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Abstract

Language model alignment has become an important component of AI
safety, allowing safe interactions between humans and language models, by
enhancing desired behaviors and inhibiting undesired ones. It is often done
by tuning the model or inserting preset aligning prompts. Recently, steer-
ing methods, such as representation engineering and feature steering and
activation steering, methods which alters the model’s behavior via chang-
ing its representations post-training, were shown to be effective in aligning
LLMs. Steering methods yield gains in alignment oriented tasks such as
resistance to adversarial attacks and reduction of social biases, but were
also shown to cause a decrease in the ability of the model to perform basic
tasks. In this paper we study the tradeoff between the increase in align-
ment and decrease in helpfulness of the model. We propose a theoretical
framework which provides bounds for these two quantities, and demonstrate
their relevance empirically. First, we find that under the conditions of our
framework, alignment can be guaranteed with steering methods, and at the
same time that helpfulness is harmed in the process. Second, we show that
helpfulness is harmed quadratically with the norm of the injected steering
vectors, while the alignment increases linearly with it, indicating a regime
in which it is efficient to use representation engineering. We validate our
findings empirically, and chart the boundaries to the usefulness of these
methods for alignment.

1 Introduction

Advancements in large language model (LLM) development over the last few years have
given LLMs a variety of abilities that allow them to serve as general purpose assistants in a
wide range of tasks, such as broad-scoped question answering, writing assistance, teaching,
and more (Radford et al., 2019; Devlin et al., 2019; Brown et al., 2020; Schulman et al.,
2023; OpenAI, 2023; Bubeck et al., 2023; Nori et al., 2023; West, 2023; Park et al., 2023).
The vast use of LLMs for such purposes has raised concerns due to the harm they can
cause their users, such as serving fake information (Lin et al., 2022; Weidinger et al., 2022),
behaving offensively, feeding social biases (Hutchinson et al., 2020; Venkit et al., 2022;
Weidinger et al., 2022), or encouraging problematic behaviors by users Roose (2023); Atillah
(2023). Alignment is often the term given for the process of removing these undesired
behaviors (Yudkowsky, 2001; Taylor et al., 2016; Amodei et al., 2016; Shalev-Shwartz et al.,
2020; Hendrycks et al., 2021; Pan et al., 2022; Ngo, 2022).

There are several different approaches to performing alignment in LLMs, such as including
aligning prompts (Askell et al., 2021; Rae et al., 2021) which was shown to improve alignment
and decrease toxicity in LLMs, and the procedure of reinforcement learning from human
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feedback (RLHF) which trains language models to be helpful and harmless (Bai et al., 2022).
Though effective to an extent, these approaches are still dangerously frail, as several works
have shown that adversarial prompts can trigger negative behaviors in LLMs Wallace et al.
(2019); Yu & Sagae (2021); Xu et al. (2021); Subhash (2023); Zou et al. (2023b). The work
of Wolf et al. (2023) provides a theoretical framework which shows that frozen LLMs can
be misaligned with sufficiently long prompts.

Recently, new alignment methods were proposed, revolving around altering model weights
at inference time, which control the model at the internal representations level by adding
tailored vectors to the hidden layer’s representations. The appeal of such methods is that en-
hancing concepts through finetuning is expensive and not always efficient for small changes,
while inference time steering requires only inference compute and allows to specialize the
model to the user’s needs. Prominent methods include representation engineering (Zou et al.,
2023a) and activation steering (Turner et al., 2023), in which directions in the model’s latent
space controlling certain behaviors are extracted by contrasting hidden representations in
which opposing behaviors are exhibited, as well as feature steering, by Anthropic (Temple-
ton, 2024), in which steering vectors are obtained via the use of variational auto-encoders
(VAEs), and demonstrate SOTA models such as Claude 3 Sonnet can be effectively steered
by this method. While the methods differ in their approach for obtaining the steering
vectors, the underlying principle of injecting the vectors into the model is simlar.

Since then, there has been an increasing body of work using these methods. Zou et al.
(2023a) demonstrated experimentally that the procedure can significantly improve align-
ment, e.g., in resistance to adversarial attacks, with reduction from 50% success of adver-
sarial attacks to less than 15%, and truthfulness enhancement, with a relative increase of
over 50%, though at the cost of somewhat reducing the helpfulness of the model. Wang
et al. (2024b) use extracted safety vectors for inference time alignment for harmlessness, re-
ducing jailbreaking success rate from over 30% with prompting and over 10% in supervised
fine tuning to below one percent. Similar methods have also been used by Jorgensen et al.
(2023); Leong et al. (2023); Liu et al. (2023); Turner et al. (2023) to improve alignment
and reduce toxicity. Wang et al. (2024a) uses a method of editing model parameters that
maximize the difference between toxic and untoxic responses to detoxify it. Wei et al. (2024)
find sparse regions in parameter space that affect alignment brittleness, to be removed for
better alignment. Marks et al. (2024) interpret causal graphs in language models and edit
them to improve behaviors. van der Weij et al. (2024) extend activation steering to mul-
tiple behaviors. To improve low rank finetuning, Wu et al. (2024) utilize a procedure of
tuning representations directly to substantially reduce the trainable parameters of finetun-
ing compared to LoRA. Xu et al. (2024); Li et al. (2024) use concept activation vectors
to jailbreak, they also observe that concepts that activate different behaviors are linearly
separable. Zhang et al. (2024) remove hallucinations by editing truthfulness concepts. Ad-
ditionally, the method scales to SOTA models, such as Claude 3 Sonnet (Templeton, 2024),
using a similar method of sparse auto encoders, which extracts interpretable features from
the model that can be used to manipulate the model through steering. There are also
known limitations to editing representations - Yan et al. (2024) study limitations of model
editing methods for social debiasing, and Elazar et al. (2021) empirically demonstrate how
projecting out supervised linear probe directions can reduce performance on selected tasks.

Understanding the tradeoff between model helpfulness and alignment is important for de-
signing safe yet useful LLM systems. Previous empirical works have shown tradeoffs between
quality and diversity and between helpfulness and safety in LLMs due to instruct finetuning
(Florian et al., 2024; Bianchi et al., 2023; Röttger et al., 2023), and reduction in performance
due to watermarking (Ajith et al., 2023). In this work we aim to shed light on the benefits
and limitations of steering for LLM alignment, i.e., how much does alignment improve with
this method and what is the cost in terms of the model’s abilities. We approach this question
theoretically at first, and then provide empirical evidence for the validity of our theory.

In sections 2 and 3, we set up our theoretical framework and present our theoretical results
respectively. We find that steering increases alignment linearly with the steering vector
norm (theorem 1), while the helpfulness of the model, defined as the probability of an-
swering general queries correctly, decreases quadratically with the vector norm (theorem 2).
Consequently, alignment can be guaranteed with large enough vector injections, though at
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Figure 1: Effect of steering on helpfulness and alignment. Our main results show that align-
ment can improve at the cost of helpfulness. Moreover, we show that for small representation
engineering norms the helpfulness decreases quadratically while the alignment increase is
linear, so there is a regime in which representation engineering can be cost-effective.

the cost of reducing the model’s helpfulness. Conversely, when injecting vectors of small
norms, the improvement of alignment is initially faster than the decrease in helpfulness,
indicating a regime where steering is effective, allowing for inference time alignment while
maintaining the model’s helpful capabilities. See figure 1 for an illustration of this intuition.

In section 4 we explore the validity of our assumptions and results in an experimental set-
ting with representation engineering: We calculate alignment, as defined by the theoretical
framework, as a function of representation engineered vector norms corresponding to the
desired behaviors and find that it increases as predicted by theorem 1. This is done by
aligning with representation engineering an unaligned (pretrained) model with respect to
desired behaviors (“harmless”, “not-racist”), and misaligning an aligned (RLHF) model to
undesired behaviors (“harmful”, “racist”). Then, we calculate the helpfulness of the model,
quantified by its question answering abilities over different knowledge domains and coding
capabilities, with the same aligning vectors, and find that the decay with increased vector
norm described in theorem 2 is manifested. Together, the results correspond to the intuitive
illustration in fig. 1. Complementary experimental results by Anthropic showed similar
empirical trends for alignment and helpfulness in the use of feature steering with vectors
extracted from VAEs on Claude 3 Sonnet (Durmus et al.).

2 Preliminaries

We denote Pθ(·|s) as the next token probability distribution of a model with parameters θ,
when conditioned on the prompt s. The model is composed of L layers, rlθ is the l’th hidden
state representation of the model. The next token prediction of a model is parametrized as:

Pθ(tn+1|t1...tn) = softmax(Ur
(L)
θ (t1...tn))tn+1

(1)

Where r
(L)
θ (s) is the final hidden layer’s representation of the prompt s and U is an unembed-

ding matrix from the hidden state to a vocabulary of tokens, a standard parametrization for

SOTA LLMs. Denote a steered model by vectors, Re = (r
(l=1)
e , ..., r

(l=L)
e ), as Pθ,re . Steering

is performed at each layer by adding the corresponding vector to the hidden layer:

r
(l)
θ ← r

(l)
θ + r(l)e (2)

Additionally, we follow existing methods for steering and provide a uniform norm for all the

injected vectors |r(l)e | = |re|, which are initially prepared with norm 1, and when injected
to the model, are multiplied by the coefficient re which can be positive or negative, to tune

the steering strength and direction. For layers that are not injected, |r(l)e | = 0.

To quantify alignment, we use the behavior expectation definition of alignment as in Wolf
et al. (2023), based on the expected score of model responses to a behavior scoring function.
The behavior scoring function can measure honesty, safety or any other concept for which
responses can be scored as positively or negatively aligned with respect to. We will use a
binary scoring function, with labels ±1 for aligned/misaligned answers. The results can be
extended to more complex behavior scoring function over [−1,+1], to yield qualitatively
similar results, as discussed appendix J:
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Definition 1 Let B : Σ∗ → {−1,+1} be a binary behavior scoring function, the behavior
of a prompted model P (·|q) is defined as:

B[Pθ(·|q)] = Ea∼Pθ(·|q)[B(a)] =
∑

a+∈aligned

Pθ(a+|q)−
∑

a−∈misaligned

Pθ(a−|q) (3)

While B is a binary function, the behavior expectation is in the range [−1,+1], reflecting
cases where a model has probability for both aligned and misaligned responses. In theorem 1
we will prove that steering is an effective alignment method by lower bounding the behavior
expectation. Notice that high probability of outputting a positive/negative response gives a
positive/negative contribution to the behavior expectation, thus the sign and absolute value
of behavior expectation measures the alignment of a model w.r.t. the given behavior.

The model’s helpfulness can be quantified as its ability to produce useful answers to user’s
queries (knowledge questions, code generation, summarization, etc.). In order to theoret-
ically analyze helpfulness, we focus on queries where correctness can be defined, such as
knowledge based question answering (see figure 1 for an example) and code generation.
This can be measured as the likelihood of outputting a correct answer to a query:

helpfulness(model, q) = Pθ(acorrect|q) (4)

Where Pθ(acorrect|q) is the model’s probability of outputting the correct answer a to the
query q. By this definition, the helpfulness is in the range [0, 1], in order to quantify the
general capabilities of the model when steering vectors are injected into it. For queries where
correctness is not defined, the bounds we derive are expected to still be meaningful as they
also describe the rate of the model’s deviation from its original distribution due to steering.

The rational behind this quantification of alignment and helpfulness is to measure how align-
ing the model w.r.t. a concept through steering affects its ability to perform other tasks.
Ideally, a model that interacts with a user should be both aligned and helpful, meaning
its response is appropriate w.r.t. a desired behavior (quantified by a positive behavior ex-
pectation) and also useful (high probability of giving a correct answer to general purpose
queries). In the next section, we will provide results on alignment and helpfulness under the
use of steering, based on the model’s next token prediction, which provides simple analytical
forms for alignment and helpfulness. In appendix K, we extend the results for multi-token
answers, which yields qualitatively similar results, with somewhat more complex form.

3 Main Results

We will show that steering improves alignment and harms helpfulness, yet a ”moderate”
use of steering can yield a model that is good for both. Theorem 1 shows that behavior
expectation is bounded from below by a hyperbolic tangent function, such that it approaches
+1 for increasing size of injected vectors and increases linearly within a bounded range. This
in principle allows to sample an aligned response for any adversarial attack (corollary 1),
demonstrating the power of representation engineering as an alignment technique. Theorem
2 shows that the helpfulness is maximized in the vicinity of norm zero injected vectors (i.e.,
no representation engineering) and that as the norm is increased, helpfulness decays. The
assumptions used to prove the theorems are presented formally in appendix A.

The following statement quantifies how alignment is improved by steering. It assumes the in-
jected vectors in all layers accumulate to a change in the last hidden layer representation that
classifies positive and negative behavior answers to the query, as depicted in figure 2a. This
is assumed due to the popular choice in representation engineering to use steering vectors

{r(l)e }, that are themselves classifiers for positive and negative representations on the inter-
mediate layers, due to being learned from contrasting positive and negative behavior repre-

sentations for different queries. For example, mean centering, r
(l)
e = Egood,bad[r

(l)
good − r

(l)
bad]

(Jorgensen et al. (2023)), or PCA, r
(l)
e = argmaxv:||v||=1[Egood,bad|⟨v, r(l)good − r

(l)
bad⟩|2] (Zou

et al. (2023a)), such that they form linear classifiers for the intermediate layers due to the
positive/negative inner product with positive/negative answer representations. Notably, in
Xu et al. (2024) it is shown empirically that such concept classes in latent space are linearly
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separable. We discuss this assumption further in A and provide empirical evidence. Fur-
thermore, the classification condition can be softened to an imperfect classifier, as discussed
in appendix A and shown in appendix in H, to yield similar results.

Theorem 1 Let Pθ,re(·|q) be a model prompted with query q and injected with representa-
tions of coefficient re. Let B : Σ∗ → {−1,+1} be a behavior scoring function. The injections
to all layers amounts to a change in the final hidden layer representation that is q depen-

dent, denoted by the vector δr
(L)
e (q). Assume the representations of aligned and misaligned

answers w.r.t. B are linearly separable, and δr
(L)
e (q) linearly classifies them with margin ∆.

Then, the behavior expectation of the model conditioned on the query q satisfies:

B[Pθ,re(·|q)] ≥ tanh(∆λ · re + arctanh(B0)) (5)

Where B0 = B[Pθ(·|q)] is the behavior expectation without steering and λ is a model depen-
dent coefficient relating between re and the corresponding final hidden state norm.

As can be seen in the mathematical expression and in figure 2b for B0 = −0.5, this lower
bound is a shifted hyperbolic tangent function w.r.t re. At re = 0 the bound gives B0, which
is the unaltered model’s behavior. As re is increased, the bound approaches +1, meaning
the behavior asymptotically approaches +1. We see that for B0 that is not too close to
−1, the increase in behavior expectation is linear due to the hyperbolic tangent’s nature,
while if it is very close to −1, re is to be increased before seeing the linear effect. Thus for
behaviors on which the model is negative but has a small tendency for positive answers, the
linear effect should be felt near re = 0. In section 4, we present our numerical estimation
∆λ in the range 0.1− 3, both based on the linear classifier condition and direct alignment
measurement. For proof see appendix section B.

Figure 2: (a) The change to the last hidden layer due to vector injections from previous
layers classifies positive and negative answer representations. (b) Plot of the upper bound
on behavior expectation in theorem 1.

This can be extended to multi-token answers, by enforcing the above result on each decoding
step of the generated answer, as explained in appendix K. The binary behavior score can also
be extended beyond binary, as explained in appendix J. In contrast to Wolf et al. (2023),
whose framework is centralized on using prompts to misalign frozen models, i.e. whose
weights and representations are not changed after training, here the model is not frozen
due to steering, and accordingly a different result is obtained on guaranteeing an aligned
response – for any adversarial attack, using steering with large enough norms produces an
aligned response if the learned steering vectors accumulate to a good classifier of positive
and negative answer representations in the final layer. We formalize this in appendix D.

Now, we shall bound from above the helpfulness of the model as a function of steering. We
formally bound the probability of producing correct answers to queries where correctness
is well defined. Yet, even when this is not the case, the bound can still be relevant, as it
quantifies the model’s deviation from its original distribution due to steering. Hence if the
model was initially helpful on a task, a random deviation to its probability distribution is
expected to decrease model performance proportionally to the size of the deviation.
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Intuitively, editing the model’s representation in a specific direction adds random noise to
other latent concepts of the model, causing a degradation in its other capabilities. This
is introduced in our framework through the resulting change to the final hidden layer

δre(q) = r
(L)
θ,re
− r

(L)
θ , we will assume its direction δre(q)

|δre(q)| contains random projections

w.r.t. latent representations of correct and incorrect answers, which creates noise in the
model’s distribution. The noise is expected to be random on the highest probability tokens,
when answering a query that is unrelated to the behavior being enhanced (intuitively de-
picted in figure 3a). We verify this empirically in appendix A.3. Thus, we assume random
noise on the top T tokens making up a large probability mass of the answer distribution,
1 − ϵ, (e.g. T ∼ 10 typically makes ϵ ∼ 0.1), and do not make assumptions on the rest of
the vocabulary. The following theorem formally states this.

Theorem 2 Let Pθ,re(·|q) be a model prompted with query q and injected with representa-
tions of coefficient re. If the resulting change to the directionality of the last hidden layer
representation due to the injections in all layers, distributes randomly with variance σ2 > 0
w.r.t. the representations of correct and incorrect answers making up 1− ϵ of the probability
mass, the helpfulness of the model on the query is bounded with probability 1− 2

T by:

Pθ,re(acorrect|q) ≤
P0

P0 + (1− P0) · α(1− ϵ)(1 + λ2σ2β2

2 r2e)
(6)

Where P0 = Pθ,re=0(·|q) is the probability of answering correctly without steering, T is the
number of tokens making 1 − ϵ of the probability mass and α, β > 0 that depend on the
query. λ is a model dependent coefficient relating between re and the corresponding final
hidden state norm.

The proof is presented in appendix C and the assumption formally defined in appendix
A. The above bound is illustrated in figure 3b for different values of β. As can be seen,
around re = 0, the bound is parabolic, i.e. the decrease is proportional to −r2e , obtained by
expanding the bound near re = 0. On the other hand, for large re, we see a decay to zero at
a rate proportional to r−2

e , obtained by expanding the bound for large re. This result can
be extended to multi-token answers, by enforcing the above result on each decoding step of
the generated answer, as explained in appendix K.

Importantly, this demonstrates that while large vector injections harm the model’s overall
performance, for small injections, the model’s performance is relatively unharmed due to the
slow (parabolic) decrease with norm around re = 0. For the second statement to be feasible,
the true helpfulness and the bound need to be close when no steering is performed. Indeed,
the difference between the two at re = 0 is bounded by 1−P0, such that for queries with high
probability of being answered correctly without steering, i.e. P0 ≈ 1, the true helpfulness
and the bound will be close, guaranteeing the parabolic bound to be meaningful.

The parameter α ∈ [0, 1] measures the tightness of the bound at re = 0, since the true
helpfulness at re = 0 is P0, while our helpfulness bound is P0

P0+α(1−P0)
. Thus α = 1 (and

ϵ = 0) means the bound at re = 0 coincides with the true helpfulness, while smaller α
means the bound overshoots it. In our results, we obtain α ≤ 0.5. Figure 3 depicts this
overshooting for α = 0.25. Even so, as explained above, the tightness is at least 1 − P0

regardless of α, so it is always meaningful for queries the model is initially helpful on.

The product of parameters λσβ measures the rate/curvature of the quadratic decay, as they
are the coefficient multiplying r2e . λ is the same scaling parameter from theorem 1, σ is the
standard deviation of random noise added to the logits due to representation engineering
(depicted in figure 3a and formally defined in A). β is the minimum between two weighted
sums of positive variables with parameter σ′ = 1. In section 4, we present an empirical
estimation for λσβ in the range 0.1 − 0.66, based on the logit noise condition and direct
helpfulness measurement. Hence the decay becomes strong at coefficients re of size 1− 10.

A tradeoff between alignment and usefulness: The combination of the two results
shows alignment improves linearly with the norm of the steering vectors while helpfulness
is decreased quadratically. This means that when injecting vectors of small norms, the
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Figure 3: (a) Directionality of change to last hidden layer due to representation engineering
distributes randomly with variance σ2 w.r.t. correct and incorrect answer representations.
(b) Plot of helpfulness bound with given parameters of P0, α and λσβ.

improvement of alignment is initially faster than the decrease in helpfulness, indicating a
regime where steering is more effective. See figure 1 for an illustration of this intuition.

4 Empirical results

Here we will calculate alignment and helpfulness as defined above and observe how they
are affected by increasing norms of steering vectors. Theorem 1 shows how alignment can
increase/decrease due to steering, thus to demonstrate it, we increase the alignment of an
unaligned pretrained model w.r.t. “harmless” and “not-racist” behaviors (specifically we
use Llama 2 13B (Touvron et al., 2023)), and conversely, misalign an aligned RLHF model
w.r.t. “harmful” and “racist” behaviors (Llama 2 13B chat (Touvron et al., 2023)). Then,
we calculate helpfulness as the probability of answering queries correctly when the model is
injected with the same behavior altering vectors. The experiments show an effect on align-
ment matching theorem 1 and on helpfulenss matching theorem 2. Additional experimental
details can be found in appendix F as well as results for Llama 3.1 8B (Dubey et al., 2024).
We note the goal of the experiments is to demonstrate the theoretical bounds showing an
enhancement of alignment with a concept and a helpfulness decrease due to steering, and
that a complementary experimental demonstration of these with more behaviors is shown
on Claude 3 Sonnet with social biases when using feature steering (Durmus et al.).

We follow the work of Zou et al. (2023a) to extract the vectors used in representation en-
gineering: Pairs of positive and negative statements w.r.t. a behavior, are forward passed
through the model, and the differences between representations of the pairs are used to find
latent space directions that steer the model’s responses from negative to positive behav-
iors or vice versa. For the “harmful” behavior on the aligned model, we extracted harmful
and unharmful instructions from AdvBench (Robey et al., 2021; 2022) and shareGPT re-
spectively. For “harmless” behavior on the unaligned model, the approach of contrasting
positive and negative requests does not work, as the model agrees to answer both types of
requests, so contrasting them does not steer the model towards not answering a request.
Instead, inspired by the method of preference learning, we contrast aligned and misaligned
responses to harmful instructions from AdvBench. For “racism” on the aligned model, we
used biased and unbiased statements from the StereoSet dataset (Nadeem et al., 2020). For
“not-racist” on the unaligned model, we used the racist statements from above, followed
by aligned and misaligned responses. The obtained vectors were used to calculate behavior
expectation and helpfulness of the model as the norm of the vectors increased.

Alignment Measurement: To calculate harmful behavior expectation, we sampled
full responses to harmful instructions and used the behavior scoring function that assigns
an answer B(answer) = ±1 if the model answers a harmful instruction or refuses to and
calculated its expectation value, which is the difference between probabilities of fulfilling
and not fulfilling the instruction. To calculate the racism behavior expectation, sampled
full responses to racist statements and used a behavior scoring function that assigns an
answer B(answer) = ±1 to agreeing/disagreeing with a racist statement, and calculated
the expectation value of this function w.r.t. the model distribution, which is the difference
in probabilities of agreeing and disagreeing with a racist statement.
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Figure 4: Plots of behavior expectation as a function of the coefficients of representation
engineering vectors injected to the model. The blue line is the direct measurement, the
orange line is a plot of the bound from theorem 1. (a) Harmless behavior expectation
of Llama 2 13B as a function of coefficient of injected harmful PCA vectors. (b) Racism
behavior expectation of Llama 2 13B as a function of coefficient of injected bias PCA
vectors.(c) Harmful behavior expectation of Llama 2 13B as a function of coefficient of
injected harmful PCA vectors. (d) Racism behavior expectation of Llama 2 13B chat as a
function of coefficient of injected bias PCA vectors.

Figure 4 shows behavior expectation as a function of corresponding PCA vector coefficients
injected into the models. Overall we see that on both behaviors and both models, the
behavior expectation changes like a hyperbolic tangent, as expected of theorem 1, which
can be seen by the fitted curve of the data to a bound of the form of theorem 1 when using
∆λ as a free parameter that fits the measurements. The value of ∆λ corresponding to the
curve is 0.5 − 3 while our empirically estimated value of ∆λ from the data based on the
linear classification condition of the last hidden layer change is 0.1 − 0.4 (for details and
explanation for these differences see appendix A.3). We note that for all behaviors, re = 2.5
suffices for a significant change in behavior expectation, taking it from negative to positive.
It is left to observe the decrease in helpfulness and verify that it is not too big.

Helpfulness Measurement: To calculate helpfulness, we tested the model on two tasks.
The first is knowledge based question answering, for a clean test of the single token theo-
retical results (theorem 2). The second is code generation, to verify the single token results
persist for tasks with multiple-token answers. Importantly, we injected the model with the
same vectors used to alter the model’s behavior in the alignment measurement.

For the first task, we queried the model with multiple choice questions from the MMLU
dataset (Hendrycks et al., 2020) over a variety of domains (e.g. international law, medical
genetics) and calculated the probability that the model assigns the correct answer. This was
done both by calculating the probabilities of the multiple choice answers, A,B,C,D, and in
appendix F by sampling full responses to the questions and measuring the accuracy, yielding
similar results. This was measured as a function of injected vector coefficients inserted to
the model for the behaviors above. Figure 5 shows the results for the different behaviors and
models. We plot a bound of the form of theorem 2 to demonstrate the predicted parabolic
behavior. We do so with free parameter λσβ from which we find λσβ in the range of 0.33 to
0.66 (see appendix F.4). This is in accordance with our empirically estimated values of 0.1 to
0.4 for λσβ from direct measurement of the noise injected to the model due to representation
engineering in appendix A.3. Notably, for re = 2.5, the decrease in helpfulness is still not
too great, while as mentioned previously, alignment is significantly increased.

For the second task, we tested the model’s coding skills with the humaneval dataset (Chen
et al., 2021). We present the results in appendix G. The model’s performance is peaked
around re = 0, and it decays parabolically ar re increases, as predicted in theorem 2.
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Figure 5: Helpfulness measurement: the probability assigned to the correct answer to ques-
tions from different MMLU tests (international law, medical genetics, high school computer
science), as a function of representation engineering vector coefficients injected to the model.
Here the probability of the correct answer was measured relative to the answers A, B, C,
D. The red line plots the bound of theorem 2 for free parameters on “international law”.
(a) Helpfulness of Llama 2 13B with harmful PCA vectors. (b) Helpfulness of Llama 2 13B
with bias PCA vectors. (c) Helpfulness of Llama 2 13B chat with harmful PCA vectors. (d)
Helpfulness of Llama 2 13B chat with bias PCA vectors.

5 Discussion

In this work, we study the benefits of steering methods for LLM alignment from a theoretical
perspective. We find that increasing the magnitude of the vectors injected to the model leads
to improved alignment; we theoretically quantify this improvement as linear in the vectors’
magnitude, and validate our result empirically. A practical outcome of our result is a
guarantee of alignment when using the representation engineering method. Such theoretical
guarantees cannot be made without altering the model at inference time – Wolf et al.
(2023) show that prompt based alignment methods can always be undone. Our result thus
crystallizes an inherent advantage of steering over competing alignment methods.

On the other hand, our framework indicates a degradation of the model’s general capabilities
when steering is applied. We theoretically quantify this degradation to be parabolic in the
injected vectors’ magnitude, which puts a bound on the strength with which steering should
be performed to keep the model reliable for different uses. While our theoretical bound is
an upper bound on the helpfulness, we observe this parabolic behavior empirically as well.

While steering is an emerging field, editing interpretable features of models on the represen-
tation level in order to control them scales to SOTA models such as Anthropic’s Claude 3
Sonnet (Templeton, 2024; Durmus et al.). In principle, our framework may be generalized
for theoretically analyzing the effects of normal finetuneing on alignment and helpfulness,
as it too amounts to a change in the LLM representations to maximize the likelihood of
desired outputs. In particular, each step in preference learning is equivalent to steering with
coefficient that equals to the learning rate (see appendix I), and indeed similar tradeoffs
have been observed for finetuning (Tan et al., 2024). However, we leave this for future work,
as finetuning creates small changes to the model’s representation at each training step on
several behaviors, that sums to a large overall change, while steering takes a large step in
one direction. As a result, the change to the representations in a steering process on one
behavior creates random noise on the others (assumption 3), unlike a finetuning process
where this does not necessarily happen. Hence in regards of maintaining helpfulness, fine-
tuning has an advantage, however, steering does enjoy the benefit of an online controllable
step size in the desired behavior for effective manipulation at inference time.

Overall, we hope that our theoretical work will shed light on the mechanism of steering,
which constitutes a new interesting direction for language model alignment.
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A Assumptions

In A.1 we introduce our assumptions used in proving theorems 1 and 2. We discuss them
in A.2 and provide experiments to check their validity in A.3

A.1 Introduction of assumptions

We assume that for small coefficients of representation steering re, the norm of the change
to the last hidden layer representation is linear in re:

Assumption 1 Let Pθ,re(·|q) be a language model prompted with query q. The change to
the last hidden layer representation due to steering with coefficient re, denoted by δre(q) =
r(L)(q, re)− r(L)(q, 0) satisfies:

|δre(q)| = λ|re| (7)

For a constant λ > 0 that is query dependent.

It is used in theorems 1 and 2, to relate the change to the last hidden layer to the coefficients
of injected representations.

A representation of an answer to a query is defined as the latent space embedding of the
answer’s token, UT etoken, where ei is the one-hot vector of the token i and U is the matrix
from the last layer’s hidden dimension to the vocabulary. We assume that the representations
of positive and negative answers to a query are linearly separable, and that the change to
the last hidden layer of the model due to representation engineering linearly classifies them
with margin ∆:

Assumption 2 Given a query q, the change to the last hidden layer of a model due to
steering, δre(q) = r(L)(q, re) − r(L)(q, 0) , linearly classifies the representations of positive
and negative answers to a query q with margin ∆, where the positive and negative answers
are defined with respect to a behavior scoring function B : Σ→ {−1,+1}:

mini:B(i)>0,j:B(j)<0

{〈 δre(q)

|δre(q)|
, UT ei − UT ej

〉}
> ∆ (8)
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That is to say, that on the axis defined by δre(q), positive and negative representations can
be separated, and the minimal distance between representations of positive and negative
answers on it is ∆. It is used in theorm 1, to obtain that the probability of the aligned an-
swers increases w.r.t.the misaligned answers as the coefficients of the injected representations
increases.

Note that the above assumption can be relaxed from a hard margin to a soft margin assump-
tion, where δre(q) classifies the representations of positive and negative answers, but part
of the misaligned/aligned answers’ representations are misclassified as aligned/misaligned.
This yields similar results to theorem 1 that are shown in appendix H.

For queries whose topic is unrelated to the behavior with respect to which steering is per-
formed, we expect the change to the last layer representation to be somewhat random on the
highest probability tokens as they answer a question that is unrelated to the behavior whose
vectors are injected to the model. Intuitively, the change to the final layer representation
has no preference for a correct token over an incorrect token, so an incorrect answer is just
as likely to be on one side or the other of the plane defined by the vertical δre(q) that passes
through the correct answer representation.

Assumption 3 When sampling an answer to a query q that is unrelated to the behavior
of steering, the vector δre(q) = r(L)(q, re) − r(L)(q, 0), i.e., the resulting change to the last
hidden layer representation due to the steering vectors from all layers, is random with the
following coordinate-wise distribution on the T highest probability tokens making 1− ϵ of the
probability mass:

⟨ δre(q)
|δre(q)|

, UT ei⟩ ∼ D (9)

Where D is some continuous distribution with variance σ2 > 0.

This defines a random directionality of δre(q) w.r.t. the representations of answers. It is
used in theorem 2 to formalize that steering is a “perpendicular” direction to the query’s
relevant answer representations.

A.2 Discussion of assumptions

Linear last hidden layer change (assumption 1): Intuitively, when adding vectors of rel-
atively small norms to each layer, the first order Taylor expansion with respect to the vectors
is good, and it scales linearly with the coefficients of the vectors. We observe experimentally
in subsection A.3 that for small coefficients, the change is indeed approximately linear. Note
that it suffices to assume |δre(q)| grows monotonically with |re|, but for simplicity and due
to experimental observations we assume the linear dependence.

Linear classification with margin ∆ (assumption 2): We expect the representation
engineered vectors re to be good classifiers because they are obtained by methods of finding
directions in the latent space that maximize the distance between representations of positive
and negative textual statements. For example, in Zou et al. (2023a) the first principle
component is used as a steering vector, obtained via pca1 = argmaxv{Egood,bad[|⟨v, rgood −
rbad⟩|2]} and in Jorgensen et al. (2023) the steering vector is obtained as the average of

difference between positive and negative statements 1
N

∑N
i=1(r

i
good−ribad). In these examples,

rgood and rbad are representations of queries and not the latent space embedding of the
answers, as in the definition of ∆-representation-separability, but we expect the steering
vectors to behave similarly on them. In subsection A.3, we show that indeed δre(q) clusters
positive and negative responses to harmful queries in the model’s latent space. In appendix
H we also formulate a theorem equivalent to theorem 1, but with an imperfect classifier.

Random directionality of last hidden layer change (assumption 3): When answering
queries that are unrelated to the behavior being enhanced by steering, the directionality
of the injected vectors are expected to be random w.r.t. the representations of the answers
to the query. Therefore, the highest probability tokens are expected to be injected with
random noise. We validate this in the next subsection, by looking at the noise injected into
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the top 10 highest probability tokens in knowledge queries (which typically make over 90%
of the probability mass).
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A.3 Experiments for assumptions

Here we empirically check the validity of our assumptions and empirically estimate the values
of the parameters in the bounds. The experiments were performed on Llama 2 13B and
Llama 2 13B chat. We first verify a linear relation between the steering vector coefficient re
to the last hidden layer change of assumption 1, which yields λ. Then, we verify the normal
distribution assumption 3 and the linear classification of assumption 2.

Norm of final hidden layer change is linear in injected vectors For a query q we
define δre(q) = r(L)(q, re)−r(L)(q, 0) as the change of the representation of the query in the
final layer. where r(L)(q, 0) is the representation if we injected no vector (the default model
representation) and r(L)(q, re) is the representation given that we inject a vector of norm
re at a range of layers. We show that the norm of δre(q) increases linearly with re when
re is not too large (figure 6). Here we use the above mentioned fairness PCA vectors. We
average on different queries from a few datasets taken from MMLU.

In practice we look at Uδre(q), where U is the transformation taking from the final layer
representation to the logits vector. Since this is a linear transformation, showing a linear
relationship between re and |Uδre(q)| implies a linear relationship between re and |δre(q)|.

Figure 6: Linear increase in the norm of Uδre(q) for small coefficients, when injected with
“racist” vectors.

In figures 7 and 8 we plot the change in norm for Llama 2 13B chat (injected with racist
vectors) and Llama 2 13B (injected with not racist vectors) respectively, on the datasets
“international law”, “medical genetics” and “high school computer science”. We add fitted
curves to estimate λ. We find that it is in the range 40− 60.
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Figure 7: Norm of the final hidden layer representation change as a function of representation
engineering coefficient, for Llama 2 13B chat, on different MMLU datasets. The fitted linear
curves estimate λ.
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Figure 8: Norm of the final hidden layer representation change as a function of representation
engineering coefficient, for Llama 2 13B, on different MMLU datasets. The fitted linear
curves estimate λ.
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Random logit noise assumption As proposed in assumption 3, we show here that the
projection of a given answer on the representation change δre(q) is random. (Assuming the
question asked is not connected to the property we are changing with the representation

engineering). In assumption 3 we looked at the normalized change: ⟨ δre(q)
||δre(q)|| , U

T ei⟩. Here

we will look at ⟨δre(q), UT ei⟩, so we expect the distribution to be:

⟨δre(q), UT ei⟩ ∼ ||δre(q)|| ·D

Meaning the standard deviation scales linearly with the norm of δre(q). Since re scales
linearly with δre(q), we expect the standard deviation to also scale linearly with re. To
measure the effective randomness, we look at ⟨δre(q), UT (ei−ecorrect)⟩, which shows explic-
itly that the correct answer logit change is sometimes enhanced and sometimes decreased
relatively to the incorrect answers. We will observe that the noise is approximately normal.

To create the plot, for each question in a dataset, we look at the top 10 answers ei, i ∈ [10]
(with no representation engineering). We note that experimentally, the top 10 tokens make
the majority of the probability mass (over 90%). Now for a given re coefficient, we calculate
the projection of these answers on δre(q). We then aggregate these projections for all the
questions in a few dataset and look at their histogram and at their standard deviation. We
repeat this for different re norms.

Figure 9: (a) ((b)) Distribution of the change in token logits minus the logit of the correct
answer of Llama 2 13B chat when injected with racist (harmful) vectors. As can be seen, it
is approximately normal, and in (c) and (d) the standard deviation grows linearly with the
coefficient size re, which is linear in |δre(q)|.

The tangent of the curve of figure 9c,d is λσ, as the curve is the standard deviation of

⟨ δre(q)
|δre(q)| , U

T ei⟩ · |δre(q)| = ⟨ δre(q)
|δre(q)| , U

T ei⟩ · λre, from assumption 1, and the inner product

is a random variable of standard deviation σ, hence the tangent is λσ. We observe that
the noise is approximately normal. From the linear curve, we estimate λσ = 0.5, thus
λσβ ≈ 0.8 · 0.5, as it is the mean of a half-normal distribution with parameter λσ, which is
approximately 0.8λσ.
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Figure 10: (a) ((b)) Distribution of the change in token logits minus the logit of the correct
answer of Llama 2 13B chat when injected with harmless (not-racist) vectors. As can be
seen, it is approximately normal, and in (c) and (d) the standard deviation grows linearly
with the coefficient size re, which is linear in |δre(q)|.

Similarly, for the pretrained model, we find that λσ = 0.2 and 0.1 for fairness and harm-
lessness respectively.
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Clustering of positive and negative answers to harmful queries Here we aim
to estimate how well ∆-representation-separability (definition 2) works in practice. The
condition is equivalent to:

⟨δre(q), UT (egood − ebad)⟩ ≥ |δre(q)| ·∆ (10)

And by assumption 1, it is equivalent to:

⟨δre(q), UT (egood − ebad)⟩ ≥ ∆λ · re (11)

In figure 11 and 12, we plot the distance between the centers of representation clusters for
positive and negative answers to harmful queries as the norm of harmful vectors is increased,
for Llama 2 13B chat and Llama 2 13B respectively. As can be seen, the distance between
the clusters increases, which corresponds to an increase in E[⟨δre(q), UT (egood− ebad)⟩]. We
can define a range of coefficients in which the increase is bounded from below by a linear
curve of the form in equation 11, meaning that the change in the model’s representation
separates the positive and negative answer representations, similarly to the definition of
∆-representation separability, but with mean instead of min. Thus by equation 11, the
tangent of the lower bounding lines of figures 11 and 12 are an estimate for ∆λ. From, this
we get that ∆λ is approximately 0.1−0.3. In section 4, we obtained values of ∆λ in the rage
0.5 − 3 from the free parameter fit on the bound of theorem 2 to the data. The difference
between these two ranges is attributed to the method of the empirical estimation of ∆ from
the linear classification condition that looks for an upper bound on it on the entire re range,
while the main change in alignment in figure 4 occurs in a more specific range, where the
upper bound of ∆ is evidently bigger.

Figure 11: Separation between representation clusters of positive and negative behavior
tokens induced by δre(q) on Llama 2 13B chat for three harmful instructions from the
AdvBench dataset.

In practice, the good and bad tokens were chosen beforehand as the top 40 tokens of the
models when representation engineering is applied and when it is not applied (meaning in
one case the model is aligned and in the other it is not).
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Figure 12: Separation between representation clusters of positive and negative behavior
tokens induced by δre(q) on Llama 2 13B for three harmful instructions from the AdvBench
dataset.
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B Proof of theorem 1

The theorem utilizes assumptions 1 and 2. The behavior expectation is:

B[Pθ,re(·|q)] =
∑

a+∈good Pθ,re(a+|q)−
∑

a−∈bad Pθ,re(a−|q)∑
a+∈good Pθ,re(a+|q) +

∑
a−∈bad Pθ,re(a−|q)

= (12)

=

∑
a+∈good exp(⟨r(q) + δr(q), UT ea+

⟩)−
∑

a−∈bad exp(⟨r(q) + δr(q), UT ea−⟩)∑
a+∈good exp(⟨r(q) + δr(q), UT ea+

⟩) +
∑

a−∈bad exp(⟨r(q) + δr(q), UT ea−⟩)
= (13)

Where r(q) is the final hidden layer representation and δr(q) is the change to the last hidden
layer due to steering on the previous layers. a+ ∈ good and a− ∈ bad denote the aligned
and misaligned answers respectively, i.e. B(a±) = ±1.

=
1−

∑
a−∈bad exp(⟨r(q)+δr(q),UT ea− ⟩)∑
a+∈good exp(⟨r(q)+δr(q),UT ea+

⟩)

1 +

∑
a−∈bad exp(⟨r(q)+δr(q),UT ea− ⟩)∑
a+∈good exp(⟨r(q)+δr(q),UT ea+

⟩)

= (14)

=
1−

∑
a−∈bad exp(⟨r(q),UT ea− ⟩)exp(⟨δr(q),UT ea− ⟩)∑
a+∈good exp(⟨r(q),UT ea+

⟩)exp(⟨δr(q),UT ea+
⟩)

1 +

∑
a−∈bad exp(⟨r(q),UT ea− ⟩)exp(⟨δr(q),UT ea− ⟩)∑
a+∈good exp(⟨r(q),UT ea+

⟩)exp(⟨δr(q),UT ea+
⟩)

= (15)

Let us look at the fraction that appears in the numerator and denominator:∑
a−∈bad exp(⟨r(q), UT ea−⟩)exp(⟨δr(q), UT ea−⟩)∑
a+∈good exp(⟨r(q), UT ea+

⟩)exp(⟨δr(q), UT ea+
⟩)

< (16)

<

∑
a−∈bad exp(⟨r(q), UT ea−⟩) ·maxa′

−∈bad{exp(⟨δr(q), UT ea′
−
⟩)}∑

a+∈good exp(⟨r(q), UT ea+
⟩) ·mina′

+∈good exp(⟨δr(q), UT ea′
+
⟩)

= (17)

Moving the maximum in the numerator to the denominator turns it into a minimum and
the exponent’s argument becomes negative, we obtain a product of two minimum terms,
which we can jointly write as:

=

∑
a−∈bad exp(⟨r(q), UT ea−⟩)∑
a+∈good exp(⟨r(q), UT ea+

⟩)
· 1

mina′
+∈good,a−∈bad exp(⟨δr(q), UT ea′

+
− UT ea′

−
⟩)

(18)

As the exponent is a monotonic function, we can insert the minimum into the exponent:

=

∑
a−∈bad exp(⟨r(q), UT ea−⟩)∑
a+∈good exp(⟨r(q), UT ea+

⟩)
· 1

exp(mina′
+∈good,a−∈bad⟨ δr(q)

|δr(q)| , U
T ea′

+
− UT ea′

−
⟩ · |δr(q)|)

(19)

From ∆ margin linear classification of {UTa+}a+∈good and {UTa−}a−∈good by δr(q)
|δr(q)| (as-

sumption 2), the minimum in the denominator is larger than ∆:

<

∑
a−∈bad exp(⟨r(q), UT ea−⟩)∑

a+∈good exp(⟨r(q), UT ea+
− UT ea−⟩)

· 1

exp(∆|δr|)
(20)

Plugging this back in to the behavior expectation, we obtain:

B[Pθ,re(·|q)] >
1−

∑
a−∈bad exp(⟨r(q),UT ea− ⟩)∑

a+∈good exp(⟨r(q),UT ea+
−UT ea− ⟩) ·

1
exp(∆|δr|)

1 +

∑
a−∈bad exp(⟨r(q),UT ea− ⟩)∑

a+∈good exp(⟨r(q),UT ea+
−UT ea− ⟩) ·

1
exp(∆|δr|)

= (21)

=
1−

∑
a−∈bad Pθ(a−|q)∑
a+∈good Pθ(a+|q)exp(−∆|δr|)

1 +

∑
a−∈bad Pθ(a−|q)∑
a+∈good Pθ(a+|q)exp(−∆|δr|)

(22)
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= tanh(
∆|δr| − ln(

∑
a−∈bad Pθ(a−|q)∑
a+∈good Pθ(a+|q) )

2
) (23)

Then, notice that: ∑
a−∈bad Pθ(a−|q)∑
a+∈good Pθ(a+|q)

=
1−B0

1 +B0
(24)

Where B0 = B[Pθ(·|q)], and that:

arctanh(B0) = −
1

2
ln

1−B0

1 +B0
(25)

Thus we obtain:

B[Pθ,re(·|q)] > tanh(
∆|δr(q)|

2
+ arctanh(B0)) (26)

Lastly, note that for coefficients that are not too large, |δr(q)| is proportional to the injected
vector coefficient re (assumption 1), hence:

B[Pθ,re(·|q)] > tanh(
∆λ

2
· re + arctanh(B0)) (27)

Where λ is the coefficient relating re to |δr(q)|.

C Proof of theorem 2

The theorem utilizes assumptions 1 and 3. Notice that:

Pθ,re(acorrect|q) =
Pθ,re(acorrect|q)

1
=

Pθ,re(acorrect|q)
Pθ,re(acorrect|q) +

∑
i∈incorrect Pθ,re(ai|q)

= (28)

=
Pθ(acorrect|q)

Pθ(acorrect|q) +
∑

i∈incorrect Pθ(ai|q)e⟨δre(q),UT (ei−ecorrect(q))⟩
≤ (29)

Denote Xi = ⟨ δre(q)
|δre(q)| , U

T ei⟩ and by P 0
correct the probability of answering correctly without

steering:

=
P 0
correct

P 0
correct +

∑
i∈incorrect Pθ(ai|q)e|δre(q)|(Xi−Xcorrect)

≤ (30)

Next, by considering the sum only only over highest probability tokens making up 1− ϵ of
the probability mass, for which we denote the incorrect tokens sum as incorrect(ϵ):

≤ P 0
correct

P 0
correct +

∑
i∈incorrect(ϵ) Pθ(ai|q)e|δre(q)|(Xi−Xcorrect)

≤ (31)

Denote by I± = {i ∈ incorrect(ϵ)| ± (Xi −Xcorrect) > 0} (i.e. Xi’s that are larger/smaller
than Xcorrect). Also denote by P 0

i = Pθ(ai|q) and Yi = |δre(q)|(Xi −Xcorrect). We obtain
two sums of the form

∑
i∈I±

Pie
Yi . Since the exponent is a convex function, using Jensen’s

inequality, on the sums yields
∑

i∈I Pie
Yi ≥ (

∑
i∈I Pi) · e

∑
j∈I PjYi∑
j∈I Pj . Plugging this in:

≤ P 0
correct

P 0
correct + (

∑
i∈I+

P 0
i ) · e

∑
j∈I+

P0
j
(Xj−Xcorrect)∑

j∈I+
P0
j

|δre(q)|
+ (

∑
i∈I−

P 0
i ) · e

∑
j∈I− P0

j
(Xj−Xcorrect)∑

j∈I− P0
j

|δre(q)|

(32)

Denote by P± =
∑

i∈I± P 0
i and c± =

∑
i∈I±

P 0
i (Xi−Xcorrect)∑
i∈I±

P 0
i

. We get:

=
P 0
correct

P 0
correct + P+ec+|δre(q)| + P−ec−|δre(q)|

(33)
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≤ P 0
correct

P 0
correct +min{P−, P+}(ec+|δre(q)| + ec−|δre(q)|)

(34)

≤ P 0
correct

P 0
correct +min{P−, P+}(1 + 1

2 min{|c−|, c+}2|δre(q)|2)
(35)

Lastly, note that for coefficients that are not too large, |δr(q)| is proportional to the injected
vector coefficient re (assumption 1), hence:

≤ P 0
correct

P 0
correct +min{P−, P+}(1 + 1

2 min{|c−|, c+}2λ2|re|2)
(36)

Under the assumption that Xi distribute randomly (assumption 3), c± are a weighted sum
of positive/negative random variables with parameter σ, which we can refactor to σ · c′±
where c′± are the same variables but normalized to σ′ = 1. Denoting β = min{|c′−|, c′+},
yields:

≤ P 0
correct

P 0
correct +min{P−, P+}(1 + 1

2β
2σ2λ2|re|2)

(37)

We denote α = min{P−,P+}
(1−P 0

correct)(1−ϵ)
, since we considered only the tokens making 1 − ϵ of the

probability mass, thus, P++P− = (1− ϵ)(1−P 0
correct). Hence α measures the non-tightness

of the bound, due to the asymmetry between P±, and (1− ϵ) the non-tightness due to not
using all the words in the vocabulary for the bound, only the top T .

=
P 0
correct

P 0
correct + (1− P 0

correct)α(1− ϵ)(1 + 1
2β

2σ2λ2|re|2)
(38)

Notice that I− is empty if Xi > Xcorrect for all i ∈ incorrect(ϵ), and from assumption 3,
these random variables are identically distributed, hence from symmetry, the event that
Xcorrect is the smallest of the T random variables is 1/T . Thus, with probability 1

T the set

I± is empty, therefore with probability 1 − 2
T both sets are not empty, thus P± > 0 and

c+ > 0, c− < 0.

From the above-mentioned symmetry arising from the random variables
Xcorrect, {Xi}i∈I−∪I+ being identically distributed, for each individual i, P (Xcorrect >

Xi) = 1
2 , thus i ∈ I+ with probability 1

2 . Therefore, P+ is a weighted sum of Bernoulli

variables with weights {P 0
i }i∈incorrect.

D Alignment Guarantee with Steering

In contrast to Wolf et al. (2023), that has a framework centralized on using prompts to
misalign frozen models, i.e. models whose weights and representations are not changed after
training, here the model is not frozen due to steering, and accordingly a different result
is obtained on guaranteeing an aligned response – for any adversarial attack, using large
enough norms with representation engineering produces an aligned response if the learned
injected representations accumulate to a good classifier of positive and negative answer
representations in the final layer. This is formalized here as a corollary of theorem 1.

Corollary 1 Let ϵ > 0, Pθ a language model and q a prompt that induces negative be-
havior B[Pθ(·|q)] < γ < 0 without steering. Under the conditions of theorem 1, using an
injected vector norm of re >

1
∆λ (arctanh(1− ϵ)− arctanh(γ)) leads to behavior expectation

B[Pθ,re(·|q)] > 1− ϵ.

E Helpfulness at the Limit of Large Steering Vectors

When considering the average helpfulness over a dataset in a scenario where the number of
answers is constant, N (such as multiple choice questions), we obtain that on average, the
model will converge to answering 1/N of the questions correctly as steering is increased:
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Corollary 2 Under the conditions of theorem 2, the expected value of the helpfulness on a
dataset of queries, Eq∈dataset[Pθ,re(acorrect|q)] is asymptotically bounded from above by 1

N
as |re| → ∞. Where N is the number of possible answers for each query.

Intuitively, for large |re|, the model is uniformly random, so it will guess the correct answer
with probability 1

N . This can be seen in section 4.

proof:

Following the notation of the proof of theorem 2, with probability 1
V , I− is empty:

Pθ,re(acorrect|q) <
P 0
correct

P 0
correct + (1− P 0

correct)e
|δre(q)|

∑
i∈incorrect P0

i
(Xi−Xcorrect)∑

i∈incorrect P0
i

(39)

In the notation of the proof of theorem 2:

P 0
correct

P 0
correct + (1− P 0

correct)e
c+|δre(q)|

=
P 0
correct

P 0
correct + (1− P 0

correct)e
c+λre

(40)

Where c+ > 0 is a weighted sum of half-normal variables. The last transition is by assump-
tion 1.

Similarly, with probability 1
T , I+ is empty, thus

Pθ,re(acorrect|q) <
P 0
correct

P 0
correct + (1− P 0

correct)e
c−|δre(q)|

= Pθ,re(acorrect|q) <
P 0
correct

P 0
correct + (1− P 0

correct)e
c−λre

(41)
Where c− < 0.

Thus for re → ∞, with probability 1 − 2
T , it is bounded by a term that approaches 0

(that of theorem 2), with probability 1/T another term that approaches 0 (the sigmoid with
c+), and with probability 1/T a term that approaches 1 (the sigmoid with c−). Hence the
expectation value is bounded by 1

T . This proves corollary 2.

For a combination of all these results, notice that with probability 1− 2
T , the helpfulness is

bounded by the term in theorem 2, while with probability 1
T it is bounded by:

P 0
correct

P 0
correct + (1− P 0

correct)e
c+|δre(q)|

(42)

For re > 0, this term is bounded by:

<
P 0
correct

P 0
correct + (1− P 0

correct)(1 + c2+λ
2r2e)

(43)

While for re < 0 it is bounded by 1. For the sigmoid with c−, we get the same bound,
except that for re > 0 it is bounded by 1, while for re < 0 it is bounded by:

<
P 0
correct

P 0
correct + (1− P 0

correct)(1 + c2−λ
2r2e)

(44)

Taking the weighted average of these three bounds gives the expectation value over the
randomness of I± being empty/non-empty:

E[Pθ,re(acorrect|q)] < (1− 1

T
)

P 0
correct

P 0
correct + α(1− P 0

correct)(1 + min{c−, c+, β}2λ2r2e)
+

1

T
(45)

Thus at the limit of re →∞, we obtain a bound of 1/T .

F Experimental Details

F.1 Compute

All experiments were conducted using 2 NVIDIA A10 GPUs, 2 CPUs and 80GB of memory.
Recreating all experiments takes in total no more than 4 hours.
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F.2 Obtaining the engineered representations

We use the code provided by Zou et al. (2023a) to perform representation engineering on
the Llama 2 13B chat, Llama 2 13B models Touvron et al. (2023) and Llama 3.1 8B chat,
Llama 3.1 8B models Dubey et al. (2024). To construct the engineered representations,
we first create a set pairs of positive and negative behavior prompts, and extract their
representations in each hidden layer. Then, the pairs of vectors are subtracted per layer.
On these vector differences we perform PCA analysis to extract the highest order PCA

vectors per layer as the representation engineered vectors, {r(l)e }.
We create behavior vectors of harmlessness and not-racist to align Llama 2 13b, Llama 3.1
8B and harmfulness and racism vectors to misalign Llama 2 13b chat, Llama 3.1 8B Instruct.

• For creating racism vectors for Llama 2 13B chat and Llama 3.1 8B Instruct, we use
the StereoSet bias dataset Nadeem et al. (2020). Given a bias statement from the
dataset, we apply it over the template of an aligned response: “Qusestion: Consider
the statement: [STATEMENT] Answer: The statement is false and racist.”, and a
template of a misaligned response: “Question: Consider the statement: [STATE-
MENT] Answer: 100%”. Then, we perform the PCA procedure to create the engi-
neered representations.

• For the non-racist vectors for Llama 2 13B and Llama 3.1 8B, we use the same
dataset and template described above for the racist vectors of Llama 2 13B chat,
only this time the desired behavior is opposite, so we subtract the representations
of the prompts in reverse order.

• For the harmfulness vectors for Llama 2 13B chat and Llama 3.1 8B Instruct,
we take harmful instructions from AdvBench dataset Robey et al. (2021; 2022) and
unharmful instructions from shareGPT, and create pairs of prompts with the format
“Request: Can you [INSTRUCTION]?”, where the instruction is taken from one of
the datasets (a pair consists of two prompts, one with a harmful instruction and
one with an unharmful instruction).

• For the harmless vectors for Llama 2 13B and Llama 3.1 8B, we use the same dataset
and template described above for the harmfulness vectors of Llama 2 13B chat and
Llama 3.1 8B, only this time the desired behavior is opposite, so we subtract the
representations of the prompts in reverse order.

In all cases, we used 128 pairs of positive and negative statements. For the bias vectors, we
injected the model in layers −11 to −30 and for harmfulness/harmlesness in layers −25 to
−33.

F.3 Alignment experiments

To perform the experiment measuring racism, we fed the representation engineered
model biased statements, with the prompt ”[INST]Do you agree with the following
statement? [STATEMENT][/INST]” and for llama3.1: <|start header id|> user
<|end header id|> Do you agree with the following statement? [STATEMENT]
<|eot id|> <|start header id|> assistant <|end header id|>” where the statement
was taken from the racist statements in the bias dataset. We generate the response of
the model and evaluate whether the model agreed or disagreed with the racist statement
based on his full answer. We average on 100 racist statements randomly selected from the
StereoSet dataset and plot P (Agree)− P (Disagree) (or P (Disagree)− P (Agree) for the
unaligned model) as a function of the injected vectors’ coefficient re.

To perform the experiment for compliance with harmful instructions, we queried the model
with harmful instructions from AdvBench and checked as a function of representation en-
gineering coefficient whether the model agrees or refuses to answer the instruction. The
answers were sampled under greedy decoding for each coefficient, and averaged on 100
harmful instructions for Llama 2 13B chat, Llama 2 13B and also for Llama 3.1 8B Instruct,
Llama 3.1 8B. Note that taking the temperature to zero in greedy sampling is equivalent
to taking the representation norms to infinity, thus the hyperbolic tangent becomes a step
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function, and the step appears where the probability of a positive and negative response are
equally likely. However, due to the linear dependence of the behavior on re, when averag-
ing on several instructions, the points where the behavior flips are evenly spread between
queries, creating the linear curve.

Results on Llama 2 13B models are presented in figure 4 and on Llama 3.1 8B Instruct in
figure 16

F.4 Helpfulness experiments

We evaluate the performance of a model on an MMLU dataset by feeding 100 questions
from the test set to the model in the form: ”[Question][A)Choice A][B) Choice B][C) Choice
C][D) Choice D] The answer is”, then calculate the probabilities for answering ”A”, ”B”,
”C” and ”D” and take the correct answer’s probability. We averaged the probability of the
correct answer over the data set. This was performed for different coefficients to create the
figures in 5.

While the bound of theorem 2 is with probability 1 − 2
|V | = 1

2 in the case of 4 answers,

as explained in E, for the other 2
|V | probability, the helpfulness is bounded with equal

probability either by a sigmoid or by a reverse sigmoid, such that together they contribute
approximately 1

|V | to the expectation value of the helpfulness (due to their small overlap),

leading to corollary 2, in which the average helpfulness converges to 1
|V | =

1
4 in the case of

our experiment, as can be seen in figure 5. Around re = 0, the contribution of these sigmoids
to the helpfulness expectation value can be bounded with the parabolic bound of theorem 2
as shown in the proof provided in appendix E. Thus in total, the bound of theorem 2 with
boundary conditions of corollary 2 is theoretically justified.

Additionally, we performed a variation of the experiment by sampling full answers to ques-
tions from the model (temperature 1.0 over the full vocabulary of the model). Then, where
the answer is provided, calculated the probability for the correct answer over the entire
vocabulary. This is presented for Llama 2 13B models in figure 13, and for Llama 3.1 8B
models in figure 15. We also calculate the accuracy of the Llama 2 13B models answers as
presented in figure 14.

F.5 Figures

All error bars were produced using mean squared error. The method of fitting the curves
to the data can be found in the code.
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Figure 13: Helpfulness measurement: Same as figure 5, but calculating the probability of
correct answer over the full vocabulary.

Figure 14: Helpfulness measurement: Accuracy of correct answer over the full vocabulary.
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Figure 15: Helpfulness measurement: the probability assigned to the correct answer to ques-
tions from different MMLU tests (international law, medical genetics, high school computer
science), as a function of representation engineering vector coefficients injected to the model.
Here the probability of the correct answer was over the full vocabulary. (a) Helpfulness of
Llama 3.1 8B as a function of coefficient of injected harmful PCA vectors. (b) Helpfulness
of Llama 3.1 8B as a function of coefficient of injected bias PCA vectors. (c) Helpfulness
of Llama 3.1 8B Instruct as a function of coefficient of injected harmful PCA vectors. (d)
Helpfulness of Llama 3.1 8B Instruct as a function of coefficient of injected bias PCA vec-
tors.

Figure 16: Plots of behavior expectation as a function of the coefficients of representation
engineering vectors injected to the model. (a) Harmful behavior expectation of Llama 3.1 8B
Instruct as a function of coefficient of injected harmful PCA vectors. (b) Racism behavior
expectation of Llama 3.1 8B Instruct as a function of coefficient of injected bias PCA vectors.
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G Helpfulness Experiments on Code Generation

In section 4, we showed the model’s helpfulness on knowledge based question answering as
a function of steering satisfies theorem 2. This was performed on multiple-choice questions,
which shows the applicability of the theoretical results for single token answers. For demon-
strating the theoretical results on tasks requiring generation of full sequences, we test the
model’s coding skills with the humaneval dataset (Chen et al., 2021). As can be seen in
figure 17, The model’s performance is peaked around re = 0, and it decays parabolically ar
re increases, as predicted in theorem 2. We note that the asymmetry between positive and
negative coefficients is captured in our theoretical bounds.

Figure 17: Helpfulness measurement on humaneval of Llama 2 13B chat as a function of
coefficient of injected harmfulness (a) and racism (b) PCA vectors.
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H Relaxation to Soft Margin

In the proof of theorem 1, we use the assumption that the change to the last hidden layer
representation due to steering linearly classifies the representations of positive and nega-
tive answers to a query with margin ∆ (as explained in appendix A). We can relax this
assumption by assuming that some of the negative (positive) responses’ representations, are
misclassified as aligned (misaligned) answers by δre(q), in the sense that:

i ∈ aligned, j ∈ misaligned : ⟨δre(q), UT (ei − ej)⟩ ≤ ∆ (46)

That is, the margin ∆ does not hold for every pair of aligned and misaligned answers.

The key idea is that while it is indeed possible for such misclassifications to occur, the
probability assigned to most of the tokens in the vocabulary is very small, thus we can bound
their contribution to the behavior expectation. To this end, we define a set of misclassified
responses: {i ∈ misclassified} and bound the probability mass that the model assigns
them by: ∑

i∈misclassified

Pθ(i|q) < δ ·
∑

i∈aligned

Pθ(i|q) (47)

Furthermore, we bound how “deep” the misclassified negative response representations can
go into the cluster of positive answer representations:

min
i∈aligned,j∈misclassified

{⟨δre(q), UT (ei − ej)⟩} > −M (48)

With this, the linear classification assumption can be modified as:

Assumption 4 Given a query q, the change to the last hidden layer of a model due to
representation engineering, δre(q) = r(L)(q, re)− r(L)(q, 0) , linearly classifies the represen-
tations of positive and negative answers to a query q with margin ∆, where the positive and
negative answers are defined with respect to a behavior scoring function B : Σ⋆ → {−1,+1}:

min
i∈aligned,j∈misaligned

{〈 δre(q)

|δre(q)|
, UT ei − UT ej

〉}
> ∆ (49)

Up to a set of misclassified answers, whose probability is bounded by∑
i∈misclassified Pθ(i|q) < δ ·

∑
i∈aligned Pθ(i|q) that satisfy:

min
i∈aligned,j∈misclassified

{⟨δre(q), UT (ei − ej)⟩} > −M (50)

Note that realistically, δ can be very small for a very large set of tokens, as in inference,
LLMs typically assign high probability to few tokens and very low probability for most.
Hence it suffices to classify just a few high probability tokens.

We can restate theorem 1 in the following way:

Theorem 3 Let δ, ϵ > 0 and let Pθ,re(·|q) be a model prompted with query q and injected
with representations of coefficient re. Let B : Σ⋆ → {−1,+1} be a behavior scoring function.

Under assumption 4, for re <
log ϵ

2δ

M ·λ the behavior expectation of the model conditioned on
the query q satisfies:

B[Pθ,re(·|q)] ≥ tanh(∆λ · re + arctanh(B0))− ϵ (51)

Where B0 = B[Pθ(·|q)] is the behavior expectation without steering and λ is a model depen-
dent coefficient relating between re and the corresponding final hidden state norm.
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Proof:

We follow the proof of theorem 1, up to equation 22, there, we introduce the misclassified

tokens’ contributions, which we denote by R =
∑

a∈misclassified exp(⟨r(q)+δre(q),U
T ea)∑

a+∈good exp(⟨r(q)+δre(q),UT ea+
)

:

B[Pθ,re(·|q)] >
1−

∑
a−∈bad Pθ(a−|q)∑
a+∈good Pθ(a+|q)exp(−∆|δr|)−R

1 +

∑
a−∈bad Pθ(a−|q)∑
a+∈good Pθ(a+|q)exp(−∆|δr|) +R

(52)

Following the same idea as with equation 16, we obtain that:

R <

∑
a∈misclassified exp(⟨r(q), UT ea)∑

a+∈good exp(⟨r(q), UT ea+
)

1

exp(−|δr|M)
(53)

Plugging this in gives:

B[Pθ,re(·|q)] >
∑

a+∈good Pθ(a+|q)−
∑

a−∈bad Pθ(a−|q)exp(−∆|δr|)−
∑

a∈misclassified Pθ(a|q)exp(M |δr|)∑
a+∈good Pθ(a+|q) +

∑
a−∈bad Pθ(a−|q)exp(−∆|δr|) +

∑
a∈misclassified Pθ(a|q)exp(M |δr|)

>

(54)
Denote the first second and third terms respectively as A,B,C:

=
A−B − C

A+B + C
=

A−B
A+B −

C
A+B

1 + C
A+B

> (
A−B

A+B
− C

A+B
)(1− C

A+B
) >

A−B

A+B
− 2

C

A+B
(55)

Notice that from the transition in equation 23:

A−B

A+B
= tanh(

∆|δr| − ln(

∑
a−∈bad Pθ(a−|q)∑
a+∈good Pθ(a+|q) )

2
) (56)

Is the bound from theorem 1, and the second term:

C

A+B
=

∑
a∈misclassified Pθ(a|q)exp(M |δr|)∑

a+∈good Pθ(a+|q) +
∑

a−∈bad Pθ(a−|q)exp(−∆|δr|)
< δ · exp(M |δr|) (57)

Lastly, notice that: ∑
a−∈bad Pθ(a−|q)∑
a+∈good Pθ(a+|q)

=
1−B0

1 +B0
(58)

Where B0 = B[Pθ(·|q)], and that:

arctanh(B0) = −
1

2
ln

1−B0

1 +B0
(59)

Thus we obtain:

B[Pθ,re(·|q)] > tanh(
∆|δr(q)|

2
+ arctanh(B0))− 2δ · exp(M |δr|) (60)

Then, note that for coefficients that are not too large, |δr(q)| is proportional to the injected
vector coefficient re (assumption 1), hence:

B[Pθ,re(·|q)] > tanh(
∆λ

2
· re + arctanh(B0))− 2δ · exp(Mλ · re) (61)

Where λ is the coefficient relating re to |δr(q)|. Thus for re <
log ϵ

2δ

M ·λ :

B[Pθ,re(·|q)] > tanh(
∆λ

2
· re + arctanh(B0))− ϵ (62)
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I Relation of Steering to Finetuning with Preference
Learning

To a degree one can draw a relation between steering and preference learning.

Proposition 1 For an LLM, one iteration of gradient descent on the preference learning
loss with learning rate η is equivalent to steering with coefficient re = η.

Proof:

The objective in preference learning is to minimize the loss:

L = −E(x,y+,y−)∼D[log
P (y+|x)
P (y−|x)

] = −E(x,y+,y−)∼D[⟨r(L)
x , UT (ey+

− ey−)⟩] (63)

Which increases the likelihood of desired responses to prompts. By training with preference
learning, in each iteration of gradient descent, each representation is changed by:

r(l) → r(l) − η
∂L

∂r(l)
(64)

The gradient of the loss w.r.t. a hidden layer representation is:

∂L

∂rl
= E(x,y+,y−)∼D[

∂r(x)

∂rl(x)
· UT (ey+

− ey−)] (65)

Thus at each layer, the representation is shifted in a direction that maximizes the difference
between positive and negative responses’ representations, UT (ey+

− ey−). Which is equiv-

alent to steering with coefficient re = η, and vectors Re = {E(x,y+,y−)∼D[ ∂r(x)
∂rl(x)

· UT (ey+ −
ey−)]}Ll=1

J Extension of Results Beyond Binary Behavior Score

The idea behind theorem 1, is that the resulting change to the final hidden layer due to
the representation injections linearly classifies aligned and misaligned answers, where the
aligned/misaligned labels are given by the binary behavior scoring function. To extend
beyond a binary behavior score, we need to assume that the model’s latent space captures
more finegrained differences between answers. Here we will provide results for a trinary
behavior score (theorem 4), and a general behavior score (theorem 5).

A natural extension is for a trinary score function, where ±1 is aligned/misaligned, and 0
is irrelevant/neutral. We can reformulate theorem 1 in the following way:

Theorem 4 Let Pθ,re(·|q) be a model prompted with query q and injected with represen-
tations of coefficient re. Let B : Σ∗ → {−1, 0,+1} be a behavior scoring function. The
injections to all layers amounts to a change in the final hidden layer representation that

is q dependent, denoted by the vector δr
(L)
e (q). Assume that the representations of aligned

and misaligned/irrelevant answers w.r.t. B are linearly separable, and that δr
(L)
e (q) linearly

classifies them with margin ∆. Then, the behavior expectation of the model conditioned on
the query q satisfies:

B[Pθ,re(·|q)] ≥
B0 + P+(e

∆λ·re − 1)

1 + P+(e∆λ·re − 1)
(66)

Where B0 = B[Pθ(·|q)] and P+ are the behavior expectation and probability of aligned an-
swer without steering, and λ is a model dependent coefficient relating between re and the
corresponding final hidden state norm.

The behavior bound has a different form, but it behaves the same – for re = 0, it coincides
with B0, around re = 0 it is linear, and for re →∞ it approaches +1. The proof, presented
in J.1, essentially follows the proof of theorem 1, except besides the P± terms (probability
mass of positive and negative responses without steering) there is also a P0 term.
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For a general behavior scoring function, B : Σ∗ → [−1,+1], we can similarly assume that
the representations of answers with score > b+ and answers with score < b+, are linearly
separable, and obtain the following result:

Theorem 5 Let Pθ,re(·|q) be a model prompted with query q and injected with representa-
tions of coefficient re. Let B : Σ∗ → [−1,+1] be a behavior scoring function. The injections
to all layers amounts to a change in the final hidden layer representation that is q dependent,

denoted by the vector δr
(L)
e (q). Assume that the representations of answers with behavior

score > b+ and those with score < b+ w.r.t. B are linearly separable, and that δr
(L)
e (q) lin-

early classifies them with margin ∆. Then, the behavior expectation of the model conditioned
on the query q satisfies:

B[Pθ,re(·|q)] ≥
b+P+e

∆λre − P−

P+e∆λre + P−
(67)

Where P± are the probabilities of aligned/misaligned answers without steering, and λ is
a model dependent coefficient relating between re and the corresponding final hidden state
norm.

Here we see that the behavior expectation converges to the maximal score b+, for which

δr
(L)
e can classify answers below and above the score. The trend is similar to theorem 1,

with a sigmoidal behavior, but without the tightness on behavior expectation at re = 0, due
to the more complex behavior scoring function. The proof is presented in J.2.

J.1 Proof of theorem 4

Following the same proof as in 1, up to equation 22, but replacing the sum over negative
answers to sum over negative and neutral answers, we obtain by denoting P±, the sum over
positive/negative answers without steering, and by P0 sum over neutral answers:

B[Pθ,re(·|q)] ≥
P+ − P−exp(−∆|δr|)

P+ + (P− + P0)exp(−∆|δr|)
(68)

=
P+(e

∆|δr| − 1) + (P+ − P−)

P+(e∆|δr| − 1) + (P+ + P− + P0)
(69)

We note that P+ + P− + P0 = 1 and that P+ − P− = B[Pθ,re=0(·|q)] = B0:

=
P+(e

∆|δr| − 1) +B0

P+(e∆|δr| − 1) + 1
(70)

Lastly, applying assumption 1, replaces |δr| = λre.

J.2 Proof of theorem 5

Following the same proof idea as in theorem 1, starting with equation 12 but replacing the
scores in the numerator for positive and negative answers with b+ and −1 (for worst case),
up to equation 22, denote by P+ the probability without steering for answers with score
> b+ and by P− the rest:

B[Pθ,re(·|q)] ≥
b+P+e

∆|δr| − P−

P+e∆|δr| + P−
(71)

Lastly, applying assumption 1, replaces |δr| = λre.

36



Published at ICLR 2025 Workshop on Foundation Models in the Wild.

K Extension of Results to Multi-Token Answers

Intuitively, both the alignment guarantee result of theorem 1 and helpfulness bound of
theorem 2, which apply for a single token output, can be extended to multi-token answers
by applying the results on multiple decoding steps.

K.1 Alignment

Starting with alignment, we note that if the model is limited to producing N tokens, then
from corollary 1, we can ensure that with a large enough steering coefficient, each token will
correspond to an aligned response:

Theorem 6 Let ϵ > 0, Pθ a language model, B : Σ∗ → {−1,+1}, behavior scoring func-
tion and q a query, and suppose the model’s reply contains at most N tokens. Under the
assumption of theorem 1 holding in every decoding step, for re > 1

∆λ (log
N
ϵ + log 1−B0

1+B0
),

then:
B[Pθ(·|q)] > 1− 2ϵ (72)

Where B0 is the behavior expectation without representation engineering.

We see that larger coefficients of steering improve the behavior expectation, similarly to
corollary 1, but with multiple token answers. By inverting the relation between re and ϵ,
and placing it in the behavior expectation bound, we obtain a sigmoid-like behavior, that
is linear for re ≈ 0.

Proof:

Following the notation of the proof of theorem 1, we note that at each decoding step, the
probability of outputting a token ai that is aligned w.r.t. behavior scoring function B,
conditioned on the previous context qa1...ai−1, is:∑

a+∈good Pθ,re(a+|qa1...ai−1)∑
a+∈good Pθ,re(a+|qa1...ai−1) +

∑
a−∈bad Pθ,re(a−|qa1...ai−1)

(73)

Following the proof technique of theorem 1, we obtain that this probability is larget than:

≥ P+e
∆λre

P+e∆λre + P−
(74)

Where P± are the probabilities for an aligned/misaligned output at the given decoding step.
To ensure this probability is larger than 1− ϵ′, we demand:

re >
log P−

P+
+ log 1

ϵ′

∆λ
(75)

Thus over N decoding steps, we use a union bound, leading to a positive response with
probability (1− ϵ′)N > (1− ϵ′N). Taking ϵ′ = ϵ/N , we obtain:

re >
maxi∈[N ]{log

P i
−

P i
+
}+ log N

ϵ

∆λ
(76)

Where P i
± is the probability for a positive/negative continuation in the i’th token of the

response. We note that
P i

−
P i

+
=

1−Bi
0

1+Bi
0
, where Bi

0 is the behavior expectation at the i’th

decoding step. For the response to be positive, it is required that every step is positive, due
to the binary score, then the behavior expectation of the entire response is no larger than
the behavior expectation of each decoding step, B0 ≤ mini∈[N ] B

i
0, meaning it suffices to

have:

re >
log 1−B0

1+B0
+ log N

ϵ

∆λ
(77)

We obtain that under these conditions, an aligned response is generated with probability at
least 1− ϵ. A negative response, is generated with probability no greater than ϵ. Thus the
behavior expectation is at least:

B[Pθ,re(·|q)] > 1− 2ϵ (78)
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K.2 Helpfulness

For helpfulness, we will consider a query q and a correct answer a of N tokens. We will
show that the probability of the answer decreases quadratically. The intuition is that in
each decoding step the probability decreases quadratically, and due to the probability chain
rule, if at the i’th step of generation, the probability for the next token is Pi, then the

full sequence probability is
∏N

i=1 Pi. Once we expand this term w.r.t. re, we get a leading
quadratic dependence:

Corollary 3 Let Pθ be a language model and q be a query with answer a = a1...aN con-
taining at most N tokens. Denote by {P i

0}Ni=1 the probability assigned to each correct token
{ai}Ni=1 in the sequence without steering, such that the probability of the full sequence is

P0 =
∏N

i=1 P
i
0. Then under the conditions of theorem 2 holding at each decoding step, we

have with probability of at least 1− 2N
T :

Pθ,re(q) ≤
P0∏N

i=1(P
i
0 + (1− P i

0)α(1− ϵ)(1 + λ2σ2β2

2 r2e))
(79)

This shows the original probability of the sequence P0, is normalized by a term whose leading
order is quadratic in re:

N∏
i=1

(P i
0 +(1−P i

0)α(1− ϵ)(1+
λ2σ2β2

2
r2e)) =

N∏
i=1

(P i
0 +(1−P i

0)α(1− ϵ)))+ c · r2e + o(r2e) (80)

We once a gain note that if P i
0 is close to 1, then (P i

0 + (1− P i
0)α(1− ϵ))) ≈ 1, making the

bound tighter where the model is more helpful initially.

An alternative bound, is simply to consider that the probability for a sequence, P0, is
bounded by the probability of each element in the sequence, P i

0, for which theorem 2 can be
directly applied, and the quadratic decay is achieved, although this is a bound that is less
tight.
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