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ABSTRACT

The currently leading artificial neural network models of the visual ventral stream
– which are derived from a combination of performance optimization and robus-
tification methods – have demonstrated a remarkable degree of behavioral align-
ment with humans on visual categorization tasks. We show that image perturba-
tions generated by these models can enhance the ability of humans to accurately
report the ground truth class. Furthermore, we find that the same models can
also be used out-of-the-box to predict the proportion of correct human responses
to individual images, providing a simple, human-aligned estimator of the relative
difficulty of each image. Motivated by these observations, we propose to augment
visual learning in humans in a way that improves human categorization accuracy
at test time. Our learning augmentation approach consists of (i) selecting images
based on their model-estimated recognition difficulty, and (ii) applying image per-
turbations that aid recognition for novice learners. We find that combining these
model-based strategies leads to categorization accuracy gains of 33-72% relative
to control subjects without these interventions, on unmodified, randomly selected
held-out test images. Beyond the accuracy gain, the training time for the aug-
mented learning group was also shortened by 20-23%, despite both groups com-
pleting the same number of training trials. We demonstrate the efficacy of our
approach in a fine-grained categorization task with natural images, as well as two
tasks in clinically relevant image domains – histology and dermoscopy – where
visual learning is notoriously challenging. To the best of our knowledge, our work
is the first application of artificial neural networks to increase visual learning per-
formance in humans by enhancing category-specific image features.

Code Webpage

1 INTRODUCTION

Over the last decade, artificial neural network (ANN) models have demonstrated superior perfor-
mance as image-computable emulators of neural processing along the human and monkey ventral
visual stream. Iterative efforts have developed models that are increasingly aligned with primate vi-
sion, as measured by their ability to predict both neural activity and behavioral responses (Schrimpf
et al., 2018). Beyond prediction, a promising class of these models – “robustified” deep ANNs
(Ma̧dry et al., 2018) – has been shown to enable the generation of image perturbations that pre-
dictably control both ventral stream neural activity (Guo et al., 2022) and human object categoriza-
tion reports (Gaziv et al., 2023; Croce & Hein, 2020). In our work, we ask whether the prediction
and control capabilities of robustified ANNs can be used to enhance human performance at visual
categorization tasks.

Beyond categorization of familiar visual categories, one practically important task is learning to rec-
ognize new, unfamiliar categories. Although humans can readily learn many new categories even
from a single example (Lake et al., 2011), some consequential tasks require extensive training to
reach high levels of performance. For example, medical specialists such as pathologists and radiol-
ogists devote numerous hours to mastering the diagnosis of various diseases from medical images.
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Figure 1: Robustified ANNs can be used out-of-the-box as image recognition difficulty estima-
tors and ground truth percept enhancers. We consider a 16-way basic animal classification task. Panel
A1 shows the correspondence between human categorization accuracy and model-computed ground truth logit
activation values. The curve denotes a logistic regression model predicting the probability of a correct response
using only the logit value (p < 0.001 from the Wald statistic, AUC = 0.72 under 10-fold cross validation).
A2 shows example images with varying ground truth logit values (predicted difficulty). B1 shows how perturb-
ing images via ground truth logit maximization increases human recognition accuracy progressively with the
ℓ2-norm perturbation pixel budget ϵ. Other off-the-shelf image enhancement methods do not increase catego-
rization accuracy, despite inducing larger perturbations of ϵ = 43, ϵ = 106, and ϵ = 26 on average from
left to right. B2 shows example images: unmodified (left), enhanced by ground truth logit maximization with
pixel budgets ϵ = 10 and ϵ = 20 (middle), and enhanced by baseline off-the-shelf methods (to the right of the
dotted line). All vertical error bars are 95% confidence intervals by bootstrap. Horizontal error bars in panel
A1 show the standard deviation among images within each logit value bin.

We identify a potential strategy to accelerate the visual learning process by extrapolating from the
perceptual learning literature. Simple visual tasks, such as line orientation discrimination, reveal
a curriculum effect whereby providing easy examples to a novice human learner, before gradually
increasing the difficulty, promotes faster perceptual learning (Lu & Dosher, 2022). Motivated by
these findings, we ask whether the human-aligned nature of robustified ANNs allows them to aug-
ment human learning in complex image domains, chiefly by reducing the initial task difficulty and
then increasing the difficulty as learning progresses. A demonstration that these models can be
used to enhance learning serves as an additional scientific test of the models’ alignment with human
perception, while also pioneering a potentially beneficial application of ANNs in education.

To test the viability of enhancing image category learning in humans, we first establish two key
empirical observations, summarized in Fig. 1: (i) we find that the human error rate in an image
categorization task is strongly predicted by the ground truth logit activation value of a robustified
ANN, making it a valid image recognition difficulty score for humans; (ii) we find that this relation-
ship also holds in reverse – pixel-level perturbations can be generated by the model to maximize the
ground truth logit activation, producing an “enhanced” version of the image that is easier for humans
to recognize as the ground truth category. While previous findings demonstrate that model-guided
perturbations can modulate human perception away from the ground truth category (Gaziv et al.,
2023), we conversely seek to amplify category-relevant features to facilitate correct classification.
We observe that our model-based image enhancements yield significant increases in human accu-
racy on a classification task with basic animal categories, unlike conventional image enhancement
techniques that adjust low-level image properties such as lighting and contrast. We thus propose an
algorithm that combines model-based image enhancement and image difficulty prediction to gener-
ate optimized curricula for novice humans learning challenging image categorization tasks.
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Figure 2: Robustified ANNs can be used to boost image category learning in humans. A novice
human learner undertakes a challenging image categorization task, which consists of a training phase (B) and
a test phase (C). Images for both phases are randomly drawn from a labeled image dataset of unfamiliar fine-
grained categories (A). Feedback (correct/incorrect, with indication of the correct category) is delivered after
each trial during the training phase only. Our proposed “Logit-Weighted Image Selection and Enhancement”
(L-WISE) approach uses an ANN model (D) to augment the visual curriculum by using the difficulty score to
sample images based on a predefined increasing schedule of maximal difficulty per trial (E), and by enhancing
images for easier recognition with an enhancement magnitude that decreases along a predefined schedule (F).

Our proposed method, “Logit-Weighted Image Selection and Enhancement” (L-WISE), is illustrated
in Fig. 2. In our primary experimental setting, a human participant learns an unfamiliar image cat-
egorization task by viewing a series of examples, providing a category judgment for each image
before receiving feedback indicating the correct category (Fig. 2A,B). Upon completion of the train-
ing phase, test accuracy is measured on held-out images in similar trials without feedback (Fig. 2C).
L-WISE intervenes on this naive visual learning baseline by using a robustified ANN model in two
ways: (i) it uses the ground truth logit difficulty score to sample training images based on a prede-
fined, increasing schedule of maximal difficulty per trial (Fig. 2D,E); (ii) it enhances training images
with a perturbation magnitude that decreases along a similarly predefined schedule (Fig. 2D,F).

Despite the human visual system being well-adapted for rapidly learning new visual categories, we
find that L-WISE gives rise to substantial accuracy gains of 33-72% in test-time accuracy margins
above chance relative to control participants. In addition to improved accuracy, L-WISE also signif-
icantly reduces the training phase duration by 20-23% with a constant number of trials. We demon-
strate these effects across three varied image domains and category spaces: moth species in natural
photographs, skin lesions in dermoscopy images, and pathologic findings in histology images.

Our main contributions are:
• We establish a new state-of-the-art in predicting image recognition difficulty for humans, using
the robustified ANN ground truth logit activation value as a simple but effective difficulty metric.
• We show that robustified ANNs can guide image perturbations that enhance the ability of humans
to accurately report the associated ground truth category label.
• We propose a novel model-based visual learning augmentation approach for humans that substan-
tially increases test-time categorization accuracy and also reduces training time. To the best of our
knowledge, this is the first application of image enhancement to augment human visual learning.
• We demonstrate the broad applicability of our proposed method in a variety of image domains,
including clinically relevant dermoscopy and histology categorization tasks.
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2 RELATED WORK

We develop two important capabilities that form the foundation of our approach to assisting human
learners: (1) state-of-the-art predictions of the recognition difficulty of images for humans, and
(2) image perturbations that increase human categorization accuracy. Many works have ranked the
difficulty of images to design curricula for training ANNs (Wang et al., 2021b). Leading approaches
include the c-score learning speed proxy (Jiang et al., 2021) and the prediction depth (Baldock et al.,
2021) calculated for each image. Mayo et al. (2023) applied both of these techniques to predict the
recognition difficulty of natural images for humans, defined as either the minimum viewing time
required to classify a given image correctly, or (as in our work) the proportion of humans who
correctly classify it. Here, we show that a robustified ANN model’s logit score associated with the
ground truth class is a more accurate predictor of image difficulty for humans than prior methods.

Enhancing image quality has been the focus of many previous studies (Qi et al., 2021), ranging from
correction of low-level properties such as lighting and contrast (e.g., Zuiderveld (1994); Jobson
et al. (1997)) to ANN models that “upsample” images to higher resolutions (Anwar et al., 2020).
However, very little research has focused on enhancing images to more strongly represent a specific
category. Previous works in this vein focused on making images easier for ANN models to correctly
classify (Kim et al., 2023; Tussupov et al., 2023) or less vulnerable to subsequent adversarial attacks
(Salman et al., 2021; Frosio & Kautz, 2023). However, such methods do not strongly affect human
responses due to perceptual misalignment between humans and naive ANNs (Gaziv et al., 2023).

Many studies have focused on model-human alignment. Brain-Score benchmarks models in terms of
neural representations and behavior (Schrimpf et al., 2018). “Harmonization” methods drive align-
ment using an auxiliary objective on ANN-predicted feature importance maps and crowd-sourced
human maps (Fel et al., 2022). Other works introduce architecture components to account for addi-
tional aspects of human vision, such as the dorsal-stream pathway (Choi et al., 2023), or recurrent
connections for contextual reasoning (Bomatter et al., 2021) and visual search (Gupta et al., 2021).

A key property that enables ANNs to generate human-interpretable image perturbations is that of
perceptually aligned gradients, which is closely related to adversarial robustness and can be induced
through adversarial training (Ganz et al., 2023; Gaziv et al., 2023). In our present work, we apply
adversarially-trained ANNs to enhance images such that they are more strongly associated with their
ground truth label by the guiding model and by humans. To the best of our knowledge, we are the
first to demonstrate improved human performance on image classification tasks through category-
specific image enhancement.

Our primary goal is to apply difficulty prediction and image enhancement to augment human learn-
ing. The emerging field of machine teaching (Zhu, 2015) employs machine learning to find or
generate optimal “teaching sets” that can be used to train models or humans. While many such ap-
proaches have been successfully applied to training machine learning models (e.g., Liu et al. (2017);
Qiu et al. (2023)), few studies have successfully enhanced image category learning in humans and
most of these focus on teaching set selection. Singla et al. (2014) propose STRICT, which optimizes
the expected decrease in learner error based on how the selected images and their labels constrain
a linear hypothesis class in a feature space. Johns et al. (2015) extend a similar approach to select
images in an online fashion by modeling the learner’s progress. MaxGrad (Wang et al., 2021a) uses
bi-level optimization to iteratively refine a teaching set by modeling learners as optimal empirical
risk minimizers. Most similar to our work are approaches like EXPLAIN (Mac Aodha et al., 2018),
which uses ANN class activation maps (CAMs) to highlight relevant image regions while providing
feedback to the learner. EXPLAIN also selects a curriculum of images based on (i) a multi-class
adaptation of STRICT, (ii) representativeness (mean feature-space distance to other images of the
same class), and (iii) the estimated difficulty (entropy) of the CAM explanations. Chang et al. (2023)
use bounding boxes to highlight image regions attended to by experts and not novices, allowing hu-
mans to more accurately match bird or flower images to one species among five shown in a gallery.

Our approach to learning augmentation departs from previous studies in several ways. We make
explicit estimates of image difficulty with unprecedented accuracy to select easier images for early-
stage learners. Our work is unique in employing category-specific image enhancement, which is a
novel technique in itself, to improve the teaching efficacy of a given set of images. While Mac Aodha
et al. (2018) and Chang et al. (2023) help learners by explicitly highlighting where learners should
attend to in each image, we take a distinct and complementary approach by implicitly highlighting
what learners should attend to in order to classify images correctly.
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3 OVERVIEW OF APPROACH AND EXPERIMENTS

Our approach to improving visual learning in humans is based on two key observations regarding
human-aligned ANN models of the ventral visual stream: (i) they can accurately predict the recog-
nition difficulty of specific images for humans (Fig. 1A), and (ii) they can be used to perturb images
in a way that enhances the ability of humans to accurately report the original ground truth category
(Fig. 1B). In other words, these models can be used out-of-the-box as category-recognition difficulty
estimators and category-percept enhancers. As such, we propose using them to design sequences
of images that humans can use to more efficiently learn to recognize unfamiliar image categories.
We test our approach in a variety of challenging image domains: natural photographs (moth species
classification), dermoscopy images (skin lesion classification), and histology images (benign vs.
pre-cancerous colon tissue classification).

3.1 TRAINING TASK-SPECIFIC ROBUSTIFIED MODELS

To obtain robustified models for task-specific category spaces, we adversarially trained ResNet-50
ANNs (He et al., 2016) on the ImageNet-1K (Deng et al., 2009) and iNaturalist 2021 (Van Horn
et al., 2021) datasets (separately) using the same techniques as Ma̧dry et al. (2018). To adapt the
resulting model to the three categorization tasks of interest, we conducted additional adversarial
fine-tuning on the corresponding smaller datasets: a subset of moth species images from iNaturalist
(after iNaturalist pretraining), the HAM10000 dermoscopy dataset (Tschandl et al., 2018) (ImageNet
pretraining), and the MHIST histology dataset (Wei et al., 2021) (ImageNet pretraining).

3.2 PREDICTING CATEGORY RECOGNITION DIFFICULTY

We propose a simple approach to predicting the human categorization error rate on specific images,
in the form of a new image recognition difficulty score: the logit activation (pre-softmax) at the
ground truth category output unit of a robustified ANN. The higher this logit value is, the lower the
human categorization error rate. We establish this relationship through human participant responses
during a natural image categorization task with 16 basic animal categories (Fig. 1A). We found this
logit score to be the new state-of-the-art in predicting human error rates (see Appendix Fig. S6).

3.3 GENERATING IMAGE PERTURBATIONS TO ENHANCE CATEGORY PERCEPTS

While the ground truth logit score predicts image difficulty at baseline, we show that we can also
generate perturbations that maximize this value by backpropagating from the logit score to pixel
space and running projected gradient ascent to update the pixel values, limiting the “pixel budget”
ℓ2 norm of the perturbation to a value ϵ. These perturbations make images easier for humans to
recognize with respect to their ground truth labels (Fig. 1B). This approach is analogous to Gaziv
et al. (2023), but is designed to enhance the ground truth percept rather than guiding away from it.

3.4 BOOSTING IMAGE CATEGORY LEARNING IN HUMANS

Our approach to augmenting visual learning is summarized in Fig. 2. In the naive baseline scenario
(Fig. 2A-C), the novice human learner is presented with a sequence of training trials through an
online platform. In each training trial, a randomly selected image from one of N categories is
presented, and the learner attempts to choose the correct category among N possible labels. The
learner receives feedback after each training trial indicating the correct category label and whether
or not their response was correct. In most of our experiments, to ensure that participants begin at the
chance level and to avoid possible priors induced by the category names, we assign each category to
a random Greek name unrelated to the task (with random assignments for each participant). After
completion of the training phase, the experiment transitions into a test phase, in which the same task
continues over a held-out set of images and no feedback is provided (Fig. 2C). During the test phase
we measure the main visual learning outcome of interest, the test accuracy.

Harnessing key observations of robustified ANNs, our “L-WISE” approach uses one such model to
optimize the training phase in a way that improves the test accuracy via two mechanisms: (i) sam-
pling training images based on their predicted recognition difficulty, and (ii) enhancing the training
images. We adjust the “strength” of both mechanisms in a time-dependent manner: for the former,
we set the maximum allowable difficulty score for an image to be shown in a given trial, and for the
latter, we limit the enhancement perturbation magnitude to an ℓ2 norm pixel-budget ϵ. The user of
our approach can flexibly define arbitrary time-dependent profiles for image selection and enhance-
ment (Fig. 2D-F). In this study, we used a step-wise linear ramp schedule for the allowable image
difficulty at a given time, and exponential tapering of the enhancement ϵ. Intuitively, this should
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Figure 3: Novice learners who had their curriculum augmented by our method showed im-
proved test-time categorization accuracy for previously unfamiliar categories. This figure shows
empirical results from a 4-way fine-grained moth species classification task. Panel A shows examples of the 4
moth classes, side-by-side with their model-enhanced versions at the highest pixel budget used in our exper-
iments (ϵ = 8). While subtle, one notable difference is the distinctive wing spots of moth class 2, which are
enlarged in the enhanced version of the image. Also included are difference images showing the (5x magni-
fied) difference between original and enhanced images, and heat maps with more red coloration in regions of
larger changes from enhancement. B compares the average smoothed accuracy of participants in the L-WISE
group and a control group. Shaded areas denote the standard error of the mean. The test accuracy gain of the
L-WISE group relative to the control group is statistically significant (χ2(1) test, p < 0.001). C, D show the
trial-dependent empirical profiles of the average image difficulty percentile of selected images, which (noisily)
increases step-wise, and the perturbation pixel budget for enhancement (ϵ), which decreases step-wise. These
profiles are uniform in the control group (black dotted lines), denoting randomly-chosen non-enhanced images.

correspond to an easy-to-challenging trend during the training phase. Extensively optimizing these
schedules was not a goal of our study, which serves primarily as a proof-of-concept. Applying image
selection and enhancement led to significant gains in the accuracy of human participants on unmod-
ified, randomly-selected test images, while also reducing the time needed to complete the training
phase (which consists of a constant number of trials). This result was robustly observable across the
varied image domains and category spaces we tested.

4 RESULTS

We used robustified ANNs to both enhance images and predict the difficulty of images across multi-
ple domains. We applied both of these techniques to improve the final test performance (on unmod-
ified, randomly-chosen images) of novice humans learning challenging image classification tasks.

4.1 ROBUST MODELS CAN BOTH PREDICT IMAGE RECOGNITION DIFFICULTY AND REDUCE IT

We tested the effects of a novel model-based image enhancement algorithm on human image cate-
gorization accuracy. We demonstrate that we can enhance images by maximizing the ground truth
logit from a robustified ANN (ResNet-50) using gradient ascent in image pixel space. As the magni-
tude of the enhancement perturbations grows (ℓ2 norm pixel budget ϵ), human participants become
increasingly accurate on a 16-way animal photograph classification task derived from ImageNet
(Fig. 1B, chance = 1/16). While mean accuracy on the original, unmodified (ϵ = 0) images was
0.75, mean accuracy on enhanced images was as high as 0.84 (at ϵ = 20). The accuracy gains from
enhancement appear to approach a saturation point as the perturbations grow larger. The improve-
ments in accuracy are also somewhat dependent on the starting ground truth logit score, as shown in
Appendix Fig. S11: accuracy gains are larger for “difficult” images than for “easy” images. Baseline
enhancement algorithms Contrast-Limited Adaptive Histogram Equalization (CLAHE, Zuiderveld
(1994)), Multi-Scale Retinex with Color Restoration (MSRCR, Jobson et al. (1997); Petro et al.
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Figure 4: Our approach can boost time efficiency and final accuracy of image category learn-
ing for humans across varied image domains, including in clinically relevant tasks. Panel A
compares the mean test-phase accuracy and training-phase duration of human participants who were random-
ized to L-WISE or control groups and learned a moth photo, dermoscopy, or histology classification task. All
differences between L-WISE and the control group are statistically significant (χ2(1) test, p < 0.05). Panel B
shows precision and recall in L-WISE and control groups, with each point representing a specific class in one
of the three tasks. All error bars show 95% bootstrap confidence intervals. Each class from the dermoscopy
and histology tasks is illustrated in panels C and D respectively, similarly to the moth classes in Fig. 3A.

(2014)), and Adobe Photoshop Lightroom’s “Auto” enhancement feature (LR, Adobe Inc. (2024))
had no significant effect on human accuracy, despite inducing image perturbations of considerably
larger ℓ2 norm on average than the ℓ2 pixel budget ϵ values we used for model-based enhancement.

We also demonstrate that the robustified model’s ground truth logit Lgt(x) is strongly correlated
with the rate at which humans choose the ground truth category associated with image x in a 16-
way basic animal classification task (Fig. 1A). We used robustified ResNet-50 to calculate Lgt for
each of the 2,400 distinct natural images used in the task, and applied logistic regression to pre-
dict binary correct vs. incorrect responses to individual image trials. We pooled responses to
original images with those to modified control-group images that were not enhanced by robust
models, recomputing Lgt for each image version (see also Appendix Fig. S5). The logistic re-
gression model (Fig. 1A) used Lgt to predict the binary correctness of the trial responses with
Area Under the Receiver Operating Characteristic Curve (AUC) = 0.72 (10-fold cross-validation,
p < 0.001 via Wald statistic). Notably, we find that this simple approach predicts the difficulty
of individual images for humans more accurately than existing state-of-the-art metrics (Mayo et al.
(2023), see Appendix Fig. S6). In addition to ResNet-50, we demonstrate both difficulty prediction
and image enhancement with XCiT vision transformers (Ali et al. (2021), Appendix Figs. S7-S10).

4.2 L-WISE IMPROVES BOTH TEST ACCURACY AND LEARNING SPEED FOR HUMANS

We applied both image difficulty prediction and image enhancement as part of a novel method
that designs image sequence curricula for novices learning challenging image classification tasks.
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Idaea moth photos Skin lesion dermoscopy images
Mean acc. Training duration Mean acc. Training duration

Chance level 0.25 - 0.25 -
Control 0.47 (0.45, 0.50) 14.0 (13.8, 14.2) 0.38 (0.36, 0.40) 13.5 (13.4, 13.7)

ET 0.58* (0.55, 0.61) 11.8 (11.7, 11.9) 0.45* (0.43, 0.47) 13.1 (12.9, 13.3)
ET (shuffled) 0.53* (0.50, 0.56) 15.1 (14.8, 15.4) 0.39 (0.36, 0.42) 13.3 (13.2, 13.4)

DS 0.49 (0.47, 0.52) 13.9 (13.7, 14.1) 0.44* (0.42, 0.48) 11.5 (11.4, 11.6)
DS (shuffled) 0.58* (0.55, 0.60) 12.6 (12.5, 12.8) 0.45* (0.42, 0.48) 11.0 (10.9, 11.1)

L-WISE 0.60* (0.58, 0.64) 11.1 (11.0, 11.2) 0.47* (0.44, 0.50) 10.5 (10.4, 10.5)

Table 1: Both image enhancement tapering (ET) and image difficulty selection (DS) contribute
to the ability of L-WISE to assist learners. The benefits of image enhancement are dependent
on easy-to-hard sequencing (“ET” outperforms “ET (shuffled)”), but the benefits of difficulty-based
selection appear to stem from simply showing an easier distribution of images during training (“DS
(shuffled)” performs as well as or better than “DS”). Training durations are in minutes. Values in
parentheses show 95% confidence intervals from 10,000 bootstrap replicates. * denotes significant
differences in accuracy from the control group (p < 0.01, χ2(1) test).

Our proposed algorithm, “Logit-Weighted Image Selection and Enhancement” (L-WISE), operates
on image trial sequences used to train human participants on image classification tasks through
trial-by-trial feedback. The performance of each participant is evaluated in a subsequent testing
phase without feedback, which includes only randomly-selected, unmodified images (unaffected by
L-WISE). During the early portion of the training phase, L-WISE randomly selects images from
below a certain difficulty percentile that stepwise-linearly increases as the training phase progresses.
Selected images are enhanced at each trial during this period, via perturbations within an ℓ2 pixel
budget ϵ that decreases in a stepwise-exponential manner (Figs. 2E-F and 3C-D).

We tested L-WISE’s efficacy at improving test-time accuracy and training duration of human learn-
ers on three challenging image category learning tasks (Figs. 3-4). Participants were randomly
assigned to a control group with randomly-selected, non-enhanced images throughout the task, or
to an L-WISE group. L-WISE increased the average test-time accuracy margin above chance levels
by 57.6% on a 4-way moth species classification task (p < 0.001 on χ2(1) test), by 72.3% on a
4-way skin lesion dermoscopy task (p < 0.001), and by 33.1% on a binary colon histology task
(p = 0.023) (Fig. 4A). In all three tasks, participant accuracy in the L-WISE group increased ini-
tially and then declined to varying degrees as more and more difficult images were selected and the
degree of enhancement was simultaneously reduced. In addition to improving test-time accuracy,
L-WISE decreased the mean time to learn the task (with a fixed number of training trials) by 20%
for the moth task, 23% for the dermoscopy task, and 22% for the histology task (Fig. 4A).

4.3 IMAGE ENHANCEMENT AND SELECTION BOTH CONTRIBUTE TO EFFICACY OF L-WISE

We tested several ablated versions of L-WISE (in the moth and dermoscopy tasks) to determine the
relative contributions of its components: (A) image enhancement based on logit maximization, (B)
selection of images according to logit-estimated difficulty, and (C) easy-to-hard curriculum trends
enabled by A and B (Table 1). In “Enhancement Tapering” (ET), only the enhancement component
of L-WISE is active, with random image selection as in the control group. Conversely, in “Diffi-
culty Selection” (DS), images are selected based on difficulty but not enhanced. In “ET (shuffled)”
and “DS (shuffled),” after applying ET or DS, the ordering of affected training trials is randomly
permuted. Shuffling flattens easy-to-hard trends, isolating effects from (i) the mere presence of en-
hanced images in ET, and (ii) seeing easier images on average in DS (DS limits max. difficulty of
early images, so DS/DS (shuffled) have easier training images than Control on average; see Fig. 3C).

The results show that both ET and DS have significant benefits in isolation. ET increased the test-
phase accuracy margin above chance by 46.8% for the moth task and 56.5% for the dermoscopy task,
while DS increased the same margin by 8.1% (not significant) and 53.2% respectively. ET (shuffled)
was less effective, increasing the margin above chance by 23.0% for the moth task and 11.2% (not
significant) for the dermoscopy task. Surprisingly, DS (shuffled) outperformed DS without shuffling,
increasing the margin above chance by 45.2% for the moth task and 58.2% for the dermoscopy task
(the increase of DS (shuffled) relative to DS is statistically significant for the moth task only). Unab-
lated L-WISE numerically outperformed all ablated conditions, increasing the margin above chance
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by 57.6% for the moth task and 72.3% in the dermoscopy task. However, additional paired com-
parisons indicated that the differences between these increases and those from ET or DS (shuffled)
are not statistically significant for either task. ET and DS did demonstrate a statistically significant
additive benefit in terms of learning speed, however. On the moth task, training duration was 6%
shorter for L-WISE than for the next fastest group, which was ET. Similarly, on the dermoscopy
task, training duration was 5% shorter for L-WISE than for the next fastest group, DS (shuffled).

5 DISCUSSION

In this study, we demonstrate that robustified ANNs can be used to both predict the empirical recog-
nition difficulty of individual images for humans, and also generate enhanced versions of images
that are easier for humans to correctly categorize. We harness these capabilities to develop a model-
based curriculum design algorithm to augment human image category learning. We show that a
combination of selecting images within a certain difficulty range, and perturbing those images to
enhance the perception of the ground truth category, leads to substantial improvements in human
training speed and test-time classification accuracy on randomly-selected, unmodified images.

The results of our ablation study show that at least a portion of these improvements can be achieved
with image enhancement alone: humans can learn from perturbed images and subsequently achieve
superior generalization to unseen examples (Table 1). There are several possible explanations for
this effect. Image enhancements might draw the learner’s attention to relevant features, such as the
distinctive dot in the middle of each wing of the Idaea biselata moth in Fig. 3A (Hufnagel, 1767), or
the irregular border and multiple colors that appear to be enhanced in the melanoma image in Fig. 4C
(Tsao et al., 2015). Enhancements might also diminish features that distract from or contradict the
ground truth: for example, in Appendix Fig. S11B (second image from the left), buffalo standing
behind the ground truth “antelope” are variously blurred or nearly erased. Analogously, images
with high ground truth logits (low predicted difficulty) might tend to have clearer class-relevant
features and fewer distracting or contradictory features. These parallel explanations for the effects
of image enhancement and image selection could help clarify why the “enhancement tapering” and
“difficulty selection” strategies in isolation provide comparable accuracy gains to each other, and
why combining both strategies did not lead to large additive improvements in accuracy (although
additive increases in learning speed were observed).

5.1 LIMITATIONS

This work is a proof-of-concept demonstration that robustified ANNs can be applied to augment
image category learning in humans. We did not exhaustively search for optimal curriculum design
strategies or image enhancement hyperparameters, nor did we study the “dose-dependency” of im-
age enhancement or selection. L-WISE applies a fixed schedule of maximal image difficulty and
image enhancement magnitude for all learners: human learning could plausibly be augmented more
effectively by adapting the degree of image enhancement and the difficulty of selected images to the
learner’s progress in real time (Lu & Dosher, 2022; Mettler & Kellman, 2014).

One caveat to our approach is that logit maximization can sometimes appear to have a homoge-
nizing effect on image distributions. For example, “benign mole” dermoscopy images enhanced
with high ϵ budgets tend to all resemble smooth and uniform blobs (see Appendix Fig. S12H for
an example). This clearly illustrates a task-relevant difference from melanoma (which tends to be
asymmetric with irregular borders (Tsao et al., 2015)), but obscures much of the real-world het-
erogeneity among benign moles. A similar risk might apply to image selection: images with high
ground truth logits might belong to limited regions of the overall class distribution. Biased pertur-
bations or selections reflecting biases in the underlying datasets are another concerning possibility,
particularly for dermoscopy (Daneshjou et al., 2022). These caveats must be thoroughly investigated
before deployment of real-world educational applications of L-WISE, especially for clinical tasks
with potential patient safety ramifications.

6 METHODS

Predicting Image Difficulty. To predict the relative difficulty d ∈ [0, 1] of each image, we extract the
logit value corresponding to the image’s ground truth class (Lgt) immediately upstream of the final
softmax function. We sort the logits in descending order such that L(1) ≥ L(2) ≥ ... ≥ L(nc,s). nc,s

is the number of images for a given class c and training/validation/testing split designation s. We
calculate class-specific difficulty percentile dj for image j using the equation dj = rank(L(j))/nc,s.
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Generating Perturbations to Enhance Images. To enhance an image using a pretrained ANN, we
maximize Lgt through projected gradient ascent, onto a hypersphere of radius ϵ, in pixel-space (see
Appendix Section S1 for model training and projection details). In some cases, we also explicitly
minimize the logit of competing classes. We generate perturbed image x′ via the optimization:

x′ = x+ argmax
∥δ∥<ϵ

(
Lgt(x+ δ)− α

|C| − 1

∑
c∈C:c̸=gt

Lc(x+ δ)
)

(1)

In Equation 1, δ is a perturbation tensor of the same dimensionality as x and with an ℓ2 norm less
than pixel budget ϵ. Lgt is the ANN’s logit score associated with the ground truth class, and Lc is
the logit associated with class c (C is the set of all classes, with cardinality |C|). α determines the
extent to which logits for competing classes are minimized.We set α = 0 for the ImageNet animal
classification experiments and α = 1 for the three fine-grained image category learning experiments.

Image classification and learning experiments with human participants. We recruited 521 human
subjects using the online platform Prolific. We allowed subjects to participate in multiple experi-
ments, but only once for each of the three learning tasks. We used the jsPsych library (De Leeuw,
2015) with the jspsych-psychophysics plugin (Kuroki, 2021) for all experiments. All experiments
included 10-12.5% attention check trials where the subject classifies an image of a circle or triangle
(e.g., see Appendix Fig. S4). We analyzed data from subjects with ≥ 90% attention check accuracy.

To measure the effects of enhancement on a presumably already-learned task, we tested the accu-
racy of human subjects at classifying 16 basic types of animals (frog, bird, dog, etc., see Appendix
Section S3). Images were shown for 17 milliseconds each, after which the participant was given 15
seconds to respond. All images were drawn from the validation set of ImageNet (Deng et al., 2009).
Appendix Fig. S3 shows screenshots of the task as it appeared to participants. In our main exper-
iment with this task (Fig. 1), each subject viewed interspersed images from 9 conditions: original
images, images enhanced by maximizing Lgt with ϵ = 5, 10, 15, and 20, images enhanced with one
of three off-the-shelf baseline methods, and images disrupted by minimizing Lgt (internal control).
Participants were notified after each incorrect response and given a small monetary bonus for each
correct response (except for disrupted images). 62 participants viewed 18 images for each of 16
classes, 2 from each condition, in a shuffled ordering for a total of 288 trials per participant and
17,856 overall. These main trials followed a screening phase with 32 trials (200ms presentation
times, ≥ 24 correct with ≥ 1 correct per class required to proceed, multiple screening attempts al-
lowed) and a 32-trial warm-up phase with 17ms image presentations. Screening and warm-up phases
used original, unmodified images, and data from these phases were not included in any analyses.

The image category learning tasks consisted of either 4 (moths, dermoscopy) or 2 (histology) image
classes. Participants were shown each image for up to 10 seconds and used the mouse (4-way tasks)
or keyboard (binary task, “F” and “J” keys) to respond. After each trial, the participant was notified
of the ground truth label and whether their response was correct (screenshots in Appendix Fig. S4).
Each session consisted of 8 training blocks of 16 trials each (4 per class, or 8 per class for histology),
and 2 testing blocks of 20 trials each during which no post-trial feedback was provided. Each block
contained an equal number of images from each class in a random order. Participants were informed
upon recruitment that they could receive a progressively higher monetary bonus if their test-phase
accuracy exceeded certain thresholds. Before participating in the main learning tasks, subjects had
to first learn an easier binary classification task (leatherback vs. loggerhead turtles) and respond
correctly to at least 7 of 8 test-phase trials. We randomly assigned ~30 participants per experimental
condition, except the ablation study control groups of ~60 participants (overall min. 27, max. 68).

Assisting learners with the L-WISE algorithm. L-WISE consists of two strategies applied in par-
allel: Enhancement Tapering (ET) and Difficulty Selection (DS). Both strategies operate only on
images in the first 6 of 8 trial blocks in the training phase. In ET, we enhanced images in the first
block of training-phase trials with ϵ = 8. ϵ is halved for each subsequent block until it is set to 0 after
the 6th block. In DS, only images with d < db were sampled for each block b. db was incremented
by 0.15 at the end of each of the first six blocks, beginning at d1 = 0.1 and reaching d7, d8 = 1.0.
Determining an effective schedule of ϵ and db did not require extensive hyperparameter tuning. After
a pilot experiment in which we decreased ϵ linearly starting from ϵ = 20, (see Appendix Fig. S12H-
M), we switched to the ϵ schedule above and changed no other hyperparameters for any of the three
learning tasks/image domains. In the “shuffled” versions of DS and ET (Section 4.3), images in
blocks 1-6 are selected or enhanced before a constrained shuffling procedure, whereby each image
in blocks 1-6 may switch positions with any other of the same class regardless of d or ϵ.

10



Published as a conference paper at ICLR 2025

7 ETHICS STATEMENT

This study involved experiments with human participants conducted over the internet, using the
Prolific platform for the main experiments and Amazon Mechanical Turk for pilot experiments. We
followed a study protocol approved by Boston Children’s Hospital’s Institutional Review Board.
Participants provided informed consent before participating in any experiments. The experiments
posed no greater than minimal risk to the participants. All participants were anonymous, and all
data is de-identified. Participants were provided with our contact information, and that of the Office
of Clinical Investigations at Boston Children’s Hospital, for any questions or concerns about the
study. We calibrated the participant compensation amounts for each experiment to meet or exceed
the equivalent of $15.00 USD per hour, including during screening tasks. Participants were recruited
using the “Standard Sample” option in Prolific, and were diverse in gender, age, and race/ethnicity
(please see Table S2 for a demographic breakdown).

We hope that our work will eventually lead to practical and beneficial applications in education -
for example, in the training of doctors in specialties such as pathology, radiology and dermatology
where visual perceptual learning is particularly important. We wish to emphasize, however, that
more work is needed before our methods can be safely applied in sensitive or high-stakes settings.
For example, we apply our approach to improve human performance on a dermoscopy skin lesion
classification task derived from the HAM10000 dataset (Tschandl et al., 2018). This dataset is
heavily skewed towards images of pale skin, likely a reflection of the lower incidence of skin cancers
such as melanoma among people with darker skin tones (Cormier et al., 2006). Models trained on
this dataset are known to perform poorly for patients with darker skin (Daneshjou et al., 2022), where
melanoma tends to have a different appearance, unfamiliarity with which on the part of clinicians
contributes to delayed diagnosis and increased mortality among such patients (Thompson et al.,
2023). It is plausible that maximizing the melanoma-associated logit of a robustified model perturbs
the images to look more like an average presentation of melanoma (i.e., on light skin), which would
risk imparting this bias onto the learner. A similar risk might apply to image selection: images with
the highest ground truth logits (which L-WISE presents at the beginning of learning) might tend
to belong to specific subclasses or limited regions of the overall class distribution. The possibility
of biased perturbations or image selections must be thoroughly investigated in future work before
applications of our method in this domain.

8 REPRODUCIBILITY STATEMENT

We list all hyperparameters for training robustified neural networks and using them to enhance im-
ages in the Appendix. We provide source code that enables reproduction of all data processing
steps, experiments, statistical analyses, and figure plots. This includes experiments with human par-
ticipants: we have developed a flexible framework for automated deployment of web-based image
category learning experiments, including hosting tasks as interactive web pages and using cloud-
based mechanisms for random group assignment and data collection. The experiments with hu-
man participants can therefore be readily reproduced and extended or modified with only a modest
amount of configuration required.
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Figure S1: Ground truth logit enhancement with robustified ANNs leads to semantically mean-
ingful perturbations. The top row shows original ImageNet images, and the second row shows the same
images after enhancement by robustified ResNet-50 (training ϵ = 3) with a pixel budget of ϵ = 20. The third
row shows a 5x magnified version of the difference between the enhanced image and the original, and the bot-
tom row shows a heat map where red regions correspond to larger changes and blue regions correspond to
smaller changes.

S1 DETAILS ON TRAINING AND USING ROBUSTIFIED GUIDE MODELS

We adversarially trained a ResNet-50 model on ImageNet (Deng et al., 2009), and another on iNatu-
ralist 2021 (Van Horn & Mac Aodha, 2021), with the hyperparameters following Gaziv et al. (2023):

• Epochs = 200
• Base learning rate of 0.1, decreasing by a factor of 10 every 50 epochs
• Batch size = 256
• Weight decay = 0.0001
• Adversarial training ϵ = 3.0 (ImageNet) or ϵ = 1.0 (iNaturalist)
• 7 gradient steps for adversarial attacks
• Adversarial attack step size of 0.5 (ImageNet) or 0.3 (iNaturalist)

The ResNet-50 model adversarially trained on ImageNet was used directly to generate perturba-
tions and difficulty rankings for the 16-way animal classification task, using the logits of the orig-
inal, fine-grained ImageNet classes (i.e., not the 16 superclasses, “grasshopper” not “insect”) for
both enhancement and difficulty prediction. The same model was adversarially fine-tuned on the
HAM10000 and MHIST datasets before their application (as part of L-WISE) to the dermoscopy and
histology tasks respectively. Generally, we trained the models on all available classes in each dataset.
For example, we fine-tuned on all 7 classes of the HAM10000 dermoscopy dataset (Tschandl et al.,
2018), even though we only used 4 of them in the learning task for humans. When enhancing the
images, we include only classes that are part of the experimental tasks as competing classes to have
their logits minimized (see main-text Equation 1).

For the moth task, we adversarially fine-tuned the (adversarially) iNaturalist-pretrained model on
the four moth classes to be used in the task. We subjectively judged the perturbations from this
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fine-tuned model to be of higher quality than those generated using the iNaturalist-pretrained model
without fine-tuning, as the four classes of interest are among the 10,000 iNaturalist classes. All
adversarial fine-tuning used ϵ = 1.0 with 7 gradient steps of size 0.3. We used learning rates of
0.0001, 0.0004, and 0.001, and batch sizes of 32, 64, and 16, for Idaea moth, dermoscopy, and
histology fine-tuning respectively. We fine-tuned the entire network end-to-end for each task.

Our choice of ϵ = 3 for ImageNet pretraining follows Gaziv et al. (2023), who found this to be
an optimal choice for generating perturbations that disrupt category perception (relative to ϵ = 1
and ϵ = 10). In practice, we found that the models were unable to learn finer-grained tasks with
training-time adversarial perturbations as large as ϵ = 3 (iNaturalist pretraining, and fine-tuning on
moth photos, dermoscopy images, and histology images) - therefore, we reverted to ϵ = 1 for these
settings.

To enhance images in a category-specific manner, we perform the optimization of Equation 1 (main
text) in a series of steps using projected gradient ascent (Equation 2), where k denotes the optimiza-
tion step, η the step size, and Projϵ a projection onto a hypersphere of radius ϵ with original image x
at its center (see text below Equation 1 for definitions of other symbols).

δk+1 = Projϵ

(
δk − η∇δ

(
Lgt(x+ δk)−

α

|C| − 1

∑
c∈C:c ̸=gt

Lc(x+ δk)
))

(2)

Fig. S1 shows several example images enhanced with ϵ = 20 using logit maximization by
adversarially-pretrained ResNet-50 (ϵ = 3), along with difference images and heat maps produced
by the same method as Figs. 3-4 in the main text. Throughout our experiments, robustified ResNet-
50 enhancements with pixel budget ϵ used ceil(2ϵ) steps of η = 0.5 in a 224× 224× 3 pixel space.
This formula seems somewhat model-dependent and sometimes requires adjustment: for example,
when enhancing images with robustified XCiT (see Figs. S9-S10), ceil(4ϵ) steps were required in-
stead of ceil(2ϵ) to reach a similar effective perturbation size.

We generate the heat maps in Figs. 3, 4, and S1 by subtracting the enhanced image x′ from the
original image x element-wise: δ = x′ − x. We calculate the magnitude of the changes as δ2.
We apply smoothing using 2D convolution, and normalize the result to have all values between 0
and 1, to produce δnorm. We then produce the heat map by setting the red channel to 255 × δnorm
and the blue channel to 255 × (1 − δnorm). The resulting image shows red in regions where larger
changes have taken place, and blue in regions where smaller or no changes have taken place. In
Figs. 3, 4, and S1, we superimpose a translucent version of the heat maps (α = 0.7) over the original
images. Averaging the heat maps across all ImageNet validation set images (Fig. S2) indicates that
changes to the images tend to occur in the central regions of the images more than in the periphery,
consistent with the observation that our image enhancement approach tends to primarily change
image regions corresponding to the main subject of each image.

S2 DETAILS ON IMAGE PREPARATION FOR EXPERIMENTS

All images presented in all psychophysics experiments were of size 224 × 224 × 3, matching the
input dimensions of ResNet-50. Before presentation or any model-based enhancement or difficulty
prediction, original images were resized such that the shortest dimension (width or height) was 224
pixels, and then center-cropped to 224× 224. Any single-channel grayscale images were converted
to RGB before further processing. The baseline enhancement algorithms Contrast-Limited Adaptive
Histogram Equalization (CLAHE (Zuiderveld, 1994)), Multi-Scale Retinex with Color Restoration
(MSRCR (Jobson et al., 1997; Petro et al., 2014)), and the “Auto” image tuning feature in Adobe
Photoshop Lightroom (Auto-LR (Adobe Inc., 2024)) were applied before the resizing and center-
cropping operations.

We generally used images from the validation sets of each dataset for the image category learning
experiments, reasoning that the robustified models would be overfitted to training images which
could potentially compromise the quality of perturbations and relative difficulty estimates. How-
ever, for the moth task, we were limited to 10 validation images per class in the iNaturalist dataset
(Van Horn & Mac Aodha, 2021). In this case we used training set images during the training period
of the human image category learning experiment and validation images during the test phase. We
show that image enhancements are still effective for training set images in Fig. S11A.
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Figure S2: Pixel-value changes during enhancement of ImageNet images are biased towards
the center of the image. This heat map indicates which spatial regions of the ImageNet animal images were
changed the most on average during logit-maximization enhancement with ϵ = 20. Regions that were changed
more on average are more red, and regions that were changed less on average are more blue. The heat map
was generated by averaging the normalized absolute pixel value changes across all 2400 ImageNet validation
set images that we used for our 16-way animal classification experiments.

S3 DETAILS ON 16-WAY IMAGENET ANIMAL CATEGORIZATION
EXPERIMENTS

We curated 16 sets of ImageNet classes corresponding to 16 basic animal superclasses for our basic
animal classification experiments (e.g., see Figs. 1 and S3), adapting and expanding the Restricted
ImageNet dataset defined in the Robustness library (Engstrom et al., 2019). The assignment of
specific animal classes to each superclass is listed below:

• Dog: classes 151–268

• House Cat: classes 281–285

• Frog: classes 30–32

• Turtle: classes 33–37

• Bird: classes 80–100 and 127–146

• Monkey: classes 369–382

• Fish: classes 0, 1, 389, 391, 392, 393, 394, 395, 396, 397

• Crab: classes 118–121

• Insect: classes 300–320

• Lizard: classes 38–48

• Snake: classes 52–68

• Spider: classes 72–77

• Big Cat: classes 286–293

• Bear: classes 294–297

• Rodent: classes 330, 331, 332, 333, 335, 336, 338

• Antelope: classes 351–353

We excluded certain classes on a case-by-case basis in an attempt to minimize errors due to misun-
derstanding the animal categories, as opposed to errors of visual perception. For example, we did
not include porcupines or beavers in the “rodent” class (as many people may not recognize these
as rodents), and we did not include eels in the “fish” class due to the possibility of confusion with
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Figure S3: Task interface for ImageNet animal classification with human participants. Subjects
classified images among 16 categories. During each trial, the subject clicks the fixation cross (panel A) and
the image is displayed for 17 milliseconds (panel B) with a 200ms presentation of a blank screen immediately
before and after. The mouse cursor is hidden during the image presentation. Images are presented such that
they subtend approximately 6 degrees of visual angle, with calibration for each participant using a blind-spot
calibration procedure. After viewing the image, the participant clicks one of the 16 buttons shown in panel
C, which are randomly rotated in position every trial, within a 15-second time limit. For incorrect responses,
or if 15 seconds elapses without a response, the participant is shown the black X for one second (panel D).
Otherwise, no explicit feedback is given and the next trial begins immediately. Attention check trials featuring
an image of a circle or triangle (see Fig. S4D for an example image) were interspersed with the main trials.
For the attention check trials, two of the animal icons in panel C were randomly selected to be replaced with
circle and triangle icons.

snakes. We mistakenly classified rabbits and hares as “rodents” given that they were reclassified to
the order Lagomorpha in 1912 Chapman & Flux (2008) (we thank the participant who notified us of
this).

S4 DETAILS ON IMAGE CATEGORY LEARNING EXPERIMENTS

Figs. S3 and S4 show the task interfaces for the 16-way animal classification and 4-way image cat-
egory learning experiments with human participants, respectively. For the learning experiments, the
positions of the four buttons used to indicate responses are randomly permuted for each participant.

To minimize biases stemming from any priors induced by the class names, for each participant in the
4-category learning tasks we randomly assign a four-letter, two-syllable alias from the set “Ajax,”
“Eris,” “Leda,” and “Tyro.” These names are drawn from Greek mythology, and each has four letters,
two syllables, two consonants, and two phonetic vowels. We found no evidence that associating
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A. B.

C. D.

Figure S4: Task interface for image category learning experiments. In the 4-way image category
learning experiments (moths, dermoscopy), human subjects learned to classify four types of images that were
represented by randomly assigned aliases “Ajax,” “Eris,” “Leda,” and “Tyro.” The image was shown for up
to 10 seconds, during which the participant could click on one of the four buttons (panel A). Participants are
shown a black X (1.5 seconds) immediately following an incorrect response or a >10s timeout (panel B), or a
green check after a correct response (panel C). The alias corresponding to the correct class is also displayed
on the feedback screen. Panel D shows an example of an attention check trial.

certain categories with certain aliases consistently affected test-phase accuracy (see Figs. S15 and
S16).

We used a different approach for the binary histology task that employed the MHIST dataset (Wei
et al., 2021), giving “benign hyperplastic polyp” the alias “benign” and sessile serrated adenoma
the alias “malignant” (although sessile serrated adenoma is actually a pre-cancerous lesion). The
histology task has an interface very similar in appearance to that of the 4-way tasks (as shown
in Fig. S4), except that the “benign” and “malignant” buttons always appear on either side of the
presented image (in a random order for each participant), and the participant responds by pressing
the F key for the left-hand category or J for the right instead of clicking one of the buttons.

S5 PREDICTING IMAGE DIFFICULTY USING GROUND TRUTH LOGIT OF A
ROBUST MODEL, COMPARED WITH PRIOR STATE-OF-THE-ART
APPROACHES

In the L-WISE algorithm, we predict the difficulty of each image using its ground truth logit repre-
sentation (Lgt) from a robustified ANN such as ResNet-50 (see Figs. 1A, S5, S7, and S14A1,B1,C).
We conducted an experiment to compare this ground truth logit score with prior state-of-the-art
predictors of image difficulty for humans established by Mayo et al. (2023). We apply logistic re-
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Figure S5: The observed relationship between robust model ground truth logits and human
error rates is not sensitive to trial inclusion criteria. For our main analysis regarding predicting
ImageNet animal image recognition difficulty illustrated in Fig. 1A, we included all trials with original images
but also trials featuring images modified by off-the-shelf control enhancement methods (Adobe Lightroom,
CLAHE, and MSRCR), and trials with image perturbations from non-adversarially-trained ANNs (i.e., Vanilla
ResNet-50 and CutMix ResNet-50 from Fig. S7). Panel A above reproduces Fig. 1A1, while panel B replicates
the same analysis but strictly including only trials with natural, unmodified images. The numbers above each
point indicate how many image trial observations were included in the corresponding bin (the size of the vertical
95% confidence intervals is sensitive to this). AUC=Area Under the Receiver Operating Characteristic Curve,
p-values derived from Wald statistic on the logistic regression coefficient for the ground truth logit predictor.

gression to predict correct v.s. incorrect responses to each (original, unmodified) image across all
participants in our 16-way ImageNet animal classification experiment, using (1) c-score (approxi-
mated by the epoch during training at which an image is first correctly predicted (Jiang et al., 2021)),
(2) prediction depth (earliest layer upon which a linear probe makes the same prediction as the final
output (Baldock et al., 2021)), (3) image-level adversarial robustness (minimum magnitude of image
perturbation required to change the network’s prediction), and (4) ground truth logit from both (A)
vanilla and (B) robustified ResNet-50 models (see Fig. S6). C-score, prediction depth, and adversar-
ial robustness are implemented following Mayo et al. (2023). The results show that the ground truth
logit from robust ResNet-50 (Lgt), the metric we use in L-WISE, significantly outperforms all other
predictors of image difficulty, including all other metrics combined into one model (“Combined w/o
Lgt” in Fig. S6). Furthermore, combining all other metrics with Lgt does not improve performance
beyond Lgt alone. We also find that using a robustified model rather than a “vanilla” model to gener-
ate each metric greatly improves the predictivity of Lgt and (marginally) adversarial robustness, but
not of the c-score or prediction depth.

S6 COMPARISON OF DIFFERENT ANN GUIDE MODELS FOR DIFFICULTY
PREDICTION AND IMAGE ENHANCEMENT

Our main results use robustified ResNet-50 as a guide model for generating image perturbations.
To evaluate the importance of the choice of guide model, we compared the accuracy of difficulty
prediction (Fig. S7) and the effects of enhancement with ϵ = 20 (Fig. S9) using 6 different guide
models in the 16-way animal classification task. The results show that setting ϵ to a value of 3 during
adversarial training of ResNet-50 yields more accurate difficulty predictions and more effective per-
turbations than ϵ = 1 or ϵ = 10 training (consistent with disruption modulation results in Gaziv et al.
(2023)), while perturbations guided by a non-adversarially-trained “vanilla” model have negligible
effects. Model accuracy seems to be less important than robustness, at least for difficulty prediction:
ground truth logits from ResNet-50 models at early epochs of adversarial training on ImageNet,
which have lower image classification accuracy than models at later epochs, can still yield accurate
image difficulty predictions (Fig. S8A). Models at early training epochs may also be able to gen-
erate high-quality image enhancement perturbations (Fig. S8B), although we did not study this in
our experiments with human participants. Although training ResNet-50 with CutMix improves its
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Figure S6: Robustified ground truth logit is a state-of-the-art predictor of image difficulty for
humans, outperforming the c-score, prediction depth, and adversarial epsilon of both vanilla
and robustified models. AUC estimates are based on fitted logistic regression models using one or more
features listed under each bar, with stratified 500-fold cross-validation. Error bars are 95% confidence intervals
for the mean from 10,000 bootstrap replicates. The chance level is AUC=0.5.
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Figure S7: Accuracy of image difficulty prediction using ground truth logits from different
model types. AUC estimates and 95% confidence interval error bars are generated by the same procedure as
in Fig. S6 - however, results are not directly comparable between the two figures as different ANN training runs
were used for consistency within each experiment. RN50 = ResNet-50, and ϵ values in the labels for each bar
show the magnitude of the adversarial perturbations during adversarial training.

robustness to adversarial perturbations (Yun et al., 2019), CutMix-ResNet-50 does not outperform
vanilla ResNet-50 in image difficulty prediction and perturbations using it as a guide model do not
significantly increase accuracy beyond that on original images. In addition to ResNet-50, we tested
the difficulty prediction and image enhancement capabilities of an adversarially trained vision trans-
former model, the Cross-Covariance Image Transformer (XCiT) (Ali et al., 2021). Debenedetti et al.
(2023) showed that the XCiT architecture is more suitable for adversarial training than the original
vision transformer. XCiT generates reasonably accurate image difficulty predictions (on par with
the previous state-of-the-art) and generates image perturbations that increase human categorization
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Figure S8: Robustified model accuracy weakly affects the relationship between ground truth
logit and human image difficulty. To generate this figure, we retained ResNet-50 model checkpoints from
immediately after each of 90 epochs of adversarial training on ImageNet-1K from scratch (ϵ = 3, batch size =
256, initial learning rate of 0.1 decreases by half every 9 epochs). In panel A, AUC estimates of logistic
regression models predicting human trial response correctness were generated by the same procedure as in
Appendix Figs. S6-S7, using ground truth logits generated by each of the epoch checkpoints. The shaded area
denotes 95% confidence intervals around each mean AUC from 10,000 bootstrap replicates. The training set
and validation set accuracy at 1000-way ImageNet-1K classification, on non-perturbed images, is also plotted
by training epoch. We observe that the AUC of human error rate prediction stops increasing relatively early
during training, well before the training/validation accuracy on the ImageNet classification task is saturated.
Panel B shows example images with ϵ = 20 enhancements generated by checkpoints at various stages of the
training process.

accuracy by a comparable degree to robustified ResNet-50. For the experiments in Figs. S7 and S9,
we used pretrained guide models provided by Gaziv et al. (2023) (Vanilla, ϵ = 1, ϵ = 3, and ϵ = 10
ResNet-50 models), Yun et al. (2019) (CutMix ResNet-50), and Debenedetti et al. (2023) (ϵ = 4
XCiT). Examples of images enhanced by each of these guide models with ϵ = 20 are displayed in
Fig. S10.

Image perturbations generated with vision transformer models (such as XCiT) typically include grid-
like artifacts related to the image patch/grid structure of these models (Dosovitskiy et al., 2020). To
mitigate grid artifacts during each step of generating image perturbations with XCiT, we calculated
gradients with respect to each pixel value by averaging across ten randomly translated, resized (fol-
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Figure S9: Effectiveness of image category enhancement across different guide model types.
Each bar shows the mean and 95% confidence interval (by bootstrap) of the rate at which humans choose
the original ground truth label, in a 16-way basic animal classification task using ImageNet images. The
“Original” bar shows accuracy for unmodified images, and other bars show accuracy of the same participants
on images enhanced (ϵ = 20) using gradients from the corresponding guide model. RN50 = ResNet-50, and
ϵ values in the labels for each bar show the magnitude of the adversarial perturbations during adversarial
training.

lowed by cropping/padding), color-jittered, and randomly cut-out “views” of each image, a strategy
inspired by Ganz & Elad (2024) that extends DiffAugment (Zhao et al., 2020).

S7 ABLATION STUDY ON LOGIT MAXIMIZATION APPROACH TO
ENHANCEMENT

As a limited ablation study on our approach to image enhancement, we conducted an additional
16-way ImageNet animal classification experiment with 20 human participants. This experiment
was mostly identical to the 16-way animal classification experiment described in the main text, ex-
cept there were 6 image conditions instead of 9. Half of the trials used images from the ImageNet
validation set (as in the main experiment), and the other half from the training set. Within each
training/validation split, one third of the trials were original, unmodified images, one-third were
enhanced by maximizing the ground truth logit with ℓ2 pixel budget ϵ = 10, and one-third were
enhanced by minimizing the cross-entropy loss with ϵ = 10. The results of this experiment are
summarized in Fig. S11A. We hypothesized that logit-based enhancement would provide superior
results, particularly for images that started off with low cross-entropy loss. We further hypothe-
sized that enhancements would be less effective for training images due to overfitting of the guide
model on them. The results show that logit maximization is effective on both training and valida-
tion images, and induces a larger increase in accuracy for a given pixel budget ϵ than cross-entropy
minimization. Indeed, cross-entropy minimization significantly increased accuracy only for valida-
tion images and not for training images. Unexpectedly, participants were more accurate on original,
unmodified training set images than on original, unmodified validation set images. According to
Russakovsky et al. (2015), the ImageNet ILSVRC 2012 validation set was collected using the same
methodology as the training set, but at a later time. It is therefore plausible that the images and
labels in the validation set are drawn from a slightly different distribution than those in the training
set, resulting in this accuracy discrepancy.
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Figure S10: Meaningful perturbations require robust models, and are possible with CNN and
vision transformer architectures. Each row shows an image from ImageNet (original on the far left)
enhanced with ϵ = 20 by different guide models. A quantitative comparison of different models’ perturbation
efficacies with regards to improving human classification accuracy can be found in Appendix Fig. S9.

S8 ADDITIONAL RESULTS FROM IMAGE CATEGORY LEARNING
EXPERIMENTS

Fig. 3 in the main text shows learning curves (mean smoothed accuracy by condition as a function
of trial number), and schedules for image difficulty selection and enhancement ϵ, for the moth pho-
tograph task: similar plots are shown for the dermoscopy task in Fig. S12 and the histology task
in Fig. S13. Panels H-M of Fig. S12 show the results of an early pilot experiment that used image
enhancement in isolation (no difficulty selection), in which we suspect the perturbation magnitude
ϵ was set too high causing participants to learn exaggerated features and fail to generalize to natural
images with subtler features. This prompted us to switch to the ϵ schedule we used for our main
learning experiments, which starts at ϵ = 8 instead of ϵ = 20. Panel C of Fig. S13 shows the rela-
tionship between the ground truth logit from robust ResNet-50 model and how many of the 7 expert
annotators of the MHIST histology dataset Wei et al. (2021) agreed on the same category label. On
average, the model is more “confident” in its predictions (higher ground truth logit) on images where
experts are more in agreement with each other.

In addition to the agreement of expert MHIST annotators, the ground truth logit successfully predicts
the proportion of human participants who select the correct ground truth label across all tasks we
tested. Difficulty prediction results from the 16-way ImageNet task are shown in Fig. 1 in the main
text, and from the moth photograph, dermoscopy, and histology tasks in Fig. S14 (Panels A1, B1,
and C). For this analysis in the non-ImageNet tasks, we rely on test-phase data from control group
participants who had just learned the tasks in question.

We can also attempt to measure the extent to which images with higher levels of enhancement are
easier for novice participants to recognize during the learning tasks (Fig. S14A2,B2). This analysis
is limited to the first training trial blocks in the “ET (shuffled)” participant group in the ablation
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Figure S11: Ablation results for image enhancement with ImageNet images. Logit maximization
enhancement is effective for images used to train the robustified CNN used as a guide model, and also for
held-out validation images (panel A). Logit-max enhancement is more efficient at increasing human accuracy
within a given pixel budget (ϵ = 10) than enhancement by cross-entropy minimization (panel A). The efficacy
of logit-max enhancement depends on the difficulty of the original image as estimated by the starting ground
truth logit (panel B). In the bar plot of panel B, images were assigned to 4 quadrants based on their ground
truth logit values, and for each quadrant the mean difference in accuracy was calculated between original,
unmodified images and images enhanced with ϵ = 10 (using data from the main 16-way animal classification
experiment). The images below each bar illustrate an example image from the category “antelope” drawn from
the corresponding difficulty quadrant. All error bars are 95% confidence intervals for the mean from 10,000
bootstrap replicates.

study (main-text Table 1), the only group that viewed enhanced images without ϵ monotonically
decreasing over time. Note that there were 6 discrete ϵ values (1 per block in the non-shuffled ET
condition), and the analysis is complicated by the fact that participants were still learning the task
when they made the responses underlying these plots. We are also unable to compare with ϵ = 0
unmodified images because participants did not view new unmodified images in the corresponding
training blocks. There are no results here for the histology task because the ablation study was
conducted only for moth photos and dermoscopy images. In both the moth task and the dermoscopy
task, participants respond with the original, correct category label statistically significantly more
often when viewing images enhanced with greater ϵ (Fig. S14B1,B2).

To evaluate whether L-WISE has differential effects on human image category learning depending
on the image class, we record test-phase precision and recall for each class among L-WISE and con-
trol groups in Table S1. The same data are visualized in Fig. 4B. Our experiments are statistically
underpowered to detect class-specific differences in performance (as opposed to aggregated perfor-
mance) - however, we can observe in a coarse sense that the sample means of precision and recall
are numerically higher in the L-WISE group across all classes in all tasks. This suggests that over-
all accuracy improvements attributed to L-WISE are distributed among the various image classes,
rather than being the result of isolated improvements in the detection of a subset of classes.

S9 PARTICIPANT DROPOUT RATES ARE LOWER WHEN L-WISE ASSISTANCE
IS PROVIDED

On the Prolific platform where we ran our experiments, participants can choose to withdraw from
studies partway through if they no longer wish to participate (this is called “returning” a study in
the Prolific interface). For the moth photograph and dermoscopy image category learning tasks,
participants who received L-WISE assistance in full or partially ablated form (see Table 1) were less
likely to withdraw.
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Figure S12: Plots showing the accuracy trajectory of human participants throughout train-
ing/testing in the main dermoscopy learning experiment (panels A-G) and a preceding pilot
experiment after which the epsilon tapering schedule was adjusted (panels H-M). All conven-
tions are identical to main-text Fig. 3. There is a statistically significant difference between the test-phase
performance of the L-WISE participants and that of the control participants (χ2(1) test, p < 0.001) in panel
G but not for the pilot experiment in panel M. Notably, the last portion of the training phase does not feature
any image enhancements (see Fig. 2F): we suspect that this is the reason for the sudden decline in accuracy in
the enhancement group of the pilot experiment (M).

Nine participants withdrew from the moth photograph category learning experiment. Among them,
six had been assigned to the control group, one to the “enhancement taper” group, one to the “diffi-
culty selection” group, and one to the full L-WISE group. We can calculate the probability of d = 6
or more participants among the n = 9 who withdrew being from the control group, under the null
hypothesis that the probability of withdrawal is independent of group assignment, using the binomial
distribution via Equation 3 below (where p is the probability of being assigned to the control group).
Equation 3 evaluates here to a probability of p = 0.02, indicating that participants who withdrew
were significantly more likely to have been assigned to the control group than would be expected if
L-WISE assistance had no impact on the probability of withdrawal.
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Figure S13: Plot showing the accuracy trajectory throughout training/testing of human partici-
pants in the histology learning experiment. All conventions follow Fig. 3. Panel C shows the association
between agreement among the 7 expert pathologist annotators of the MHIST dataset (Wei et al., 2021) and the
ground truth logit score of each image from a robustified ResNet-50. Possible values of annotator agreement
are 4, 5, 6, or 7 of the annotators agreeing with each other (3 and below switches the “ground truth” category).
Error bars are 95% confidence intervals for the mean from 10,000 bootstrap samples.

P (X ≥ d) = 1− P (X ≤ d− 1) = 1−
d−1∑
k=0

(
n

k

)
pk (1− p)

n−k (3)

Similarly, in the dermoscopy category learning experiment, 13 participants withdrew, of whom 6
were from the control group. In this case, Equation 3 evaluates to a probability of p = 0.041, again
indicating that participants in the control group withdrew at a significantly higher-than-expected
rate. Furthermore, 4 more of the 13 withdrawals were from the “Enhancement Taper (shuffled)”
group, which had test-phase accuracy indistinguishable from the control group (see Table 1). None
of the withdrawals from the dermoscopy experiment were from the full L-WISE group.

Overall, these results show that participants were more likely to withdraw from the study when
they did not receive assistance from L-WISE, perhaps reflecting the difficult nature of the moth
photograph and dermoscopy image tasks at baseline. None of the participants withdrew from the
histology image experiment, precluding a similar analysis.

S10 NOTES ON “HALLUCINATIONS” IN ENHANCED IMAGES

To support our approach to assisting human learners, we demonstrate the ability to enhance category
percepts in images using low-norm perturbations. Previous work by Gaziv et al. (2023) showed that
an image from one category can be perturbed in a targeted way such that a human perceives it to
belong to a different category. Features introduced by these disruptive perturbations could be de-
scribed as “hallucinations:” perceptions (by the model and the human viewer) of objects that are not
present in the camera’s view. Our image enhancement approach is a special case in the wider realm
of categorically targeted image modulation, in which maximization of the ground truth logit perturbs
the image such that it becomes a stronger and/or less ambiguous example of its class according to
the model’s judgement. Do these perturbations accentuate features that are already present such
that they are easier for humans to perceive under challenging conditions, or do they improve hu-
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Figure S14: Difficulty prediction and image enhancemement are effective across image do-
mains. Panels A1, B1, and C show the relationship between the ground truth logit from a fine-tuned robustu-
fied ResNet-50 model and the rate at which human participants (from the control groups) choose the ground
truth label during the test phase following a training phase in which they had just attempted to learn the task.
Images are binned by ground truth logit to produce the scatter plots, with the number of total trials listed for
each bin. Vertical error bars are 95% confidence intervals by bootstrap, and horizontal error bars show the
standard deviation within each bin. The curved lines illustrate fitted logistic regression models. All logistic
regression models had statistically significant coefficients for ground truth logit (p < 0.001 from Wald statis-
tic). Panels A2 and B2 show the relationship between enhancement ϵ and the rate at which humans choose the
ground truth category. This analysis is limited to the first training trial blocks in the “ET (shuffled)” participant
group in the ablation study (main-text Table 1), the only group that viewed enhanced images without ϵ mono-
tonically decreasing over time. The logistic regression coefficient for ϵ was statistically significant (p < 0.05
from Wald statistic) for both moth photographs (A2) and dermoscopy images (B2).

man accuracy by hallucinating new features associated with the target category? Subjectively, both
phenomena seem to occur: panel B2 in Fig. 1 appears to show bolder contrasts and exaggerated
features in class-relevant regions of the perturbed images. Panel B (image farthest to the left) in
Appendix Fig. S11, however, shows a clear example of hallucination, where a semblance of an en-
tire additional “antelope” appears in the foreground of the image. This distinction may be important
for education-oriented applications of our enhancement approach, as hallucinations could plausibly
impart potentially misleading information to the learner. On the other hand, it is possible that hallu-
cinated features can impart useful and therefore desirable representations of the ground truth class
despite departures from a natural image distribution.

S11 PARTICIPANT RECRUITMENT AND DEMOGRAPHICS

We recruited a grand total of 521 participants via the online platform Prolific. All participants lived
in the United States and were fluent in English (as determined by Prolific). Each participant was
eligible to complete each learning experiment only once, to avoid collecting data from participants
already familiar with a given task.

Our decision regarding the number of participants to recruit for each learning task experimental
group (targeting 30 on average) was intended to exceed the requirements of a simple power anal-
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Precision Recall

Control L-WISE Control L-WISE

Moth photos
seriata 0.46 (0.39–0.52) 0.52 (0.45–0.59) 0.43 (0.37–0.50) 0.63 (0.55–0.71)
tacturata 0.45 (0.40–0.50) 0.63 (0.55–0.71) 0.54 (0.47–0.61) 0.68 (0.60–0.76)
biselata 0.35 (0.30–0.41) 0.41 (0.32–0.50) 0.36 (0.31–0.42) 0.42 (0.35–0.50)
aversata 0.50 (0.44–0.56) 0.58 (0.50–0.66) 0.57 (0.50–0.63) 0.68 (0.59–0.77)

Dermoscopy
Benign mole 0.38 (0.33–0.43) 0.42 (0.36–0.48) 0.43 (0.38–0.48) 0.47 (0.40–0.54)
Melanoma 0.33 (0.29–0.38) 0.39 (0.35–0.44) 0.37 (0.31–0.42) 0.42 (0.37–0.47)
BCC 0.41 (0.36–0.46) 0.54 (0.46–0.61) 0.41 (0.36–0.47) 0.56 (0.48–0.63)
Benign keratosis 0.26 (0.22–0.30) 0.39 (0.34–0.43) 0.30 (0.25–0.35) 0.43 (0.36–0.49)

Histology
SSL (malignant) 0.58 (0.54–0.62) 0.60 (0.56–0.64) 0.66 (0.61–0.71) 0.70 (0.66–0.75)
HP (benign) 0.59 (0.55–0.64) 0.61 (0.56–0.67) 0.61 (0.56–0.66) 0.66 (0.62–0.70)

Table S1: L-WISE improves test-phase precision and recall across all image classes in
three image category learning tasks. BCC=basal cell carcinoma, SSL=sessile serrated adenoma, and
HP=hyperplastic polyp. In parentheses are 95% confidence intervals for the mean from 10,000 bootstrap repli-
cates, resampling from participant-wise precision and recall values.

ysis we conducted following pilot experiments. Pilot experiments showed differences in test-time
accuracy between control and either enhancement taper (equivalent to ET in main-text Table 1) or
difficulty selection (equivalent to DS in Table 1) participants to be roughly 10%, with a standard
deviation in accuracy of roughly 10% in each group.

H0 : µ1 − µ2 = 0

H1 : µ1 − µ2 ̸= 0

Given:
δ = 0.1 (estimated mean difference)
σ = 0.1 (estimated standard deviation)
α = 0.05 (significance level)

1− β = 0.8 (power)

Estimated effect size d =
δ

σ
= 1.0

Required sample size per group: n = 2(z1−α/2 + z1−β)
2/d2

= 2(1.96 + 0.84)2/12

≈ 16 subjects per group at minimum

We provide a demographic breakdown of the participants in our study, aggregated across experi-
ments, in Table S2. Some participants took part in more than one of the experiments, but are only
counted once in the table.
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Total participants 521
Pts. w/ demographic data 519 (99.6%)
Age

Mean (SD) 36.6 (11.9) years
Range 18-83 years

Sex
Female 289 (55.7%)
Male 227 (43.7%)
Not specified 3 (0.6%)

Ethnicity
White 338 (65.1%)
Black 54 (10.4%)
Asian 50 (9.6%)
Mixed 44 (8.5%)
Other 23 (4.4%)
Not specified 10 (1.9%)

Table S2: Demographic characteristics of study participants, aggregated across all experiments.
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Figure S15: Randomized assignment of aliases “Leda,” “Ajax,” “Eris,” and “Tyro” had min-
imal impact on test-phase accuracy in the moth species classification task. Each group of four
boxplots shows the relative effects of assigning each alias to a specific class from the moth classification exper-
iment. Each individual boxplot indicates the distribution of participant-wise test-phase accuracy z-scores (nor-
malized with mean and standard deviation within each condition separately) among participants with mapping
of a specific alias onto a specific class - for example, the left-most boxplot within the right-most group describes
the accuracy of participants who saw images of the moth species Idaea tacturata labelled as “Eris.” There is
no evidence from one-way ANOVA that the random assignment of aliases to classes influences test-phase per-
formance.
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Figure S16: Randomized assignment of aliases “Leda,” “Ajax,” “Eris,” and “Tyro” had min-
imal impact on test-phase accuracy in the dermoscopy task. After correcting for multiple compar-
isons, there is no evidence that the random assignment of aliases to classes affects task performance. See also
Fig. S15.
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