Published in Transactions on Machine Learning Research (04,/2024)

The Cross-entropy of Piecewise Linear Probability Density
Functions

Tom S. F. Haines tsfh20@bath.ac.uk
Department of Computer Science
University of Bath

Reviewed on OpenReview: https: //openreview. net/ forum? id=A40019Zgdsv

Abstract

The cross-entropy and its related terms from information theory (e.g. entropy, Kullback—
Leibler divergence) are used throughout artificial intelligence and machine learning. This
includes many of the major successes, both current and historic, where they commonly
appear as the natural objective of an optimisation procedure for learning model parameters,
or their distributions. This paper presents a novel derivation of the differential cross-entropy
between two 1D probability density functions represented as piecewise linear functions.
Implementation challenges are resolved and experimental validation is presented, including
a rigorous analysis of accuracy and a demonstration of using the presented result as the
objective of a neural network. Previously, cross-entropy would need to be approximated via
numerical integration, or equivalent, for which calculating gradients is impractical. Machine
learning models with high parameter counts are optimised primarily with gradients, so if
piecewise linear density representations are to be used then the presented analytic solution
is essential. This paper contributes the necessary theory for the practical optimisation of
information theoretic objectives when dealing with piecewise linear distributions directly.
Removing this limitation expands the design space for future algorithms.

1 Introduction

Information theory (Shannon| [1948)) provides a mathematical toolbox, that, while originally motivated by
the problem of communication over noisy channels, has proved essential to artificial intelligence. The set of
information theoretic terms that can be obtained from cross-entropy often appear within training objectives
for machine learning (ML), e.g. information gain for random forests (Sethi & Sarvarayudu, [1982). They
are integral to the evidence lower bound (ELBO) in variational inference (Jordan et al., [1999), as used by
techniques such as variational autoencoders (Kingma & Welling, |2014) and diffusion models (Sohl-Dickstein
et al.| |2015). Cross-entropy loss (Hinton et al., [1995) is often preferred over the classical mean squared error
(Princel 2023) for neural networks, e.g. in transformers (Devlin et al., [2019). It also plays a part in theory,
e.g. the maximum entropy principle for selecting distributions of [Jaynes| (1957)).

In practice the uses of information theory are relatively simple. Most algorithms use Monte Carlo integration
(Metropolis et al., [1953) to calculate the mismatch between data and model, with the training set acting as
a fixed sample from the target distribution. It is regularly used as a loss function for discrete classification,
but in the context of continuous regression alternate objectives are common, as the differential cross-entropy
of the error distribution is hard to calculate in general. Variational methods often limit themselves to the
exponential family (Wainwright & Jordan, [2008), for which analytic expressions are known. This motivates
this paper: adding to the list of probabilistic objects with a known cross-entropy increases the design space
available for practical algorithms.

For the purpose of open access the author has applied a Creative Commons Attribution (CC-BY) licence. A complete
implementation, including code to generate the included figures, is in the supplementary material and also available from
https://github.com/thaines/orogram. There is no data. This research made use of Hex, the GPU Cloud in the Department
of Computer Science at the University of Bath.

https://openreview.net/forum?id=AoOi9Zgdsv
https://github.com/thaines/orogram

Published in Transactions on Machine Learning Research (04,/2024)

This paper’s main novel contribution is an analytic expression for the cross-entropy between two 1D piecewise
linear probability density functions (PDFs),

p;log(q;) + pi+11og(q; Pit14; — Dig;
H(P,Q) =~ 4 { 8] +pis oglnn) e 1 (log(gi41) — log(g:))

2 2(q7+1 - qv)

[

~ Bpi +piv1)gi+1 — (pi + 3pit1)a (1)

4(gi+1 — @)
It sums over every linear segment, indexed by ¢, with p; the PDF P evaluated at the start of the segment
and p;+1 evaluated at the end, these being change points. The same relationship holds for ¢ and @ while 4,

is the width of segment i. Entropy (= H(P, P)) and the Kullback-Leibler divergence (Kullback & Leibler,
1951) (= H(P,Q) — H(P, P)) follow immediately and are also novel contributions.

This result supports the future development of ML algorithms that use piecewise linear PDFs. Potential
advantages include support for step changes and multi-modality, which are poorly supported by the ex-
ponential family. This could be particularly valuable within the context of variational inference (Jordan
et al.l |[1999)), where cross-entropy appears as the objective. Optimal transport (Bonneel et al.l |2016)) is also
trivial with this representation. Within the context of neural networks, and gradient-based optimisation
in general, piecewise linear PDFs can be included only if taking their derivative is practical’. Doing so
with the presented result is computationally efficient, while using an alternative built around a technique
such as numerical integration is inefficient to the point of being implausible. Whatever their use, piecewise
linear PDFs can have an arbitrary and tunable parameter count, allowing greater expressiveness relative
to the typical text book distributions, and are simpler than many nonparametric approaches. It remains
the case that using numerical integration is simpler and will work for many applied problems, but in an
AT/ML context, where cross-entropy is often an optimisation objective, there is a need for an analytical (and
differentiable) result. Numerical integration is typically slow however, so a speed advantage may be observed
even for straightforward problems. Related work follows, with the derivation of the result in Section 3] This
is followed by numerical validation in Section [4] then a demonstration and, finally, a conclusion.

2 Related work

A history of piecewise linear PDFs is presented, building up to various uses within AT/ML. Quadrature based
approaches are discussed briefly. The triangular distribution (Simpson, (1755} |Johnson, |1997)), arguably the
simplest, is the only piecewise linear density function for which an information theoretic calculation appears
to be available: differential entropy (Lazo & Rathie,|1978]). This result adapts to the trapezoidal distribution
(René van Dorp & Kotz [2003)).

A histogram (Pearson, [1895) can be a piecewise linear PDF if it represents binned continuous data and area
has been normalised. Its cross-entropy is trivial. While suitable for many problems it has no gradient, e.g. you
can’t immediately train a neural network to output data with a specific distribution if that distribution is
represented by a histogram, because infinitesimal changes to data position leave the cross-entropy unchanged.
The frequency polygon (Scott) 1985b|) connects the centres of a regular histogram, and is probably the earliest
example of constructing a general piecewise linear PDF2. This is only consistent for a regular histogram
however, because otherwise the maximum likelihood solutions differ between the two representations. History
appears to have omitted or forgotten the obvious correction for this.

A variant is the edge frequency polygon (Jones et al., [1998]), which connects the midpoints between bins (half
way between bin heights at the edges between them) with linear segments. It confers no advantage over the
frequency polygon, having the same convergence in a mean squared error sense. This convergence is matched
by the kernel density estimate (Rosenblatt] [1956; Parzen) 1962), which generates piecewise linear PDFs if a
piecewise linear kernel is used, such as a triangle. Alternatively, averaging many histograms with different
origins (Scott), |1985al), such that the bins are misaligned, achieves a comparable effect with computational
advantage. It is piecewise linear though has an excessive number of change points. Another approach is to

LOf relevance here, the gradient which connects data point position to the cross-entropy of their distribution
2Farlier mentions exist but lack detail, e.g. Pearson in 1925 (Tarter & Kronmal, [1976).

Published in Transactions on Machine Learning Research (04,/2024)

take a kernel density estimate with any kernel and then fit a linear representation to it (Lin et al.l 2006);
this is an approximation and requires a finite or truncated kernel.

Some approaches go directly to a piecewise linear representation. [Beirlant et al.| (1999) fit a linear segment
to each bin of a histogram; this does result in discontinuities. Alternatively, Karlis & Xekalaki| (2008) fit a
mixture of triangular distributions, which generates an arbitrary polygon without discontinuities; they refer
to it as the “polygonal distribution”. A least squares approach with the segments fixed but their heights
allowed to vary has been proposed (Wielen & Wielen) 2015, as has a maximum likelihood estimator
|& McLachlan) 2016). The segments remain connected for both. [Nguyen & McLachlan| (2018) have shown
that the maximum likelihood estimator is consistent.

[Perron & Mengersen| (2001)) take a non-parametric Bayesian approach, estimating a non-decreasing function
as the cumulative distribution function of a mixture of triangular distributions. This approach models an
explicit Poisson draw of the mixture count followed by a Dirichlet over membership, using reversible jump
MCMC for inference. Alternatively, use a Dirichlet process prior for doing
a Bayesian density estimate with a mixture of triangular distributions. They are motivated by the problem
of making a Bayesian estimate of an unknown distributions mode and utilise a Gibbs sampler with the stick
breaking construction (Sethuraman, 1994).

Beyond explicit models built around piecewise linear PDFs there are also incidental uses within AI. Nu-
merous models output histograms as discrete representations of continuous values. As an example stereo
algorithms for rectified images output disparity, for which examples utilising dynamic programming
11996)), belief propagation (Felzenszwalb & Huttenlocher, [2006), graph cuts (Boykov et al., [2001) and
convolutional neural networks (Zbontar & LeCun), 2015) exist. Finally, as commonly taught when introduc-

ing neural networks 2023), a network that only uses regularised linear units (ReLU) (Fukushima
1975) generates a multivariate piecewise linear function.

For the purpose of verification numerical integration (Gibbj, 1916) and Monte Carlo integration (Metropolis
1953) are used in Section These are the main alternatives to the presented analytic approach

if only calculation is required. Other choices exist, primarily those based on quadrature .
This requires a family of functions for which the relevant information theoretic terms can be calculated.
For PDFs the Gram-Charlier/Edgeworth series are commonly chosen, but you can also
evaluate the integrand directly with a more general technique (Place & Stachl [1999). Hyvérinen| (1997) has
proposed a specific quadrature scheme designed for calculating differential entropy. While not the focus of
this paper, the equation contributed does enable 1D quadrature with piecewise linear approximations for
cross-entropy. Examples of these approximations being used within machine learning include independent

component analysis (Jutten & Herault), [1991)) and projection pursuit (Huber] [1985).

3 Derivation

The cross-entropy will now be derived. Note that, much like entropy has to define 0log(0) = 0, similar issues
occur. In the interest of clarity these are considered after the initial derivation. Differential cross-entropy is

defined as
H(P.Q) =~ [Pla)logQa)dz, 2)

where P and) are two PDFs and z is integrated over their domain. Taking P and @ to be piecewise linear
and 1D we can consider the integral to be the sum of many linear sections,

-3 / (1= t)pi + tpisa) log((1 — £)g; + tqip), (3)

where p; is P evaluated at the start of section ¢ and p;41 is P evaluated at the end; likewise for ¢ and Q. 9;
is the section width, x;41 — x;. If the linear segments of P and) are not in alignment then extra change
points can be added.

Published in Transactions on Machine Learning Research (04,/2024)

Consider a single section, i,

1
= —5i/ (1 =t)p; + tpiy1) log((1 —t)q; + tqiy1)dt. 4)
0
Define
Ap; = pit1 — i, AG = Giv1 — Qs (5)
and introduce
G=(1-1)g +1tg+1 = q + Agit, (6)

then simplify Equation 4] with a change of variables,

o [T Ap; . A
= _Aqx/ (pﬂr A]; (q_Qi)> log(¢)dg. (7)

qi

Separate the two integral forms,

i Ap; > /Qi+1 . Ap; /%41 N A~ A}
= — i — i lo dg + lo dq ¢, 8
g {<p ffh‘q o g(q)dq Ng; qlog(q)dq (8)

Y4

and slot in solutions to both,

B _2; {(pi - iZZqZ) (gi1 {log(gi1) — 1} — i {log(a;) — 1})

(B (g e {25) o

then rearrange to obtain

D @
5i Api 2 2
T T (Ag)? (Agipi — Apigi) (gi+1108(gi+1) — gilog(gi)) + =~ (41 10g(gi+1) — g7 log(g:))
Api (5 2
+ (Agipi — Apiqi)(gi — qi+1) + e (Qi - qi-i—l) - (10)
© ®

Separate out the first two terms within the curly brackets, @ and @,

@
(Agipi — Apiqi) (¢i+1108(giv1) — qilog(q:)) =
pi+14; 10g(¢;) + pigiy1108(qi+1) — ¢iGiv1(pilog(qi) + piv1log(gir1)), (11)

@
Di (2 2
== (711 108(qis1) — ¢i log(q:)) =
2
. 2]) a2 .1) . 2]) a2 1 .
_ Pi147108(qi) _ Pt log(dier) | Pit1diya l08(aits) | pigilog(4i) (12)
2 2 2 2 '
Introduce .) q2+1 q2
—(git1 —qi)° == = — iGiy1, 13
2(q+1 a) 5 T @i (13)

Published in Transactions on Machine Learning Research (04,/2024)

and use it to merge @ and @, to obtain

Pit1d; log(q¢)+piq3+1 log(gi+1) 1 _ pigiilog(ai) pit1g; log(gita)

+ = (qi+1— i) (pi 1og(q:) +pi+1 1og(qi+1))

2 2 2 2 2 ’
(14)
where the third term above corrects for the mismatch of the second term with @. Simplify to get
2 2
Piqi 1 — Pi+19; 1
+1fJF(IOg(QiH) — log(qi)) + i(AQi)Q(Pz‘ log(gi) + pi+11og(gi+1))- (15)
Now rearrange @ and @ from Equation
Ap; Agi
(Agipi — Apiqi) (¢ — qiv1) + 1 (@ — 1) =— 1 “ [(3pi 4+ pit1)di+1 — (pi + 3piy1)a] (16)
€))

and bring all of the terms from Equation [I0] back together to restate the equation for a single segment,

(Ag;)? { 9 g(gi+1) —log(q)) + 2()" (pilog(;) + pit1log(gi+1))
Ag;
4

[(3pi + piv1)dit1 — (Pi + 3pit1)a] } , (17)
which rearranges to

(3pi + Pit1)di+1 — (pi + 3pit1)e
4(giv1 — @)

pilog(gi) + pir1log(gin) | o P — Pidiy
_51' + 52 lo i —lo i)+ 57,
2 2(qi+1 . qi)2 (g(q +1) g(q))

(18)

completing the derivation needed for Equation

3.1 Singularity

As expected, 0log(0) = 0 has to be specified for Equation [1| to work, i.e. this is Lebesgue integration.
However, there is also a singularity when ¢; = ¢;4+1. To ignore the second and third term of Equation
when g;11 = ¢; it must be the case that

(Bpi + Pi+1)di+1 — (Pi + 3pit1) e
4(Qi+1 - lh)

2 2
lim 5‘pi+1qi — DPid; 1

i =0. 19
qi+1—q; 2(q¢+1 — Qi)2 ()

(log(gi+1) — log(q:)) + 0

The two terms have to be considered simultaneously for this to be the case. Use the series (Olver et al.,

2010, Equation. 4.6.4.),
1 /a—1\"
g =2 Y L(4) (20)

ne{l1,3,5,...}

to convert the first term of the limit into an infinite sequence,

)n—2

1 (giv1—
6i(pi+1qg _piq’?+1) E T \n (21)
ne{l35,.} " (i1 +ai)"

and note that the limit is trivially true for n = 3 onwards. Put the n = 1 term only back into the limit

(Equation ,
: (g1 —qi)" (3pi + pi+1)qi+1 — (pi + 3pit1)¢
im |6 (piy1q] — pid? +0; ; 22
Tit1 =i (pia +) (giv1 + @)t 4qiv1 — qi) (22)
and rearrange to obtain
m |6, (Pit1 — pi)(@i+1 — 4) ’ (23)
Qit1—qi 4((]i+1 + Qi)

which is simply zero, satisfying the requirement.

Published in Transactions on Machine Learning Research (04,/2024)

1le—10+2.30258509e—-1 1e—11+9.1629073e-2
a5 === Numerical integration 224 mmmm Numerical integration
2 ’ — Fast z — Fast
e Stable e Stable
c £ 214
@ 4.0 o
w %}
3 g
o o
£33 £
Q) [
S €
g g
& 3.0 &
T T T T T T T T T T T T T T T T T T
-20 -15 -1.0 =05 0.0 0.5 1.0 1.5 2.0 -20 -15 -1.0 =05 0.0 0.5 1.0 1.5 2.0

q1—qo le-5 g1—qo le-5

Figure 1: Zoomed in plots of the cross-entropy of a linear segment, showing the error as the singularity is
approached. Number top left is the scale of the y axis, bottom right the scale of the x axis. Calculated
with double precision. For both plots pg = p; = 0.1 and §g = 1; for the left plot % = 0.1 while for
the right % = 0.4. The x axis shows the difference between the two ¢ values, i.e. they cross over such
that the singularity is in the middle and the mean remains constant. This demonstrates how switching from
Equation [18]to [24] only needs to occur when within 1e=5 of the singularity, with this range increasing with q.
To obtain this precision with numerical integration required 22* samples with averages organised over three
levels to avoid underflow; it is over 90000 slower than the stable equation.

3.2 Implementation

Computing cross entropy with Equation [18] is numerically stable when a safe distance from the singularity,
but it becomes unstable due to the limits of floating point operations (IEEE}, 2019) when too close. A stable
everywhere alternative is

_ 5. Pilog(a) + pit1log(giti)
K2
2

+6;

(Pi+1 — pi)(git1 — ¢) +641?2'+1qz‘2 — Didii 3 1 <Qi+1 - qi)”

4(gi+1 + @) Y (i1 + gi)? neiasg " +2 \Gi+1 + @
(24)

which is obtained from the limit calculation above. The infinite series converges quite slowly; use Equation
[20] and assume, without loss of generality, that ¢;+1 > ¢;, hence

1 g —a\" 1 i
0< Z (q'Jrl q{) <3 log (q“) 7 25)
ne{l1,3,5,...} n+1r \qgi+1 + ¢ 7

where r > 0, and r = 2 gets a bound on Equation [24] If € is the error after running to n = N — 2, inclusive,
then

n N—-1 n
1 Gi+1 — Qi) (qz'+1 - Qi> 1 <Qi+1 - Qi>
e =) Sy (AR Nl S (26
n+2(Qi+1+Qi Gi+1+ G n+N+1\qg1+¢ (26)

ne{N,N+2,N+4,...} ne{l1,3,5,...}
such that
1 (givi—a\" " Gi+1
0<e< - (H_Z> log (Z> . (27)
2 \Git1 + 4 4
In practice % is almost always small and the bound is quite loose?, so you obtain multiple bits of

precision with each iteration.

Using a basic Python/numpy implementation Equation [24]is 40x slower than Equation [18— the preference
is to use the fast equation where possible. This comparison is obtained using an implementation that keeps
calculating terms within the summand in Equation until one evaluates as less than 10764, Figure
explores where the transition between approaches should occur: within |go — q1| < 1le~® is the rule selected
for the implementation in the supplementary material. A more complex rule may make sense depending on
the hardware/likelihood of being close to the singularity.

31t can be made tighter with polylogarithms

Published in Transactions on Machine Learning Research (04,/2024)

0.4

0.34

0.1+

0.0

Figure 2: The standard Gaussian (u = 0,02 = 1),
represented as a piecewise linear PDF and hence
truncated. Which, due to how curve rendering
works in the digital realm, is identical to rendering
a standard Gaussian without explicitly construct-
ing a piecewise linear PDF. The piecewise linear
approximation was made by matching the area un-
der the linear segments with the area under the
Gaussian’s CDF, with a regular spacing.

051 Monte-Carlo integration
mmmm Numerical integration
° 0.41 True
o Analytic
o 0.3
<
[
>
5 0.2
4
¥4
0.1
0.0

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
Ho — Hp

Figure 3: The Kullback-Leibler divergence, calcu-
lated via cross-entropy with H(P, Q) — H(P, P), of
two standard width Gaussian distributions as their
means are varied. The z axis shows the difference
between the means. Four approaches have been
used to calculate this result: the known solution
(“True”), and then three approaches based on a
piecewise linear approximation with “ Analytic” the
presented approach. The lines all overlap.

3.3 GPU implementation

Computing the infinite series of Equation[24on a GPU is not reasonable: the loop will have to be run until all
of the parallelised values have converged, wasting computation, plus reverse mode automatic differentiation
will struggle. Fortunately, this stable version only has to be used when |g;11 — ¢;| is sufficiently small that
the infinite series obtains float (32 bit) precision with the first two terms only. This means in practice that

(pz'+1 - pi)(Qi+1 - Qi)
4(qiv1 + @)

3
n (Sipi—Hin _piq%rl 1 (qurl - qi) L (qurl - qi> (28)
(i+1+a)* [3\ti+1+a/) 5 \giv1+a

_ 5.Pi108(a) + pi+1l0g(gi+1)

0
9 +

is used for computation on a GPU when in the ¢;11 & ¢; situation. Approximation will still occur where an
infinity or large value is expected, but as these break optimisation this proves convenient. Finally, due to
the inefficiency of branching on a GPU a fourth variant of the result proves useful when |g;11 — ¢;| is large,

'Pi+1qi2 - piq12+1
2(gi+1 — gi)?

_ 5P log(¢:) + pi+1log(gi+1) 46 (Pi+1 — pi)(di+1 — G)

2 ' 4(qiv1 + i) [log(gi+1) — log(gi)]

7

P14} —Pidi
“(qig1 + @) (Gi+1 — @)

(29)

This can be understood as the main result, Equation [I8] rewritten to share as many terms as possible with
Equation to minimise the code that appears within branches. Both of these versions are compatible
with standard automatic differentiation libraries; for completeness an example implementation is included
in Appendix [B] as used for the demonstrations in Section

Published in Transactions on Machine Learning Research (04,/2024)

1.0
0.8 1 251
2
0.6 © 2.0
X 3
[
0.4 4 é 1.5
o
0.2 Monte-Carlo integration
1.0 1 =mmm Numerical integration
Analytic
00{ ——— 4
-20 -15 -1.0 -05 0.0 0.5 1.0 15 2.0 0.0 0.2 0.4 0.6 0.8 1.0
X t

t=0.0 t=0.25 t=0.5 t=0.75 t=1.0

AT QNL I\

Figure 4: The top left graph shows a mixture distribution: a uniform distribution on the left and a triangular
distribution on the right, with equal probability, plus a (low probability) wide Gaussian to avoid infinities
in the following, converted into a piecewise linear PDF. As shown by the bottom row, the top left graph
is showing ¢t = 0: at ¢ = 1 the cube and triangle have switched places, with them moving linearly for the
transition, e.g. at t = 0.5 the cube is wearing a hat. The top right graph plots the cross-entropy, H (P, Q),
where P is always at ¢ = 0 while @ varies from ¢ = 0 to t = 1. At the right we have the entropy of the top
graph, in the centre the shapes are poorly aligned, giving the highest cross-entropy, then, when they have
swapped places, it’s a better match, if imperfect. The analytic solution is shown alongside numerical and
Monte Carlo integration, for verification.

4 Numerical validation

Three demonstrations have been selected to provide numerical validation. In all cases numerical integration
(Gibb, [1916) and Monte Carlo integration (Metropolis et al., [1953) have been used to verify the result.
Operations have been done with float (32 bit) precision for the presented approach, consistent with the
precision commonly used on GPUs. For the first two demonstrations there is also a direct solution (“True”),
because they use Gaussian distributions, but note that the Gaussians have to be converted to piecewise
linear PDFs, introducing some error that is then reflected by the proposed approach (“Analytic”) as well as
both of the sampling integrators. The conclusion throughout is that the presented approach is accurate.

First, Figure [2[shows a truncated standard Gaussian distribution (Gauss, |1823). It has been represented as
a piecewise linear PDF: the area under each linear section was matched to the Gaussian and then it was
renormalised, to account for the truncation. Entropy of the standard Gaussian is known to be ~ 1.4189385.
The presented approach gives 1.4189711, noting that some variation is expected due to the truncation and
linear approximation. Numerical integration gives 1.4189712, identical to float precision. Monte Carlo
integration gives 1.4191646, but is using the same number of samples as numerical integration (224) which
is not enough to match the precision — it’s a poor choice of integrator for a 1D function.

Figure [3] shows a sweep of the Kullback—Leibler divergence between two standard width Gaussians as the
delta between their means varies. As before there is a known equation for this (“True”), which is again
expected to not match exactly due to the distributions being represented with linear sections. The maximum
difference between numerical integration with 224 samples and the analytic solution is 0.000594; increasing
the numerical integration sample count made no further difference. Based on the results elsewhere it is
reasonable to believe that numerical integration is converging poorly.

Finally, Figure[dshows the cross-entropy directly, calculated for a sweep as two parts of a mixture distribution
swap position. This reflects the more arbitrary distributions that justify the use of a piecewise linear
distribution. There is no known equation for this, but the maximum difference observed between numerical
integration with 224 samples and the presented analytic approach is 5.8e76.

Published in Transactions on Machine Learning Research (04,/2024)

031 Figure 5: The gradients of points drawn from P(x)

to move towards Q(x), where the cost of the differ-
ence to be minimised is expressed with the Kullback—
Leibler divergence, Dgr.(P || Q). The vertical layout
of the arrows is for visual clarity only, and the seg-
ments of the piecewise linear distribution of Q(z) are
| | delineated by the short vertical lines.

0.2 1

P(x)

0.14

0ol | o

|
-3 -2 -1 0 1 2 3
X
0.4 - Start
— Goal

P(x)

Figure 6: On the left is the initial distribution of a draw of 1024 points from a standard Gaussian. A subset
of the points have been shown with their gradients as arrows; their vertical positioning has been randomised
to reduce visual overlap. The two bumps, from the central region of a rectified sine curve (normalised),
constitute the target of the optimisation. On the right is the result, where the points have been moved to
broadly match the goal distribution using Nesterov’s accelerated gradient descent.

5 Demonstration

One use case of cross-entropy is as an objective for continuous optimisation. This is demonstrated in Figure
where a 1D set of points have been sampled from P(z) and are being moved towards matching the
distribution Q(z), both represented as piecewise linear probability density functions. The gradients of the
points, as represented by arrows, are calculated in terms of the Kullback-Leibler (KL) divergence between
the two distributions, as defined in terms of the cross-entropy given in Equation [l| with D (P || Q) =
H(P,Q)— H(P, P). The piecewise linear distribution of the points is constructed similarly to a histogram,
except point mass is linearly interpolated between bin centres; this generates a piecewise linear distribution
(equivalent to a mixture of triangular distributions) where point positions have a gradient relative to the bin
heights. Gradients have been calculated using reverse mode automatic differentiation (Linnainmaal [1976]).

The central region of Figure [§] has no gradient because both distributions are uniform, while at the edges
the points are being moved inwards, to where Q(z) has mass. On the right hand side a set of points with
no gradient can be observed; this is because their segment and the adjacent segment both lack probability
mass, i.e. Q(z) = 0. Note however that a gradient still exists for Q(z) = 0 segments when they are adjacent
to segments where Q(x) # 0. It is therefore necessary to merge adjacent zero probability segments to ensure
a gradient exists everywhere.

The ability to calculate gradients relative to an objective enables continuous optimisation. This is demon-
strated in Figure |§|, where a draw from one distribution is optimised (moved) to match with another. Nes-
terov’s accelerated gradient descent (Nesterov)|1983) is used, with 2048 iterations reducing the KL-divergence
from 0.740 to 0.007. In the centre, where the probability is zero, erratic behaviour can be observed. This is
because the absolute gradients can get excessively large due to the zero, causing instability in this region.

Published in Transactions on Machine Learning Research (04,/2024)

0.40 1

Input
—— Transformed
—— Output

0.35 A

0.30 A

0.25 A

0.20

P(x)

0.15 A

0.10

0.05 A

0.00 -

Figure 7: The input is the standard Gaussian distribution while the output is a mixture of assorted dis-
tributions, sampled and represented with a piecewise linear probability density function. A residual neural
network is trained to convert the simple input distribution into the more complex output distribution. The
“transformed” graph is the result of this conversion; it is generated as a density estimate of 32768 points
from the input distribution after they have been passed through the trained neural network. KL-divergence
has again been minimised.

To avoid this the probability should be adapted to not get too low, either using a wide “slab” distribution
or by simply hacking the values.

The preceding demonstration is achievable with the inverse CDF transform, avoiding substantial complexity.
A more realistic use case is as the training objective of a neural network. In Figure [7] a network has been
trained to distort draws from the standard Gaussian to match an arbitrary mixture, as represented with a
piecewise linear distribution. In addition to the three mixture components (triangle, uniform and Gaussian)
the output distribution includes a low probability uniform slab distribution to ensure stability. The network
has two hidden layers of width 32, with Gaussian activations on all layers except the last, which remains
linear. It is used as an offset (residual) for point positions, such that the final layer can be initialised with
small values so it starts close to an identity transform. ADAM (Kingma & Bal [2015) with 8192 iterations
reduces the KL-divergence from 1.207 to 0.009. Stochastic gradient descent is used, i.e. each iteration a new
sample of 256 points is drawn and pushed through the network for calculating the gradient.

6 Conclusion

This paper has introduced an important operation for a flexible distribution representation, including a
rigorous exploration of how to implement it within practical algorithms. Consequentially, piecewise linear
PDF representations can be used when constructing AI/ML algorithms where, previously, it was either
computationally impractical or impossible. Potential applications can be found throughout the introduction
and its use as an objective for a neural network has been demonstrated.

A substantially extended (more rigorous) version of the derivation is presented in Appendix [Al including
an alternative path for completing the derivation. The supplementary material contains a generic library
for calculating the differential cross-entropy, KL-divergence and entropy of piecewise linear PDFs, alongside
standard operations such that it constitutes a complete library for working with such distributions*. Within
this library is code to generate all of the figures in this paper.

4This library is named orogram; same construction as histogram except the wooden posts (“histo”) have been switched for
mountains (“oro”) to reflect the triangular nature of a piecewise linear PDF.

10

Published in Transactions on Machine Learning Research (04,/2024)

References

Jan Beirlant, Alain Berlinet, and Léaszl6 Gyorfi. On piecewise linear density estimators. Statistica Neer-
landica, 53(3):287-308, 1999.

Nicolas Bonneel, Gabriel Peyré, and Marco Cuturi. Wasserstein barycentric coordinates: Histogram regres-
sion using optimal transport. ACM Transactions on Graphics, 35(4), 2016.

Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approximate energy minimization via graph cuts. Pattern
Analysis and Machine Intelligence, 23(11):1222-1239, 2001.

Ingemar J. Cox, Sunita L. Hingorani, Satish B. Rao, and Bruce M. Maggs. A maximum likelihood stereo
algorithm. Computer Vision and Image Understanding, 63(3):542-567, 1996.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. North American Chapter of the Association for Computational
Linguistics, 2019.

Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Efficient belief propagation for early vision. International
Journal of Computer Vision, 70:41-54, 2006.

Thomas S. Ferguson. A Bayesian analysis of some nonparametric problems. The Annals of Statistics, pp.
209-230, 1973.

Kunihiko Fukushima. Cognitron: A self-organizing multilayered neural network. Biological Cybernetics, 20
(3-4):121-136, 1975.

Carl F. Gauss. Theoria combinationis observationum erroribus minimis obnoziae. Henricus Dieterich, 1823.

David Gibb. A Course in Interpolation and Numerical Integration for the Mathematical Laboratory. G. Bell
& Sons, Limited, 1916.

Pedro Gonnet. A review of error estimation in adaptive quadrature. Computing Surveys, 44(4), 2012.

Geoffrey E. Hinton, Peter Dayan, Brendan J. Frey, and Radford M. Neal. The "wake-sleep" algorithm for
unsupervised neural networks. Science, 268(5214):1158-1161, 1995.

Chi-san Ho, Paul Damien, and Stephen Walker. Bayesian mode regression using mixtures of triangular
densities. Journal of Econometrics, 197(2):273-283, 2017.

Peter J. Huber. Projection pursuit. The Annals of Statistics, 13(2):435-475, 1985.

Aapo Hyvéirinen. New approximations of differential entropy for independent component analysis and pro-
jection pursuit. Advances in Neural Information Processing Systems, 10:273-279, 1997.

IEEE. 754-2019 — IEEE standard for floating-point arithmetic, 2019.
Edwin T. Jaynes. Information theory and statistical mechanics. Physical review, 106(4):620-630, 1957.

Edwin T. Jaynes. Information theory and statistical mechanics (lecture). Brandeis University Summer
Institute Lectures in Theoretical Physics, pp. 181-218, 1963.

David Johnson. The triangular distribution as a proxy for the beta distribution in risk analysis. Journal of
the Royal Statistical Society: Series D (The Statistician), 46(3):387-398, 1997.

M. C. Jones, M. Samiuddin, A. H. Al-Harbey, and T. A. H. Maatouk. The edge frequency polygon.
Biometrika, 85(1):235-239, 1998.

Michael I. Jordan, Zoubin Ghahramani, Tommi S. Jaakkola, and Lawrence K. Saul. An introduction to
variational methods for graphical models. Machine Learning, 37:183-233, 1999.

11

Published in Transactions on Machine Learning Research (04,/2024)

Christian Jutten and Jeanny Herault. Blind separation of sources, part i: An adaptive algorithm based on
neuromimetic architecture. Signal Processing, 24(1):1-10, 1991.

Dimitris Karlis and Evdokia Xekalaki. The polygonal distribution. Advances in Mathematical and Statistical
Modeling, pp. 21-33, 2008.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International Conference
on Learning Representations, 2015.

Diederik P. Kingma and Max Welling. Auto-encoding variational Bayes. International Conference on Learn-
ing Representations, 2014.

Solomon Kullback and Richard A. Leibler. On information and sufficiency. Annals of Mathematical Statistics,
22(1):79-86, 1951.

Aida C. G. Verdugo Lazo and Pushpa N. Rathie. On the entropy of continuous probability distributions.
Transactions of Information Theory, 24(1):120-122, 1978.

Chien-Tai Lin, Jyh-Shyang Wu, and Chia-Hung Yen. A note on kernel polygons. Biometrika, 93(1):228-234,
2006.

Seppo Linnainmaa. Taylor expansion of the accumulated rounding error. BIT Numerical Mathematics, 16:
146-160, 1976.

Nicholas C. Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller, and Edward
Teller. Equation of state calculations by fast computing machines. Journal of Chemical Physics, 21(6):
1087-1092, 1953.

Yurii Nesterov. A method of solving a convex programming problem with convergence rate o(1/k?). Soviet
Mathematics Doklady, 27:372-376, 1983.

Hien D. Nguyen and Geoff J. McLachlan. Maximum likelihood estimation of triangular and polygonal
distributions. Communications in Statistics — Theory and Methods, 102:23-36, 2016.

Hien D. Nguyen and Geoff J. McLachlan. Some theoretical results regarding the polygonal distribution.
Computational Statistics & Data Analysis, 47(20):5083-5095, 2018.

Frank W. J. Olver, Daniel W. Lozier, Ronald F. Boisvert, and Charles W. Clark. The NIST Handbook of
Mathematical Functions. Cambridge University Press, 2010.

Emanuel Parzen. On estimation of a probability density function and mode. Annals of Mathematical
Statistics, 33(3):1065-1076, 1962.

Karl Pearson. X. Contributions to the mathematical theory of evolution. — ii. Skew variation in homogeneous
material. Philosophical Transactions of the Royal Society A, 186:343-414, 1895.

Francois Perron and Kerrie Mengersen. Bayesian nonparametric modeling using mixtures of triangular
distributions. Biometrics, 57(2):518-528, 2001.

Jerry Place and Jerry Stach. Efficient numerical integration using Gaussian quadrature. Simulation, 73(4):
232-238, 1999.

Simon J. D. Prince. Understanding Deep Learning. MIT Press, 2023.
Johan René van Dorp and Samuel Kotz. Generalized trapezoidal distributions. Metrika, 58:85-97, 2003.

Murray Rosenblatt. Remarks on some nonparametric estimates of a density function. Annals of Mathematical
Statistics, 27:832-837, 1956.

David W. Scott. Averaged shifted histograms: effective nonparametric density estimators in several dimen-
sions. The Annals of Statistics, 13:1024-1040, 1985a.

12

Published in Transactions on Machine Learning Research (04,/2024)

David W. Scott. Frequency polygons: theory and application. Journal of the American Statistical Associa-
tion, 80(390):348-354, 1985b.

Ishwar K. Sethi and G. P. R. Sarvarayudu. Hierarchical classifier design using mutual information. Pattern
Analysis and Machine Intelligence, 4:441-445, 1982.

Jayaram Sethuraman. A constructive definition of Dirichlet priors. Statistica Sinica, 4(2):639-650, 1994.

Claude E. Shannon. A mathematical theory of communication. The Bell System Technical Journal, 27(3):
379-423, 1948.

Thomas Simpson. On the advantage of taking the mean of a number of observations, in practical astronomy.
Philosophical Transactions of the Royal Society, 49:82-93, 1755.

Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. International Conference on Machine Learning, 32:2256—

2265, 2015.

Michael E. Tarter and Richard A. Kronmal. An introduction to the implementation and theory of nonpara-
metric density estimation. The American Statistician, 30(3):105-112, 1976.

Jure Zbontar and Yann LeCun. Computing the stereo matching cost with a convolutional neural network.
Computer Vision and Pattern Recognition, pp. 1592-1599, 2015.

Martin J. Wainwright and Michael I. Jordan. Graphical models, exponential families, and variational infer-
ence. Foundations and Trends in Machine Learning, 1(1-2):1-305, 2008.

David L. Wallace. Asymptotic approximations to distributions. Annals of Mathematical Statistics, 29(3):
635-654, 1958.

Michael Vander Wielen and Ryan Vander Wielen. The general segmented distribution. Communications in
Statistics — Theory and Methods, 44(10):1994-2009, 2015.

A Full derivation

The process of doing the derivation was digital. Specifically, Atom® was used to edit Markdown with inline
Latex equations using MathJAX. Consequentially, it is excessively detailed: each step was done by copying
and pasting the previous line then editing it. Below are the raw proofs; they probably double as a statement
about mathematical paranoia. While inclusion is necessary to ensure complete rigour, they are probably
more valuable as an example of the difference between what goes into the body of a paper and what’s actually
done, to inform and/or terrify future researchers. It does still serve the purpose of clarifying the steps of the
derivation. Editing of the surrounding text has been done for “professionalism” and clarity, mostly adding
details that were originally omitted and adapting to formatting changes, but the mathematical steps have
not been edited at all.

There are two proofs; for completeness both are included. While the shorter derivation, as presented in
the main paper, was considered at the start of the original proof it was not explored, because the division
by zero appeared problematic. It was only after finishing the original derivation, and resolving the limit,
that approaching the problem with a change of variables was reconsidered. This was at the urging of an
anonymous reviewer; special thanks are extended to whomever they may be. The limit calculation within
the main paper utilises the techniques/form of the original derivation.

5A now defunct text editor; some later steps were done with inferior tools.

13

Published in Transactions on Machine Learning Research (04,/2024)

A.1 Shorter derivation

Differential cross-entropy is defined as,

H(P.Q) = - [P)og Qo). (30)

where the integral is over the (shared) domain of the two distributions, P and Q. In the linear case this
becomes

H(P,Q)=— 251'/0 (1 =t)pi + tpiy1) log((1 — t)qi + tgiv1)dt, (31)

where the sum is over each piecewise linear section, with ¢; that sections width (i to i+ 1). Lowercase letters
indicate an evaluation of the respective uppercase PDF, at the edge of a linear segment: subscript ¢ at the
start of segment i, subscript ¢ + 1 at the end. Hence, we need to be able to evaluate

1
= —5i/ (1 =t)pi + tpig1)log((1 — t)q; + tqiy1)dt. (32)
0
Define
Ap; = pit1 —pi, A¢G=qit1— (33)
and consider
G=(1—1)q +tqiy1 = q; + Agyt (34)

which can be used for a change of variables,

& [T Ap; . N\ a
= "Aq / (pz- + A];_ (4 - Qi)> log(q)dq. (35)

qi

Separate the two different integral forms,

d; Ap;) /q,-+1 s Api /qi+1 . R
= - Pi— x4 log(g)dq + qlog(q)dq ¢ , 36
Ag; {< Ag; @ @ Agi Jy (@) (36)
and slot in solutions to both (omitting the unknown offsets, as they cancel)
9 Ap; . R ; Api [.5 [log(g) 1\]"*"
= - i — ¢ | [q{1 — NI =P = - 37
Ad, {(p Aqﬂ) (G {log(q) — 1}]5:"" + Ad, [q { 5 il [(37)

= 7A5;Z {(pl - i];: Qi) (qi+1 {log(qiv1) — 1} — ¢ {log(qs) — 1})

122 (o))}

then rearrange,

T Ag { (pi - Aqi%’) (¢i+110g(qi+1) — i1 — ¢; log(ai) + ¢;)

Api @ a;
*ong <q3+110g(qi+1)— 5 @ logla) + 5) (39)

i

= T B {(Agipi — Apigi) (gi+1108(gi+1) — qilog(¢i) + ¢i — gi+1)

Ap; @
22 (s ontan) - onta) + 5 - 22 o)

14

Published in Transactions on Machine Learning Research (04,/2024)

i

Ap;
= (B {(AQipi — Apiq;) (gi+110g(git1) — qilog(q:)) + Tp (¢71log(gi+1) — ¢} log(a:))

Ap;
+(Agipi — Apiqi)(qi — qiv1) + Tp (¢ — qz’2+1)} . (41)

Explode the first term (within the curly brackets) and clean up,
(Agipi — Apigi) (qiv1log(qiv1) — qilog(ai)), (42)

Agipigiv1log(qit1) — Apigigiv log(git1) — Agipigi log(q:) + Apig? log(gi), (43)
(gi+1 — @i)PiGi+1108(qit1) — (Pit1 — Pi)GiGi+1108(qit1) — (Gis1 — @)Pigi log(q:) + (Pi1 — pi)g; log(q:), (44)

Pid; 1 108(qi11) — Pidiqi+1108(qit1) + Pididiv1 10g(qi+1) — Pit10idi+1 10g(giv1)
+ pig; 10g(qi) — Pigidi+1108(¢:) + pi+1q; log(a:) — pig; log(q:), (45)

Did711108(qi+1) — Pit16iGi+1108(qi+1) — Pidigi+110g(q;) + pit14; log(g;), (46)
pi+16; 10g(qi) + pigi1 108(giv1) — Gigir1(pilog(qi) + piy1108(git1))- (47)
Same again for the second term,
Ap;
B - (Qi2+1 log(git+1) — qi2 IOg(Qi))) (48)
Pi+1 — Di Pi+1 — Pi
%%‘24-1 log(gi+1) — %Q? log(g;), (49)
Pir102110g(Giv1) piatii108(giv1) piv1g?log(qs) - pig? log(q:)
- - + : (50)
2 2 2 2
piy1210g(q:) Digl1108(qiv1) | Piv14i108(qiv1) | pig?log(q:)
— — - - : (51)
2 2 2 2
Note that, with reference to the last part of both of the above exploded terms,
1 s G @
5@ —a)” = o~ Qigit1- 52
5 (di+1 = a:) 5 T T it (52)

Using this, both terms can be merged to get

 Piti1108(ai) pit14] log(gita)

2 2
pi+1qlog(q;) Pigiyq log(qiv1) 1
+14; 108(¢:) et + = (qit1 — i) (pi 1og(q:) + pi+1 log(gi+1))

2 2 2 2 2 ’
(53)
where the third line corrects for the mismatch of the second line. Simplify to get
Pidii1 — Pit1q; 1)
%(log(%#l) —log(qi)) + 5 (Aq:)"(pi log(gi) + pi+1108(gi+1))- (54)
Now rearrange the last two terms from within the curly brackets,
Ap;
(Agipi = Apigi) (@i = giv1) + = (6 = @) 5 (55)
A Apigi)Ag; — 2P A
—(Agipi — Apigi)Agi — T(Qi + qiv1)Agi, (56)
Ag;
2 [4Aqgip; — 4Apiqi + Apigi + Apigi+] , (57)
Ag;
7 [4piqiv1 — 4piqi — 4Div1Gi + 4Piqi + Pit1Gi — PiGi + Piv1Giv1 — Pidiv] (58)

15

Published in Transactions on Machine Learning Research (04,/2024)

Ag;
1 [Bpigi+1 — 3Pi+1Gi — PiGi + Pi+1¢i+1]
Ag;
7 [(3pi + pit1)Git1 — (i + 3pit1)ai] -

Bring all of the simplified terms back into the main equation,

(1og(4i11) —log(a) + 5 (Aa0)* (i og(a) + pis1 lo8(ai11)

_ 6 {piqfﬂ — Pit1q]
(Ag;)? 2

Ag;
4

and rearrange,

Pidii — Piv1d; 1
= o { PO I log(g1) ~ o) + 5 e 108(a) + i og(s)

to obtain the final form,

_ s { (pilog(g:) + pi+1l0g(gi+1)
‘ 2

2 2
Pi+19; — Pig;41
——————=(log(q;+1) — log(g;
Z(Qi—i-l — %‘)2 ((l+1) (1))

(3pi + Pit1)di+1 — (Di + 3pig1)e

[(3pi + pit1)qiv1 — (pi + 3pz‘+1)fh‘]} ,

[(3pi + Pit1)Giv1 — (i + 3pi+l)Qi]} ;

4(git1 — @)
A.2 Original derivation

Start from the need to evaluate

1
5, / (1=)i + tpisn) log((1 — £)g; + tair)dt.
0

This time, consider the series®

1 fa—1\"
log(a) =2 Z }n(a—l—l))

ne{l1,3,5,...

defined for a > 0. Use it to rewrite the objective as

(1—-1t)g +tqip1+1

1 1 1—t)g +tgier —1\"
_&/ (L—t)pi +tpis1) |2 > n(()i + tqig) i
0

ne{1,3,5,...}
Zn6{135...} 0 n (1 —=t)g +tqip1+1 ’

L ¢ — 14 (qiy1 — aqi)t\"
ne{lz:%...}n 0 (it P =) ¢ + 1+ (gi+1 — @)t

Use

d pit1 — pi)t?
o (pﬂf + % = pi + (Pi+1 — Pi)t,

6Equation 4.6.4, P.108 of NIST Handbook of Mathematical Functions, 2010

16

(62)

(63)

(66)

(67)

(68)

Published in Transactions on Machine Learning Research (04,/2024)

plus
d<(i — 14 (qig1 — @:)t)™) (70)
dt \ (qi + 1+ (qiy1 — q:)t)"
d
(@ — 14 (qip1 — @)t)™ d 1
+(q; — 1+ (q; qi)t)" — , 71
(i + 14 (g1 — @)t)" ((@i+1 = a:)D)™ dt (g + 1+ (giv1 — @:)t)" (70
m(gi — 1+ (g1 — a)t)™ (gir1 — @) (@ — 1+ (gira 7q_)t)mn(Qi + 14 (gir1 — 4)t)" " (qiv1 — @) . (72)

(¢ + 1+ (git1 — g:)t)" (¢ + 1+ (gi+1 — @)t)*"
(gis1 — @) {m(% — 1+ (g1 —g)t)" " n(g — 1+ (gip1 — g)t)" } (73)
1+ -
(¢ + 1+ (gi41 — @)t)" (@i + 14 (git1 — qi)t)" !
where some generalising has been done pre-emptively by introducing m < n in anticipation of later steps,
though for this first use n = m. Apply integration by parts to get

1) — M t2 i 1 + i —q; t nyl
—26; Z {[(pit+(p+12p)) (q_+1+gq'+1_q;t> }
ne{1,3,5,...} n 4qi qi+1 — ¢ 0

Y i =)t et — 0 (@i =1+ (g1 —g))" ™ (@ — 1+ (g1 — @)t)"
A OM+ >(%H qﬁ[(%+1+ﬁmd—%ﬁw (%+1+@md—%ﬁW“}ﬁh’)
74

—26; Zléfii 3 {(q. f+mf1 qq) }
nefizs, 3t NG L (qiv1 — as)
! 2
i - it
-y X { [(e 200
ne{1,3,5,...} 0

o [((zz‘ —1+ @ —a))"" (@ — 1+ (g1 — @)t)" } dt}} . (75)

¢ + 14 (qip1 — @:)t)" (@ + 14 (git1 — qi)t)" !

1 2 -1
o PitDPita _ o L i = et (@ — 1+ (g — @)t)"
" sl 20 q;)e{lz% 3 {/0 (pzt " 2 (¢ + 1+ (git1 —aq)t)” “

1 2
(pi+1 — pi)t (i =14 (giy1 — @)t)"
—20i(qiv1 — i E {/ (pif + dt 76
(e)n€{1,375,...} 0 2 (gi + 14 (giy1 — qi)t)" 1 (76)

i + i . ! i1 — pi)t? i =14 (@i —)"
—51%1%(%“) —26i(gi+1 — 4;) Z {/ <pit ™ L 2) > (%q +1 -i-((équj-l —qq)'))t)" dt} .
(77)

n=1

Consider the remaining integration,

/01 (pit + (Pit1 — . pi)t) (‘iz — 1+ (git1 — qi)t)n71 dt, (78)

¢ + 14 (g1 — @:)t)"

and prepare for integration by parts again. Need

d (pit®> (pig1 —p)t®\ (pis1 — pi)t?
dt(> "% SRt T ()

in addition to the above, where this time the generalisation is used. Stepping through,

Di + Pit1 - o (Piy1 —Pi)t?\ (@ — 1+ (qig1 — @)t)" !
_S T ALy) — 26 (G — E -1 ,
di 9 0g(gi+1) 6i(qi+1 — qi) {() /0 (pzt + 9 (G + 1+ (gis1 — g™ dt o,
(80)

n=1

17

Published in Transactions on Machine Learning Research (04,/2024)

pi +pi
—51‘72 + log(qi+1)
A2 (P — pi)t3 L g pn—17t
Dit+1 pz)t (Qz 1+ (QZ-H QZ)t)
— 26,(qis1 — § (- it — 4
(o =) n=1 {K " 6) (@i + 1+ (git1 — q)t)” (Ger1 =)

Ypit? | i =)t [(0= 1)(g =14 (g1 — @))% nle — 1+ (gir1 —q)t)"
) /o (2 " 6) { (@i + 14 (giy1 — gi)t)" (g + 14 (giy1 — @)t)" ! } dt}(,)
81

Pi tPpit1 4 o K= w [(P, Piv1—pi)\ (6 — 1+ (g1 —)"}
- o) 20 — a0 Y ()7 { (B + B) (G e S

201 —)2 [i(l)” {/01 <sz152 N (pi+1 6pi)t3> {(n (1q)i(:1r¢ ;j (Zi(fftl qi)tf))f)"Q } dt}

n=1

S (] (5 + e (e e a2

Note first entry of sequence of second line is zero, and offset to align powers with sequence of third line,

i + Di i1 D)) (i1 —1)" !
- 5/% log(gi+1) — 0i(qi+1 — i) <pz' + (p+13p)) Z(_l) {(qﬂ)}

o (Gi41 +1)"

ot | S {f (5) (s o

n=1

i {/ (p;t L (pin gpi)t?’) {?Zfigllj(gj:l—q‘ji)gz;_ll } dt}] , (83)

pi + i qi : ((2pi + i - o [(gig1 — 1)1
_(5iTﬂlog(qZ+1) 0; 1 < 3 +1)Z(—1) {<+1)}

Git1 +1 (it + 1)1t

n=1

i = o {[[e+ B 20) (G)

Focus on second term on first line, which is an infinite geometric sequence,

qi+1 — G [2ps +Pi+1> — { (gig1 —)"t }
—0;)" —— 5, 85
Git1 +1 (3 ;::1() (gie1 +)1 (85)
Giv1 — G [2ps +pi+1> - n { (qiy1 — 1)”}
5 (M L 86
A () S (g (36)
Qiv1 — G [2p; +pz‘+1) - (qit+1 — 1)”
5, B GEo R 87
Giy1+1 (3 nz:;) Gi+1+1 (87)
and use Y, ¥ = L as it is the case that |r| < 1 by construction,
i+1 — Qi (2pi +pi 1
+5,Z_+1 +ql (P Zpﬂ)l S (88)
o+l + qit1+1
i+1 — G [2pi +Dpi i 1
+5iQ+1 q (D +p+1) Gi+1 + 7 (89)
Giv1+1 3 Giy1+1+ g1 —1

18

Published in Transactions on Machine Learning Research (04,/2024)

45, (2pi + pit1)(git1 — gi)
' 6gi+1

Now put it back into the original equation,

(2pi + piv1)(qiv1 — qi)
6qi+1

R M O (e = rrrer e K T

- 5/% log(giy1) + d;

Time for yet another integration of parts, which needs
d (pit® | (pig1—pi)t! o | (Piy1 —p)t?
il AT V) =t e 2 2
dt (37T 12 P 3 (92)

plus the generalised derivative from above; consider just the final term,

~26;(gi+1 — ¢:)? i n(—=1)" {/01 <p¢t2 1 pins 3pi)t3> { EZ: 1 1 I EZ:: - 332;1 } dt} ’ %9)

n=1

B |)
4

1 3
. pit (Pit1 — pi)t o
/0 < 3 + 12 (giv1 — @)

(n=1(g =1+ (git1 —g))" > (n+1(g =1+ (gi1 —q)t)" "
8 { (@i + 14 (qiy1 — q@)t)" (@i + 14 (qiv1 — qi)t)" 2 } dt} - 08

- S { (- 247 2) ({12

n=1

ot - ot { [1 (25 el {0 e S)

sty Eer ([[(86 -) (st)

Second line is zero for first entry in sequence, so shift along to align with last line,
S 3pi +pi+1> ((Qi+1 O)}
— 2(52 i — q; 2 n(—=1)"

—26i(gir1 — @:)° gn(n +1)(=1)" {/01 (1013753 n (pi+11_2pi)t4> { Egi ; 1 1 Ezzi — Zzggnw } dt}

—25i<qi+1—qi>3§n<n+1>(—1>“{ / (B4 o 20 fla L s Zag o o

)
i + 14 (g1 — @i)t)"+2

i
3pi +pz+1 = qi+1 — 1)n
2 _1\n
+ 2(5 qz+1 (> z::(’ﬂ + 1)(1) < Qz+1 + 1)n+2
i

4 >0 1 i t4 -1 ; H)n—1
_3 qz+1_ngznn+1 {/ (pit3+(p+l)) +q+1 Q)> }dt}> (97)
n=1 0

i + 1+ (g1 — qi)t)" 2

19

Published in Transactions on Machine Learning Research (04,/2024)

() () e ()
_ géi(qiﬂ —) in(n +1)(-1)" {/01 (pit?’ 4 i ;pi)t4> {(qi L (G —)" } dt} . (98)

(¢i + 14 (qig1 — qi)t)"+2

The infinite sequence in the first line is an example of a polylogarithm, specifically, it is equivalent to two
evaluations of, such that

qit1—1
2(5 qi+1 — 3pz +p1+1 1 qiv1+1
e Q1+1+1 4 L+ 2l 1)
Gi+1t (+ Qz+1+1)
4 . ! (g1 — Pt [(@ — 1+ (¢ig1 — @)t)" !
R BN n(n+1)(/ 43 4 L 1 . . dt s, (99
3an —a) 2l {)\ 1 (@ T 1t (g1 — g)0)™? (99)

i 26» <3pi +pi+1) <Qi+1 —qi)2 [q¢+1 +1 _ (i1 + 1) (git1 — 1)}
3 3

4 gi+1+1 2¢i+1 442,

-t o { [(e o) {E e) o

+ 6 (3172 +pz+1)(%+1 — %)2
24qz—i—l

- g =t Lot v { [i 2200) U mA b o

Now bring back the rest of the equation,

Di + Pit1 (2pi + piv1)(qir1 — @) (3pi + pit1)(Git1 — 4:)?
— 00— log(g 9; 9;
[o'e) 1 4 n—1
Pit1 — Pi)t (i =1+ (gi41 — qi)t)
- 75 / %+ (dts. (102
(1~ z:: { 0 (pz 4 (qi + 14 (giy1 — q)t)" 2 (102)
This is suggestive, but not enough terms to be sure, hence repeat again. Going to need
d (pit* | (piy1—p)t° 3, (i1 —pi)t*
= il = PP) 2B 4 ML T POR 1
dt (PR} pitt 4 (103)

and the generalised derivative above. As before, consider only the final line,

4 - ! (pit1 — pi)t? (¢ =1+ (qiy1 —q)t)" !
——0i(qi+1 — @0)* Y n(n—+1)({/ (pz-t3+ s, (104
3 + ; o 4 (i + 14 (g1 — qi)t)"+2 (104)
4 - pit* (Pigr —)t (@ — 14 (qig1 — ¢;)t)" " !
— 0i(qiz1 —)Y n(n+1)([(+
3 (gi41 — a:) ; { 4 20 (i + 14 (qiy1 —q)t)" 2]

44 =)t
_/0 <pl4t + W) (¢i+1 — i)
y <(n — (g =1+ (g1 —q))" > (n+2)(gi — 1+ (g1 — qi)t)n_l> dt} . (105)

(qi + 1+ (qiy1 — qi)t)" 2 (gi + 1+ (giv1 —q)t)"*3

20

Published in Transactions on Machine Learning Research (04,/2024)

"3 (P pm pz)> (g — 1+ (qig1 — q;))" " }

{ 4 (@i + 1+ (qiv1 —q))"+2
4 i >
+35(Qz+1—% nE:1n (n+1)({/ (

(pis1 — pl>t5> ((”_(1)(%1— 1(+ (gi+1 ;;ﬁ)j)n_Q) dt}
@i + 1+ (qiv1 — @)t)" >
gt T { [) (R))
(106)

4 oo
=0i(qit1 — qi) 32” n+1)(
n=1

Note that first entry of the second line’s summation is zero, so shift to align with third line,

4 (Pi+1 — pi) E - (giqr — 1)1
— 50 (pi+—F | (@ (Gins + 1) +2
12 (p T (i1 = ;n (g1 + 1)+
4)t S / (Pz‘t4 (Pit1 —pi)t5> ((Qi — 1+ (giv1 — qz’)t)n_1> }
25 (as +1)(n+2)(-1)" =4 dt
3 i(Giv1 — ;” n (n+2)(-1) { 0 4 20 (i + 14 (g1 — q)t)"+3
4) - /1 <pit4 (Pis1 Pz‘)t5> ((Qz — 1+ (gi+1 — ql‘)t)n1> }
: +1)(n+2)(-1 + dt o,
3 (i1 — ;” n (n+2)(-1)" { o 4 20 (i + 14 (gig1 — q)t)"+3
(107)
4 4p; + pit1 3 (g1 —1)"
=gy (PP (g — D(n+2)(~1)nd ~LHr =)
* 12 (5 > (i1 =) nz:;)(n FomEAEY (Gi1 + 1) 3
8 - Yt | (i —)t (g — 14+ (g1 —)"
o5 (i — 4 +1 +9 _1n{/ <z_|_ i+ i)(4 i+ 4)dt},
3 i(Qit1—a) nz::l n(n+1)(n+2)(—-1) 5 1 20 (¢ + 1+ (g1 — q)t)" 3
(108)
4 4p; +pi+1> (qiy1 — (Git1 — 1)”
LA 2+3n+n?) (-2 —
12 (5 (Q1+1 +1 3 Z n n) qi+1+1
2 = ! (Piv1 =Pt (4 =14 (gis1 — g)t)" "
5 0i(di1 —ai) z:: (n+1)(n+2)(=1) o \P 5 (@ + 11 (qip1 — q)t)™+e
(109)
The infinite series of the first line is equivalent to three polylogarithms of different order,
i1 —1 qi+1—1 _ Qit1—1
}5‘ <4pi +pi+1) (git1 — @:)® 2 _ 33$+1 B qu:Jrl (qii“)
5 Git1 +1)3 |14 @il i—1)2 1)
(gis1+1) o (14 221 (1+821)
2 E = {/1 (4 (Pit1 —pz‘)t5> ((Qi — 14 (qiy1 — qz‘)t)n_l) }
— i nn+1)(n+2)(-1)" it + — | dt s,
3 i(Qit1— ;)(=1) 0 p 5 (i + 14 (g1 — q)t)"+3
(110)

4L <4Pi +Pi+1) (gi+1 — @:)° {QH—I +1 0 3(gir1 —)(gitr +1)* 2(gisr — D(giv1 + 1)3}
5 (i1 +1)3 | qina 4(giv1 + 1)gi 8(qiy1 +1)%¢}

—§5i(qi+1 —q¢)4§n(n+1)(n+2)(—1)” {/01 (p¢t4 L (pis 5—2%)155> ((qz‘ — 14 (gi+1 — qz‘)t)"_1> dt},

(qi + 1+ (qiy1 — qi)t)" 3
(111)

21

Published in Transactions on Machine Learning Research (04,/2024)

n 1s <4pi +pi+1) (gi41 — q:)? |:4ql+1(q1+1 +1)? = 3(givs — D(@ips +1* 2(gip1 — D(gip1 + 1)‘3]
5 (qig1 +1)3 Hqip1 + 1)gi 8(qi+1+ 1)2¢} 4
2 = ! ir1 — pi)t° i — 14 (i1 — qa)t)" !
_§5i(qi+1_qi)4 Zn(n+1)(n+2)(—l)” {/ <p¢t4 + (Pi+1 - i)) ((q (qiv1 — qi)t)) dt} :
n=1 0

(qi + 1+ (qiy1 — qi)t)" 3

(112)
4 }5‘ <4pi +pi+1) (¢i+1 — @)° |:(Qi+1 +3)(gi41 +1)° ~ 2(gi1 — D)(gir1 + 1)3}
5 (qiy1 +1)3 4(qit1 + 1)q1'2+1 8(qiv1 + 1)2q§’+1
2 > ! (Pit1 — pi)t° (gi =14 (giy1 —qa)t)" !
—*51' i _i4 n(n+1)(n+2 —ln{/ <¢t4—|- - ! dt ,
3 (¢i+1—) 7; ())(=1) . D 5 (@i + 1+ (gip1 — q)t)" 3
(113)

n 1s <4Pi +Pi+1) (gi41 — q:)? {QQZH(%H +3)(giv1 +1)* = 2(gis1 — 1) (giv1 + 1)3}
’ 5 (%Jrl + 1)3 S(Qz+1 + 1>2q?+1

2. uN (a1 (n o S i =) (@ =1+ (@i — @)t
~30 a0 S n D2 {[[(o ool (ot a8 g
(114)

n }6» <4pi +pi+1) (qi+1 — q:)® { (qiy1 +1)°]
3 T 5 (Qi+1 + 1)3 4((]1‘4_1 —+ 1)2(]?_'_1

gai(qmqi)47§n(n+1)(n+2)(1)n {/01 <p¢t4+ (Pit1 Bpi)ﬁ)) (EZJ?ZI;ZB:;) dt}’

(115)
s (4pi +piv1)(git1 — ¢i)®
! 60q;—°’Jr1
2 ! (piv1 =)t (@ =1+ (giy1 —q)t)" "
- ; n(n+1)(n+2 —1"{/ (it‘l—i— dt s .
3 i(Giv1 — g)(=1) o D 5 (¢ + 1+ (gip1 — q)t)" 3
(116)

Now bring back the rest of the terms to get

X . 2p; . 1 — s 3, X i1 —)2 A,) 1 —a.)3
s + Pit1 10g(q¢+1)+5i(Pi + Dit1)(Giv1 — @) +5i(Di erz;ic)]gq +1— i) 5 (4pi + piv1)(¢it1 — i)
i+1

+ .
2 6¢i+1 ' 60q;,

24 S nin n _\n ! o, i — pi)ts (¢ — 1+ (qiy1 —q)t)" !
3(51(Qz+1 Qz) Z (+1)(+2)(1) {A <pzt + 5) <(Qi+1+(Qi+1_Qi)t)n+3>dt}'

(117)
From this we can see the sequence is”
pi + pit (n+ Dpi +pit1 giv1 — qi)"
—0;———log(qix1) + 6; . 118
2 8di1) Z nn+D(n+2) \ i (118)

This is a pretty good solution, at least computationally speaking, and it has been verified by comparison to
numerical integration. It is unstable however and that last infinite sequence can be removed through the use
of polylogarithms.

"Divisor is https://oeis.org/A007531

22

Published in Transactions on Machine Learning Research (04,/2024)

Start with

1 ~ (n—1)2%(n+2) B n2(n+3)+n—-1nn+2) nn+1)(n+3)
nin+1)(n+2) 4n 4(n+1) 4n+2) 7’

as derived in Subsection This allows the goal to be rewritten as

(119)

pi +Di
- 51% log(qiy1)

+2 +1 7,+ i i — 45 "
+5Z (n)((n)Pi + Dit1) <Q+1 Q>
4n qi+1

N ”2(”+3)((n+1)pz+pz+1) +(n=Dnn+2)((n+ Vpi +piv1) (i1 —a\"
2 1) (Gi+1 >

4(n+
S~ n(n+ 1) (n+3)((n+ Dp; +piv1) (@1 — @i\
z:: 4(n+2) : (t]z‘ﬂ) . (120)

and then offset the sequences so the denominator is just 4n,

pi + i
- 51'T+l log(gi+1)
v Z)2(n+2)((n+ 1)pi + pit1) <Qi+l_%’>n
4n qi+1
s Z (n+2)(np; + pir1) + (0= 2)(n — D(n+ 1)(np; +pis1) (@s1 —ai\"
4n qi+1

e} n—2
- 2)(n—1)(n+1 — 1)p; + pi i1 — 4
£53 B0) (1 -0)"
e 4n qi+1
Now correct the sequences to start from one by noting that the early terms are zero and correct for the
exponents by pre-multiplication. It should be noted that there is a dependency on 0log(0) = 0 being the
case here (Lebesgue integration), as expected for cross-entropy.

_ b + Pit1

5 log(qiy1)

s i (n—1)*(n+2)((n+ 1)p;i + piy1) <Qi+1 - qz‘>”

4n qi+1

n=1
— 5 (Qi+1) i (n —1)%(n+ 2)(np; + piy1) + (n —2)(n — 1)(n + 1)(np; + pis1) <q1-+1 - %’)n

4n qi+1

L6, ((]z—H)Qi (n—2)(n—1)(n+1)((n — 1)pi + pi+1) <Qz‘+1 - Qi>n' (122)

Gi+1 — G 4n Gi+1

n=1

Now explode each summed fraction in turn. First:

(n=1>*mn+2)(n+Vpi+piy1) (n=1>*n+1)(n+2)p;i + (n—1)*(n+ 2)pip

_ , 123
4n 4n (123)
(n? —2n+1)(n® 4+ 3n 4 2)p; + (n? — 2n + 1)(n + 2)p;+1 (124)

4n ’
(n* +n3 —3n2 —n+2)p; + (n® — 3n + 2)pis1 7 (125)

an

n’pi n’pi 3np; n°pis1 3piv1 | Piv1
_ O 3 _ 126
4 * 4 4 4 + 2n Lt 4 4 + 2n ' (126)

Published in Transactions on Machine Learning Research (04,/2024)

n’p; + n?(pi +piv1) 3npi P+ 3P 4 PitPin
4 4 4 4 2n

Second:
(n —1)*(n+2)(np; + piv1) + (n = 2)(n — 1)(n + 1) (np; + pis1)
4n ’

(n? —2n+ Dn(n+2)p; + (n? —2n+ 1)(n + 2)pis1

4dn
n (n? —3n+2)n(n+ 1)p; + (n? —3n+2)(n + 1)pis1
4n ’
(n* —3n2 +2n)p; + (n® = 3n+ 2)piy1 + (n* — 203 —n2 4+ 2n)p; + (n® —2n2 —n + 2)p1+1
4n
(2n* — 2n3 — 4n? + 4n)p; + (2n® — 2n% —4dn + 4)p;iy
4n ’
wipi 0P —pi) n(2pi + pi pi
5 + (+21)— (B +1)-1-(1l?i—]3i+1)-1- +L

Third:

(127)

(128)

(129)

(130)

(131)

(132)

(n=2)(n—-1)(n+1)((n—1D)pi+pir1) _ (0* =3n+2)(n+1)(n— Dp; + (n? = 3n+2)(n + Dpis

4n 4n

(n* —3n® +n?+3n—2)p; + (n® — 2n® — n+2)p;
4n ’

n3p; i n?(pit1 — 3p;) n n(pi — 2pit1) n (3pi — Pit1) L P =P
4 4 4 4 2n

For notational convenience define a pre-filled in polylogarithm of order s as

Li,(-) = i % (CM)”

n=1 qZJrl

then put it all together and rewrite the equation as

Di +Pit1 Di DiGi+1 pqu+1
—6;————log(qi+1) + 0; (— —|— >L1
’ 2 (ZH) “\4 2(Qi+1 - Q‘) Qz-i-l - Q'L ’
+5; (pi tPit1 (Pit1 — Pi)@it1 | (Piv1 — 3pi ql+1> Li_af
4 2(qi+1 — gi) 4(qiv1 — ¢)
+o, <—3pi ~ (=2pi = pit1)qit n (pi — 2pit1) %H) Li o
4 2(qiv1 — qi) 4(qiv1 — @)
45 (—Pi —3Pit1 (Pi — Pi+1)qi+1 I (3pi — pit1 qz+1> Lio(")
4 (¢i1 — @) 4(qiv1 — @)
45, (pi tPi+1 Pit1gi+1 i (Pi+1 —pi)qugl) Lis(-).
2 (Gi+1 — @i) 2(qi+1 — @)

)

(133)
(134)

(135)

(136)

(137)

This has been coded and verified, and unlike the earlier equation is numerically stable. But it’s a mess, so

simplify as much as possible.

Consider each term in turn, starting by dropping closed form definitions for the polylogarithms in, starting

with order s = —3:

2
Di Piqi+1 Piq; 1 .
d; (- + > Li_s(),

4 2(qiv1 —qi) MGt —@)?)

24

(138)

Published in Transactions on Machine Learning Research (04,/2024)

qi+1 Y

4
1— di+1—4i
qi41

o qi+1—qi (Qi+1_Qi)2)
5 (piqz‘2+1 — 2DiqiGi+1 + DiG} — 2DiGF 1 + 2Dididi+ +Piqz~2+1> (@i+1 — i) (1 ATt .,
1

4(qi+1 — 4:)? qi_HqZ—i ’

5 <Pz‘((1z’+1 — @)% = 2piqit1 (i1 — @) + Pty
K2

qi+1—qi (1+4(h+1—qz' + ((Ii+12—q,i)2>
qit1
4(gi+1 — ¢:)?)

: (139)

(140)
5. (Piq?) Gy + 4021 (g1 — @) + @it (g1 — @)? (141)
"\ 4(git1 — @) @t ’
5 (pig;) G 4G — A + @ — 2060 i (142)
N\ 4qit1 — @) qa} 7
2 603, — 6aa2. . + a2as
5 (pid;) iv1 — 649541 + ¢ 91 (143)
4giv1 — @) qa} ’
6Piqi2qi2+1(%+1 - ;) pi‘]?%’-&-l
Ty i : (144)
4q; (qiv1 — @) 44} (Gi+1 — ¢i)
3piq2+1 Piqi+1
0; T4, . 145
2q? 4(qi+1 — i) (145)
Now order s = —2:
pi+piv1 i1 —Pi)Giv1 . Piv1 — 3001 . .
(52' — 2 LI,Q('), (146)
4 2(qi+1 — ¢i) 4(giv1 — @)

qi+1—4i qi4+1—4gi
5 ((pz + Pit1)(qig1 — %‘)2 —2(pit1 — Pi)Gi+1(Giv1 — @) + (Pig1 — 3pi)qi2+1) Qi+1 (1 + qit1) (147)

4((]71—&-1 - %)2 (1 _ Qi+1*qaz>3
qi+1
Pii — 20iGiGi1 + DidE + Pis10i1 — 20i1GiGi1 + Diy147 r—a
. _ . i+1—qq
— 2041071 + 20031 + 2Dik1GiGi1 — 2PiGiGiv1 + Pit1Gi 1 — 3PidZ 4 (gi1 — a:) (1 + T)

0; ’
' 4(Qi+1 - qz‘)Q qz‘+1q{i
+1
(148)
5 (piqz? + Pit14; — 4piQiQi+1> qZ-QH + Git1(gi+1 — @) (149)
' A(qit1 — @) @ ’
5 (Pi@?qit1 + Pit102Gi+1 — 4Piqia? 1) (dit1 — @) i 5‘]%‘(112%2“ + pit162ai, — 4Pitid 4 (150)
' 4¢3 (i1 — qi) ' 4¢3 (qiv1 — @) ’
PiGiit1 + Pi1iGi+1 — 4PitF PiGiGi 1 + Piv10iGi 1 — APidi
0; 3 + 9 3 : (151)
4q; 4q; (qiv1 — i)
5 —4piCI¢2+1 I dpiqz'qz‘ﬂ(%ﬂ — i) + Pit16i%i+1(dit1 — @) +piqi%'2+1 +pi+IQiQi2+1 - 4piq;?’+1 (152)
b 4g] ' 42 (qiv1 — @) ’
2 2 2 2 2 3
5. —Pidin n 5_2piQiqi+1 = Piq; i+1 + 2Di414iG5 1 — Pi+14; Qi1 — 4Did7 (153)
g ’ 42 (qiv1 — @) ’
5 —Pidi s —Pidis s il s Pit14i 11 L5 TPt s —PitiGin (154)
K3 K3 1 .
q? @ (qiv1 — ¢) 2¢i(git1 — @) 2¢i(gi1 — @) Agi— @) Agi1 — @)
Order s = —1: ,
—3p: 9 , 9. _
5, (pi (=2pi — Pit1)qin N (ps pz+1)q12+1) Lio (). (155)
4 2(qiy1 — @) 4(gi+1 — qi)

25

Published in Transactions on Machine Learning Research (04,/2024)

qi+1—4gq
5 (_3pi(Qi+1 —¢;)* 4+ 2(2pi + pit1)%i+1(Giv1 — @) + (pi — 2pi+1)q1-2+1> ;;1
’ 4(qit1 — qi)? (1 _ quqi)
qi+1

—3piq?, 1 + 6piqiqit1 — 3piq; + 4pigi + 2410744
—4PiqiGit1 — 2Dit1Gi%i+1 + Pt — 20107 | (qiv1 — @)

0; ,
Z 4(gi1 — 1)’ Gir1 2
Qi1
5 <2piqi2+1 +2piqiGi+1 — 2Pit14iQi+1 — 32%'%‘2) dit+1
' 4(qi+1 — qi) @’
20503, 1 + 20i0i G2, — 2Pi 1002 — 3piqiq;
5 14541 Piqiq; 11 Pi+149i4; 1 Did; 4i+1
3 b
462 (qit1 — 4s)
3 9 9
Dt 5, Pidit 5 Pit1di s —3Piqi+1
K 1 K 3 N
262 (gi+1 — @) 2¢i(qit1 —) 2q;(qi+1 — @) 4(qit1 — @)

And then order s = 0:

—pi — 3p; i — Pit+1)4i 3pi — piy1)q; .
5, < D piv1 (Pi — Pit1)Giv1 4 (3p p+1)q;1> Lio(-),
4 (gi+1 — i) 4(gi+1 — ai)

qi —4ai
—(pi + 3pit1)(Git1 — ¢:)* — 4(Pi — Pi+1)Gi+1 (i1 — @) + (Bpi — Pit1)@ 4y o
9 A(qit1 — q:)2] _ 9it1=a’
1+ 7 dit1
=G 1 + 2PiGiGi+1 — Pig? — 3Pi4197q + ODi414iGit1 — 3Pis1q?
—4ApiG? 1 + WiGiGiv1 + Wi 1021 — Wi 1@iGi1 + 3pia oy — PPy | (i1 — @)

4(gi+1 — ¢:)? Gi+155

5“2 — Pid} = 3Pi1d; + OPididie1 + 2Pi16idin
’ 4qi(qi+1 — ¢)

)

_piqi2+1

Z_ —Pigi s —3Pi+1Gi s 3pigi+1 5, _Pit1dit1
2qi(qi+1 — @)

1) i i .
4(giv1 — ¢i) 4(giv1 — @) 2(¢i+1 — ¢i) 2(¢i+1 — ai)

+0;

Finally, order s = 1:

2 (Gi+1 — @) 2(qi+1 — ¢:)?

5; (Pi + Dit1 Pi+19i+1 (Pit1 — pi)@?ﬂ) Lis(-),

iy ((pi +pit1) (@41 — 6)* — 2pivagi+1 (g1 — @) + (Pita —pi)qi2+1> log (1 Qi1 — q¢>
K2 -)

2(Qi+1 - %)2 qi+1

Pid? 1 — 2DiGiGi41 + Pid? + Piy19P — 2Di414iGi+1 + Dit1G7
— 2pit 1071 + 2Dis1GiGiv1 + P10 — Pidi log (G >
2(giv1 — ¢:)? 7

qi+1

2piqiqiv1 — Piqi — pi+1q2>
d; (: ~) (log(q:) — log(giv1)) -
2(Qi+1 *qz')z ((-)

26

(156)

(157)

(158)

(159)

(160)

(161)

(162)

(163)

(164)

(165)

(166)

(167)

(168)

(169)

Published in Transactions on Machine Learning Research (04,/2024)

Now stick all of the above terms together,

2
Di + Dit1 3Piqi 41 Pii+1
PP e (gi1) + 6, 46
b2 (@ia) +0i 2¢? "4(git1 — @)
_piqz'2+1 _piq?+1 piqi2+1 pi+1qi2+1 —Piqi+1 —Pi+19i+1
+oi——5— +di i i + 4 i
q; @ (Giv1 — @) 2¢i(qiv1 — @) 2¢i(qi+1 — @) 4(giv1 — @) 4(qit1 — @)
g Pign Pitia Pit18in —3Pidita
202(¢iv1 — i) 20i(qi1 — @) 2¢i(qis1 — @) Mt — @)
I —Pidii 45— Piti 5 _—OPi+14i 3Pigi+1 Pit1Gi+1

2qi(qis1 — @)

g1 — @) Mg — @)

' 2(Qi+1 - Qi)

5 <2piQiQi+1 - Di} — i@}
+ 0; B)
2(qi+1 — ¢i)

Start by considering only the log terms,

2piqiqit1 — Piq? — pit147

_g PitPin1

i log(git1) + d; (

2piqiqi+110g(q;) — pig? log(qi) — pi+167 1og(q;) — 2piqiGi+110g(gi+1)

2(Qi+1 - qu)z

5. + pig; 10g(gi1) + Pit147 10g(gi+1) — (i + piv1)(@i+1 — i) log(gi+1)
K3

2(qi+1 — @i)?

g

2(Qi+1 - Qi)Q

l2(%‘+1 - Qi)

) (log(q:) — log(gis1)). (170)

) (log(qs) — log(i11)) ()

, (172)

(2piqiqi+110g(¢:) — pia? 1og(4i) — Pi+16; 108(a:) — 2piqiqi+1108(qit1) + pigi log(git1)

+Pi+1qi2 log(qit+1) — piq?H log(qit+1) + 2piqiqi+110g(qir1) — pz'ng log(gi+1) — pi+1qi2+1 log(gi+1)

0
2(%‘+1 - qi)

Note that

— (pilog(q;) + pit1log(gi+1))(qit1 — ¢)* =

5 (2pigigiv110g(qs) — pig; 108(¢s) — Pit14; 108(qi) + 2pit1¢iGi+1108(git1)

+2pi+16iGi+1108(qit1) — Pit147 1og(qiv1)) . (173)

_piqi2+1 log(gi+1) — pi+1qi2+1 1082(Qi+1)) . (174)

—pig; 1og(qi) +2piqigi+1108(q:) —piaiy1 10g(qi) —pis16; 10g(Git1) +2pi+14iGi+1 108(qit1) —Pit1471 10g(git1)

(175)

is almost, but not quite, a match for the numerator — two of the logs are swapped (underlined). This can

be corrected by adding

Pid7 1 108(q:) + pit1¢; 10g(qit1) — pid}y1 log(giv1) — Pit1q; log(qi),

(pigii1 — Pit16;) 10g(q:) + (Pit16; — Pidiy 1) 1og(qit1),
(pit14; — pigiyq) (log(giv1) — log(q)),

and rewrite the log terms as

'Pz'+1qi2 - piqfﬂ

5P log(gi) + piv1log(ain1) |

2 " 2(gis1 — ¢i)?

27

(log(gi+1) — log(a:))

(176)

(177)
(178)

(179)

Published in Transactions on Machine Learning Research (04,/2024)

which is quite elegant considering the beginning (there is the question of if it has a geometric meaning, which
could lead to a much more elegant derivation), with numerical stability.

Now work through all of the non-log terms:

.3Piqi2+1 L5 Pidin

1)
b o2¢; “A(qis1 — @)
— .02 .03 a2) 2 e .)
+ 6 ngz.ﬂ 45 5 Pid; 1 46 Pidiq 5 Pi+19541 16 Pigi+1 46 Pi+14i+1
q; a2 (git1 — @) 24i(¢i+1 — ¢i) 24i(qi+1 — i) 4(qip1 — @) 4(giv1 —)
s PG}y 4 PG}y ' —Pit1Gi1 - —3piGita
2¢2(qit1 —4i) 2¢i(Gi1 — @) 2qi(qivr — @) A(gip1 — @)
2
) Pigi41 + 6 Didi 5 Pi+14: 5 Didi+1 5. Di+19i+1 7 (180)

2¢i(qiv1 — @) Mg — @) MG — @) 20—) 2(qi4 — @)

3piq; —2piq} —2p;q} pid;
0 ;EH +i 2121+1 +oig e +0ig e
q; q; @ (qiv1 — @) @ (qit1 — @)
s Pit10i1 ‘ Pidi ‘ Pidii ‘ —Pi+1741 ‘ —Pidi
“20i(qisr — @) 26i(Gi1 — @) 2¢i(qir — @) 26i(Gie1 — @) 2ai(qitr — @)
+ 5, —Pigi+1 - Pit19i+1 _ Pig%i+1 . TDbi4
g —) Mai—aq) M —a) M — @)
—3PiGit1 —3pitr1Gi 6piqit1 2pit1qi+1
45 5, 45 5, . (sl
g1 —q) Mg — @) e — @) Agir — @) (181)
Pid} —Did} 4 Pigtiq (3pi + Pit1)qi+1 — (Di + 3pit1)
0 97 i 0 + 5 ; (182)
q; 2¢; (gi+1 — i) 2¢i(qiv1 — @) 4(qi+1 — i)
piq;3+1 - piql‘lﬁﬂ - p1qg+1 pinZJrl (3pi +pi+1)Qi+1 - (pi + 3pi+1)Qi
2q; (qiv1 — Gi) 2¢i(qiv1 — @) 4(qiv1 — @)
5 —Didi i1 A Pidii s (3pi + pit1)qi+1 — (pi + 3piv1)a (184)
“2¢i(giv1 — @) 2qi(qiv1 — @) " 4(qiv1 — @) ’
51(Di + Dit1)qi+1 — (pi + pz—‘rl)Qz. (185)

4(qit1 — i)

Finally, putting it all together gets

1
— 51‘/ (1 =t)pi + tpis1)log((1 — t)q; + tgiyr)dt =
0

(3pi + piv1)qiv1 — (pi + 3pig1)q
4(giv1 — @)

pilog(qi) + pit1log(giv1) . Pi+14] — Pid7yy
5, +6,

9 i 2(qir1 — @) (log(gi+1) —log(qi))+d;

)

(186)

where only the first term is needed if ¢;41 = ¢;. This works, as verified by comparison to numerical
integration. Need to switch evaluation strategy when too close to singularity.

A.2.1 Behaviour around singularity

First demonstrate that it’s mathematically, if not computationally, stable. To ignore the second and third
term when ¢;41 = ¢; it needs to be shown that

(3pi + Pit1)di+1 — (Pi + 3pit1)e

2 2
lim 5‘pi+1qi — Pi4i41
4(qi+1 — qi)

qi+1—qi ! 2(%’4—1 - Qi)z

(log(gi+1) — log(gi)) + 0 = 0. (187)

28

Published in Transactions on Machine Learning Research (04,/2024)

This is not the case if the two terms are considered independently — it is only the case if they are merged.
To show this limit start by converting the log(-) of the second term back into an infinite sequence,

9 9 Qit1 n
162 — Pig 171
YTt LR () | (15%)

. —_0:)2 qQit1
2(gi+1 — @) nefize. L\ +1
Pi1G; — Pidia 1 (qiv1 —q)"
R et (159
(¢i+1 — ¢i) ne{13.5,.) n (giv1 +)
1 (gip1 — qi)" 2
S —) S LU e (190)

. \n
ne{l35,.} " (i1 + 4i)

Note that the limit is trivially true for n = 3 onwards, so you only need to consider the n = 1 case, which
can be dropped into the rest of the limit statement

(git1 —aq:) " 5 (3pi + pit1)gi+1 — (Pi + 3pi+1)as

6i(pi14; — Pid? ’ 11
(it +) (i+1+ ¢) 4(gi+1 — i) o
5 Apit167 — Apigi iy + (3pi + piv1)qiv1 (@1 + @) — (Pi + 3Piv1) @i (i1 + a0) (192)

i 4(giv1 — @) (i1 + @) ’
5 Apin1 @ — 4pigiys + (Bpi + Piv1)eia + (2P — 2pis1)ditivr — (i + 3pir1)q; (193)

i 4(giv1 — @) (Gi+1 + @) ’
5. (Pit1 = Pi)ai1 — 2(Pit1 — Pi)@idi1 + (Pit1 — pi)a} (194)

i 4(giv1 — @) (G + @) ,
5, i1 = Pi)(Giv1 —)" (195)
4(qi+1 — 4)(giv1 + @)

5. (Pi+1 — pi)(Gi+1 — Qi)7 (196)

4(giv1 + @)

for which the required limit is simply true. The above is suggestive of an alternate way to write the equation
out; consider the unused terms from the second equation,

O D DI (197)
o i o i \n
ne{35.7,.} (Git1 + @)
1 (Qi+1 — qi)”
0i(pitad} = Pigin) D (198)
; An+2’
ne{l 35} +2 (¢it1 + @)
2 2)
e . 4 1 (ot — a;
5#qug+l Z 5 <Qz+1 qz> 7 oo
(qiv1 +q) ne{i 3.} n+ Gl + @

which appears to be the end of the line. But writing it all together gets

1
- 5i/ (1 =t)pi + tpig1)log((1 — t)qi + tqiyr1)dt =
0

(Pit1 — pi)(Qiy1 — @) 5‘pi+1Q7ﬁ2 — il Z 1 <Qi+1 - Qi>n

4qiy1 + @) Y (g + @)? ne(iss. 3" +2\Giv1t+

_ 5. Pi108(ai) + piv1log(gi+1)

0
9 +

(200)

which is a good fallback when in the ¢; &= ¢;4+1 condition, as the terms of the infinite series move towards
zero quickly in typical usage (see main text for quantification).

29

Published in Transactions on Machine Learning Research (04,/2024)

A.2.2 Minor details

For completeness, results from The On-Line Encyclopedia of Integer Sequences are now proven and then
combined to get the term needed by Equation Firstly®,

1 n(n + 3) (n—1)(n+2)

nn+D(n+2) 4dm+10)n+2) 4dn(n+1) (201)
4=n*n+3)—(n—1)(n+2)? (202)
4=n%+3n>—(n—1)(n*+4n +4) (203)
4=n>+3n%—n®—4an? —4dn+n?+4n+4 (204)
4=4 (205)
Then? 1 n n—1
n(n—|—1):n—|—1_ n (206)
l=n>—-(n—1)(n+1) (207)
1=n?>-n?+1 (208)
1=1 (209)
Combine the above to get
1 nn+1)(n+3) n?’(n+3) m-1Lnn+2) (n—1)>3(n+2)
Wt D+ dm+2) dm+l) | dm+n dn ;o (210)
4=mn-172n+1)n+2)*=n*n+2)(n+3) = (n—1)n*(n+2)? +n(n+1)*(n +3), (211)
4= (n*=2n+1)(n+1)(n*+4n+4) —n*(n*+5n+6) — (n—1)n*(n* +4n+4) +n*(n*+2n+1)(n+3), (212)
4 = (n*—2n+1)(n®*+5n2+8n+4) — (n° +5n* +60n3) — (n—1)(n* +4n> +4n?) +n2 (3 +5n2 + Tn+3), (213)
4=(n°+3n* —n® —? +4) — (n® +5n* + 6n3) — (n® + 3n* —4n?) + (n® + 5n* + 703 + 3n?), (214)
4=n"+3n*—n® —Tn?+4-n°—5n* —6n> —n® - 3n* +4n® +n’® 4+ 5n* + T + 3n?, (215)
4=1-1-14+D)n°+(B3-5-34+5n*+ (=1 -6+ 7)n®+ (=7+4+3)n? +4, (216)
4=4, (217)
which can also be written as
1 (n—1)2%n+2) n?n+3)+m—-nn+2) nn+1)(n+3)
nn+1)(n+2) 4n B 4(n+1) * 4n+2) (218)

8https://oeis.org/A007531
Yhttps://oeis.org/A002378

30

Published in Transactions on Machine Learning Research (04,/2024)

B GPU code

The below Python'® code is for Jax!! and has been developed with version 0.4.25. Validation, including
of gradients, has been performed and may be found in the supplementary material alongside code for the
demonstrations within the main text.

Q@jax.jit

def crossentropy(p, q, delta):
"""Returns the cross entropy between two regular orograms with aligned and evenly spaced
bin centers, given as p and q. delta is the spacing between bins. Will be approximate in
some situations, as it dodges around infinities and singularities to remain stable
whatever you give it."""

First term requires what is effectively the relative area...
halved_ends = jnp.ones(p.shapel[0])

halved_ends = halved_ends.at[0].set(0.5)

halved_ends = halved_ends.at[-1].set(0.5)

Assorted basic terms...
log_q = jnp.log(jnp.maximum(q,1e-32))

pdelta pl1:1 - pl:-1]
qdelta = ql1:] - ql:-1]
gsum = ql[:-1] + ql[1:]

gqsqr = jnp.square(q)
top = pll:]1xgqsqr[:-1] - pl[:-1]*qgsqr[1:]

Inner term of infinite loop (used elsewhere), done in a stable way,
plus variant with extra qgsum...

notzero = gsum>1le-5

gsum_safe = jnp.maximum(gsum, 1le-5)

inner = qdelta / qsum_safe

inner_ds2 = qgdelta / (jnp.square(gsum_safe)*qsum_safe)

Do the stable parts...
ret = -(halved_ends * p * log_q).sum()
ret += 0.25 * (pdelta * inner).sum()

Do the two branches, with stability hacks for the unstable one...
Unstable but accurate when qdelta is high...

abs_qdelta = jnp.fabs(qdelta)

sign_qdelta = -2 * (jnp.signbit(gdelta) - 0.5)

gdelta_sqr_safe = jnp.maximum(jnp.square(qgdelta), 1le-10)
gdelta_qgsum_safe = sign_qgdelta * jnp.maximum(abs_qdelta * qsum, 1le-10)

ret_unstable = top * (0.5 * (log_ql1l:] - log_ql:-1]1) / qdelta_sqr_safe
- 1 / gdelta_qgsum_safe)

Stable but only accurate when qgdelta is low...
ret_approx = top * (1 / 3 + jnp.square(inner) / 5) * inner_ds2

Pick the right branch for each and sum in...
ret += jax.lax.select(abs_qdelta>le-5, ret_unstable, ret_approx).sum()

return deltax*ret

grad_crossentropy = jax.jit(jax.grad(crossentropy, (0,1)))

Ohttps://www.python.org/
Hhttps://github.com/google/jax

31

https://www.python.org/
https://github.com/google/jax

	Introduction
	Related work
	Derivation
	Singularity
	Implementation
	GPU implementation

	Numerical validation
	Demonstration
	Conclusion
	Full derivation
	Shorter derivation
	Original derivation
	Behaviour around singularity
	Minor details

	GPU code

