and Zhongming Liu. A dual-stream neural
network explains the functional segregation of dorsal and ventral visual pathways in human brains.
Advances in Neural Information Processing Systems, 36:50408–50428, 2023.

Janice N Cormier, Yan Xing, Meichun Ding, Jeffrey E Lee, Paul F Mansfield, Jeffrey E Gershen-
wald, Merrick I Ross, and Xianglin L Du. Ethnic differences among patients with cutaneous
melanoma. Archives of internal medicine, 166(17):1907–1914, 2006.

Francesco Croce and Matthias Hein. Reliable Evaluation of Adversarial Robustness with an Ensem-
ble of Diverse Parameter-free Attacks. International Conference on Machine Learning, 2020.

Roxana Daneshjou, Kailas Vodrahalli, Roberto A Novoa, Melissa Jenkins, Weixin Liang, Veronica
Rotemberg, Justin Ko, Susan M Swetter, Elizabeth E Bailey, Olivier Gevaert, et al. Disparities
in dermatology ai performance on a diverse, curated clinical image set. Science advances, 8(31):
eabq6147, 2022.

Joshua R De Leeuw. jspsych: A javascript library for creating behavioral experiments in a web
browser. Behavior research methods, 47:1–12, 2015.

Edoardo Debenedetti, Vikash Sehwag, and Prateek Mittal. A light recipe to train robust vision
transformers. In 2023 IEEE Conference on Secure and Trustworthy Machine Learning (SaTML),
pp. 225–253. IEEE, 2023.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Logan Engstrom, Andrew Ilyas, Hadi Salman, Shibani Santurkar, and Dimitris Tsipras. Robustness
(python library), 2019. URL https://github.com/MadryLab/robustness.

Thomas Fel, Ivan F Rodriguez Rodriguez, Drew Linsley, and Thomas Serre. Harmonizing the object
recognition strategies of deep neural networks with humans. Advances in neural information
processing systems, 35:9432–9446, 2022.

Iuri Frosio and Jan Kautz. The best defense is a good offense: adversarial augmentation against
adversarial attacks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 4067–4076, 2023.

Roy Ganz, Bahjat Kawar, and Michael Elad. Do perceptually aligned gradients imply robustness?
In International Conference on Machine Learning, pp. 10628–10648. PMLR, 2023.

Guy Gaziv, Michael Lee, and James J DiCarlo. Strong and precise modulation of human percepts
via robustified anns. Advances in Neural Information Processing Systems, 36, 2024.

12

https://www.adobe.com/products/photoshop-lightroom-classic.html
https://www.adobe.com/products/photoshop-lightroom-classic.html
https://github.com/MadryLab/robustness


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Chong Guo, Michael J Lee, Guillaume Leclerc, Joel Dapello, Yug Rao, Aleksander Madry, and
James J Dicarlo. Adversarially trained neural representations are already as robust as biological
neural representations. International Conference on Machine Learning, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Johann Siegfried Hufnagel. Tabelle von den nachtvögeln. Berlinisches Magazin, 1(4):618, 1767.
URL http://resolver.sub.uni-goettingen.de/purl?PPN484874233_0004.

Ziheng Jiang, Chiyuan Zhang, Kunal Talwar, and Michael C Mozer. Characterizing structural reg-
ularities of labeled data in overparameterized models. In Marina Meila and Tong Zhang (eds.),
Proceedings of the 38th International Conference on Machine Learning, volume 139 of Proceed-
ings of Machine Learning Research, pp. 5034–5044. PMLR, 18–24 Jul 2021.

Daniel J Jobson, Zia-ur Rahman, and Glenn A Woodell. A multiscale retinex for bridging the
gap between color images and the human observation of scenes. IEEE Transactions on Image
processing, 6(7):965–976, 1997.

Edward Johns, Oisin Mac Aodha, and Gabriel J Brostow. Becoming the expert-interactive multi-
class machine teaching. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 2616–2624, 2015.

Juyeop Kim, Jun-Ho Choi, Soobeom Jang, and Jong-Seok Lee. Amicable aid: Perturbing images
to improve classification performance. In ICASSP 2023-2023 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 1–5. IEEE, 2023.

Daiichiro Kuroki. A new jspsych plugin for psychophysics, providing accurate display duration and
stimulus onset asynchrony. Behavior Research Methods, 53:301–310, 2021.

Weiyang Liu, Bo Dai, Ahmad Humayun, Charlene Tay, Chen Yu, Linda B Smith, James M Rehg,
and Le Song. Iterative machine teaching. In International Conference on Machine Learning, pp.
2149–2158. PMLR, 2017.

Zhong-Lin Lu and Barbara Anne Dosher. Current directions in visual perceptual learning. Nature
reviews psychology, 1(11):654–668, 2022.

Oisin Mac Aodha, Shihan Su, Yuxin Chen, Pietro Perona, and Yisong Yue. Teaching categories to
human learners with visual explanations. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 3820–3828, 2018.

Aleksander Ma̧dry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. To-
wards deep learning models resistant to adversarial attacks. International Conference on Learning
Representations, 2018.

David Mayo, Jesse Cummings, Xinyu Lin, Dan Gutfreund, Boris Katz, and Andrei Barbu. How
hard are computer vision datasets? calibrating dataset difficulty to viewing time. Advances in
Neural Information Processing Systems, 36:11008–11036, 2023.

Everett Mettler and Philip J Kellman. Adaptive response-time-based category sequencing in percep-
tual learning. Vision research, 99:111–123, 2014.
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Figure S1: Ground truth logit enhancement with robustified ANNs leads to semantically mean-
ingful perturbations. The top row shows original ImageNet images, and the second row shows the same
images after enhancement by robustified ResNet-50 (training ϵ=3) with a pixel budget of ϵ = 20. The third row
shows a 5x magnified version of the difference between the enhanced image and the original, and the bottom
row shows a heat map where red regions correspond to larger changes and blue regions correspond to smaller
changes.

S1 DETAILS ON TRAINING AND USING ROBUSTIFIED GUIDE MODELS

We adversarially trained a ResNet-50 model on ImageNet (Deng et al., 2009), and another on iNatu-
ralist 2021 (Van Horn & Mac Aodha, 2021), with the hyperparameters following Gaziv et al. (2024):

• Epochs = 200

• Base learning rate of 0.1, decreasing by a factor of 10 every 50 epochs

• Batch size = 256

• Weight decay = 0.0001

• Adversarial training ϵ = 3.0 (ImageNet) or ϵ = 1.0 (iNaturalist)

• 7 gradient steps for adversarial attacks

• Adversarial attack step size of 0.5 (ImageNet) or 0.3 (iNaturalist)

The ResNet-50 model adversarially trained on ImageNet was used directly to generate perturba-
tions and difficulty rankings for the 16-way animal classification task, using the logits of the orig-
inal, fine-grained ImageNet classes (i.e., not the 16 superclasses, “grasshopper” not “insect”) for
both enhancement and difficulty prediction. The same model was adversarially fine-tuned on the
HAM10000 and MHIST datasets before their application (as part of L-WISE) to the dermoscopy and
histology tasks respectively. Generally, we trained the models on all available classes in each dataset.
For example, we fine-tuned on all 7 classes of the HAM10000 dermoscopy dataset (Tschandl et al.,
2018), even though we only used 4 of them in the learning tasks. When enhancing the images, we
include only classes that are part of the experimental tasks as competing classes to have their logits
minimized (see main-text equation 1).
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For the moth task, we adversarially fine-tuned the (adversarially) iNaturalist-pretrained model on
the four moth classes to be used in the task (which are part of iNaturalist). We subjectively judged
the perturbations from this fine-tuned model to be more compelling than those generated using the
iNaturalist-pretrained model without fine-tuning, as the four classes of interest are among the 10,000
iNaturalist classes.

All fine-tuning used ϵ = 1.0 for adversarial training. We tuned various hyperparameters (learning
rate, data augmentation strategies, etc.) during fine-tuning to maximize validation set performance
on the images to be used for the learning tasks. We fine-tuned the entire network end-to-end for each
task.

Our choice of ϵ=3 for ImageNet pretraining follows Gaziv et al. (2024), who found this to be an op-
timal choice for perturbations that disrupt category perception (relative to ϵ=1 and ϵ = 10). In prac-
tice, we found that the models were unable to learn finer-grained tasks with training-time adversarial
perturbations as large as ϵ=3 (iNaturalist pretraining and fine-tuning on moth photos, dermoscopy
images, and histology images) - therefore, we reverted to ϵ=1 for these settings.

To enhance images in a category-specific manner, we perform the optimization of Equation 1 (main
text) in a series of steps using projected gradient descent (equation 2), where k denotes the optimiza-
tion step, η the step size, and Projϵ a projection onto a hypersphere of radius ϵ with x at its center.
All enhancements with pixel budget ϵ use ceil(2ϵ) steps of η = 0.5 in a 224× 224× 3 pixel space.

δk+1 = Projϵ

(
δk − η∇δ

(
Lgt(x+ δk)−

α

c− 1

∑
ci∈C,ci ̸=gt

Lci(x+ δk)
))

(2)

Fig. S1 shows several example images enhanced with ϵ = 20 using this approach by ϵ = 3
adversarially-pretrained ResNet-50, along with difference images and heat maps produced by the
same method as Figs. 3-4 in the main text.

S2 DETAILS ON IMAGE PREPARATION FOR EXPERIMENTS

All images presented in all experiments were of size 224× 224× 3, matching the input dimensions
of ResNet-50. Before presentation or any model-based enhancement or difficulty prediction, origi-
nal images were resized such that the shortest dimension (width or height) was 224 pixels, and then
center-cropped to 224 × 224. Any single-channel grayscale images were converted to RGB before
further processing. The baseline enhancement algorithms Contrast-Limited Adaptive Histogram
Equalization (CLAHE (Zuiderveld, 1994)), Multi-Scale Retinex with Color Restoration (MSRCR
(Jobson et al., 1997; Petro et al., 2014)), and the “Auto” image tuning feature in Adobe Photoshop
Lightroom (Auto-LR (Adobe Inc., 2024)) were applied before the resizing and center-cropping op-
erations.

We generally used images from the validation sets of each dataset for the image category learning
experiments, reasoning that the robustified models would be overfitted to training images which
could potentially compromise the quality of perturbations and relative difficulty estimates. How-
ever, for the moth task, we were limited to 10 validation images per class in the iNaturalist dataset
(Van Horn & Mac Aodha, 2021). In this case we used training set images during the training period
of the human image category learning experiment and validation images during the test phase. We
show that image enhancements are still effective for training set images in Fig. S8A.
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A. B.

C. D.

Figure S2: Task interface for ImageNet animal classification with human participants. Subjects
classified images among 16 categories. During each trial, the subject clicks the fixation cross (panel A) and
the image is flashed for 17 milliseconds (panel B) with a 200ms presentation of a blank screen immediately
before and after. The mouse cursor is hidden during the image presentation. Images are presented such that
they subtend approximately 6 degrees of visual angle, with calibration for each participant using a blind-spot
calibration procedure. After viewing the image, the participant clicks one of 16 buttons shown in panel C, which
are randomly rotated in position every trial, within 15 seconds. For incorrect responses (except on images that
are disrupted via ground truth logit minimization), or if 15 seconds elapses without a response, the participant
is shown the black X for one second (panel D). Otherwise, no explicit feedback is given and the next trial begins
immediately. Attention check trials featuring an image of a circle or triangle (see Fig. S3D for an example
image) were interspersed with the main trials. For the attention check trials, two of the animal icons in panel
C were randomly selected to be replaced with circle and triangle icons.

S3 DETAILS ON 16-WAY IMAGENET ANIMAL CATEGORIZATION
EXPERIMENTS

We curated 16 sets of ImageNet classes corresponding to 16 basic animal superclasses for our basic
animal classification experiments (Figs. 1-S2), adapting and expanding the Restricted ImageNet
dataset defined in the Robustness library (Engstrom et al., 2019). The assignment of specific animal
classes to each superclass is listed below:

• Dog: classes 151–268

• House Cat: classes 281–285

• Frog: classes 30–32

• Turtle: classes 33–37

• Bird: classes 80–100 and 127–146
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A. B.

C. D.

Figure S3: Task interface for image category learning experiments. In the 4-way image category
learning experiments (moths, dermoscopy), human subjects learned to classify four types of images that were
represented by randomly assigned aliases “Ajax,” “Eris,” “Leda,” and “Tyro.” The image was shown for up
to 10 seconds, during which the participant could click on one of the four buttons (panel A). Participants are
shown a black X (1.5 seconds) immediately following an incorrect response or a >10s timeout (panel B), or a
green check after a correct response (panel C). The alias corresponding to the correct class is also displayed
on the feedback screen. Panel D shows an example of an attention check trial.

• Monkey: classes 369–382

• Fish: classes 0, 1, 389, 391, 392, 393, 394, 395, 396, 397

• Crab: classes 118–121

• Insect: classes 300–320

• Lizard: classes 38–48

• Snake: classes 52–68

• Spider: classes 72–77

• Big Cat: classes 286–293

• Bear: classes 294–297

• Rodent: classes 330, 331, 332, 333, 335, 336, 338

• Antelope: classes 351–353

We excluded certain classes on a case-by-case basis in an attempt to minimize errors due to mis-
understanding the animal categories as opposed to errors of visual perception. For example, we
did not include porcupines, hedgehogs, or beavers in the “rodent” class (as many people may not
recognize these as rodents), and we do not include eels in the “fish” class due to the possibility of
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confusion with snakes. Our classification of rabbits and hares as “rodents” is technically incorrect,
as they were reclassified to the order Lagomorpha in 1912 Chapman & Flux (2008) (we thank the
participant who notified us of this).

We mistakenly classified rabbits and hares as “rodents,” although they were reclassified to the order
Lagomorpha in 1912.

S4 DETAILS ON IMAGE CATEGORY LEARNING EXPERIMENTS

Figs. S2 and S3 show the task interfaces for the 16-way animal classification and 4-way image cat-
egory learning experiments with human participants, respectively. The positions of the four buttons
used to indicate responses are randomly permuted for each participant.

To minimize biases stemming from prior declarative knowledge of the tasks or classes, for each
participant in the 4-category learning tasks we randomly assign a four-letter, two-syllable name from
the set "Ajax," "Eris," "Leda," and "Tyro" drawn from Greek mythology, each having four letters,
two syllables, two consonants, and two phonetic vowels. We found no evidence that associating
certain categories with certain aliases consistently affected test-phase accuracy (see Figs. S12 and
S13).

We used a different approach for the binary histology task that employed the MHIST dataset (Wei
et al., 2021), giving benign hyperplostic polyp the alias “benign” and sessile serrated adenoma the
alias “malignant” (although sessile serrated adenoma is really a pre-cancerous legion). The histology
task has an interface very similar in appearance to that of the 4-way tasks (as shown in Fig. S3),
except that the “benign” and “malignant” buttons always appear either on side of the presented
image (in a random order for each participant), and the participant responds by pressing the F key
for the left-hand category or J for the right instead of clicking one of the buttons.

S5 PREDICTING IMAGE DIFFICULTY USING GROUND TRUTH LOGIT OF A
ROBUST MODEL, COMPARED WITH PRIOR STATE-OF-THE-ART
APPROACHES

In the L-WISE algorithm, we predict the difficulty of each image using its ground truth logit repre-
sentation (Lgt) from a robustified ANN such as ResNet-50. We conducted an additional experiment
to compare the ground truth logit with prior state-of-the-art predictors of image difficulty for hu-
mans established by Mayo et al. (2023). We apply logistic regression to predict correct v.s. incorrect
responses to each image across all participants in our 16-way ImageNet animal classification ex-
periment, using (1) c-score (approximated by the epoch during training at which an image is first
correctly predicted (Jiang et al., 2021)), (2) prediction depth (earliest layer upon which a linear probe
makes the same prediction as the final output (Baldock et al., 2021)), (3) image-level adversarial ro-
bustness (minimum magnitude of image perturbation required to change the network’s prediction),
and (4) ground truth logit from both (A) vanilla and (B) robustified ResNet-50 models (see Fig. S4).
C-score, prediction depth, and adversarial robustness are implemented following Mayo et al. (2023).
The results show that the ground truth logit from robust ResNet-50 (Lgt), the metric we use in L-
WISE, significantly outperforms all other predictors of image difficulty, including all other metrics
combined into one model (“Combined w/o Lgt” in Fig. S4). Furthermore, combining all other met-
rics with Lgt does not improve performance beyond Lgt alone. We also find that using a robustified
model greatly improves the predictivity of Lgt and (marginally) adversarial robustness, but not of
the c-score or prediction depth.

S6 COMPARISON OF DIFFERENT ANN GUIDE MODELS FOR DIFFICULTY
PREDICTION AND IMAGE ENHANCEMENT

Our main results use robustified ResNet-50 as a guide model for perturbations. To evaluate the im-
portance of the choice of guide model, we compared the accuracy of difficulty prediction (Fig. S5)
and the effects of enhancement with eps = 20 (Fig. S6) using 6 different guide models in the 16-
way animal classification task. The results show that setting ϵ to a value of 3 during adversarial
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Figure S4: Robustified ground truth logit is a state-of-the-art predictor of image difficulty for
humans, outperforming the c-score, prediction depth, and adversarial epsilon of both vanilla
and robustified models. AUC estimates are based on fitted logistic regression models using one or more
features listed under each bar. Error bars are 95% confidence intervals for the mean from 10,000 bootstrap
replicates. The chance level is AUC=0.5.
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Figure S5: Accuracy of image difficulty prediction using ground truth logits from different
model types. AUC estimates and 95% confidence interval error bars are generated by the same procedure
as in Fig. S4 - however, results are not directly comparable between the two figures as different ANN training
runs were used for consistency within each experiment. RN50 = ResNet-50, and ϵ values in the labels for
each bar show the magnitude of the adversarial perturbations during adversarial training. The chance level is
AUC=0.5.

training of ResNet-50 yields more accurate difficulty predictions and more effective perturbations
than ϵ = 1 or ϵ = 10 training (consistent with disruption modulation results in Gaziv et al. (2024)),
while perturbations guided by a non-adversarially-trained “vanilla” model have negligible effects.
Although training ResNet-50 with CutMix improves its robustness to adversarial perturbations (Yun
et al., 2019), CutMix-ResNet-50 does not outperform vanilla ResNet-50 in image difficulty pre-
diction and perturbations using it as a guide model do not significantly increase accuracy beyond
that on original images. In addition to ResNet-50, we tested the difficulty prediction and image
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Figure S6: Effectiveness of image category enhancement across different guide model types.
Each bar shows the mean and 95% confidence interval (by bootstrap) of the rate at which humans choose the
original ground truth label, in a 16-way basic animal classification task using ImageNet images. The "Original"
bar shows accuracy for unmodified images, and other bars show accuracy of the same participants on images
enhanced (ϵ = 20) using gradients from the corresponding guide model. RN50 = ResNet-50, and ϵ values in
the labels for each bar show the magnitude of the adversarial perturbations during adversarial training.

enhancement capabilities of an adversarially trained vision transformer model, XCiT (Ali et al.,
2021). Debenedetti et al. (2023) showed that the XCiT architecture is more suitable for adversarial
training than the original vision transformer. XCiT generates reasonably accurate image difficulty
predictions (on par with the previous state-of-the-art) and generates image perturbations that in-
crease human categorization accuracy by a comparable degree to robustified ResNet-50. For the
experiments in Figs. S5 and S6, we used pretrained guide models provided by Gaziv et al. (2024)
(Vanilla, ϵ = 1, ϵ = 3, and ϵ = 10 ResNet-50 models), Yun et al. (2019) (CutMix ResNet-50),
and Debenedetti et al. (2023) (ϵ = 4 XCiT). Examples of images enhanced by each of these guide
models with ϵ = 20 are displayed in Fig. S7.

S7 ABLATION STUDY ON LOGIT MAXIMIZATION APPROACH TO
ENHANCEMENT

To conduct a limited ablation study on our approach to image enhancement, we conducted an addi-
tional 16-way ImageNet animal classification experiment with 20 human participants. This experi-
ment was mostly identical to the 16-way animal classification experiment described in the main text,
except there were 6 image conditions instead of 9. Half of the trials used images from the ImageNet
validation set (as in the main experiment), and the other half from the training set. Within each
training/validation split, one third of the trials were original, unmodified images, one-third were
enhanced by maximizing the ground truth logit with ℓ2 pixel budget ϵ = 10, and one-third were
enhanced by minimizing the cross-entropy loss with ϵ = 10. Results of this experiment are summa-
rized in Fig. S8A. We hypothesized that logit-based enhancement would provide superior results,
particularly for images that started off with low cross-entropy loss. We further hypothesized that
enhancements would be less effective for training images due to overfitting of the guide model on
them. The results show that logit maximization is effective on both training and validation images,
and induces a higher increase in accuracy for a given pixel budget ϵ than cross-entropy minimiza-
tion. Indeed, cross-entropy minimization significantly increased accuracy only for validation images
and not for training images. Unexpectedly, participants were more accurate on original, unmodified
training set images than on original, unmodified validation set images. According to Russakovsky
et al. (2015), the ImageNet ILSVRC 2012 validation set was collected using the same methodology
as the training set, but at a later time. It is therefore plausible that the images and labels in the
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Figure S7: Meaningful perturbations require robust models, and are possible with CNN and
vision transformer architectures. Each row shows an image from ImageNet (original on the far left)
enhanced with ϵ = 20 by different guide models. A quantitative comparison of different models’ perturbation
efficacies with regards to improving human classification accuracy can be found in Appendix Fig. S6.

validation set are drawn from a slightly different distribution than those in the training set, resulting
in this accuracy discrepancy.

S8 ADDITIONAL RESULTS FROM IMAGE CATEGORY LEARNING
EXPERIMENTS

Fig. 3 in the main text shows learning curves (mean accuracy by condition as a function of trial
number), and schedules for image difficulty selection and enhancement ϵ, for the moth photograph
task: similar plots are shown for the dermoscopy task in Fig. S9 and the histology task in Fig. S10.
Panels H-M of Fig. S9 show the results of an early pilot experiment that used image enhancement in
isolation (no difficulty selection), in which we suspect the perturbation magnitude ϵ was set too high
causing participants to learn exaggerated features and fail to generalize to natural images with subtler
features. This prompted us to switch to the ϵ schedule we used for our main learning experiments,
which starts at ϵ = 8 instead of ϵ = 20. Panel C of Fig. S10 shows the relationship between
the ground truth logit from robust ResNet-50 model and how many of the 7 expert annotators of the
MHIST histology dataset Wei et al. (2021) agreed on the same category label: on average, the model
is more “confident” in its predictions on images where experts agree to a larger extent.

In addition to the agreement of expert MHIST annotators, the ground truth logit successfully predicts
the proportion of human participants who select the correct ground truth label across all tasks we
tested. Difficulty prediction results from the 16-way ImageNet task are shown in Fig. 1 in the main
text, and from the moth photograph, dermoscopy, and histology tasks in Fig. S11 (Panels A1, B1,
and C). For the non-ImageNet tasks, we rely on test-phase data from control group participants who
had just learned the tasks in question.
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Figure S8: Ablation results for image enhancement with ImageNet images. Logit maximization
enhancement is effective for images used to train the robustified CNN used as a guide model, and also for
held-out validation images (panel A). Logit-max enhancement is more efficient at increasing human accuracy
within a given pixel budget (ϵ = 10) than enhancement by cross entropy minimization (panel A). The efficacy
of logit-max enhancement depends on the difficulty of the original image as estimated by the starting ground
truth logit (panel B). In the bar plot of panel B, images were assigned to 4 quadrants based on their ground
truth logit values, and for each quadrant the mean difference in accuracy was calculated between original,
unmodified images and images enhanced with ϵ = 10 (using data from the main 16-way animal classification
experiment). The images below each bar illustrate an example image from the category “antelope” drawn from
the corresponding difficulty quadrant. All error bars are 95% confidence intervals for the mean from 10,000
bootstrap replicates.

We can also attempt to measure the extent to which images with higher levels of enhancement are
easier for novice participants to recognize during the learning tasks (Fig. S11A2,B2). This analysis
is limited to the first training trial blocks in the “ET (shuffled)” participant group in the ablation study
(main-text Table 1), the only group that viewed enhanced images without monotonically decreasing
ϵ. Note that there were 6 discrete ϵ values (1 per block in the non-shuffled ET condition), and the
analysis is complicated by the fact that participants were still learning the task when they made the
responses underlying these plots. We are also unable to compare with ϵ = 0 unmodified images
because participants did not view new unmodified images in the corresponding training blocks.
There are no results here for the histology task because the ablation study was conducted only
for moth photos and dermoscopy images. In the dermoscopy task, participants respond with the
original, correct category label statistically significantly more often when viewing images enhanced
with greater ϵ (Fig. S11B2). A similar trend was not statistically significant for the moth photograph
task (Fig. S11B1), perhaps due to the limitations of this particular analysis outlined above. We can
observe strong effects of image enhancement in both the moth photograph and dermoscopy tasks by
examining the enhancement only (“Enhancement Taper/ET”) arm of the ablation study (Table 1 in
the main text): for both tasks, participants in the ET condition had higher test-phase accuracy than
participants in the control conditions, and these differences were statistically significant.

To evaluate whether L-WISE has differential effects on human image category learning depending
on the image class, we record test-phase precision and recall for each class among L-WISE and con-
trol groups in Table S1. The same data are visualized in Fig. 4B. Our experiments are statistically
underpowered to detect class-specific differences in performance (as opposed to aggregated perfor-
mance) - however, we can observe in a coarse sense that the sample means of precision and recall
are numerically higher in the L-WISE group across all classes in all tasks. This suggests that over-
all accuracy improvements attributed to L-WISE are distributed among the various image classes,
rather than being the result of isolated improvements in the detection of certain classes.
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Figure S9: Plots showing the accuracy trajectory of human participants throughout train-
ing/testing in the main dermoscopy learning experiment (panels A-G) and a preceding pilot
experiment after which the epsilon tapering schedule was adjusted (panels H-M). All conven-
tions are identical to main-text Fig. 3. There is a statistically significant difference between the test-phase
performance of the L-WISE participants and that of the control participants (chi-square test, p < 0.001) in
panel G but not for the pilot experiment in panel M. Notably, the last portion of the training phase does not
feature any image enhancements (see Fig. 2F): we suspect that this is the reason for the sudden decline in
accuracy in the enhancement group of the pilot experiment (M)

S9 PARTICIPANT DROPOUT RATES ARE LOWER WHEN L-WISE ASSISTANCE
IS PROVIDED

On the Prolific platform where we ran our experiments, participants can choose to withdraw from
studies partway through if they no longer wish to participate (this is called “returning” a study in
the Prolific interface). For the moth photograph and dermoscopy image category learning tasks,
participants who received L-WISE assistance in full or partially ablated form (see Table 1) were less
likely to withdraw.
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Figure S10: Plot showing the accuracy trajectory throughout training/testing of human partici-
pants in the histology learning experiment. All conventions follow Fig. 3. Panel C shows the association
between agreement among the 7 expert pathologist annotators of the MHIST dataset (Wei et al., 2021) and the
ground truth logit score of each image from a robustified ResNet-50. Possible values of annotator agreement
are 4, 5, 6, or 7 of the annotators agreeing with each other (3 and below switches the “ground truth” category).
Error bars are 95% confidence intervals for the mean from 10,000 bootstrap samples.

Precision Recall

Control L-WISE Control L-WISE

Moth photos
seriata 0.46 (0.39–0.52) 0.52 (0.45–0.59) 0.43 (0.37–0.50) 0.63 (0.55–0.71)
tacturata 0.45 (0.40–0.50) 0.63 (0.55–0.71) 0.54 (0.47–0.61) 0.68 (0.60–0.76)
biselata 0.35 (0.30–0.41) 0.41 (0.32–0.50) 0.36 (0.31–0.42) 0.42 (0.35–0.50)
aversata 0.50 (0.44–0.56) 0.58 (0.50–0.66) 0.57 (0.50–0.63) 0.68 (0.59–0.77)

Dermoscopy
Benign mole 0.38 (0.33–0.43) 0.42 (0.36–0.48) 0.43 (0.38–0.48) 0.47 (0.40–0.54)
Melanoma 0.33 (0.29–0.38) 0.39 (0.35–0.44) 0.37 (0.31–0.42) 0.42 (0.37–0.47)
BCC 0.41 (0.36–0.46) 0.54 (0.46–0.61) 0.41 (0.36–0.47) 0.56 (0.48–0.63)
Benign keratosis 0.26 (0.22–0.30) 0.39 (0.34–0.43) 0.30 (0.25–0.35) 0.43 (0.36–0.49)

Histology
SSL (malignant) 0.58 (0.54–0.62) 0.60 (0.56–0.64) 0.66 (0.61–0.71) 0.70 (0.66–0.75)
HP (benign) 0.59 (0.55–0.64) 0.61 (0.56–0.67) 0.61 (0.56–0.66) 0.66 (0.62–0.70)

Table S1: L-WISE improves test-phase precision and recall across all image classes in
three image category learning tasks. BCC=basal cell carcinoma, SSL=sessile serrated adenoma, and
HP=hyperplastic polyp. In parentheses are 95% confidence intervals for the mean from 10,000 bootstrap repli-
cates, resampling from participant-wise precision and recall values.

Nine participants withdrew from the moth photograph category learning experiment. Among them,
six had been assigned to the control group, one to the “enhancement taper” group, one to the ”diffi-
culty selection” group, and one to the full L-WISE group. We can calculate the probability of d = 6
or more participants among the n = 9 who withdrew being from the control group, under the null
hypothesis that the probability of withdrawal is independent of group assignment, using the bino-
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Figure S11: Difficulty prediction and image enhancemement are effective across image do-
mains. Panels A1, B2, and C show the relationship between the ground truth logit from a fine-tuned ro-
bustufied ResNet-50 model and the rate at which human participants (from the control group of the ablation
study, see Table 1 in the main text) choose the ground truth label during the test phase following a training
phase in which they had just attempted to learn the task. Images are binned by ground truth logit to produce
the scatter plots, with the number of total trials listed for each bin. Vertical error bars are 95% confidence
intervals by bootstrap, and horizontal error bars show the standard deviation. Red lines illustrate fitted logistic
regression models. All logistic regression models had statistically significant coefficients for ground truth logit
(p < 0.01). Panels A2 and B2 show the relationship between enhancement ϵ and the rate at which humans
choose the ground truth category. This analysis is limited to the first training trial blocks in the “ET (shuffled)”
participant group in the ablation study (main-text Table 1), the only group that viewed enhanced images without
monotonically decreasing ϵ. The logistic regression coefficient for ϵ was statistically significant for dermoscopy
images (B2, p = 0.003) but not for moth photographs (A2, p = 0.14).

mial distribution via Equation 3 below (where p is the probability of being assigned to the control
group). Equation 3 evaluates here to a probability of 0.02, indicating that participants who withdrew
were significantly more likely to have been assigned to the control group than would be expected if
L-WISE assistance had no impact on the probability of withdrawal.

P (X ≥ d) = 1− P (X ≤ d− 1) = 1−
d−1∑
k=0

(
n

k

)
pk (1− p)

n−k (3)

Similarly, in the dermoscopy category learning experiment, 13 participants withdrew, of whom 6
were from the control group. In this case, Equation 3 evaluates to a probability of 0.041, again
indicating that participants in the control group withdrew at a significantly higher-than-expected
rate. Furthermore, 4 more of the 13 withdrawals were from the “Enhancement Taper (shuffled)”
group, which had test-phase accuracy indistinguishable from the control group (see Table 1). None
of the withdrawals from the dermoscopy experiment were from the full L-WISE group.

Overall, these results show that participants were more likely to withdraw from the study when
they did not receive assistance from L-WISE, perhaps reflecting the difficult nature of the moth
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photograph and dermoscopy image tasks at baseline. None of the participants withdrew from the
histology image experiment, precluding a similar analysis.

S10 NOTES ON “HALLUCINATIONS” IN ENHANCED IMAGES

To support our approach to assisting human learners, we demonstrate the ability to enhance cate-
gory perceptions in response to images using low-norm perturbations. Previous work by Gaziv et al.
(2024) showed that an image from one category can be perturbed in a targeted way such that a human
perceives it to belong to a different category. Features introduced by these perturbations could be
described as “hallucinations:” perceptions (by the model and the human viewer) of objects that are
typically not present in the camera’s view. Our image enhancement approach is a special case in the
wider realm of categorically targeted image modulation, in which maximization of the ground truth
logit perturbs the image such that it becomes a stronger and/or less ambiguous example of its class
according to the model’s judgement. Do these perturbations accentuate features that are already
present such that they are easier for humans to perceive under challenging conditions, or do they
improve human accuracy by hallucinating new features associated with the target category? Subjec-
tively, both phenomena seem to occur: panels C and D in Fig. 1 appear to show bolder contrasts and
(in panel C) even the appearance of better camera focus in class-relevant regions of the perturbed
images. Panel B in appendix figure Fig. S8 shows a clear example of hallucination, where a sem-
blance of an entire additional “antelope” appears in the foreground of the image. This distinction
may be important for education-oriented applications of our enhancement approach, as hallucina-
tions could plausibly impart potentially misleading information to the learner. On the other hand, it
is possible that hallucinated features can impart useful and therefore desirable representations of the
ground truth class despite departures from a natural image distribution.

S11 PARTICIPANT RECRUITMENT AND DEMOGRAPHICS

We recruited a grand total of 521 participants via the online platform Prolific. All participants live in
the United States and are fluent in English (as determined by Prolific). Each participant was eligible
to complete each learning experiment only once, to avoid collecting data from participants already
familiar with the task.

Our decision regarding the number of participants to recruit for each learning task experimental
group (targeting 30 on average) was intended to exceed the requirements of a simple power anal-
ysis we conducted following pilot experiments. Pilot experiments showed differences in test-time
accuracy between control and either enhancement taper (equivalent to ET in main-text Table 1) or
difficulty selection (equivalent to DS in Table 1) participants to be roughly 10%, with a standard
deviation of roughly 10% in each group.
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H0 : µ1 − µ2 = 0

H1 : µ1 − µ2 ̸= 0

Given:
δ = 0.1 (estimated mean difference)
σ = 0.1 (estimated standard deviation)
α = 0.05 (significance level)

1− β = 0.8 (power)

Estimated effect size d =
δ

σ
= 1.0

Required sample size per group: n = 2(z1−α/2 + z1−β)
2/d2

= 2(1.96 + 0.84)2/12

≈ 16 subjects per group at minimum

We provide a demographic breakdown of the participants in our study, aggregated across experi-
ments, in Table S2. Some participants took part in more than one of the experiments, but are only
counted once in the table.

Total participants 521
Pts. w/ demographic data 519 (99.6%)
Age

Mean (SD) 36.6 (11.9) years
Range 18-83 years

Sex
Female 289 (55.7%)
Male 227 (43.7%)
Not specified 3 (0.6%)

Ethnicity
White 338 (65.1%)
Black 54 (10.4%)
Asian 50 (9.6%)
Mixed 44 (8.5%)
Other 23 (4.4%)
Not specified 10 (1.9%)

Table S2: Demographic characteristics of study participants, aggregated across all experiments.
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Figure S12: Randomized assignment of aliases “Leda,” “Ajax,” “Eris,” and “Tyro” had mini-
mal impact on test-phase accuracy. Each group of four boxplots shows the relative effects of assigning
each alias to a specific class from the moth classification experiment. Each individual boxplot indicates the
distribution of participant-wise test-phase accuracy z-scores (normalized with mean and standard deviation
within each condition separately) among participants with mapping of a specific alias onto a specific class -
for example, the left-most boxplot within the right-most group describes the accuracy of participants who saw
benign mole images labelled as “Leda.” There is no evidence from one-way ANOVA that the random assign-
ment of aliases to classes influences test-phase performance.
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Figure S13: Randomized assignment of aliases “Leda,” “Ajax,” “Eris,” and “Tyro” had min-
imal impact on test-phase accuracy in the dermoscopy task. After correcting for multiple compar-
isons, there is no evidence that the random assignment of aliases to classes affects task performance. See also
Fig. S12.
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