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Abstract

Recent advancements in language models
(LMs) have demonstrated remarkable adapt-
ability across diverse tasks, excelling in both
discriminative and generative domains with
impressive multitasking capabilities. Recent
attention of LMs has shifted towards non-
autoregressive diffusion models, leveraging de-
noising generation for sequence-to-sequence
modeling. However, the extent to which current
diffusion-based LMs can handle multitasking
remains unclear. In this study, we introduce a
novel framework tailored to designing a diffu-
sion model for multi-task language modeling.
Inspired by latent image diffusion models, our
approach involves a general transformer-based
diffusion model leveraging pretrained encoders,
facilitating multi-task learning with adaptable
input embedding encoders. We define a dif-
fusion loss within the trainable decoder’s la-
tent space, which interacts with any encoder
via a cross-attention mechanism. This frame-
work establishes a flexible non-autoregressive
LM capable of handling potentially noisy data
by leveraging robust instruction embeddings
from encoders, enabling instruction tuning. We
demonstrate the efficacy of our model across
various setups, including single-task and multi-
task scenarios, showing its ability to produce
high-quality outputs by effectively utilizing and
merging training task information in the contin-
uous latent space.

1 Introduction

With the recent success of diffusion models in vi-
sion (Rombach et al., 2022a), there has been grow-
ing interest in adapting them to text, which have
shown superior diversity in language generation
while maintaining competitive quality compared to
auto-regressive counterparts such as GPT (Radford
et al., 2019) and TS5 (Raffel et al., 2020). Addition-
ally, diffusion models offer controllability either on
semantic concepts (Li et al., 2022) or concatenated
input sentences(Gong et al., 2022).

However, it is unclear whether diffusion models
excel as multi-task learners in language modeling
tasks, given their ability for diverse generation and
controllability in the latent space. Furthermore,
existing continuous text diffusion models, like Dif-
fuSeq (Gong et al., 2022), constrain the input trans-
former’s capacity by including input along with
the latent space to be diffused, resulting in token
wastage. SeqDiffuSeq (Yuan et al., 2022) fixes the
encoder-decoder to a BART model and lacks a gen-
eral cross-attention conditioning mechanism that
can leverage any pre-trained encoder. In this work,
we aim to address the following questions:

1. How can we enable effective multi-task learn-
ing in diffusion-based language models, given
their promising capability for diverse general-
ization (Gong et al., 2022)?

2. How can we leverage state-of-the-art embed-
ding modules/encoders in a plug-and-play
fashion for multi-task learning with diffusion
models, akin to image-counterparts such as
Stable Diffusion (Rombach et al., 2022a)?

To address these challenges, we introduce a novel
framework for multi-task learning with text diffu-
sion models, leveraging any input representations
through a general cross-attention mechanism. Our
exploration encompasses architectural design and
multi-task training techniques aimed at stabilizing
and enhancing performance. We anticipate that our
analysis will serve as an initial and valuable en-
deavor towards better understanding of multi-task
language training with diffusion models.

2 Methodology

2.1 Latent Text Diffusion Model

A diffusion model (Ho et al., 2020) operates
through a Markov chain of steps where the for-
ward process gradually introduces noise to the
original sample, and the model learns to reverse
(i.e., denoise) the noisy sample to reconstruct the



original. Initially, a sample zo ~ p(z) is drawn
from the distribution aimed to model. Then, a
sequence of transformations is applied over T'
time steps to eventually produce zp ~ N(0,1).
This transformation is defined as q(z¢|z—1) =
N (z4;v/1 = Bizi—1, B I), where [3; governs the
noise schedule, determining the rate at which
noise is introduced to zgp to transform it into
zr. During the reverse diffusion process, the
model learns a denoising function pg(z¢—1|z¢) ~
N (po (e, t), Xg(xt,t)), where p and X are typi-
cally estimated using a model such as a U-Net (Ron-
neberger et al., 2015) or a transformer (Vaswani
et al.,, 2017). In our implementation, we keep
the learned variance fixed to the original variance
schedule and predict the mean itself.

In our framework, we focus on sequence-to-
sequence text generation tasks with continous text
diffusion models, where given (x,y), we aim to
generate the output sequence y conditioned on the
input sequence x (NULL for unconditional gen-
eration). Additionally, we incorporate a task de-
scription c to facilitate multi-task learning. The
discrete token inputs necessitate additional steps
of embedding (conversion from text to continu-
ous space in the forward process) and rounding
(conversion from continuous space to text dur-
ing the reverse process), which we adopt directly
from (Li et al., 2022). Unlike standard diffusion,
where z( is sampled from a task-and-input condi-
tioned distribution denoted as zg ~ qo(2zo|x, c), in
our approach, during the reverse process, we pa-
rameterize the reverse model (a Transformer) as
po(zi—1|zt;x,¢) ~ N(ug(xg,t,c), Lg(ay, t, c)).
Following the standard DDPM, our objective is
to align the joint distributions of the forward and
Teverse processes.

We follow DDPM and adopt the canonical sim-
ple loss for the learning of generating y via the
continuous latent variable z:
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The second term of Cf?n‘fple accounts for the em-
bedding loss, while the third term ensures that the
latent representations map back to words in the
discrete space. It is important to highlight that
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diffusion modeling with text employs a technique
for non-autoregressive generation: all tokens are
generated simultaneously, leveraging the inherent
stochasticity in the Gaussian sampling process to
produce diverse samples.

2.2 The Proposed Architecture

To facilitate multi-task training, we introduce a
novel architecture capable of conditioning the dif-
fusion denoising process on input representations
obtained from a pre-trained encoder. This is accom-
plished through a general cross-attention mecha-
nism. Figure 1 illustrates our proposed architec-
ture. Specifically, we leverage the BERT-base ar-
chitecture and utilize a pre-trained BERT model
to encode task information in the form of task in-
structions. The encoded task information is then
combined with the source text information using
the cross-attention mechanism within a new BERT
architecture (termed cross-attention BERT). Fi-
nally, another BERT model is employed to decode
the embeddings generated by the cross-attention
BERT, producing coherent target text (termed self-
attention BERT).

Cross Attention Mechanism One key innova-
tion of our architecture, distinct from existing text
diffusion models, is the incorporation of cross-
attention to seamlessly integrate task information
from a pre-trained BERT into the input source
text. This approach offers flexibility as the cross-
attention mechanism can accommodate task de-
scriptions of varying lengths.

Training and Inference Details We utilize the
BERT-base transformer, comprising 12 layers, with
an embedding dimension set to 128. During train-
ing, we employ 1" = 2000 diffusion steps with
a square-root noise schedule, and a learning rate
of le-5. Additionally, we implement importance
sampling, as proposed by Nichol and Dhariwal
(2021), to train our diffusion model. This technique
optimizes the loss by assigning higher weight to
timesteps with greater loss, following the approach
originally proposed by Nichol and Dhariwal (2021).
To facilitate the mapping of discrete text into the
latent space and back, we adhere to a similar pro-
cess of embedding and rounding as proposed in the
work by (Li et al., 2022). During embedding, dis-
crete tokens are mapped into a continuous space as
the initial stage of the diffusion process. Similarly,
during the denoising phase, the continuous latent
space is mapped back to the discrete vocabulary.
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Figure 1: The proposed model for multi-task instruction training of diffusion models based on the BERT architecture.

Consistent with the observations in (Li et al., 2022),
we directly model the mean p instead of the noise.

Sampling Details Following Li et al. (2022), we
sample for 7" = 2000 steps and leverage the clamp-
ing trick during sampling to ensure that each rep-
resentation commits to specific words. We also
follow the Minimum Bayes Risk (MBR) decod-
ing (Koehn, 2004) which chooses the output sen-
tence minimizing a loss such as the BLEU score.

3 Experiment Results

3.1 Datasets and Tasks

To implement our multi-task training paradigm, we
first pretrain our models on the Super Natural In-
structions v2 (NIV2) dataset (Wang et al., 2022).
NIV2 is a diverse dataset comprising approxi-
mately 1600 tasks across 76 task-types, designed to
evaluate generalization to unseen tasks. As NIV2
includes multiple languages but the tasks specif-
ically require English, we filter out non-English
data. We utilize the instruction templates provided
by the dataset creators.

After pretraining, we further fine-tune the model
on four standard datasets for single-task evalua-
tion, namely Text Paraphrasing, Question Gen-
eration, Text Simplification, and Open Domain
Dialogue. These datasets are commonly used for
evaluating single-task diffusion models such as Dif-
fuseq (Gong et al., 2022) and SeqDiffuSeq (Yuan
etal., 2022).

3.2 Evaluation Setting

Baselines We consider several groups of base-
lines for comparison:

* Auto-regressive language models, includ-
ing Transformer (Vaswani et al., 2017)
(size 110M, base version) and pre-trained
GPT2 (Radford et al., 2019).

* Non-autoregressive models: LevT (Gu et al.,
2019) (an iterative NAR model), and re-
cently proposed seq2seq text diffusion mod-
els such as encoder-only DiffuSeq (Gong

et al., 2022) and encoder-decoder based Se-
gDiffuSeq (Yuan et al., 2022).

Note that for this study, the encoders are set to
a pretrained BERT (Devlin et al., 2018) (BERT
Base)!.

Evaluation Metrics To measure the generation
quality, we report the BLEU (Papineni et al., 2002),
Rouge-L (Lin, 2004) and BERT Score (Zhang et al.,
2019). Following Yuan et al. (2022), we also report
the diversity of generation by reporting the intra-
sentence dist-1 (distinct unigram).

3.3 Main results

The results are summarized in Table 1. Our method
outperforms all baselines in most metrics. Com-
pared with the auto-regressive based methods, our
method achieves better (if not comparable) perfor-
mance while using much smaller models. Com-
pared to current state-of-the-art diffusion-based
models, our model is also able to achieve better
scores in most cases, partly due to the ability of
learning from multiple tasks.

3.4 Ablation Studies

Single task vs. multi-task training We compare
our model trained with and without multi-task pre-
training. The results are shown in Table 2, where

we observe that adopting multi-task pretraining sig-

nificantly improves the performance?.

Impact of MBR size We investigate the impact
of the MBR decoding sample sizes. The results are
shown in Figures 2 - 5 in the appendix. Our model
consistently outperforms Diffuseq in most cases, as
well as demonstrating a less sensitivity to the MBR

sample sizes.

'Note that Gong et al. (2022) evaluate the scenario when
embeddings are fixed with a BERT-Tiny model, but this can
lead to incompatible representations in the same diffusion
space due to which it is important to consider a separate en-
coder and decoder.

*We find that without multi-task pretraining, the model
is usually not stable and can encounter numerical issues, in
which case we evaluate the model using the checkpoint before
encountering the problem.



Paraphrase Task

Question Generation Task

Method BLEUT ROUGE-LT BERTScore? dist-11 BLEUT ROUGE-Lt BERTScoret dist-11
Transformer-base 0.2722 0.5748 0.8381 0.9748  0.1663 0.3441 0.6307 0.9309
GPT2-base FT 0.1980 0.5212 0.8246 0.9798 | 0.0741 0.2714 0.6052 0.9602
GPT2-large FT 0.2059 0.5415 0.8363 0.9819 | 0.1110 0.3215 0.6346 0.9670
LevT 0.2268 0.5794 0.8344 0.9790 | 0.0930 0.2893 0.5491 0.8914
DiffuSeq 0.1805 0.55274 0.7910 0.9734 | 0.1511 0.3473 0.5882 0.9158
DiffuSeq (w/MBR=10) 0.2413 0.5880 0.8365 0.9807 | 0.1654 0.3677 0.6035 0.9106
SeqDiffuSeq 0.2328 - 0.8291 0.9806 | 0.1720 - 0.6135 0.9270
SeqDiffuSeq (w/ MBR=10) | 0.2434 - 0.8400 0.9807 | 0.1746 - 0.6174 0.9248
Ours 0.2206 0.5711 0.8234 0.9713 | 0.1690 0.3646 0.6041 0.9147
Ours (w/MBR=10) 0.2563 0.6010 0.8489 0.9786 | 0.1757 0.3723 0.6126 0.9069
Text Simplification Task Open Domain Dialogue Task
Method BLEUt ROUGE-LT BERTScore? dist-11 | BLEUT ROUGE-LT BERTScoret dist-11
Transformer-base 0.2693 0.4907 0.7381 0.8886 | 0.0189 0.1039 0.4781 0.7493
GPT2-base FT 0.3083 0.5461 0.8021 0.9439 | 0.0108 0.1508 0.5279 0.9194
GPT2-large FT 0.2693 0.5111 0.7882 0.9464 | 0.0125 0.1002 0.5293 0.9244
LevT 0.2052 0.4402 0.7254 0.9715 | 0.0158 0.0550 0.4760 0.9726
DiffuSeq 0.2873 0.5289 0.7771 0.9270 | 0.0088 0.0916 0.5106 0.9539
DiffuSeq (w/MBR=10) 0.3641 0.5869 0.8137 0.9264 | 0.0117 0.1103 0.5210 0.9425
SeqDiffuSeq 0.3709 - 0.8211 0.9081 | 0.0084 - 0.4382 0.9650
SeqDiffuSeq (W/MBR=10) | 0.3712 - 0.8214 0.9077 | 0.0112 - 0.4425 0.9608
Ours 0.3225 0.5560 0.7928 0.9231 | 0.0120 0.1049 0.4953 0.9024
Ours (w/MBR=10) 0.3752 0.5961 0.8201 0.9196 | 0.0150 0.1168 0.5023 0.8762

Table 1: Comparisons with various baselines, including traditional autoregressive models and representative non-
autoregressive diffusion models on four downstream tasks.

Paraphrase Task Question Generation Task
Method BLEU ROUGE-L BERTScore dist-1 BLEU ROUGE-L BERTScore dist-1
Single-Task (no MBR) ‘ 0.1847 0.5231 0.7978 0.9611 | 0.1770 0.3566 0.6215 0.9201
Multi-Task (no MBR) 0.2206 0.5711 0.8234 0.9713 | 0.1690 0.3646 0.6041 0.9147
Single-Task (w/MBR=10) | 0.1970 0.5329 0.8101 0.9665 | 0.0459 0.1525 0.5066 0.9119
Multi-Task (w/MBR=10) | 0.2563 0.6010 0.8489 0.9786 | 0.1757 0.3723 0.6126 0.9069
Text Simplification Task Open Domain Dialogue Task
Method ‘ BLEU ROUGE-L BERTScore dist-1 | BLEU ROUGE-L BERTScore dist-1
Single-Task (no MBR) 0.2406 0.4811 0.7531 0.9536 | 0.0112 0.1003 0.5036 0.9105
Multi-Task (no MBR) 0.3225 0.5560 0.7928 0.9231 | 0.0120 0.1049 0.4953 0.9024
Single-Task (w/MBR=10) | 0.2976 0.5329 0.7845 0.9512 | 0.0138 0.1130 0.5080 0.8820
Multi-Task (w/MBR=10) | 0.3752 0.5961 0.8201 0.9196 | 0.0150 0.1168 0.5023 0.8762

Table 2: Single task versus multi-task training. Multi-task training significantly boosts the performance.

4 Conclusion

We propose the first framework to enable multi-task
learning with text-diffusion models. We introduce
a novel architecture to leverage any pre-trained
representations to enable multi-task learning com-
bined with the diverse generation capability of text
diffusion models. Our experiments demonstrate
competitive performance w.r.t AR and NAR base-
lines, demonstrating the efficacy of our approach.

Limitation Due to resource restrictions, we were
only able to build and train our model on a rel-

atively small scale. Compared to autoregressive
LLMs with billions of parameters, our diffusion-
based model is too small to observe emergent abil-
ities, and the evaluation is limited to small-scale
datasets for select tasks. We have tried some initial
effort to scale up our model; however, we encoun-
tered multiple challenges such as training instabil-
ity and slow convergence compared to autoregres-
sive LLMs. Overcoming these challenges to scale
up text diffusion models is an interesting research
direction worthy of further investigation.
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A Related Work

Discrete Text Diffusion Models Diffusion mod-
els have exhibited remarkable success within the
realm of continuous data, particularly in the con-
text of image generation (Rombach et al., 2022b),
which has contributed to the generation of high-
quality images. More recently, diffusion models
have garnered attention for text generation as well.
Taking inspiration from the diffusion model, Sohl-
Dickstein et al. (2015) initially introduced a dif-
fusion process involving binary random variables.
Building upon this, Hoogeboom et al. (2021) ex-
panded the diffusion model to encompass categor-
ical data by incorporating surjective flow layers.
Austin et al. (2021) further generalized the multino-
mial diffusion model proposed by Hoogeboom et al.
(2021) by introducing corruption through transition
matrices instead of uniform transition probabilities.

The application of densing diffusion techniques
in non-autoregressive text generative models led
to remarkable outcomes in machine translation
tasks, as demonstrated by Savinov et al. (2021),
achieving state-of-the-art results. In contrast
to modeling the discrete state space in textual
data, Li et al. (2022); Gong et al. (2022); Yuan
et al. (2022) adopted diffusion models within the
embedded latent space.

Continuous Text Diffusion Models Recent
work has focused on diffusion modelling in the
continuous space. Li et al. (2022) proposed a con-
tinuous diffusion model for improved controllable
generation by leveraging a pre-trained classifier,
further introducing the notions of ‘embedding’ and
‘rounding’ to ensure compatibility of the discrete
token space with the continuous latent space. Fol-
lowing this, Gong et al. (2022) proposed DiffuSeq,
a continuous diffusion model aimed at conducting
sequence to sequence generation by concatenating
the input and output sequences and only partially
noising/denoising the output during the diffusion
process. It should be noted that they leverage only
a single transformer for the generation and only
add noise to the output, which essentially wastes
the entire sequence length which the model is ca-
pable of generating. Further, Yuan et al. (2022)
propose SeqDiffuSeq, an encoder-decoder based
model along with a different noise schedule and
token based noising for conducting the diffusion
process. They train both components simultane-
ously, and fix the architecture to a BART (Lewis

et al., 2019) model, not demonstrating how one can
leverage pre-trained representations.

B Extra Experimental Results

Figures 2, 3, 4 and 5 show the comparisons on the
four evaluations metrics on the four datasets with
increasing MBR sample sizes.
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