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ABSTRACT

Temperature is a crucial hyperparameter in large language models (LLMs), con-
trolling the trade-off between exploration and exploitation during text generation.
High temperatures encourage diverse but noisy outputs, while low temperatures
produce focused outputs but may cause premature convergence. Yet static or
heuristic temperature schedules fail to adapt to the dynamic demands of reinforce-
ment learning (RL) throughout training, often limiting policy improvement. We
propose Temperature Adaptive Meta Policy Optimization (TAMPO), a new frame-
work that recasts temperature control as a learnable meta-policy. TAMPO oper-
ates through a hierarchical two-loop process. In the inner loop, the LLM policy is
updated (e.g., using GRPO) with trajectories sampled at the temperature selected
by the meta-policy. In the outer loop, meta-policy updates the distribution over
candidate temperatures by rewarding those that maximize the likelihood of high-
advantage trajectories. This trajectory-guided, reward-driven mechanism enables
online adaptation without additional rollouts, directly aligning exploration with
policy improvement. On five mathematical reasoning benchmarks, TAMPO out-
performs baselines using fixed or heuristic temperatures, establishing temperature
as an effective learnable meta-policy for adaptive exploration in LLM reinforce-
ment learning.

1 INTRODUCTION

Reinforcement learning (RL) has become a promising paradigm for aligning large language models
(LLMs) with human preferences and task-specific objectives (Ziegler et al., 2019; Ouyang et al.,
2022; Bai et al., 2022; Chen et al., 2025). Traditional RLHF approaches often rely on PPO-based
RL-based post-training, which requires a learned value network and incurs significant computational
overhead. Recent critic-free algorithms, such as GRPO (Shao et al., 2024; Guo et al., 2025) and
REINFORCE++ (Hu et al., 2025), demonstrate that large-scale LLM reinforcement learning can be
both scalable and stable, bypassing the need for value networks while maintaining performance.

One of central challenges in RL remains the exploration–exploitation trade-off (Sutton et al., 1998;
Kaelbling et al., 1996). For LLMs, sampling temperature serves as a direct and interpretable con-
trol knob: higher temperature produces a more uniform (random) distribution, encouraging diverse
but potentially noisy generations, while lower temperature concentrates probability mass, favoring
precision but at the risk of missing promising alternatives. Existing approaches, however, treat tem-
perature as fixed or manually tuned, ignoring feedback from the learning process. Popular critic-free
RL algorithms (e.g., GRPO) (Shao et al., 2024; Guo et al., 2025; Hu et al., 2025; Yu et al., 2025) gen-
erate multiple rollouts at a given temperature to estimate trajectory advantages and policy gradients,
but never adapt temperature based on trajectory outcomes.

We argue that temperature should be treated as a decision variable, not a fixed hyperparameter
for LLM RL. Unlike entropy regularization coefficients or KL penalties, which influence explo-
ration (Guo et al., 2025; Shen, 2025), temperature directly modulates the sampling distribution over
text outputs in a simple, transparent manner. This motivates our work on principled, trajectory-
guided temperature adaptation for effective LLM policy learning.

In this work, we introduce Temperature Adaptive Meta Policy Optimization (TAMPO), a meta-
learning framework that jointly optimizes the LLM policy, and a meta-policy over temperatures.
Figure 1 shows the overall framework, which operates through a hierarchical two-loop process.
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Figure 1: Overview of Temperature Adaptive Meta Policy Optimization (TAMPO). The framework
operates through a hierarchical two-loop process. In the inner loop, the LLM policy is optimized
with critic-free RL (e.g., GRPO) using rollouts sampled at the temperature chosen by the meta-
policy. In the outer loop, the meta-policy is updated by evaluating trajectory likelihoods under
virtual temperatures, deriving temperature-specific advantages (A(Tk)

i = ℓ̂Tk
(τi)·Ai for trajectory τi

w.r.t. virtual temperature Tk), and reinforcing those that yield high-advantage rollouts (see §3). This
design establishes temperature as a learnable meta-policy, enabling online adaptation and effective
optimization of LLM policy without extra rollouts.

In the inner loop, the LLM policy model πθ,T is optimized using critic-free RL (e.g., GRPO) at
a sampled temperature T . In the outer loop, a meta-policy π is obtained based on temperature-
specific advantages by reusing the inner loop rollouts, reinforcing temperatures that are more likely
to generate trajectories with high advantages.

Intuitively, the temperatures that facilitate discovering rewarding outputs are reinforced, while the
ineffective ones are suppressed, allowing the learned temperature to dynamically align with policy
improvement.

We summarize our main contributions as follows:

• We formulate temperature as a learnable meta-policy in LLM RL, reframing temperature selection
as a policy optimization problem to enhance adaptive, reward-driven exploration.

• We propose TAMPO, a hierarchical framework that jointly updates the LLM policy and a meta-
policy over temperatures, rewarding those that prompt high-advantage rollouts.

• On five challenging mathematical reasoning benchmarks, TAMPO achieves better performance
than baselines using fixed or heuristic temperatures, demonstrating the effectiveness of our
trajectory-guided adaptive temperature control in LLM reinforcement learning.

TAMPO provides a principled, end-to-end, feedback-driven mechanism to dynamically balance ex-
ploration and exploitation, eliminating manual temperature sweeps, and improving the effectiveness
of RL-based post-training.
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2 RELATED WORK

Critic-Free RL Methods. Critic-free RL algorithms, such as REINFORCE Leave-One-Out
(RLOO) (Kool et al., 2019), GRPO (Shao et al., 2024; Guo et al., 2025), DAPO (Yu et al., 2025), and
REINFORCE++ (Hu et al., 2025) eliminate the need for learning value networks (critics), making
them more efficient and scalable for LLM RL-based post-training. However, these approaches still
mainly rely on fixed sampling temperatures, which may lead to under-exploration when the train-
ing temperature is too low, or wasted computation and noisy samples when too high. Our method
complements these algorithms by learning a meta-policy over temperatures, which adapts sampling
based on trajectory outcomes to better guide LLM policy optimization.

Exploration–Exploitation in RL. The exploration–exploitation dilemma is a fundamental chal-
lenge in RL, where agents must balance between exploring new actions to discover potentially bet-
ter strategies and exploiting known actions to maximize immediate rewards (Wang et al., 2025).
Traditional methods, such as ϵ-greedy, temperature annealing, and upper confidence bounds (UCB),
employ fixed or heuristic schedules to manage this balance (Wikipedia contributors, 2025)(Sutton
et al., 1998). Typically, ϵ-greedy linearly or exponentially decays ϵ over time, temperature anneal-
ing gradually lowers the sampling temperature to reduce exploration, and UCB adaptively selects
actions based on upper confidence bounds that balance estimated value and uncertainty. In RL for
LLMs, maintaining exploration is crucial to avoid premature convergence to suboptimal reason-
ing paths. Nucleus sampling (Holtzman et al., 2019) provides one practical strategy by restricting
sampling to the smallest set of tokens whose cumulative probability exceeds a threshold p, thereby
adaptively balancing diversity and reliability in generation, where p is in general fixed (e.g., 0.95).
Entropy regularization is widely adopted to promote diverse outputs by encouraging higher-entropy
policies (Guo et al., 2025; Shen, 2025). Sethi et al.(Sethi et al., 2025) view policy optimization as a
continuous-time dynamical system and gradually decay the entropy regularization weight (typically
as 1/t). Shen (Shen, 2025) constrains entropy within a pre-defined range. However, the optimal
entropy level during training remains unclear.

Beyond entropy, sampling temperature offers a direct and interpretable control knob for balancing
exploration and exploitation in LLMs. Du et al. (Du et al., 2025) propose an adaptive inference-time
method that selects optimal temperatures using multiple sampled generations. While effective for
inference, it does not address how temperature can be dynamically optimized during RL training.
Current LLM RL approaches either fix the temperature (Guo et al., 2025; Chen et al., 2025) or
manually tune it (An et al., 2025; Liu et al., 2025), without incorporating trajectory feedback. Our
work frames temperature as a learnable meta-policy that adapts exploration online, guided directly
by trajectory advantages and likelihood to align LLM policy optimization.

Meta-Policy in Reinforcement Learning. Meta-policies have been studied in conventional RL. In
hierarchical RL, the meta-policy acts as a high-level controller over low-level skills or options (Vezh-
nevets et al., 2017; Bacon et al., 2017; Frans et al., 2017). MLSH (Frans et al., 2017) learns a set of
reusable sub-policies, which are shared across tasks, while a task-specific master policy then com-
poses these sub-policies to solve new tasks. Another line of work leverages meta-gradient methods
to treat hyperparameters—such as discount factors, bootstrapping parameter λ—as differentiable
variables updated through meta-gradients (Xu et al., 2018; Wang & Ni, 2020). Meta-SAC learns the
optimal entropy regularization parameter in Soft Actor-Critic (Wang & Ni, 2020).

While these works highlight the potential of meta-policies in conventional RL, they have not been
explored in the context of LLM RL. To the best of our knowledge, our approach is the first to treat
sampling temperature as a meta-policy, directly addressing the exploration–exploitation trade-off
during LLM RL. Note that the hyperparameters studied in (Xu et al., 2018; Wang & Ni, 2020)
are differentiable, enabling direct optimization. In contrast, the sampling temperature in the typical
LLM RL frameworks is non-differentiable, rendering these methods infeasible. We propose the
practical TAMPO approach, which efficiently adapts the sampling temperature by reusing existing
rollouts without requiring gradient-based optimization.

3 TEMPERATURE ADAPTIVE META POLICY OPTIMIZATION (TAMPO)

We aim to treat temperature as a learnable meta-policy that dynamically balances exploration and
exploitation during LLM reinforcement learning. Given a discrete set of candidate temperatures

3
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T = {T1, . . . , TK}, we define a meta-policy π(T ) that outputs a probability distribution over tem-
peratures. During training, each rollout is sampled at a temperature determined based on π(T ).
To achieve this, we introduce Temperature Adaptive Meta-Policy Optimization (TAMPO), a hier-
archical framework that shifts probability mass toward temperatures that produce high-advantage
trajectories while suppressing ineffective ones.

In this section, we first review background in §3.1, then formalize the problem in §3.2, and finally
present TAMPO in §3.3.

3.1 BACKGROUND

We consider an LLM parameterized by θ, trained with reinforcement learning. For a given prompt q,
the model generates a trajectory τi = (oi,1, . . . , oi,n) of n tokens, where each token oi,t is generated
based on the state si,t = (q, oi,<t). Reward is provided at the sequence level as ri.

Critic-Free RL with GRPO. In LLM RL, critic-free algorithms have become widely adopted due
to their scalability and simplicity. One representative method is Group Relative Policy Optimization
(GRPO) (Shao et al., 2024; Guo et al., 2025), which provides a simple way to compute trajectory-
level credit/advantage without an explicit critic. For a given prompt, it samples a group of G rollouts
{τ1, . . . , τG} at a given temperature T . It then computes trajectory-level advantages Ai by normal-
izing rewards ri within the group:

Ai =
ri −mean({r1, . . . , rG})

std({r1, . . . , rG})
. (1)

GRPO updates the policy πθ,T by maximizing the expected advantage while including a KL regu-
larization term with respect to a reference policy (see Appendix A for the full objective).

Temperature in Rollout Generation. During rollout generation, the sampling distribution is con-
trolled by a temperature parameter T > 0, which scales the token logits z(oi,t | si,t) as:

πθ,T (oi,t | si,t) =
exp(z(oi,t | si,t)/T )∑
o
′
i,t

exp(z(o
′
i,t | si,t)/T )

. (2)

The temperature controls the exploration–exploitation trade-off: too low results in over-exploitation,
too high introduces excessive randomness, reducing useful exploration. Despite its importance, T is
typically fixed, limiting policy optimization.

3.2 PROBLEM FORMULATION

We formalize temperature adaptation as a bilevel meta-optimization problem. The inner loop op-
timizes the LLM policy πθ under temperatures sampled from the meta-policy πϕ, while the outer
loop optimizes πϕ to maximize the performance of the LLM policy.

Let πθ(· | q;T ) denote the model policy under temperature T (which we also denote as πθ,T (· | q)),
where q ∼ D is a prompt. The meta-policy πϕ specifies a distribution over candidate temperatures.
The inner objective is

θ⋆(ϕ) = argmax
θ

Eq∼D ET∼πϕ
Eτ∼πθ(·|q;T )

[
r(τ, q)

]
, (3)

while the outer objective seeks

ϕ⋆ = argmax
ϕ

Jmeta
(
θ⋆(ϕ)

)
, (4)

where Jmeta denotes the evaluation metric of interest (e.g., expected reward). This bilevel formula-
tion highlights the adaptive role of temperature, but is not directly tractable in practice. Next, we
describe our TAMPO.

3.3 TAMPO: MECHANISM AND IMPLEMENTATION

Tractability Challenge. In many LLM RL pipelines, rollout generation and policy optimization
are typically decoupled: rollouts are generated using lower-precision models for efficiency, which

4
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prevents backpropagation of gradients through the sampling process. This makes direct gradient-
based optimization of the temperature meta-policy infeasible. Moreover, a naive trial-and-error
strategy—generating rollouts for each candidate temperature—is computationally prohibitive. We
thus seek a solution that works with the existing decoupled pipeline and requires no extra rollouts.

Key Observation. Every trajectory inherently encode its “preferred” temperature, i.e., the temper-
ature under which it is most likely to be generated (see Figure 2). Intuitively, for a high-reward
(positive advantage) trajectory, we should reinforce temperatures that increase its likelihood; for a
low-reward trajectory (negative advantage), we should down-weight such temperatures. This insight
provides a tractable signal for adapting temperature.

Building on this idea, TAMPO treats temperature as a learnable meta-policy updated directly from
trajectory-level signals. The meta-policy shifts probability mass toward temperatures associated
with advantageous rollouts and suppresses ineffective ones, enabling adaptive exploration aligned
with policy improvement.

3.3.1 TEMPERATURE-DEPENDENT TRAJECTORY LIKELIHOOD
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Figure 2: Example of trajectory likelihood under
different temperatures for 8 rollouts of a prompt.

The likelihood (i.e., probability) of a trajectory
τi at temperature T from policy θ is

Pθ,T (τi) =

|τi|∏
t=1

πθ,T (oi,t|si,t). (5)

To remove dependence on trajectory length, we
use the average log-likelihood (likelihood for
short hereafter):

ℓT (τi) =
1

|τi|
logPθ,T (τi)

=
1

|τi|

|τi|∑
t=1

log πθ,T (oi,t | si,t). (6)

We can probe the likelihoods of a trajectory τi under a set of virtual temperatures Tk ∈ T via (6).
The trajectory likelihood is unimodal w.r.t. T (see the proof in Appendix B), and there exists a
likelihood-optimal temperature T ⋆

i that maximizes the likelihood:

T ⋆ = arg max
Tk∈T

ℓTk
(τi). (7)

Figure 2 visualizes the trajectory likelihoods under different temperatures for 8 rollouts of a prompt,
illustrating the unimodal nature. This implies that we can increase the likelihood of a trajectory by
adjusting the temperature.

The empirical analysis in Appendix §C shows that positive advantage trajectories cluster to values
T ⋆ distinct from those of negative advantage trajectories, indicating that sampling from suitable
temperatures can preferentially increase the likelihood of high advantage rollouts.

3.3.2 META-POLICY OPTIMIZATION WITH TEMPERATURE REWARDS

We formulate online temperature adaptation as a policy over temperature. A key challenge is eval-
uating the advantage of specific temperatures. Instead of sampling additional trajectories, we reuse
the rollouts from inner-loop optimization. Particularly, for a trajectory with positive advantage, we
increase its likelihood by rewarding temperatures that lead to higher trajectory likelihoods. Con-
versely, for a trajectory with negative advantage, we down-weight its likelihood by punishing tem-
peratures that lead to higher trajectory likelihoods. This aligns temperature adaptation with policy
optimization: reinforcing the likelihoods of high-reward trajectories, while suppressing likelihoods
of low-reward trajectories.

Temperature-specific Advantage. Let τi denote a sampled trajectory and T = {T1, . . . , TK} a set
of candidate temperatures. For each trajectory τi and virtual candidate temperature Tk, similar to

5
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(6), we compute the trajectory’s likelihood under the LLM policy θ at temperature Tk as

ℓTk
(τi) = logPTk

(τi) =

|τi|∑
t=1

log πθ,Tk
(oi,t | si,t). (8)

To capture the relative desirability of different temperatures, we normalize the likelihoods ℓTk
(τi)

across the K candidate temperatures using sparsemax (Martins & Astudillo, 2016), yielding nor-
malized likelihood ℓ̂Tj (τi) with

∑K
j=1 ℓ̂Tj (τi) = 1. The trajectory’s advantage Ai (see (1)) is then

scaled by these normalized likelihoods to produce the temperature-specific advantage:

A(Tk)
i = ℓ̂Tk

(τi) ·Ai. (9)

This can be interpretation as below:

• Positive-advantage trajectories (Ai > 0) reinforce the likelihood-optimal temperature most
strongly, with neighboring temperatures receiving attenuated positive contributions.

• Negative-advantage trajectories (Ai < 0) penalize the likelihood-optimal temperature most, while
nearby temperatures inherit attenuated negative contributions.

Meta-policy Update. Using trajectory’s temperature-specific advantages, we maintain a meta-
policy π(T ) over T , which characterizes a probability distribution over T . For a batch B of |B|
samples, each with G generated trajectories, we aggregate the temperature-specific advantages for
each candidate temperature Tk:

A(Tk)
B =

1

|B|G

|B|∑
b=1

G∑
i=1

A(Tk)
b,i , (10)

where A(Tk)
b,i denotes the temperature advantage of the i-th trajectory of sample b with respect to

temperature Tk. A(Tk)
B serves as the update target for the meta-policy, representing the batch-level

temperature-specific advantage.

To stabilize updates, we maintain an exponentially weighted moving average (EMA) of temperature-
specific advantages:

Ā(Tk)
s = (1− α) Ā(Tk)

s−1 + αA(Tk)
B , (11)

where α ∈ [0, 1) controls smoothing, s denotes training step index. This EMA provides a stabilized
advantage estimate, reducing variance from individual batches while retaining responsiveness to
new trajectory feedback.

Finally, the meta-policy πs(Tk) at step s is computed simply via min-max normalization:

πs(Tk) =
Ã(Tk)

s∑K
j=1 Ã

(Tj)
s

, Ã(Tk)
s =

Ā(Tk)
s −minj Ā

(Tj)
s

maxj Ā
(Tj)
s −minj Ā

(Tj)
s

, k = 1, . . . ,K. (12)

This ensures πs(Tk) forms a valid distribution:
∑K

k=1 πs(Tk) = 1, favouring higher-
advantage temperatures while suppressing lower-advantage ones, and forming a valid distribution:∑K

k=1 πs(Tk) = 1.

3.4 OVERALL ALGORITHM

Algorithm 1 summarizes the TAMPO, which operates as a hierarchical two-loop process:

• Inner loop: Optimizes the LLM policy using trajectories (e.g., via GRPO) sampled under the
temperature selected with meta-policy.

• Outer loop: Adaptively updates the temperature meta-policy. The same inner-loop trajectories are
reused to update the meta-policy: trajectory advantages are modulated by their likelihoods under
each candidate temperature as temperature-specific advantages (see Equations 8–9).

This trajectory-guided update enables principled online temperature adaptation, balancing explo-
ration and exploitation without extra rollouts. TAMPO is compatible with critic-free RL algorithms
and introduces negligible additional cost. We use GRPO as our critic-free RL in our experiments.

6
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Algorithm 1 Temperature Adaptive Meta Policy Optimization (TAMPO)

Require: LLM policy πθ, reference policy πref, training step number S, temperature candidates
T = {T1, . . . , TK}, temperature meta-policy π, EMA decay α.

1: Initialize Ā0
(Tk) ← 0, πs−1(Tk)← 1/K for all Tk ∈ T .

2: for s = 1 to S do
3: Outer Loop: Sample Temperature
4: Sample temperature Ts ∼ πs−1(T ).
5:
6: Inner Loop: Critic-free Policy Optimization
7: Sample a batch of prompts B.
8: for each prompt q ∈ B do
9: Generate G trajectories {τ1, . . . , τG} using πθ at temperature Ts.

10: Compute reward r(τq,i) and advantage Aq,i (e.g., via GRPO) for each trajectory τq,i.
11: Update LLM policy θ using advantages Aq,i.
12: end for
13:
14: Outer Loop: Update Meta-Policy
15: Calculate temperature-specific advantages A(Tk)

B for all Tk ∈ T (see (10)).
16: for each temperature Tk ∈ T do
17: Update EMA: Ā(Tk)

s ← (1− α) Ā(Tk)
s−1 + αA(Tk)

B .
18: end for
19: Update meta-policy πs(Tk) based on the Ā(Tk)

s and (12) for all Tk ∈ T .
20: end for

4 EXPERIMENTS

4.1 SETUP

Training Datasets and Benchmarks. We utilize a public math–reasoning dataset open-s1 (Dang
& Ngo, 2025) for training. For evaluation, we use five distinct mathematics-focused bench-
marks—AIME24, MATH-500, AMC23, Minerva, and OlympiadBench—covering a broad spec-
trum of difficulty levels and problem styles to comprehensively assess reasoning ability and gener-
alization performance.

Implementation Details. We use DeepSeek-R1-Distill-Qwen-1.5B (DS-Qwen-1.5B for
short) (Guo et al., 2025) as our base model to train both baselines and our models. We set our
candidate temperatures in the range 0.6–1.5 with the interval 0.1, and K = 10, and the EMA
coefficient α = 0.05 by default. In the warmup phase (i.e., the first 10% of training steps), we
use a fixed sampling temperature of 1.0 for LLM policy, while the meta-policy is updated. After
the warmup phase, the samping temperature is determined dynamically by the online learned
meta-policy. The maximum response length is set to 6k tokens.

All experiments are conducted on NVIDIA 8×V100 GPUs. We train both baseline models and our
models for 200 steps, using an initial learning rate of 1× 10−6, a warmup ratio of 0.1, followed by
a cosine schedule. The training batch size is set to 32, with 8 rollouts per question.

Evaluation Protocol. We evaluate using Pass@1 and Pass@8 in order to measure single-shot
accuracy and performance under multiple sampled attempts, showing model’s exploration potential
to solve questions. All evaluations are performed with a maximum response length of 6k tokens and
a fixed decoding temperature of 1.0.

4.2 MAIN RESULTS

Comparison with Baselines. We adopt GRPO as the RL algorithm for both baselines and our
scheme. DS-Qwen-1.5B refers to DeepSeek-R1-Distill-Qwen-1.5B, which serves as the starting
model for all 1.5B model experiments. We construct baselines using a fixed sampling temperature
at 0.9, 1.2, and 1.5 during training, denoted by GRPO (Ts : 0.9), GRPO (Ts : 0.9), and GRPO (Ts :

7
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Average AIME24 MATH-500 AMC23 Minerva OlympiadBench

Method Pass@1 Pass@8 Pass@1 Pass@8 Pass@1 Pass@8 Pass@1 Pass@8 Pass@1 Pass@8 Pass@1 Pass@8

DS-Qwen-1.5B 39.1 57.8 13.3 26.7 76.2 89.2 45.0 72.5 22.8 41.5 38.4 59.0

GRPO (Ts : 0.9) 42.0 60.8 20.0 30.0 75.2 91.0 50.0 80.0 26.1 43.4 38.7 59.4
GRPO (Ts : 1.2) 41.6 61.1 20.0 33.3 77.4 90.6 50.0 77.5 22.4 43.4 38.1 60.5
GRPO (Ts : 1.5) 42.6 62.1 23.3 36.7 75.4 90.8 52.5 77.5 22.8 44.5 39.0 61.2
GRPO (Ts :0.9→1.5) 42.8 59.7 16.7 30.0 76.6 89.8 55.0 77.5 24.6 40.8 41.0 60.4

TAMPO (Ours) 44.5 63.8 23.3 40.0 76.8 91.0 55.0 82.5 27.9 44.8 39.6 60.7

Table 1: Comparison of TAMPO with baselines on math reasoning using 1.5B models, evaluated
with Pass@1 and Pass@8. DS-Qwen-1.5B denotes DeepSeek-R1-Distill-Qwen-1.5B (Guo et al.,
2025), which serves as the base model for all training on the open-s1 dataset. GRPO (Ts : 0.9)
indicates a baseline trained with GRPO at a fixed sampling temperature of 0.9. The maximum
response length is set to 6k tokens. The best performance is highlighted in bold and the second best
is underlined.

0.9), respectively. Additionally, we include a baseline with a linearly increasing training temperature
from 0.9 to 1.5, denoted as GRPO (Ts : 0.9→ 1.5).

Table 1 reports Pass@1 and Pass@8 accuracy across the five evaluation benchmarks. On average,
our TAMPO consistently outperforms the best fixed-temperature baseline, achieving 1.9% and 1.7%
improvements in Pass@1 and Pass@8, respectively. Across all datasets, TAMPO either achieves the
best performance or the second best, highlighting the effectiveness of treating temperature as a
learnable meta-policy.

Complexity. Our scheme has nearly the same computational complexity compared to the baseline
schemes. (i) The meta-policy model is extremely lightweight, as it only maintains a list of temper-
ature advantages, introducing negligible overhead during training and being discarded at inference.
(ii) TAMPO reuses rollouts from the inner loop, eliminating the need for generating additional tra-
jectories. For the same number of training steps, both the baseline schemes using GRPO and our
TAMPO use approximately the same training time (9 hours 54 minutes on an 8×V100 GPU machine
for 200 steps).

4.3 ABLATION STUDY

Influence of EMA Coefficient α. As described in (11), α controls the exponential moving average
smoothing, balancing the contribution of current feedback and historical accumulation. Table 2
reports the results for α ∈ {0.01, 0.05, 0.10}. The increase in α from 0.01 to 0.05 increases the
average score from 41.6 to 44.5 and all benchmarks showing improvement. Further increasing α to
0.10 produces mixed effects. α = 0.05 provides a good trade-off between reducing variance and
retaining responsiveness to new feedback.

α Average AIME24 MATH-500 AMC23 Minerva OlympiadBench

0.01 41.6 20.0 75.2 50.0 25.4 37.5
0.05 44.5 23.3 76.8 55.0 27.9 39.6
0.10 43.6 23.3 75.4 57.5 23.2 38.8

Table 2: Influence of the EMA coefficient α for our TAMPO. We report the performance on Pass@1.

Influence of Sampling Strategy on Meta-policy. We model the meta-policy as a distribution π
over candidate temperatures. At each training step, similar to token sampling in LLM, we sample
temperatures from π via nucleus sampling (i.e., top-p sampling), which selects actions from the
smallest set whose cumulative probability exceeds a threshold p, focusing on the “nucleus” of likely
outcomes while filtering out low-probability options. p controls the trade-off between exploration
and exploitation in the meta-policy.

Table 3 shows results for top-p sampling with p = 0.9, 0.7, 0.5, 0. When p = 0, this corresponds
to greedy sampling, selecting the temperature with the highest probability (equivalent to top-k sam-
pling with k = 1). We can see that a moderate threshold p = 0.7 achieves a good balance between
exploration and exploration on temperature. We set p to 0.7 by default. Too high a threshold lim-
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Sampling strategy Average AIME24 MATH-500 AMC23 Minerva OlympiadBench

Top-p (p: 0.9) 43.0 20.0 76.6 52.5 26.1 39.7
Top-p (p: 0.7) 44.5 23.3 76.8 55.0 27.9 39.6
Top-p (p: 0.5) 42.2 23.3 75.4 50.0 24.3 38.1
Top-p (p: 0, greedy) 40.9 20.0 73.8 50.0 23.5 37.2

Table 3: Influence of sampling strategy on meta-policy. We report the performance on Pass@1.
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(a) Sampling temperatures from the meta-policy.
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(b) Reward curves for LLM policy models in training.

Figure 3: (a) Sampling temperatures from the meta-policy using nucleus sampling. (b) Rewarding
curves of LLM policy models for baselines and our TAMPO.

its exploitation of the learned meta-policy, sacrificing certain opportunities to exploit the benefit of
learned meta-policy. Too low a threshold (e.g., p = 0.5) or greedy sampling (i.e., p = 0) leads to
under-exploration, reducing effectiveness. Since the greedy sampling always sample temperatures
that having the highest advantages, even though the second-best temperature may have similar ad-
vantages, such under-exploration of temperatures leads to LLM policy losing opportunity to generate
rollouts under those temperatures and reducing the experience diversity.

For the ablated schemes, we also show the reward curves for the LLM policy during training in Ap-
pendix §E. The schemes with the highest rewards also lead to the best performance on the evaluation
benchmarks.

4.4 ANALYSIS

Sampling Temperature from Meta-policy. Figure 3 (a) visualizes the temperatures sampled from
the meta-policy via nucleus sampling (p = 0.7). We report the mean and standard deviation over a
sliding window of 25 training steps. We can see that the temperatures dynamically throughout train-
ing. After the 20 warm-up steps, a high temperature (around 1.3) is preferred, promoting stronger
exploration in LLM policy generation. As training progresses, the mean temperature slightly de-
creases, favoring more exploitation while retaining sufficient diversity in rollouts.

Moreover, the observed fluctuations (large standard deviation) are due to nucleus sampling, which
balances exploitation of the learned meta-policy with continued exploration, where the exploration
on diverse temperatures enrich the trajectory patterns of the LLM policy.

Training Reward Curves. Figure 3 (b) shows the evolution of rewards during LLM policy training.
Compared to baseline schemes (as shown in Table 1), TAMPO achieves the highest rewards as
training goes, demonstrating that the adaptive temperature meta-policy effectively guides LLMs
toward trajectories with greater expected returns.

5 CONCLUSION

We presented TAMPO, a hierarchical framework that treats temperature as a learnable meta-policy
in LLM reinforcement learning. By reusing trajectories to adaptively update a temperature meta-
policy, TAMPO enables exploration without extra rollouts and achieves consistent improvements on

9
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mathematical reasoning benchmarks. These results demonstrate that principled temperature adapta-
tion is a practical and effective tool for advancing LLM reinforcement learning.

LLM USAGE

We used large language models (LLMs) to assist with refining the writing and presentation of this
paper. LLMs were employed for improving clarity, conciseness, and formatting, while all ideas,
methods, and experiments were conceived and executed by the authors.

REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure the reproducibility of our work. Our temperature adap-
tation method and algorithm are described in § 3.3. The training details, including base models,
hyperparameters, and optimization settings, are described in § 4.1. The training datasets and eval-
uation benchmarks used in this study are publicly available. We will release the source code upon
acceptance to further facilitate the verification and reproduction of our results.
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A GRPO OPTIMIZATION OBJECTIVE

GRPO updates the policy πθ,T by maximizing the expected advantage while including a KL regu-
larization term with respect to a reference policy:

JGRPO(θ) = E(q,a)∼D,{τi}G
i=1∼πθold,T (·|q)[

1

G

G∑
i=1

1

|τi|

|τi|∑
t=1

((
ρi,t(θ, T )Ai, clip(ρi,t(θ, T ), 1− ϵ, 1 + ϵ)Ai

)
− βDKL(πθ,T ||πref)

)]
,

(13)

where ρi,t(θ, T ) =
πθ,T (oi,t|q,oi,<t)
πθold,T (oi,t|q,oi,<t)

. ϵ and β are hyperparameters.
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B PROOF OF THE UNIMODAL OF TRAJECTORY LIKELIHOOD W.R.T. T

For a trajectory τ = (a1, . . . , an) of n tokens, each token at is generated based on the state
st = (q, a<t) with policy model parameterized by θ. Here q denotes the prompt/question. Un-
der temperature scaling of T > 0, the conditional distribution can be obtained based on the model
output logits z(a | st) as

πθ,T (a | st) =
exp

(
z(a | st)/T

)∑
a′ exp

(
z(a′ | st)/T

) . (14)

The log-likelihood of the trajectory τ = (a1, a2, . . . , an) is

ℓT (τ) = logPθ,T (τ), where Pθ,T (τ) =

n∏
t=1

πθ,T (at | st). (15)

We define a baseline distribution at T=1 under condition st as 1

qt(a) :=
ez(a|st)∑
u e

z(u|st)
. (16)

Then,
log qt(a) = z(a | st)− log

∑
u

ez(u|st). (17)

Let β = 1/T which denotes the inverse temperature. We have

πθ,T (a | st) =
qt(a)

β∑
u qt(u)

β
. (18)

Let us define S(τ) :=
∑n

t=1 log qt(at), At(β) := log
∑

u qt(u)
β , and A(β) :=

∑n
t=1 At(β). We

obtain the standard exponential family form:

logPθ,β(τ) = β S(τ)−A(β). (19)

Second derivative w.r.t the inverse temperature β (unimodality): Based on standard properties,

A′
t(β) = Ea∼πθ,T (·|st)[log qt(a)], A′′

t (β) = Vara∼πθ,T (·|st)[log qt(a)] ≥ 0. (20)

Then,
d2

dβ2
logPθ,β(τ) = −A′′(β) ≤ 0. (21)

Therefore, logPθ,β(τ) is strictly concave in β. Since β = 1/T is a monotone reparameteriza-
tion, Pθ,T (τ) is unimodal in T , with a one-to-one correspondence between maximizers: β∗(τ) =
1/T ∗(τ).

First derivative w.r.t. temperature and endpoint limits (typical “rise-then-fall”): We have

log πθ,T (a | st) =
z(a | st)

T
− log

∑
u

exp(z(u | st)/T ). (22)

Let us define µT (st) := Ea∼πθ,T (·|st)[z(a | st)]. A direct differentiation yields

d

dT
log πθ,T (a | st) = −

1

T 2

[
z(a | st)− µT (st)

]
. (23)

Therefore,

ℓ′T (T ) =
d

dT
logPθ,T (τ) = −

1

T 2

n∑
t=1

[
z(a | st)− µT (st)

]
. (24)

As T → 0+, each step tends to select the action with maximum logit. Therefore, µT (st) →
maxa z(a | st). When the trajecotry is not composed by greedy sampling of actions/tokens,
z(a|st) < µT (st) and then ℓ′T (T ) > 0, i.e., a small increase of T increases logPθ,T (τ).

1We denote qt(at|st) by qt(at) for conciseness.
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As T →∞, πθ,T approaches uniform distribution and µT (st)→ z(st) = |V|−1
∑

a z(a | st). The
LLM sampled tokens in general have z(a|st) > z(st) (except for an edge case), making the sum
positive and ℓ′T (T ) < 0, i.e., a increase of T reduces logPθ,T (τ).

Conclusion: unimodality and “rise-then-fall”. Combining the strict concavity w.r.t. β (Eq. (21))
and the opposite signs of ℓ′T (T ) at the low- and high-temperature limits (Eq. 24), we conclude that,
for trajectories except edge cases, there exists a unique T ∗(τ) ∈ (0,∞) such that

ℓ′T (T ) > 0 for T < T ∗, ℓ′T (T
∗) = 0, and ℓ′T (T ) < 0 for T > T ∗. (25)

Log-likehood logPθ,T (τ) is typically unimodal w.r.t T and exhibits a “rise-then-fall” shape beside
edge cases.

Edge cases. First, if a trajectory is composed of greedy tokens, that is, at every step t LLM policy
picks the most probable token, then its likelihood decreases monotonically with T , approaching 1
as T → 0+. Second, if a trajectory has many chosen tokens having probability below |V|−1, i.e.,
which rarely occur under the decoding strategy, its likelihood will slowly increase when T increases.

The unimodal property of the trajectory log-likelihood for general cases, and the monotonicity for
edge cases, all assure that we can use discrete temperatures (as virtual temperatures) to well estimate
the likelihood of trajectories under different temperatures.

C CONNECTION BETWEEN TEMPERATURE AND ADVANTAGE

To gain a more intuitive understanding of the correlation between trajectory advantage and
likelihood-optimal temperature, we conducted training under fixed sampling temperatures (0.9, 1.2,
and 1.5) using GRPO and computed the likelihood-optimal temperature T ⋆(τ) for each trajectory
τ . Figure 4 shows the resulting distributions for trajectories with positive advantages (green) and
negative advantages (red) along training, with mean and variance computed for rollouts of every 5
training steps.

Three patterns can be observed. (i) A fixed sampling temperature generally does not align with the
likelihood-optimal temperatures observed during training. (ii) Positive-advantage trajectories cluster
around distinct T ⋆ values compared to negative-advantage trajectories, indicating that high-reward
rollouts are intrinsically associated with specific temperature regimes. (iii) At extreme sampling
temperatures, trajectories tend to revert toward moderate T ⋆ values: when T = 1.5, most T ⋆ are
well below 1.5, while at T = 0.9, most T ⋆ are well above 0.9. This demonstrates that both excessive
randomness and excessive determinism reduce the likelihood of producing advantageous rollouts.

Overall, these results suggest that there exist more optimal temperatures that increase the proba-
bility of high-advantage trajectories, highlighting substantial room for improving the likelihood of
sampling advantageous rollouts.

D MORE REWARD CURVES

We show the reward curves for the LLM policy during training for the ablated schemes. The schemes
with the highest rewards also lead to the best performance on the evaluation benchmarks (see Fig-
ure 5 and Figure 6).

E MORE EXPERIMENTS RESULTS

To assess the stability of our method under different random seeds, we conducted three independent
training runs of TAMPO. Table 4 reports the complete results of Pass@1 and Pass@8 across all
mathematical reasoning benchmarks. As shown, performance across seeds remains highly consis-
tent, demonstrating that TAMPO exhibits stable optimization dynamics and effective performance.

To evaluate TAMPO’s generality across different base models and domains, we conducted addi-
tional experiments. Specifically, we used Qwen2.5-3B-Instruct as a new base model and evaluated
TAMPO on ECQA, a commonsense reasoning benchmark. The results in table 5, show consistent
improvements, demonstrating that TAMPO generalizes beyond mathematical reasoning.
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(a) Fixed Ts = 0.9
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(b) Fixed Ts = 1.2
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(c) Fixed Ts = 1.5

Figure 4: Distribution of trajectory likelihood-optimal temperatures under three fixed training tem-
peratures, respectively. Green curve corresponds to the likelihood-optimal temperatures of positive-
advantage trajectories (A > 0), red curve to negative-advantage trajectories (A < 0), and blue curve
to the sampled fixed temperature.

Average AIME24 MATH-500 AMC23 Minerva OlympiadBench

Method Pass@1 Pass@8 Pass@1 Pass@8 Pass@1 Pass@8 Pass@1 Pass@8 Pass@1 Pass@8 Pass@1 Pass@8

TAMPO (Ours) Run 1 44.5 63.8 23.3 40.0 76.8 91.0 55.0 82.5 27.9 44.8 39.6 60.7
TAMPO (Ours) Run 2 44.6 63.6 20.0 36.7 77.6 90.8 57.5 85.0 28.7 45.6 39.2 59.9
TAMPO (Ours) Run 3 44.3 63.6 23.3 40.0 76.6 90.8 55.0 82.5 26.8 44.5 39.9 60.4

Table 4: Three independent runs of TAMPO on math reasoning benchmarks (Pass@1 and Pass@8).
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Figure 5: Reward curves for LLM policy models when using different EMA coefficient a values.
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Figure 6: Reward curves for LLM policy models under different p values for top-p sampling of
meta-policy.

Method Pass@1 Pass@8

Qwen2.5-3B-Instruct (no RL) 73.06% 77.76%
GRPO 75.07% 78.94%
TAMPO 76.12% 79.67%

Table 5: ECQA results evaluated with Pass@1 and Pass@8.
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