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Abstract

Recent advancements in language models001
(LMs) have demonstrated remarkable adapt-002
ability across diverse tasks, excelling in both003
discriminative and generative domains with004
impressive multitasking capabilities. Recent005
attention of LMs has shifted towards non-006
autoregressive diffusion models, leveraging de-007
noising generation for sequence-to-sequence008
modeling. However, the extent to which current009
diffusion-based LMs can handle multitasking010
remains unclear. In this study, we introduce a011
novel framework tailored to designing a diffu-012
sion model for multi-task language modeling.013
Inspired by latent image diffusion models, our014
approach involves a general transformer-based015
diffusion model leveraging pretrained encoders,016
facilitating multi-task learning with adaptable017
input embedding encoders. We define a dif-018
fusion loss within the trainable decoder’s la-019
tent space, which interacts with any encoder020
via a cross-attention mechanism. This frame-021
work establishes a flexible non-autoregressive022
LM capable of handling potentially noisy data023
by leveraging robust instruction embeddings024
from encoders, enabling instruction tuning. We025
demonstrate the efficacy of our model across026
various setups, including single-task and multi-027
task scenarios, showing its ability to produce028
high-quality outputs by effectively utilizing and029
merging training task information in the contin-030
uous latent space.031

1 Introduction032

With the recent success of diffusion models in vi-033

sion (Rombach et al., 2022a), there has been grow-034

ing interest in adapting them to text, which have035

shown superior diversity in language generation036

while maintaining competitive quality compared to037

auto-regressive counterparts such as GPT (Radford038

et al., 2019) and T5 (Raffel et al., 2020). Addition-039

ally, diffusion models offer controllability either on040

semantic concepts (Li et al., 2022) or concatenated041

input sentences(Gong et al., 2022).042

However, it is unclear whether diffusion models 043

excel as multi-task learners in language modeling 044

tasks, given their ability for diverse generation and 045

controllability in the latent space. Furthermore, 046

existing continuous text diffusion models, like Dif- 047

fuSeq (Gong et al., 2022), constrain the input trans- 048

former’s capacity by including input along with 049

the latent space to be diffused, resulting in token 050

wastage. SeqDiffuSeq (Yuan et al., 2022) fixes the 051

encoder-decoder to a BART model and lacks a gen- 052

eral cross-attention conditioning mechanism that 053

can leverage any pre-trained encoder. In this work, 054

we aim to address the following questions: 055

1. How can we enable effective multi-task learn- 056

ing in diffusion-based language models, given 057

their promising capability for diverse general- 058

ization (Gong et al., 2022)? 059

2. How can we leverage state-of-the-art embed- 060

ding modules/encoders in a plug-and-play 061

fashion for multi-task learning with diffusion 062

models, akin to image-counterparts such as 063

Stable Diffusion (Rombach et al., 2022a)? 064

To address these challenges, we introduce a novel 065

framework for multi-task learning with text diffu- 066

sion models, leveraging any input representations 067

through a general cross-attention mechanism. Our 068

exploration encompasses architectural design and 069

multi-task training techniques aimed at stabilizing 070

and enhancing performance. We anticipate that our 071

analysis will serve as an initial and valuable en- 072

deavor towards better understanding of multi-task 073

language training with diffusion models. 074

2 Methodology 075

2.1 Latent Text Diffusion Model 076

A diffusion model (Ho et al., 2020) operates 077

through a Markov chain of steps where the for- 078

ward process gradually introduces noise to the 079

original sample, and the model learns to reverse 080

(i.e., denoise) the noisy sample to reconstruct the 081
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original. Initially, a sample z0 ∼ p(z) is drawn082

from the distribution aimed to model. Then, a083

sequence of transformations is applied over T084

time steps to eventually produce zT ∼ N (0, 1).085

This transformation is defined as q(zt|zt−1) =086

N (zt;
√
1− βtzt−1, βtI), where βt governs the087

noise schedule, determining the rate at which088

noise is introduced to z0 to transform it into089

zT . During the reverse diffusion process, the090

model learns a denoising function pθ(zt−1|zt) ∼091

N (µθ(xt, t),Σθ(xt, t)), where µ and Σ are typi-092

cally estimated using a model such as a U-Net (Ron-093

neberger et al., 2015) or a transformer (Vaswani094

et al., 2017). In our implementation, we keep095

the learned variance fixed to the original variance096

schedule and predict the mean itself.097

In our framework, we focus on sequence-to-098

sequence text generation tasks with continous text099

diffusion models, where given (x,y), we aim to100

generate the output sequence y conditioned on the101

input sequence x (NULL for unconditional gen-102

eration). Additionally, we incorporate a task de-103

scription c to facilitate multi-task learning. The104

discrete token inputs necessitate additional steps105

of embedding (conversion from text to continu-106

ous space in the forward process) and rounding107

(conversion from continuous space to text dur-108

ing the reverse process), which we adopt directly109

from (Li et al., 2022). Unlike standard diffusion,110

where z0 is sampled from a task-and-input condi-111

tioned distribution denoted as z0 ∼ q0(z0|x, c), in112

our approach, during the reverse process, we pa-113

rameterize the reverse model (a Transformer) as114

pθ(zt−1|zt;x, c) ∼ N (µθ(xt, t, c),Σθ(xt, t, c)).115

Following the standard DDPM, our objective is116

to align the joint distributions of the forward and117

reverse processes.118

We follow DDPM and adopt the canonical sim-119

ple loss for the learning of generating y via the120

continuous latent variable z:121

Le2e
simple (y) = E

qϕ(z0:T |w)

[
Lsimple (z0) + ∥EMB(w)122

−µθ (z1, 1)∥2 − log pθ (y | z0)
]
, with123

Lsimple (z0) =
T∑
t=1

E
q(zt|z0)

∥µθ (zt, t)− µ̂ (zt, z0)∥2124

The second term of Le2e
simple accounts for the em-125

bedding loss, while the third term ensures that the126

latent representations map back to words in the127

discrete space. It is important to highlight that128

diffusion modeling with text employs a technique 129

for non-autoregressive generation: all tokens are 130

generated simultaneously, leveraging the inherent 131

stochasticity in the Gaussian sampling process to 132

produce diverse samples. 133

2.2 The Proposed Architecture 134

To facilitate multi-task training, we introduce a 135

novel architecture capable of conditioning the dif- 136

fusion denoising process on input representations 137

obtained from a pre-trained encoder. This is accom- 138

plished through a general cross-attention mecha- 139

nism. Figure 1 illustrates our proposed architec- 140

ture. Specifically, we leverage the BERT-base ar- 141

chitecture and utilize a pre-trained BERT model 142

to encode task information in the form of task in- 143

structions. The encoded task information is then 144

combined with the source text information using 145

the cross-attention mechanism within a new BERT 146

architecture (termed cross-attention BERT). Fi- 147

nally, another BERT model is employed to decode 148

the embeddings generated by the cross-attention 149

BERT, producing coherent target text (termed self- 150

attention BERT). 151

Cross Attention Mechanism One key innova- 152

tion of our architecture, distinct from existing text 153

diffusion models, is the incorporation of cross- 154

attention to seamlessly integrate task information 155

from a pre-trained BERT into the input source 156

text. This approach offers flexibility as the cross- 157

attention mechanism can accommodate task de- 158

scriptions of varying lengths. 159

Training and Inference Details We utilize the 160

BERT-base transformer, comprising 12 layers, with 161

an embedding dimension set to 128. During train- 162

ing, we employ T = 2000 diffusion steps with 163

a square-root noise schedule, and a learning rate 164

of 1e-5. Additionally, we implement importance 165

sampling, as proposed by Nichol and Dhariwal 166

(2021), to train our diffusion model. This technique 167

optimizes the loss by assigning higher weight to 168

timesteps with greater loss, following the approach 169

originally proposed by Nichol and Dhariwal (2021). 170

To facilitate the mapping of discrete text into the 171

latent space and back, we adhere to a similar pro- 172

cess of embedding and rounding as proposed in the 173

work by (Li et al., 2022). During embedding, dis- 174

crete tokens are mapped into a continuous space as 175

the initial stage of the diffusion process. Similarly, 176

during the denoising phase, the continuous latent 177

space is mapped back to the discrete vocabulary. 178
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Figure 1: The proposed model for multi-task instruction training of diffusion models based on the BERT architecture.

Consistent with the observations in (Li et al., 2022),179

we directly model the mean µ instead of the noise.180

Sampling Details Following Li et al. (2022), we181

sample for T = 2000 steps and leverage the clamp-182

ing trick during sampling to ensure that each rep-183

resentation commits to specific words. We also184

follow the Minimum Bayes Risk (MBR) decod-185

ing (Koehn, 2004) which chooses the output sen-186

tence minimizing a loss such as the BLEU score.187

3 Experiment Results188

3.1 Datasets and Tasks189

To implement our multi-task training paradigm, we190

first pretrain our models on the Super Natural In-191

structions v2 (NIV2) dataset (Wang et al., 2022).192

NIV2 is a diverse dataset comprising approxi-193

mately 1600 tasks across 76 task-types, designed to194

evaluate generalization to unseen tasks. As NIV2195

includes multiple languages but the tasks specif-196

ically require English, we filter out non-English197

data. We utilize the instruction templates provided198

by the dataset creators.199

After pretraining, we further fine-tune the model200

on four standard datasets for single-task evalua-201

tion, namely Text Paraphrasing, Question Gen-202

eration, Text Simplification, and Open Domain203

Dialogue. These datasets are commonly used for204

evaluating single-task diffusion models such as Dif-205

fuseq (Gong et al., 2022) and SeqDiffuSeq (Yuan206

et al., 2022).207

3.2 Evaluation Setting208

Baselines We consider several groups of base-209

lines for comparison:210

• Auto-regressive language models, includ-211

ing Transformer (Vaswani et al., 2017)212

(size 110M, base version) and pre-trained213

GPT2 (Radford et al., 2019).214

• Non-autoregressive models: LevT (Gu et al.,215

2019) (an iterative NAR model), and re-216

cently proposed seq2seq text diffusion mod-217

els such as encoder-only DiffuSeq (Gong218

et al., 2022) and encoder-decoder based Se- 219

qDiffuSeq (Yuan et al., 2022). 220

Note that for this study, the encoders are set to 221

a pretrained BERT (Devlin et al., 2018) (BERT 222

Base)1. 223

Evaluation Metrics To measure the generation 224

quality, we report the BLEU (Papineni et al., 2002), 225

Rouge-L (Lin, 2004) and BERT Score (Zhang et al., 226

2019). Following Yuan et al. (2022), we also report 227

the diversity of generation by reporting the intra- 228

sentence dist-1 (distinct unigram). 229

3.3 Main results 230

The results are summarized in Table 1. Our method 231

outperforms all baselines in most metrics. Com- 232

pared with the auto-regressive based methods, our 233

method achieves better (if not comparable) perfor- 234

mance while using much smaller models. Com- 235

pared to current state-of-the-art diffusion-based 236

models, our model is also able to achieve better 237

scores in most cases, partly due to the ability of 238

learning from multiple tasks. 239

3.4 Ablation Studies 240

Single task vs. multi-task training We compare 241

our model trained with and without multi-task pre- 242

training. The results are shown in Table 2, where 243

we observe that adopting multi-task pretraining sig- 244

nificantly improves the performance2. 245

Impact of MBR size We investigate the impact 246

of the MBR decoding sample sizes. The results are 247

shown in Figures 2 - 5 in the appendix. Our model 248

consistently outperforms Diffuseq in most cases, as 249

well as demonstrating a less sensitivity to the MBR 250

sample sizes. 251
1Note that Gong et al. (2022) evaluate the scenario when

embeddings are fixed with a BERT-Tiny model, but this can
lead to incompatible representations in the same diffusion
space due to which it is important to consider a separate en-
coder and decoder.

2We find that without multi-task pretraining, the model
is usually not stable and can encounter numerical issues, in
which case we evaluate the model using the checkpoint before
encountering the problem.
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Paraphrase Task Question Generation Task

Method BLEU↑ ROUGE-L↑ BERTScore↑ dist-1↑ BLEU↑ ROUGE-L↑ BERTScore↑ dist-1↑

Transformer-base 0.2722 0.5748 0.8381 0.9748 0.1663 0.3441 0.6307 0.9309
GPT2-base FT 0.1980 0.5212 0.8246 0.9798 0.0741 0.2714 0.6052 0.9602
GPT2-large FT 0.2059 0.5415 0.8363 0.9819 0.1110 0.3215 0.6346 0.9670
LevT 0.2268 0.5794 0.8344 0.9790 0.0930 0.2893 0.5491 0.8914

DiffuSeq 0.1805 0.55274 0.7910 0.9734 0.1511 0.3473 0.5882 0.9158
DiffuSeq (w/MBR=10) 0.2413 0.5880 0.8365 0.9807 0.1654 0.3677 0.6035 0.9106
SeqDiffuSeq 0.2328 – 0.8291 0.9806 0.1720 – 0.6135 0.9270
SeqDiffuSeq (w/ MBR=10) 0.2434 – 0.8400 0.9807 0.1746 – 0.6174 0.9248

Ours 0.2206 0.5711 0.8234 0.9713 0.1690 0.3646 0.6041 0.9147
Ours (w/MBR=10) 0.2563 0.6010 0.8489 0.9786 0.1757 0.3723 0.6126 0.9069

Text Simplification Task Open Domain Dialogue Task

Method BLEU↑ ROUGE-L↑ BERTScore↑ dist-1↑ BLEU↑ ROUGE-L↑ BERTScore↑ dist-1↑

Transformer-base 0.2693 0.4907 0.7381 0.8886 0.0189 0.1039 0.4781 0.7493
GPT2-base FT 0.3083 0.5461 0.8021 0.9439 0.0108 0.1508 0.5279 0.9194
GPT2-large FT 0.2693 0.5111 0.7882 0.9464 0.0125 0.1002 0.5293 0.9244
LevT 0.2052 0.4402 0.7254 0.9715 0.0158 0.0550 0.4760 0.9726

DiffuSeq 0.2873 0.5289 0.7771 0.9270 0.0088 0.0916 0.5106 0.9539
DiffuSeq (w/MBR=10) 0.3641 0.5869 0.8137 0.9264 0.0117 0.1103 0.5210 0.9425
SeqDiffuSeq 0.3709 – 0.8211 0.9081 0.0084 – 0.4382 0.9650
SeqDiffuSeq (w/MBR=10) 0.3712 – 0.8214 0.9077 0.0112 – 0.4425 0.9608

Ours 0.3225 0.5560 0.7928 0.9231 0.0120 0.1049 0.4953 0.9024
Ours (w/MBR=10) 0.3752 0.5961 0.8201 0.9196 0.0150 0.1168 0.5023 0.8762

Table 1: Comparisons with various baselines, including traditional autoregressive models and representative non-
autoregressive diffusion models on four downstream tasks.

Paraphrase Task Question Generation Task

Method BLEU ROUGE-L BERTScore dist-1 BLEU ROUGE-L BERTScore dist-1

Single-Task (no MBR) 0.1847 0.5231 0.7978 0.9611 0.1770 0.3566 0.6215 0.9201
Multi-Task (no MBR) 0.2206 0.5711 0.8234 0.9713 0.1690 0.3646 0.6041 0.9147

Single-Task (w/MBR=10) 0.1970 0.5329 0.8101 0.9665 0.0459 0.1525 0.5066 0.9119
Multi-Task (w/MBR=10) 0.2563 0.6010 0.8489 0.9786 0.1757 0.3723 0.6126 0.9069

Text Simplification Task Open Domain Dialogue Task

Method BLEU ROUGE-L BERTScore dist-1 BLEU ROUGE-L BERTScore dist-1

Single-Task (no MBR) 0.2406 0.4811 0.7531 0.9536 0.0112 0.1003 0.5036 0.9105
Multi-Task (no MBR) 0.3225 0.5560 0.7928 0.9231 0.0120 0.1049 0.4953 0.9024

Single-Task (w/MBR=10) 0.2976 0.5329 0.7845 0.9512 0.0138 0.1130 0.5080 0.8820
Multi-Task (w/MBR=10) 0.3752 0.5961 0.8201 0.9196 0.0150 0.1168 0.5023 0.8762

Table 2: Single task versus multi-task training. Multi-task training significantly boosts the performance.

4 Conclusion252

We propose the first framework to enable multi-task253

learning with text-diffusion models. We introduce254

a novel architecture to leverage any pre-trained255

representations to enable multi-task learning com-256

bined with the diverse generation capability of text257

diffusion models. Our experiments demonstrate258

competitive performance w.r.t AR and NAR base-259

lines, demonstrating the efficacy of our approach.260

Limitation Due to resource restrictions, we were261

only able to build and train our model on a rel-262

atively small scale. Compared to autoregressive 263

LLMs with billions of parameters, our diffusion- 264

based model is too small to observe emergent abil- 265

ities, and the evaluation is limited to small-scale 266

datasets for select tasks. We have tried some initial 267

effort to scale up our model; however, we encoun- 268

tered multiple challenges such as training instabil- 269

ity and slow convergence compared to autoregres- 270

sive LLMs. Overcoming these challenges to scale 271

up text diffusion models is an interesting research 272

direction worthy of further investigation. 273
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A Related Work385

Discrete Text Diffusion Models Diffusion mod-386

els have exhibited remarkable success within the387

realm of continuous data, particularly in the con-388

text of image generation (Rombach et al., 2022b),389

which has contributed to the generation of high-390

quality images. More recently, diffusion models391

have garnered attention for text generation as well.392

Taking inspiration from the diffusion model, Sohl-393

Dickstein et al. (2015) initially introduced a dif-394

fusion process involving binary random variables.395

Building upon this, Hoogeboom et al. (2021) ex-396

panded the diffusion model to encompass categor-397

ical data by incorporating surjective flow layers.398

Austin et al. (2021) further generalized the multino-399

mial diffusion model proposed by Hoogeboom et al.400

(2021) by introducing corruption through transition401

matrices instead of uniform transition probabilities.402

The application of densing diffusion techniques403

in non-autoregressive text generative models led404

to remarkable outcomes in machine translation405

tasks, as demonstrated by Savinov et al. (2021),406

achieving state-of-the-art results. In contrast407

to modeling the discrete state space in textual408

data, Li et al. (2022); Gong et al. (2022); Yuan409

et al. (2022) adopted diffusion models within the410

embedded latent space.411

412

Continuous Text Diffusion Models Recent413

work has focused on diffusion modelling in the414

continuous space. Li et al. (2022) proposed a con-415

tinuous diffusion model for improved controllable416

generation by leveraging a pre-trained classifier,417

further introducing the notions of ‘embedding’ and418

‘rounding’ to ensure compatibility of the discrete419

token space with the continuous latent space. Fol-420

lowing this, Gong et al. (2022) proposed DiffuSeq,421

a continuous diffusion model aimed at conducting422

sequence to sequence generation by concatenating423

the input and output sequences and only partially424

noising/denoising the output during the diffusion425

process. It should be noted that they leverage only426

a single transformer for the generation and only427

add noise to the output, which essentially wastes428

the entire sequence length which the model is ca-429

pable of generating. Further, Yuan et al. (2022)430

propose SeqDiffuSeq, an encoder-decoder based431

model along with a different noise schedule and432

token based noising for conducting the diffusion433

process. They train both components simultane-434

ously, and fix the architecture to a BART (Lewis435

et al., 2019) model, not demonstrating how one can 436

leverage pre-trained representations. 437

B Extra Experimental Results 438

Figures 2, 3, 4 and 5 show the comparisons on the 439

four evaluations metrics on the four datasets with 440

increasing MBR sample sizes. 441
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Figure 2: Comparisons of BERT, BLEU, Rouge-L and dist-1 scores with increasing MBR sample sizes on Paraphrase
task.

Figure 3: Comparisons of BERT, BLEU, Rouge-L and dist-1 scores with increasing MBR sample sizes on Question
Generation task.
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Figure 4: Comparisons of BERT, BLEU, Rouge-L and dist-1 scores with increasing MBR sample sizes on Text
Simplification task.

Figure 5: Comparisons of BERT, BLEU, Rouge-L and dist-1 scores with increasing MBR sample sizes on Open
Domain Dialogue task.
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