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ABSTRACT

Deep regression models are used in a wide variety of safety-critical applications,
but are vulnerable to backdoor attacks. Although many defenses have been pro-
posed for classification models, they are ineffective as they do not consider the
uniqueness of regression models. First, the outputs of regression models are con-
tinuous values instead of discretized labels. Thus, the potential infected target of a
backdoored regression model has infinite possibilities, which makes it impossible
to be determined by existing defenses. Second, the backdoor behavior of back-
doored deep regression models is triggered by the activation values of all the neu-
rons in the feature space, which makes it difficult to be detected and mitigated us-
ing existing defenses. To resolve these problems, we propose DRMGuard, the first
defense to identify if a deep regression model in the image domain is backdoored
or not. DRMGuard formulates the optimization problem for reverse engineer-
ing based on the unique output-space and feature-space characteristics of back-
doored deep regression models. We conduct extensive evaluations on two regres-
sion tasks and four datasets. The results show that DRMGuard can consistently
defend against various backdoor attacks. We also generalize four state-of-the-art
defenses designed for classifiers to regression models, and compare DRMGuard
with them. The results show that DRMGuard significantly outperforms all those
defenses. The code will be open-sourced upon paper acceptance.

1 INTRODUCTION

Regression techniques are widely used to solve tasks where the goal is to predict continuous values.
Unsurprisingly, similar to their classification counterparts, regression techniques have been revolu-
tionized with deep learning and have achieved the state-of-the-art result in many real-world applica-
tions. Examples such as gaze estimation (Zhang et al., 2017b; 2019), head pose estimation (Borghi
et al., 2017; Kuhnke & Ostermann, 2019), and facial landmark detection (Sun et al., 2013; Wu & Ji,
2019), among many others (Lathuilière et al., 2019). Unfortunately, deep regression models (DRM)
inherited the vulnerabilities of deep neural networks (Gu et al., 2019; Liu et al., 2018b; Nguyen
& Tran, 2021; 2020; Turner et al., 2019) and did not escape from the threat of backdoor attacks.
Existing work (Sun et al., 2022) shows that an attacker can inject a backdoor trigger into a DRM
such that it outputs an attacker-chosen target vector for any input stamped with an attacker-chosen
backdoor trigger, while its predictions for clean inputs are unaffected. Therefore, given the wide
adoption of DRM in many safety-critical applications such as driver attention monitoring (Abuel-
samid, 2020; Berman, 2020), navigation of autonomous vehicles (Zeisl et al., 2015), and pedestrian
attention monitoring (Raza et al., 2018; Schulz & Stiefelhagen, 2012), backdoor attacks raise severe
safety concerns about the trustworthiness and robustness of DRMs.

Existing solutions to defend deep classification model (DCM) against backdoor attacks can be di-
vided into data-level (Chen et al., 2018; Guo et al., 2023) and model-level defenses (Liu et al., 2019;
Wang et al., 2019; 2022b). Data-level defenses aim to detect backdoored training or testing data,
while model-level defenses aim to detect a potentially backdoored model and unlearn the backdoor
behaviors. As we will discuss in Section 2, our work focuses on model-level defenses, as they are
more realistic and do not assume the defender has access to the backdoored training or testing data.

However, existing model-level defenses (Wang et al., 2022b; 2019; Wu & Wang, 2021) are designed
for DCMs. Our experiments show that they are ineffective when generalized and applied to DRMs
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that are considered in this work. There are two underlying causes. First, distinct from DCMs (Wang
et al., 2017) for which the output space is discretized into a few class labels, the output space of
DRMs is continuous. Thus, it is infeasible (if not impossible) to enumerate and analyze all the
potential target vectors using existing defenses designed for DCMs to determine the infected target
(Wang et al., 2019) or the compromised neurons (Liu et al., 2019). Second, different from DCMs
that adopt argmax to obtain the final output, DRMs do not need argmax. This makes the backdoor
behavior of the backdoored DRMs different from that of the backdoored DCMs. Specifically, for
a backdoored DCM, the backdoor behavior is often triggered by the activation values of several
neurons in the feature space (Wang et al., 2022b), whereas for a backdoored DRM, it is triggered by
the activation values of all the neurons, which makes it harder to be detected or mitigated.

Our work: In this paper, we propose DRMGuard, the first framework to detect backdoored DRMs
in the image domain. DRMGuard is applied to a DRM to reverse engineer a potential trigger func-
tion, based on which we make the decision on whether the model has been injected a backdoor or
not. A major challenge to reverse engineering of the potential trigger function in the regression
domain is that the output is defined in the continuous space. To address this challenge, we formu-
late the reverse engineering as an optimization problem, which is based on both output-space and
feature-space characteristics of the backdoored DRMs that are observed in this paper.

To demonstrate the effectiveness of DRMGuard, we consider two regression tasks, and conduct
extensive experiments on four datasets for state-of-the-art backdoor attacks. Our experimental
results suggest that DRMGuard is consistently effective in defending both input-independent at-
tacks, e.g., BadNets (Gu et al., 2019), and input-aware attacks, e.g., Input-aware dynamic attack
(Nguyen & Tran, 2020). Furthermore, we adapt four state-of-the-art backdoor defenses, i.e., Neural
Cleanse (Wang et al., 2019), FeatureRE (Wang et al., 2022b), ANP (Wu & Wang, 2021), and Fine-
pruning (Liu et al., 2018a), designed for classifiers to regression models and compare DRMGuard
with them. The results demonstrate that DRMGuard outperforms all of them by a large margin.

2 BACKGROUND AND RELATED WORK

Backdoor Attacks: Many backdoor attacks (Chen et al., 2017; Gu et al., 2019; Liu et al., 2018b;
Phan et al., 2022; Wang et al., 2022a;c; Yao et al., 2019; Zhao et al., 2022) have been proposed for
deep neural networks. They showed that an attacker can inject a backdoor into a classifier and make
it output an attacker-chosen target class for any input embedded with an attacker-chosen backdoor
trigger. Depending on whether the attacker uses the same backdoor trigger for different testing
inputs, we categorize existing attacks into input-independent attacks (Chen et al., 2017; Gu et al.,
2019; Liu et al., 2018b; Turner et al., 2019; Yao et al., 2019) and input-aware attacks (Koffas et al.,
2022; Li et al., 2021b; Nguyen & Tran, 2021; 2020; Salem et al., 2022). For instance, Gu et al.
(2019) proposed an input-independent backdoor attack by using a fixed pattern, e.g., a white patch,
as the backdoor trigger. Recently, researchers proposed to use input-aware techniques, such as the
warping process (Nguyen & Tran, 2021) and generative models (Nguyen & Tran, 2020), to generate
dynamic triggers varying from input to input. When extending those attacks to DRMs (Sun et al.,
2022), an attacker can inject a backdoor and make the model output a fixed vector (called target
vector) for any testing input with the backdoor trigger. Lastly, backdoor attacks were also studied
for graph neural networks (Xi et al., 2021; Zhang et al., 2021) and natural language processing (Shen
et al., 2021). They are out of the scope of this paper as we focus on attacks in the image domain.

Existing Defenses: We categorize existing defenses against backdoor attacks into data-level de-
fenses (Doan et al., 2020; Gao et al., 2019; Ma et al., 2023) and model-level defenses (Liu et al.,
2022; 2019; Wu & Wang, 2021; Xiang et al., 2022; Zeng et al., 2022; Zheng et al., 2022). Data-level
defenses detect whether a training example or a testing input is backdoored or not. They usually have
two major limitations: 1) training data detection defenses (Chen et al., 2018) are not applicable for
a given model that is already backdoored; and 2) testing input detection defenses (Doan et al., 2020)
need to inspect each testing input at the running time and incur extra computation cost, and thus are
undesired for latency-critical applications, e.g., gaze estimation (Zhang et al., 2020). Therefore, we
focus on model-level defense in this work.

Model-level defenses detect whether a given model is backdoored or not, and state-of-the-art meth-
ods (Guan et al., 2022; Qiao et al., 2019; Wang et al., 2019; 2022b; Xiang et al., 2022) are based
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on trigger reverse engineering. Specifically, they view each class as a potential target class and re-
verse engineer a backdoor trigger for it. Given the reverse-engineered backdoor triggers, they use
statistical techniques to determine whether the classification model is backdoored or not. However,
existing solutions are mainly designed for classification tasks that have categorical output. As we
will show in this paper, they cannot be applied to DRMs. We note that Li et al. (2021a) also studied
backdoor defense for DRMs, but they only considered a specific attack designed in their paper where
the inputs of the regression model are low-dimensional vectors, i.e., five dimensional vectors. By
contrast, we consider DRMs in the high-dimensional image domain.

3 DESIGN OF DRMGUARD

3.1 THREAT MODEL

Deep regression model: A deep regression model (DRM) is a deep neural network that maps
an input to a vector, i.e., f : X 7→ Y , where X ⊂ RNw×Nh×Nc represents the input space with
width Nw, height Nh, and channel Nc; and Y ∈ Rd represents the d-dimensional output space.
Given a training dataset Dtr that contains a set of training examples, we define the following loss

1
|Dtr|

∑
(x,y)∈Dtr

ℓ(f(x), y), where (x, y) is a training example in Dtr and ℓ is the loss function for
the regression task (e.g., ℓ2 loss) to update the parameters of f .

Backdoor attacks: We consider existing backdoor attacks for classification models (Gu et al.,
2019; Nguyen & Tran, 2021; 2020; Turner et al., 2019), and adapt them to DRMs. Specifically,
given a training dataset Dtr, an attacker can add backdoor triggers to the training samples in Dtr,
and change their ground-truth annotations to an attacker-chosen vector, yT ∈ Y , known as the target
vector. The attacker can manipulate the training process. The backdoored DRM performs well on
benign inputs, but outputs the target vector yT when the backdoor trigger is present in the input.
Formally, we define the backdoor attack for DRMs as:

f(x) = y, f(A(x)) = yT , (1)
where f is the backdoored DRM, x ∈ X is the benign input; y ∈ Y is the benign ground-truth
annotation; and A is the trigger function that constructs the poisoned input from the benign input.

Evaluation metric for backdoor attacks: Given a set of poisoned inputs, we define attack error
(AE) as the average regression error calculated from the output vectors and the target vector over all
the poisoned inputs, to evaluate the performance of backdoor attacks on DRMs. AE can be regarded
as the counterpart to the attack success rate for backdoor attacks on classification models.

Assumptions and goals of the defender: The defense goal is to identify if a DRM has been
backdoored or not. Following existing defenses for backdoor attacks (Liu et al., 2019; Wang et al.,
2019; 2022b), we assume the defender can access the trained DRM and a small benign dataset Dbe

with correct annotations.

3.2 OVERVIEW OF DRMGUARD

Momentum 
reverse trigger 𝐹𝐹𝑥𝑥 𝐺𝐺𝜃𝜃 𝐻𝐻 Output space

Feature space constraints

Optimization objective based on output space characteristic

𝑓𝑓

Figure 1: Overview of DRMGuard.

We propose DRMGuard to identify if a DRM has
been backdoored by reverse engineering the trig-
ger function A. Figure 1 shows the overview of
DRMGuard. We use a generative model Gθ to
model A. This allows us to model the trigger
function for both input-independent and input-
aware attacks. For a given DRM f under exam-
ination, we split it into two submodels. Specifi-
cally, we first use the submodel F to map the original input x to the feature space F (x) ∈ Rm,
i.e., the output space of the last but second layer of f . Then, we use the submodel H to map the
intermediate feature from the feature space to the final output space. This allows us to investigate
the characteristics of the backdoored DRMs in both feature space and output space, based on which
we formulate the optimization problem for reverse engineering. Moreover, we propose a strategy
called momentum reverse trigger to reverse high-quality triggers.

3



Under review as a conference paper at ICLR 2024

3.3 OBSERVATIONS AND INTUITIONS FOR BACKDOORED DEEP REGRESSION MODEL

Reverse engineering is performed by solving an optimization problem with constraints that are de-
signed based on observations in the input (Wang et al., 2019) or the feature space (Wang et al.,
2022b). Existing work (Wang et al., 2022b) shows that by using feature-space constraints, one can
reverse both input-independent trigger (Gu et al., 2019) and input-aware trigger (Nguyen & Tran,
2021; 2020) for a backdoored deep classification model (DCM). Following this trend, we consider
feature-space constraints when designing the reverse engineering for DRM. Below, we first discuss
the difference in the feature space between backdoored DCM and backdoored DRM. Then, through
theoretical analysis and experiments, we introduce the key observation for backdoored DRM.

Difference between backdoored DCM and DRM: A key observation for backdoored DCMs is
that the backdoor behavior is represented by the activation values of several neurons in the feature
space (Liu et al., 2019; Wang et al., 2022b). Specifically, when a trigger is present in the input, the
activation values of the affected neurons will drop into a certain range, making the backdoored DCM
output the attacker-chosen target class regardless of the activation values of the other neurons. This
is because, after applying a series of operations to the feature vector, a backdoored DCM utilizes
argmax to obtain the final classification output. As long as the activation values of the affected
neurons can make the target class have the highest probability, the influence of the other neurons on
the final classification output will be eliminated by argmax. By contrast, the final regression output
of a backdoored DRM is obtained by applying linear transformation (or followed by an activation
function) to the feature vector without using argmax. Thus, the activation value of each neuron in
the feature space contributes to the final output. This difference inspires us to take all the neurons
into consideration when searching for the feature-space characteristics of backdoored DRMs, rather
than looking at a few specific neurons only.

Theoretical analysis and metrics: We use {hi}Ni=1 and {hp
i }Ni=1 to denote the feature vectors

extracted from a set of N benign inputs {xi}Ni=1 and a set of poisoned inputs {A(xi)}Ni=1, respec-
tively, where hi = F (xi) ∈ Rm and hp

i = F (A(xi)) ∈ Rm. We use yi,j and ypi,j to denote the jth
component of the output vector yi = H(hi) ∈ Rd and ypi = H(hp

i ) ∈ Rd. ypi,j is calculated by:
yp
i,j = Ω(wj · hp

i + bj) = Ω(∥wj∥2∥hp
i ∥2 cosα

p
i,j + bj), (2)

where Ω(·) is the activation function; wj ∈ Rm and bj ∈ R are the weights vector and the bias of H
for the jth component of the output vector, respectively; αp

i,j is the angle between hp
i and wj . Based

on Equation 1, we have yp1,j ≈ yp2,j ≈ · · · ≈ ypN,j if f is backdoored, which means σ2({ypi,j}Ni=1)

is a small positive value, where σ2(·) is the variance function. As shown in Equation 2, the value of
σ2({ypi,j}Ni=1) is influenced only by ∥hp

i ∥2 and αp
i,j , as ∥wj∥2 and bj are constant for a given DRM.

Moreover, when f is backdoored,
∑d

j=1 σ
2({ypi,j}Ni=1)/d is a small positive value and influenced

by ∥hp
i ∥2 and αp

i , where αp
i = {αp

i,1, ..., α
p
i,d} ∈ Rd. We use αi,j to denote the angle between hi

and wj , and define αi as αi = {αi,1, ..., αi,d} ∈ Rd.

To further investigate how ∥hp
i ∥2 and αp

i influence
∑d

j=1 σ
2({ypi,j}Ni=1)/d, we introduce the ratio

of norm variance (RNV) and the ratio of angle variance (RAV), as two feature-space metrics:

RNV = σ2({∥hp
i ∥2}

N
i=1)/σ

2({∥hi∥2}Ni=1) and RAV =
1

d

d∑
j=1

σ2({αp
i,j}

N
i=1)/σ

2({αi,j}Ni=1). (3)

Specifically, RNV compares the dispersion of {∥hp
i ∥2}Ni=1 and {∥hi∥2}Ni=1, while RAV compares

the dispersion of {αp
i }Ni=1 and {αi}Ni=1. RNV ≪ 1 indicates that when triggers are present in the

inputs, the feature vectors extracted by F have similar norms. RAV ≪ 1 means that the variance of
angles between {hp

i }Ni=1 and wj are much smaller than that between {hi}Ni=1 and wj for j = 1, ..., d.

Observations: We use four backdoor attacks, i.e., BadNets (Gu et al., 2019), Input-aware dynamic
attack (IA) (Nguyen & Tran, 2020), WaNet (Nguyen & Tran, 2021), and Clean Label (Turner et al.,
2019), to train backdoored DRMs on MPIIFaceGaze dataset (Zhang et al., 2017a) and Biwi Kinect
dataset (Fanelli et al., 2013). Table 1 shows the RNV and the RAV of the backdoored DRMs that
are trained by different backdoor attacks on the two datasets. The key observation is that RAV is
significantly smaller than 0.1 in all the examined scenarios. To further explore this observation,
the scatter plots in Figure 2 visualize {αp

i }Ni=1 and {αi}Ni=1 in all the examined cases. We can see
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BadNets Clean Label IA WaNet

BadNets Clean Label IA WaNet
(a) Backdoored DRMs trained on MPIIFaceGaze under different backdoor attacks (d = 2).

BadNets Clean Label IA WaNet

BadNets Clean Label IA WaNet

(b) Backdoored DRMs trained on Biwi Kinect under different backdoor attacks (d = 3).

Figure 2: The plots of {αp
i }Ni=1 and {αi}Ni=1 (in degree) for backdoored DRMs trained on (a) MPI-

IFaceGaze dataset and (b) Biwi Kinect dataset. The spread of the data points shows that the angles
of the poisoned inputs are highly concentrated, while the angles of the benign inputs are scattered.

that the angles of the poisoned inputs are highly concentrated, while the angles of the benign inputs
are scattered, meaning that σ2({αp

i,j}Ni=1) ≪ σ2({αi,j}Ni=1) for j = 1, · · · , d. We summarize this
observation in the feature space as follows.

Key observation for backdoored DRMs in the feature space: Consider a set of benign inputs
{xi}Ni=1 and a set of poisoned inputs {A(xi)}Ni=1. Let W = {w1, w2, ..., wd}T ∈ Rm×d be the
weights matrix of H , where wj ∈ Rm. Then, we have the following observation:

σ2
({

B(F (A(xi)), wj)
}N

i=1

)
≪ σ2

({
B(F (xi), wj)

}N

i=1

)
for j = 1, 2, ..., d, (4)

where B(v1, v2) = arccos (v1 · v2)/(∥v1∥2∥v2∥2); and A is the trigger function.

Table 1: The RNV and RAV for four attacks on
two datasets. In all the examined cases, RAV
is significantly smaller than 0.1.

Attack MPIIFaceGaze Biwi Kinect

RAV RNV RAV RNV

BadNets 0.0433 1.4499 0.0002 0.0012
IA 0.0489 2.5714 0.0015 0.0046

Clean Label 0.0328 0.0428 0.0803 0.0341
WaNet 0.0311 0.8528 0.0003 0.0015

Lastly, Table 1 shows that RNV is close to or
greater than 0.1 for backdoored DRMs trained by
BadNets, IA, and WaNet on MPIIFaceGaze, while
for the other examined cases, RNV is significantly
smaller than 0.1. This is because, as shown in
Figure 2, when RNV ≥ 0.1, each component of
αp
i , i.e., αp

i,j for j = 1, · · · , d, is almost 90◦, for
i = 1, · · · , N , meaning that cosαp

i,j is almost zero.
Thus, ypi,j is insensitive to the change of ∥hp

i ∥2,
which allows RNV to be similar to or even larger than 0.1 but still maintain a low σ2({ypi,j}Ni=1).

3.4 METHODOLOGY

Reverse engineering for DRM: One major challenge for reverse engineering for DRM is that the
target vector yT is defined in the continuous output space. As a result, it is impossible to enumer-
ate and analyze all the potential target vectors using existing reverse engineering methods designed
for DCM, which treat each class as a potential target class and reverse the trigger for it (Wang
et al., 2019; 2022b). To resolve this challenge, we propose to reverse engineer A by minimizing:∑d

j=1 σ
2
(
{fj(Gθ(xi))}Ni=1

)
/d, where fj(Gθ(xi)) is the jth component of f(Gθ(xi)) ∈ Rd. This

is intuitive, as for a backdoored f the term 1
d

∑d
j=1 σ

2
(
{ypi,j}Ni=1

)
will be a small positive value.

Thus, we can search for the target vector in the continuous output space by learning a trigger func-
tion A, modeled by Gθ, that can mislead f to map different inputs to the target vector without
enumerating all the potential target vectors. Moreover, based on the key observation of backdoored
DRMs defined in Inequation 4, we introduce the feature-space regularization term in the optimiza-
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tion. Formally, we define the optimization problem for the reverse engineering for DRM as:

θ∗ = min
θ

λ1

d

d∑
j=1

σ2
(
{fj

(
x′
i

)
}Ni=1

)
+

1

N

N∑
i=1

∥x′
i − xi∥1 + λ2rf , (5)

where rf = 1
d

∑d
j=1 σ

2({B(F (x′
i), wj)}Ni=1)

/
σ2({B(F (xi), wj)}Ni=1); x

′
i = Gθ(xi); and λ1 and

λ2 are the weights for the first and third objectives, respectively. The first objective in the optimiza-
tion problem aims to reverse engineer the poisoned inputs {Gθ(xi)}Ni=1 that lead to the same output
vector, regardless of their actual contents. The second objective is the input-space regularization
term (Wang et al., 2019; 2022b) that ensures the transformed input Gθ(xi) is similar to the benign
input xi. The final objective is the feature-space regularization term, which can lead to a much lower
variance for {α̂p

i,j}Ni=1 than that for {ai,j}Ni=1, where α̂p
i,j is the angle between F (Gθ(xi)) and wj .

Momentum reverse trigger: Directly solving the optimization problem defined in Equation 5 can
result in a sub-optimal solution (illustrated in Appendix A.1): the algorithm focuses on the important
regions in the input image, to which the DRM pay more attention, and directly adds perturbations
to these regions to destroy the task-related features. To avoid such a trivial solution, we propose the
momentum reverse trigger to assign different weights to different regions to balance the attention
of the DRM on the image, such that the algorithm can pay attention to all the image pixels and
search for the trigger that are injected into both important and unimportant regions. Details about
the momentum reverse trigger are given in Appendix A.1. After introducing the momentum reverse
trigger into Equation 5, we use OPT -DRMGuard to denote the final optimization problem.

Backdoor identification: By solving the optimization problem OPT -DRMGuard, we can obtain
the perturbation ∥x′

i−xi∥ that transforms input xi to the potential target vector. We observe that the
amount of perturbation required to transform the input to the potential target vector for a backdoored
DRM is significantly smaller than that for a benign DRM. Based on this observation, DRMGuard
introduces the metric I(f) = 1( 1

N

∑N
i=1 ∥x′

i − xi∥1, ϵ∥x̂∥1), to identify if a given deep regression
model is backdoored or not, where ∥x̂∥1 is the input image that has the maximum L1 norm in the
benign dataset Dbe; ϵ is a constant; and 1 is the indicator function that returns 1 (backdoored DRM)
if 1

N

∑N
i=1 ∥x′

i − xi∥1 < ϵ∥x̂∥1 and 0 (benign DRM) otherwise. We set ϵ = 0.03.

Backdoor mitigation: Once a given DRM is identified as a backdoored DRM, DRMGuard uses the
reversed trigger function Gθ and the available benign dataset Dbe to generate a reversed poisoned
dataset Drp with the original correct annotations. Then, DRMGuard fine-tunes the given backdoored
DRM by using Dbe and Drp to unlearn the backdoor behavior.

4 EVALUATION

4.1 EXPERIMENTAL SETUP

Regression tasks: We consider two regression tasks, i.e., gaze estimation and head pose estima-
tion. Gaze estimation tracks where the subject is looking at, and plays a key role in a series of
safety-critical applications, such as user authentication (Eberz et al., 2019; Katsini et al., 2020) and
driver distraction detection (Berman, 2020). Similarly, head pose estimation has also been used in
many safety-related applications, such as the driver assistance system (Jha & Busso, 2016; Murphy-
Chutorian et al., 2007) and pedestrian attention monitoring (Schulz & Stiefelhagen, 2012).

Datasets: We consider four benchmark datasets, i.e., MPIIFaceGaze (Zhang et al., 2019), Columbi-
aGaze (Smith et al., 2013), Biwi Kinect (Fanelli et al., 2013), and Pandora (Borghi et al., 2017). For
each dataset, we randomly select 80% and 10% of the images from the dataset to form the training
dataset Dtr and the benign dataset Dbe, respectively. We use the remainder as the testing set Dte to
evaluate the performance of backdoor mitigation. Details of datasets can be found in Appendix A.2.

Backdoor attacks: We consider four state-of-the-art backdoor attacks, including two input-
independent attacks, i.e., BadNets (Gu et al., 2019) and Clean Label (Turner et al., 2019),
and two input-aware attacks, i.e., Iuput-aware dynamic attack (IA) (Nguyen & Tran, 2020) and
WaNet (Nguyen & Tran, 2021). We detail how to adapt these backdoor attacks to DRMs and the
effectiveness of them on DRMs in Appendix A.3.
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Table 2: Backdoor identification performance of
DRMGuard on MPIIFaceGaze for different at-
tacks. DRMGuard can defend various attacks.

Attack TP FP FN TN Acc

BadNets 10 1 0 9 95%
IA 10 1 0 9 95%

Clean Label 10 1 0 9 95%
WaNet 10 1 0 9 95%

Table 3: Backdoor identification performance
of DRMGuard on different datasets for WaNet.
DRMGuard is effective on various datasets.

Dataset TP FP FN TN Acc

MPIIFaceGaze 10 1 0 9 95%
ColumbiaGaze 8 4 2 6 70%

Biwi Kinect 10 0 0 10 100%
Pandora 7 0 3 10 85%

Compared defenses: For backdoor identification, we compare DRMGuard with two state-of-the-
art methods, i.e., Neural Cleanse (NC) (Wang et al., 2019) and FeatureRE (Wang et al., 2022b).
Since the output space of DRM is continuous, we generalize them from classification models to re-
gression models by taking the potential target vector yt as the optimization variable. We provide de-
tails of the generalizations in Appendix A.4. For backdoor mitigation, we compare DRMGuard with
two state-of-the-art methods, i.e., ANP (Wu & Wang, 2021) and Fine-pruning (Liu et al., 2018a).

Evaluation metrics: Following existing work (Wang et al., 2022b), we use the identification ac-
curacy as the performance metric. In detail, given a set of DRMs including benign and backdoored
DRMs, the identification accuracy is defined as the percentage of correctly classified DRMs over
all examined DRMs. We also report the number of True Positives (TP), i.e., correctly identified
backdoored DRMs, False Positives (FP), i.e., benign DRMs recognized as backdoored DRMs, False
Negatives (FN), i.e., backdoored DRMs identified as benign DRMs, and True Negatives (TN), i.e.,
correctly recognized benign DRMs. Moreover, we use ROC-AUC score to compare backdoor iden-
tification performance between DRMGuard, NC, and FeatureRE, after obtaining the average pertur-
bations on Dbe for benign DRMs and backdoored DRMs.

To evaluate the performance of DRMGuard on backdoor mitigation, we generate a poisoned dataset
PDte by applying trigger function to all the images in Dte. We define defending attack error (DAE)
as the average regression error calculated from the output vectors and the correct annotations over
all the images in PDte. Details of regression errors for the two examined regression tasks are given
in Appendix A.2. We use DAE and AE on PDte as the evaluation metrics for backdoor mitigation.

Defense settings: Unless otherwise mentioned, we set λ1 = 20 and λ2 = 800 for gaze estimation,
and set λ1 = 10 and λ2 = 100 for head pose estimation, given task difference. We use ResNet18
(He et al., 2016) (without the dense layer) to implement F , and a dense layer without activation
function to implement H . We consider gaze estimation task with MPIIFaceGaze dataset and the
state-of-the-art input-aware attack WaNet.

4.2 EVALUATION RESULTS ON BACKDOOR IDENTIFICATION

DRMGuard is effective for backdoor identification: We conduct three experiments to evaluate
the backdoor identification performance. First, we evaluate the performance of DRMGuard in iden-
tifying backdoored DRMs trained by different attacks. Specifically, for each of the four backdoor
attacks, i.e., BadNets, Clean Label, WaNet, and IA, we train ten benign DRMs and ten backdoored
DRMs on MPIIFaceGaze dataset. The results are shown in Table 2, which indicate that DRMGuard
can identify backdoored DRMs trained by both input-independent and input-aware attacks, at an
average accuracy of 95%. Moreover, we visualize the estimation of the target vector during the
training process and the reversed trigger in the Appendix A.5 and A.6, respectively.

Second, we examine the backdoor identification capability of DRMGuard on different regression
tasks and datasets, i.e., MPIIFaceGaze, ColumbiaGaze, Biwi Kinect, and Pandora. Specifically, we
train ten benign DRMs and ten backdoored DRMs using WaNet for each dataset. The results are
shown in Table 3. The average identification accuracy of DRMGuard on different datasets is 87.5%,
which demonstrates the effectiveness of DRMGuard on various regression tasks and datasets.

Finally, we consider the scenario where the DRM is backdoored by multiple trigger functions with
different target vectors. We report the attacking details and evaluation results in Appendix A.7. In
brief, the results show that our method is effective on identifying DRMs with multiple backdoors.

DRMGuard outperforms state-of-the-art defenses: Table 4 shows the ROC-AUC scores of
DRMGuard, NC, and FeatureRE for four backdoor attacks. We also report the scores when ap-

7



Under review as a conference paper at ICLR 2024

Table 4: ROC-AUC scores of different methods on
MPIIFaceGaze for different attacks. DRMGuard
significantly outperforms NC and FeatureRE.

Attack NC FeatureRE DRMGuard
BadNets 0.270 0.730 1.000

IA 0.300 0.560 1.000
WaNet 0.940 0.560 1.000

Clean Label 0.005 0.545 1.000
All attacks 0.379 0.599 1.000

Table 5: Performance of backdoor mitigation
for different attacks. DRMGuard can miti-
gate backdoor behaviors for various attacks.

Attack Undefended DRMGuard
AE DAE AE DAE

BadNets 3.25 14.85 17.21 3.59
IA 3.19 14.40 15.69 3.50

Clean Label 0.72 15.43 16.42 2.51
WaNet 1.31 15.90 15.36 3.29

plying the four backdoor attacks simultaneously. As shown, the ROC-AUC score of DRMGuard
is 1.000 in all the examined cases, which is significantly higher than that of NC and FeatureRE.
Besides, we notice that FeatureRE fails to find a trigger function that enables the backdoored DRM
to map different inputs to similar output vectors, which confirms our analysis that the feature-space
characteristic for backdoored DCM (Wang et al., 2022b) does not hold for backdoored DRM.

4.3 EVALUATION RESULTS ON BACKDOOR MITIGATION

Table 6: Performance of different
methods on backdoor mitigation.
DRMGuard outperforms baselines.

Method AE DAE
Undefended 1.31 15.90
DRMGuard 15.36 3.29
Fine-tuning 13.96 4.32

Fine-pruning 6.68 16.82
ANP 4.92 13.13

We train backdoored DRMs using BadNets, Clean Label, IA,
and WaNet on MPIIFaceGaze. Table 5 shows AE and DAE
of the undefended and mitigated backdoored DRMs, which
indicate that DRMGuard can mitigate backdoor behaviors for
various attacks. Specifically, DRMGuard can significantly in-
crease AE and decrease DAE for all the attacks, which indi-
cates that the output vectors of DRMs are far away from the
target vector and close to the correct annotations after back-
door mitigation, even though triggers are injected in the inputs.

We compare DRMGuard with ANP and Fine-pruning on backdoor mitigation. We also consider a
baseline, i.e., Fine-tuning, which directly uses the benign dataset Dbe to fine tune the backdoored
DRM. We report AE and DAE for different methods after backdoor mitigation in Table 6. The AE
for DRMGuard is significantly larger than that for other methods, while the DAE for DRMGuard is
much smaller than that for other methods, which shows the superiority of DRMGuard on backdoor
mitigation. Moreover, Fine-pruning and ANP are built upon the feature-space characteristics of
backdoored DCM and perform terribly on backdoored DRMs. This also confirms our analysis that
the feature-space characteristics of backdoored DRMs are different with that of backdoored DCM.

4.4 ABLATION STUDIES

Impact of weights and the size of benign dataset: To investigate the impact of λ1 and λ2 in
Equation 5 on the performance of backdoor identification, we vary λ1 and λ2 from 10 to 30 and
from 600 to 800, respectively. Moreover, we study the impact of the size of Dbe on the identification
performance by changing the ratio p of benign dataset to the original whole dataset from 5% to 15%.

We report the results in Table 7. We observe that the performance of DRMGuard is insensitive to λ1,
as the identification accuracy is almost stable with different λ1. However, DRMGuard is sensitive
to λ2 and the identification accuracy increases with λ2. This observation proves that the proposed
feature-space regularization term is important for the identification of backdoored DRMs. We also
observe that as p decreases from 15% to 5%, the identification accuracy and the number of TN
decrease, while the number of TP remains stable. This is because, compared to a large p, it is easier
to find a small amount of perturbation that can lead to the backdoor behavior on a small p for benign
models. However, the identification accuracy is still 90% even when p = 5%.

Impact of feature-space regularization term (FSRT): We remove FSRT from OPT -DRMGuard
and show the results in Table 8, which indicate that all the DRMs are classified as backdoored DRMs.
We further observe that without the FSRT, DRMGuard cannot find a trigger function that can map
different inputs to similar output vectors. As a result, DRMGuard solves the optimization problem
by focusing on minimizing the distance between the poisoned and benign images, and returns a
small amount of perturbations, which leads to the misclassification of backdoored DRMs.
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Table 7: Ablation study on the impact of different value of λ1, λ2 and p.

Metric Different λ1 Different λ2 Different p
10 20 30 600 800 1000 5% 10% 15%

TP 10 10 10 10 10 10 10 10 10
FP 0 1 1 5 1 0 2 1 0
FN 0 0 0 0 0 0 0 0 0
TN 10 9 9 5 9 10 8 9 10
Acc 100% 95% 95% 75% 95% 100% 90% 95% 100%

Table 8: Ablation study on FSRT and MTR.
Method TP FP FN TN Acc

w/o FSRT 10 10 0 0 50%
w/o MTR 10 10 0 0 50%

Table 9: Evaluation results on adaptive attack.
Attack AE DAE Acc
WaNet 1.51 15.99 95%
Adaptive 5.71 15.01 95%

Impact of momentum reverse trigger (MTR): We remove the MTR from OPT -DRMGuard
and report the identification results in Table 8. As shown, all the benign DRMs are classified as
backdoored DRMs. This is because, without the MTR, DRMGuard will find a small amount of
perturbation and add it to the eye regions to destroy gaze-related features and fool the benign models.
In this way, the poisoned images reversed from different images are transformed by f to similar
output vectors, and DRMGuard fails to correctly recognize benign DRMs.

4.5 ADAPTIVE ATTACKS

When the attacker has the full knowledge of DRMGuard, one potential adaptive attack that can
bypass our method is to force the left and the right terms in Inequation 4 to have similar values.
Based on this intuition, we design an adaptive attack that adds an additional loss term Ladp with a
weight λadp to the original loss function of the chosen backdoor attack. We define Ladp as:

Ladp =
∣∣∣1− 1

d

d∑
j=1

σ2
({

B(F (A(xi)), wj)
}Np

i=1

)/
σ2

({
B(F ((xi), wj)

}Nb

i=1

)∣∣∣, (6)

where Np and Nb are the numbers of poisoned inputs and benign inputs in a minibatch. The loss term
Ladp tries to break the feature-space observation by enforcing RAV to be close to one. We generate
ten backdoored DRMs by the adaptive attack with λadp = 0.02. Table 9 shows the identification
accuracy and the averaged AE and DAE over ten backdoored DRMs. The AE of the adaptive attack
is significantly higher than that of WaNet. This proves that our feature-space observation of the
backdoored DRM is the key characteristic leading to the backdoor behavior. The adaptive attack
cannot reduce the identification accuracy of our method.

5 DISCUSSION AND LIMITATION

Discussion. To further investigate the performance of DRMGuard, we evaluate DRMGuard by
considering more backdoor attacks, different architectures of DRMs, and a larger set of DRMs
in Appendix A.8. The results show DRMGuard can consistently defend against various backdoor
attacks and can be generalized to different architectures. Also, DRMGuard maintains a similar
identification accuracy on a larger set of DRMs that contains more backdoored and benign DRMs.

Limitation. Similar to backdoor defenses (Wang et al., 2019; 2022b) for DCM, our method requires
a small benign dataset to identify backdoored DRM and mitigate backdoor behaviors.

6 CONCLUSION

We propose the first backdoor identification method DRMGuard for deep regression models in the
image domain. Our method fills in the gap where existing backdoor identification methods only
focus on deep classification models. Our comprehensive evaluation shows that our method can
defend against both input-independent and input-aware backdoor attacks on various datasets.
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